diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/ada/g-mbdira.adb | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/ada/g-mbdira.adb')
-rw-r--r-- | gcc/ada/g-mbdira.adb | 282 |
1 files changed, 282 insertions, 0 deletions
diff --git a/gcc/ada/g-mbdira.adb b/gcc/ada/g-mbdira.adb new file mode 100644 index 000000000..44937f9d6 --- /dev/null +++ b/gcc/ada/g-mbdira.adb @@ -0,0 +1,282 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUN-TIME COMPONENTS -- +-- -- +-- G N A T . M B B S _ D I S C R E T E _ R A N D O M -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 1992-2010, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +with Ada.Calendar; + +with Interfaces; use Interfaces; + +package body GNAT.MBBS_Discrete_Random is + + package Calendar renames Ada.Calendar; + + Fits_In_32_Bits : constant Boolean := + Rst'Size < 31 + or else (Rst'Size = 31 + and then Rst'Pos (Rst'First) < 0); + -- This is set True if we do not need more than 32 bits in the result. If + -- we need 64-bits, we will only use the meaningful 48 bits of any 64-bit + -- number generated, since if more than 48 bits are required, we split the + -- computation into two separate parts, since the algorithm does not behave + -- above 48 bits. + + -- The way this expression works is that obviously if the size is 31 bits, + -- it fits in 32 bits. In the 32-bit case, it fits in 32-bit signed if the + -- range has negative values. It is too conservative in the case that the + -- programmer has set a size greater than the default, e.g. a size of 33 + -- for an integer type with a range of 1..10, but an over-conservative + -- result is OK. The important thing is that the value is only True if + -- we know the result will fit in 32-bits signed. If the value is False + -- when it could be True, the behavior will be correct, just a bit less + -- efficient than it could have been in some unusual cases. + -- + -- One might assume that we could get a more accurate result by testing + -- the lower and upper bounds of the type Rst against the bounds of 32-bit + -- Integer. However, there is no easy way to do that. Why? Because in the + -- relatively rare case where this expression has to be evaluated at run + -- time rather than compile time (when the bounds are dynamic), we need a + -- type to use for the computation. But the possible range of upper bound + -- values for Rst (remembering the possibility of 64-bit modular types) is + -- from -2**63 to 2**64-1, and no run-time type has a big enough range. + + ----------------------- + -- Local Subprograms -- + ----------------------- + + function Square_Mod_N (X, N : Int) return Int; + pragma Inline (Square_Mod_N); + -- Computes X**2 mod N avoiding intermediate overflow + + ----------- + -- Image -- + ----------- + + function Image (Of_State : State) return String is + begin + return Int'Image (Of_State.X1) & + ',' & + Int'Image (Of_State.X2) & + ',' & + Int'Image (Of_State.Q); + end Image; + + ------------ + -- Random -- + ------------ + + function Random (Gen : Generator) return Rst is + S : State renames Gen.Writable.Self.Gen_State; + Temp : Int; + TF : Flt; + + begin + -- Check for flat range here, since we are typically run with checks + -- off, note that in practice, this condition will usually be static + -- so we will not actually generate any code for the normal case. + + if Rst'Last < Rst'First then + raise Constraint_Error; + end if; + + -- Continue with computation if non-flat range + + S.X1 := Square_Mod_N (S.X1, S.P); + S.X2 := Square_Mod_N (S.X2, S.Q); + Temp := S.X2 - S.X1; + + -- Following duplication is not an error, it is a loop unwinding! + + if Temp < 0 then + Temp := Temp + S.Q; + end if; + + if Temp < 0 then + Temp := Temp + S.Q; + end if; + + TF := Offs + (Flt (Temp) * Flt (S.P) + Flt (S.X1)) * S.Scl; + + -- Pathological, but there do exist cases where the rounding implicit + -- in calculating the scale factor will cause rounding to 'Last + 1. + -- In those cases, returning 'First results in the least bias. + + if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then + return Rst'First; + + elsif not Fits_In_32_Bits then + return Rst'Val (Interfaces.Integer_64 (TF)); + + else + return Rst'Val (Int (TF)); + end if; + end Random; + + ----------- + -- Reset -- + ----------- + + procedure Reset (Gen : Generator; Initiator : Integer) is + S : State renames Gen.Writable.Self.Gen_State; + X1, X2 : Int; + + begin + X1 := 2 + Int (Initiator) mod (K1 - 3); + X2 := 2 + Int (Initiator) mod (K2 - 3); + + for J in 1 .. 5 loop + X1 := Square_Mod_N (X1, K1); + X2 := Square_Mod_N (X2, K2); + end loop; + + -- Eliminate effects of small Initiators + + S := + (X1 => X1, + X2 => X2, + P => K1, + Q => K2, + FP => K1F, + Scl => Scal); + end Reset; + + ----------- + -- Reset -- + ----------- + + procedure Reset (Gen : Generator) is + S : State renames Gen.Writable.Self.Gen_State; + Now : constant Calendar.Time := Calendar.Clock; + X1 : Int; + X2 : Int; + + begin + X1 := Int (Calendar.Year (Now)) * 12 * 31 + + Int (Calendar.Month (Now) * 31) + + Int (Calendar.Day (Now)); + + X2 := Int (Calendar.Seconds (Now) * Duration (1000.0)); + + X1 := 2 + X1 mod (K1 - 3); + X2 := 2 + X2 mod (K2 - 3); + + -- Eliminate visible effects of same day starts + + for J in 1 .. 5 loop + X1 := Square_Mod_N (X1, K1); + X2 := Square_Mod_N (X2, K2); + end loop; + + S := + (X1 => X1, + X2 => X2, + P => K1, + Q => K2, + FP => K1F, + Scl => Scal); + + end Reset; + + ----------- + -- Reset -- + ----------- + + procedure Reset (Gen : Generator; From_State : State) is + begin + Gen.Writable.Self.Gen_State := From_State; + end Reset; + + ---------- + -- Save -- + ---------- + + procedure Save (Gen : Generator; To_State : out State) is + begin + To_State := Gen.Gen_State; + end Save; + + ------------------ + -- Square_Mod_N -- + ------------------ + + function Square_Mod_N (X, N : Int) return Int is + begin + return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N))); + end Square_Mod_N; + + ----------- + -- Value -- + ----------- + + function Value (Coded_State : String) return State is + Last : constant Natural := Coded_State'Last; + Start : Positive := Coded_State'First; + Stop : Positive := Coded_State'First; + Outs : State; + + begin + while Stop <= Last and then Coded_State (Stop) /= ',' loop + Stop := Stop + 1; + end loop; + + if Stop > Last then + raise Constraint_Error; + end if; + + Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1)); + Start := Stop + 1; + + loop + Stop := Stop + 1; + exit when Stop > Last or else Coded_State (Stop) = ','; + end loop; + + if Stop > Last then + raise Constraint_Error; + end if; + + Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1)); + Outs.Q := Int'Value (Coded_State (Stop + 1 .. Last)); + Outs.P := Outs.Q * 2 + 1; + Outs.FP := Flt (Outs.P); + Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q)); + + -- Now do *some* sanity checks + + if Outs.Q < 31 + or else Outs.X1 not in 2 .. Outs.P - 1 + or else Outs.X2 not in 2 .. Outs.Q - 1 + then + raise Constraint_Error; + end if; + + return Outs; + end Value; + +end GNAT.MBBS_Discrete_Random; |