diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/ada/i-forlap.ads | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/ada/i-forlap.ads')
-rw-r--r-- | gcc/ada/i-forlap.ads | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/gcc/ada/i-forlap.ads b/gcc/ada/i-forlap.ads new file mode 100644 index 000000000..ebb08abe6 --- /dev/null +++ b/gcc/ada/i-forlap.ads @@ -0,0 +1,414 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUN-TIME COMPONENTS -- +-- -- +-- I N T E R F A C E S . F O R T R A N . L A P A C K -- +-- -- +-- S p e c -- +-- -- +-- Copyright (C) 2006-2009, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- Package comment required if non-RM package ??? + +with Interfaces.Fortran.BLAS; +package Interfaces.Fortran.LAPACK is + pragma Pure; + + type Integer_Vector is array (Integer range <>) of Integer; + + Upper : aliased constant Character := 'U'; + Lower : aliased constant Character := 'L'; + + subtype Real_Vector is BLAS.Real_Vector; + subtype Real_Matrix is BLAS.Real_Matrix; + subtype Double_Precision_Vector is BLAS.Double_Precision_Vector; + subtype Double_Precision_Matrix is BLAS.Double_Precision_Matrix; + subtype Complex_Vector is BLAS.Complex_Vector; + subtype Complex_Matrix is BLAS.Complex_Matrix; + subtype Double_Complex_Vector is BLAS.Double_Complex_Vector; + subtype Double_Complex_Matrix is BLAS.Double_Complex_Matrix; + + -- LAPACK Computational Routines + + -- gerfs Refines the solution of a system of linear equations with + -- a general matrix and estimates its error + -- getrf Computes LU factorization of a general m-by-n matrix + -- getri Computes inverse of an LU-factored general matrix + -- square matrix, with multiple right-hand sides + -- getrs Solves a system of linear equations with an LU-factored + -- square matrix, with multiple right-hand sides + -- hetrd Reduces a complex Hermitian matrix to tridiagonal form + -- heevr Computes selected eigenvalues and, optionally, eigenvectors of + -- a Hermitian matrix using the Relatively Robust Representations + -- orgtr Generates the real orthogonal matrix Q determined by sytrd + -- steqr Computes all eigenvalues and eigenvectors of a symmetric or + -- Hermitian matrix reduced to tridiagonal form (QR algorithm) + -- sterf Computes all eigenvalues of a real symmetric + -- tridiagonal matrix using QR algorithm + -- sytrd Reduces a real symmetric matrix to tridiagonal form + + procedure sgetrf + (M : Natural; + N : Natural; + A : in out Real_Matrix; + Ld_A : Positive; + I_Piv : out Integer_Vector; + Info : access Integer); + + procedure dgetrf + (M : Natural; + N : Natural; + A : in out Double_Precision_Matrix; + Ld_A : Positive; + I_Piv : out Integer_Vector; + Info : access Integer); + + procedure cgetrf + (M : Natural; + N : Natural; + A : in out Complex_Matrix; + Ld_A : Positive; + I_Piv : out Integer_Vector; + Info : access Integer); + + procedure zgetrf + (M : Natural; + N : Natural; + A : in out Double_Complex_Matrix; + Ld_A : Positive; + I_Piv : out Integer_Vector; + Info : access Integer); + + procedure sgetri + (N : Natural; + A : in out Real_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + Work : in out Real_Vector; + L_Work : Integer; + Info : access Integer); + + procedure dgetri + (N : Natural; + A : in out Double_Precision_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + Work : in out Double_Precision_Vector; + L_Work : Integer; + Info : access Integer); + + procedure cgetri + (N : Natural; + A : in out Complex_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + Work : in out Complex_Vector; + L_Work : Integer; + Info : access Integer); + + procedure zgetri + (N : Natural; + A : in out Double_Complex_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + