diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/ada/a-numaux-darwin.ads | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/ada/a-numaux-darwin.ads')
-rw-r--r-- | gcc/ada/a-numaux-darwin.ads | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/gcc/ada/a-numaux-darwin.ads b/gcc/ada/a-numaux-darwin.ads new file mode 100644 index 000000000..1f0eea907 --- /dev/null +++ b/gcc/ada/a-numaux-darwin.ads @@ -0,0 +1,107 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUN-TIME COMPONENTS -- +-- -- +-- A D A . N U M E R I C S . A U X -- +-- -- +-- S p e c -- +-- (Apple OS X Version) -- +-- -- +-- Copyright (C) 1992-2009, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- This version is for use with normal Unix math functions, except for +-- sine/cosine which have been implemented directly in Ada to get +-- the required accuracy in OS X. Alternative packages are used +-- on OpenVMS (different import names), VxWorks (no need for the +-- -lm Linker_Options), and on the x86 (where we have two +-- versions one using inline ASM, and one importing from the C long +-- routines that take 80-bit arguments). + +package Ada.Numerics.Aux is + pragma Pure; + + pragma Linker_Options ("-lm"); + + type Double is digits 15; + -- Type Double is the type used to call the C routines + + -- The following functions have been implemented in Ada, since + -- the OS X math library didn't meet accuracy requirements for + -- argument reduction. The implementation here has been tailored + -- to match Ada strict mode Numerics requirements while maintaining + -- maximum efficiency. + function Sin (X : Double) return Double; + pragma Inline (Sin); + + function Cos (X : Double) return Double; + pragma Inline (Cos); + + -- We import these functions directly from C. Note that we label them + -- all as pure functions, because indeed all of them are in fact pure! + + function Tan (X : Double) return Double; + pragma Import (C, Tan, "tan"); + pragma Pure_Function (Tan); + + function Exp (X : Double) return Double; + pragma Import (C, Exp, "exp"); + pragma Pure_Function (Exp); + + function Sqrt (X : Double) return Double; + pragma Import (C, Sqrt, "sqrt"); + pragma Pure_Function (Sqrt); + + function Log (X : Double) return Double; + pragma Import (C, Log, "log"); + pragma Pure_Function (Log); + + function Acos (X : Double) return Double; + pragma Import (C, Acos, "acos"); + pragma Pure_Function (Acos); + + function Asin (X : Double) return Double; + pragma Import (C, Asin, "asin"); + pragma Pure_Function (Asin); + + function Atan (X : Double) return Double; + pragma Import (C, Atan, "atan"); + pragma Pure_Function (Atan); + + function Sinh (X : Double) return Double; + pragma Import (C, Sinh, "sinh"); + pragma Pure_Function (Sinh); + + function Cosh (X : Double) return Double; + pragma Import (C, Cosh, "cosh"); + pragma Pure_Function (Cosh); + + function Tanh (X : Double) return Double; + pragma Import (C, Tanh, "tanh"); + pragma Pure_Function (Tanh); + + function Pow (X, Y : Double) return Double; + pragma Import (C, Pow, "pow"); + pragma Pure_Function (Pow); + +end Ada.Numerics.Aux; |