Work : in out Double_Complex_Vector; + L_Work : Integer; + Info : access Integer); + + procedure sgetrs + (Trans : access constant Character; + N : Natural; + N_Rhs : Natural; + A : Real_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + B : in out Real_Matrix; + Ld_B : Positive; + Info : access Integer); + + procedure dgetrs + (Trans : access constant Character; + N : Natural; + N_Rhs : Natural; + A : Double_Precision_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + B : in out Double_Precision_Matrix; + Ld_B : Positive; + Info : access Integer); + + procedure cgetrs + (Trans : access constant Character; + N : Natural; + N_Rhs : Natural; + A : Complex_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + B : in out Complex_Matrix; + Ld_B : Positive; + Info : access Integer); + + procedure zgetrs + (Trans : access constant Character; + N : Natural; + N_Rhs : Natural; + A : Double_Complex_Matrix; + Ld_A : Positive; + I_Piv : Integer_Vector; + B : in out Double_Complex_Matrix; + Ld_B : Positive; + Info : access Integer); + + procedure cheevr + (Job_Z : access constant Character; + Rng : access constant Character; + Uplo : access constant Character; + N : Natural; + A : in out Complex_Matrix; + Ld_A : Positive; + Vl, Vu : Real := 0.0; + Il, Iu : Integer := 1; + Abs_Tol : Real := 0.0; + M : out Integer; + W : out Real_Vector; + Z : out Complex_Matrix; + Ld_Z : Positive; + I_Supp_Z : out Integer_Vector; + Work : out Complex_Vector; + L_Work : Integer; + R_Work : out Real_Vector; + LR_Work : Integer; + I_Work : out Integer_Vector; + LI_Work : Integer; + Info : access Integer); + + procedure zheevr + (Job_Z : access constant Character; + Rng : access constant Character; + Uplo : access constant Character; + N : Natural; + A : in out Double_Complex_Matrix; + Ld_A : Positive; + Vl, Vu : Double_Precision := 0.0; + Il, Iu : Integer := 1; + Abs_Tol : Double_Precision := 0.0; + M : out Integer; + W : out Double_Precision_Vector; + Z : out Double_Complex_Matrix; + Ld_Z : Positive; + I_Supp_Z : out Integer_Vector; + Work : out Double_Complex_Vector; + L_Work : Integer; + R_Work : out Double_Precision_Vector; + LR_Work : Integer; + I_Work : out Integer_Vector; + LI_Work : Integer; + Info : access Integer); + + procedure chetrd + (Uplo : access constant Character; + N : Natural; + A : in out Complex_Matrix; + Ld_A : Positive; + D : out Real_Vector; + E : out Real_Vector; + Tau : out Complex_Vector; + Work : out Complex_Vector; + L_Work : Integer; + Info : access Integer); + + procedure zhetrd + (Uplo : access constant Character; + N : Natural; + A : in out Double_Complex_Matrix; + Ld_A : Positive; + D : out Double_Precision_Vector; + E : out Double_Precision_Vector; + Tau : out Double_Complex_Vector; + Work : out Double_Complex_Vector; + L_Work : Integer; + Info : access Integer); + + procedure ssytrd + (Uplo : access constant Character; + N : Natural; + A : in out Real_Matrix; + Ld_A : Positive; + D : out Real_Vector; + E : out Real_Vector; + Tau : out Real_Vector; + Work : out Real_Vector; + L_Work : Integer; + Info : access Integer); + + procedure dsytrd + (Uplo : access constant Character; + N : Natural; + A : in out Double_Precision_Matrix; + Ld_A : Positive; + D : out Double_Precision_Vector; + E : out Double_Precision_Vector; + Tau : out Double_Precision_Vector; + Work : out Double_Precision_Vector; + L_Work : Integer; + Info : access Integer); + + procedure ssterf + (N : Natural; + D : in out Real_Vector; + E : in out Real_Vector; + Info : access Integer); + + procedure dsterf + (N : Natural; + D : in out Double_Precision_Vector; + E : in out Double_Precision_Vector; + Info : access Integer); + + procedure sorgtr + (Uplo : access constant Character; + N : Natural; + A : in out Real_Matrix; + Ld_A : Positive; + Tau : Real_Vector; + Work : out Real_Vector; + L_Work : Integer; + Info : access Integer); + + procedure dorgtr + (Uplo : access constant Character; + N : Natural; + A : in out Double_Precision_Matrix; + Ld_A : Positive; + Tau : Double_Precision_Vector; + Work : out Double_Precision_Vector; + L_Work : Integer; + Info : access Integer); + + procedure sstebz + (Rng : access constant Character; + Order : access constant Character; + N : Natural; + Vl, Vu : Real := 0.0; + Il, Iu : Integer := 1; + Abs_Tol : Real := 0.0; + D : Real_Vector; + E : Real_Vector; + M : out Natural; + N_Split : out Natural; + W : out Real_Vector; + I_Block : out Integer_Vector; + I_Split : out Integer_Vector; + Work : out Real_Vector; + I_Work : out Integer_Vector; + Info : access Integer); + + procedure dstebz + (Rng : access constant Character; + Order : access constant Character; + N : Natural; + Vl, Vu : Double_Precision := 0.0; + Il, Iu : Integer := 1; + Abs_Tol : Double_Precision := 0.0; + D : Double_Precision_Vector; + E : Double_Precision_Vector; + M : out Natural; + N_Split : out Natural; + W : out Double_Precision_Vector; + I_Block : out Integer_Vector; + I_Split : out Integer_Vector; + Work : out Double_Precision_Vector; + I_Work : out Integer_Vector; + Info : access Integer); + + procedure ssteqr + (Comp_Z : access constant Character; + N : Natural; + D : in out Real_Vector; + E : in out Real_Vector; + Z : in out Real_Matrix; + Ld_Z : Positive; + Work : out Real_Vector; + Info : access Integer); + + procedure dsteqr + (Comp_Z : access constant Character; + N : Natural; + D : in out Double_Precision_Vector; + E : in out Double_Precision_Vector; + Z : in out Double_Precision_Matrix; + Ld_Z : Positive; + Work : out Double_Precision_Vector; + Info : access Integer); + + procedure csteqr + (Comp_Z : access constant Character; + N : Natural; + D : in out Real_Vector; + E : in out Real_Vector; + Z : in out Complex_Matrix; + Ld_Z : Positive; + Work : out Real_Vector; + Info : access Integer); + + procedure zsteqr + (Comp_Z : access constant Character; + N : Natural; + D : in out Double_Precision_Vector; + E : in out Double_Precision_Vector; + Z : in out Double_Complex_Matrix; + Ld_Z : Positive; + Work : out Double_Precision_Vector; + Info : access Integer); + +private + pragma Import (Fortran, csteqr, "csteqr_"); + pragma Import (Fortran, cgetrf, "cgetrf_"); + pragma Import (Fortran, cgetri, "cgetri_"); + pragma Import (Fortran, cgetrs, "cgetrs_"); + pragma Import (Fortran, cheevr, "cheevr_"); + pragma Import (Fortran, chetrd, "chetrd_"); + pragma Import (Fortran, dgetrf, "dgetrf_"); + pragma Import (Fortran, dgetri, "dgetri_"); + pragma Import (Fortran, dgetrs, "dgetrs_"); + pragma Import (Fortran, dsytrd, "dsytrd_"); + pragma Import (Fortran, dstebz, "dstebz_"); + pragma Import (Fortran, dsterf, "dsterf_"); + pragma Import (Fortran, dorgtr, "dorgtr_"); + pragma Import (Fortran, dsteqr, "dsteqr_"); + pragma Import (Fortran, sgetrf, "sgetrf_"); + pragma Import (Fortran, sgetri, "sgetri_"); + pragma Import (Fortran, sgetrs, "sgetrs_"); + pragma Import (Fortran, sorgtr, "sorgtr_"); + pragma Import (Fortran, sstebz, "sstebz_"); + pragma Import (Fortran, ssterf, "ssterf_"); + pragma Import (Fortran, ssteqr, "ssteqr_"); + pragma Import (Fortran, ssytrd, "ssytrd_"); + pragma Import (Fortran, zgetrf, "zgetrf_"); + pragma Import (Fortran, zgetri, "zgetri_"); + pragma Import (Fortran, zgetrs, "zgetrs_"); + pragma Import (Fortran, zheevr, "zheevr_"); + pragma Import (Fortran, zhetrd, "zhetrd_"); + pragma Import (Fortran, zsteqr, "zsteqr_"); +end Interfaces.Fortran.LAPACK; |