diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/config/arc/arc.h | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/config/arc/arc.h')
-rw-r--r-- | gcc/config/arc/arc.h | 935 |
1 files changed, 935 insertions, 0 deletions
diff --git a/gcc/config/arc/arc.h b/gcc/config/arc/arc.h new file mode 100644 index 000000000..0f2b99c19 --- /dev/null +++ b/gcc/config/arc/arc.h @@ -0,0 +1,935 @@ +/* Definitions of target machine for GNU compiler, Argonaut ARC cpu. + Copyright (C) 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, + 2007, 2008, 2009, 2010 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* ??? This is an old port, and is undoubtedly suffering from bit rot. */ + +/* Things to do: + + - incscc, decscc? + - print active compiler options in assembler output +*/ + + +#undef ASM_SPEC +#undef LINK_SPEC +#undef LIB_SPEC +#undef STARTFILE_SPEC +#undef ENDFILE_SPEC +#undef SIZE_TYPE +#undef PTRDIFF_TYPE +#undef WCHAR_TYPE +#undef WCHAR_TYPE_SIZE +#undef ASM_OUTPUT_LABELREF + +/* Print subsidiary information on the compiler version in use. */ +#define TARGET_VERSION fprintf (stderr, " (arc)") + +/* Names to predefine in the preprocessor for this target machine. */ +#define TARGET_CPU_CPP_BUILTINS() \ + do \ + { \ + builtin_define ("__arc__"); \ + if (TARGET_BIG_ENDIAN) \ + builtin_define ("__big_endian__"); \ + if (arc_cpu_type == 0) \ + builtin_define ("__base__"); \ + builtin_assert ("cpu=arc"); \ + builtin_assert ("machine=arc"); \ + } while (0) + +/* Pass -mmangle-cpu if we get -mcpu=*. + Doing it this way lets one have it on as default with -mcpu=*, + but also lets one turn it off with -mno-mangle-cpu. */ +#define CC1_SPEC "\ +%{mcpu=*:-mmangle-cpu} \ +%{EB:%{EL:%emay not use both -EB and -EL}} \ +%{EB:-mbig-endian} %{EL:-mlittle-endian} \ +" + +#define ASM_SPEC "%{EB} %{EL}" + +#define LINK_SPEC "%{v} %{EB} %{EL}" + +#define LIB_SPEC "-lc" + +#define STARTFILE_SPEC "%{!shared:crt0.o%s} crtinit.o%s" + +#define ENDFILE_SPEC "crtfini.o%s" + +/* Instruction set characteristics. + These are internal macros, set by the appropriate -mcpu= option. */ + +/* Nonzero means the cpu has a barrel shifter. */ +#define TARGET_SHIFTER 0 + +/* Which cpu we're compiling for. */ +extern int arc_cpu_type; + +/* Check if CPU is an extension and set `arc_cpu_type' and `arc_mangle_cpu' + appropriately. The result should be nonzero if the cpu is recognized, + otherwise zero. This is intended to be redefined in a cover file. + This is used by arc_handle_option. */ +#define ARC_EXTENSION_CPU(cpu) 0 + + +/* Target machine storage layout. */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN) + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN) + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Define this macro if it is advisable to hold scalars in registers + in a wider mode than that declared by the program. In such cases, + the value is constrained to be within the bounds of the declared + type, but kept valid in the wider mode. The signedness of the + extension may differ from that of the type. */ +#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ +if (GET_MODE_CLASS (MODE) == MODE_INT \ + && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ +{ \ + (MODE) = SImode; \ +} + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 64 + +/* ALIGN FRAMES on word boundaries */ +#define ARC_STACK_ALIGN(LOC) (((LOC)+7) & ~7) + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 32 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Every structure's size must be a multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY 8 + +/* A bit-field declared as `int' forces `int' alignment for the struct. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* No data type wants to be aligned rounder than this. */ +/* This is bigger than currently necessary for the ARC. If 8 byte floats are + ever added it's not clear whether they'll need such alignment or not. For + now we assume they will. We can always relax it if necessary but the + reverse isn't true. */ +#define BIGGEST_ALIGNMENT 64 + +/* The best alignment to use in cases where we have a choice. */ +#define FASTEST_ALIGNMENT 32 + +/* Make strings word-aligned so strcpy from constants will be faster. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + ((TREE_CODE (EXP) == STRING_CST \ + && (ALIGN) < FASTEST_ALIGNMENT) \ + ? FASTEST_ALIGNMENT : (ALIGN)) + +/* Make arrays of chars word-aligned for the same reasons. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) + +/* Set this nonzero if move instructions will actually fail to work + when given unaligned data. */ +/* On the ARC the lower address bits are masked to 0 as necessary. The chip + won't croak when given an unaligned address, but the insn will still fail + to produce the correct result. */ +#define STRICT_ALIGNMENT 1 + +/* Layout of source language data types. */ + +#define SHORT_TYPE_SIZE 16 +#define INT_TYPE_SIZE 32 +#define LONG_TYPE_SIZE 32 +#define LONG_LONG_TYPE_SIZE 64 +#define FLOAT_TYPE_SIZE 32 +#define DOUBLE_TYPE_SIZE 64 +#define LONG_DOUBLE_TYPE_SIZE 64 + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 1 + +#define SIZE_TYPE "long unsigned int" +#define PTRDIFF_TYPE "long int" +#define WCHAR_TYPE "short unsigned int" +#define WCHAR_TYPE_SIZE 16 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. */ +/* Registers 61, 62, and 63 are not really registers and we needn't treat + them as such. We still need a register for the condition code. */ +#define FIRST_PSEUDO_REGISTER 62 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + + 0-28 - general purpose registers + 29 - ilink1 (interrupt link register) + 30 - ilink2 (interrupt link register) + 31 - blink (branch link register) + 32-59 - reserved for extensions + 60 - LP_COUNT + 61 - condition code + + For doc purposes: + 61 - short immediate data indicator (setting flags) + 62 - long immediate data indicator + 63 - short immediate data indicator (not setting flags). + + The general purpose registers are further broken down into: + 0-7 - arguments/results + 8-15 - call used + 16-23 - call saved + 24 - call used, static chain pointer + 25 - call used, gptmp + 26 - global pointer + 27 - frame pointer + 28 - stack pointer + + By default, the extension registers are not available. */ + +#define FIXED_REGISTERS \ +{ 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 1, 1, 1, 1, 0, \ + \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ + +#define CALL_USED_REGISTERS \ +{ 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1 } + +/* If defined, an initializer for a vector of integers, containing the + numbers of hard registers in the order in which GCC should + prefer to use them (from most preferred to least). */ +#define REG_ALLOC_ORDER \ +{ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, \ + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, \ + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, \ + 27, 28, 29, 30 } + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. */ +#define HARD_REGNO_NREGS(REGNO, MODE) \ +((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ +extern const unsigned int arc_hard_regno_mode_ok[]; +extern unsigned int arc_mode_class[]; +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ +((arc_hard_regno_mode_ok[REGNO] & arc_mode_class[MODE]) != 0) + +/* A C expression that is nonzero if it is desirable to choose + register allocation so as to avoid move instructions between a + value of mode MODE1 and a value of mode MODE2. + + If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, + MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1, + MODE2)' must be zero. */ + +/* Tie QI/HI/SI modes together. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ +(GET_MODE_CLASS (MODE1) == MODE_INT \ + && GET_MODE_CLASS (MODE2) == MODE_INT \ + && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \ + && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD) + +/* Register classes and constants. */ + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. + + It is important that any condition codes have class NO_REGS. + See `register_operand'. */ + +enum reg_class { + NO_REGS, LPCOUNT_REG, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES +}; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ +#define REG_CLASS_NAMES \ +{ "NO_REGS", "LPCOUNT_REG", "GENERAL_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ {0, 0}, {0, 0x10000000}, {0xffffffff, 0xfffffff}, \ + {0xffffffff, 0x1fffffff} } + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ +extern enum reg_class arc_regno_reg_class[FIRST_PSEUDO_REGISTER]; +#define REGNO_REG_CLASS(REGNO) \ +(arc_regno_reg_class[REGNO]) + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS GENERAL_REGS +#define BASE_REG_CLASS GENERAL_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ +#define REG_CLASS_FROM_LETTER(C) \ +((C) == 'l' ? LPCOUNT_REG /* ??? needed? */ \ + : NO_REGS) + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ +#define REGNO_OK_FOR_BASE_P(REGNO) \ +((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) +#define REGNO_OK_FOR_INDEX_P(REGNO) \ +((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ +((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* The letters I, J, K, L, M, N, O, P in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. */ +/* 'I' is used for short immediates (always signed). + 'J' is used for long immediates. + 'K' is used for any constant up to 64 bits (for 64x32 situations?). */ + +/* local to this file */ +#define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200) +/* local to this file */ +#define LARGE_INT(X) \ +((X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \ + && (unsigned HOST_WIDE_INT)(X) <= (unsigned HOST_WIDE_INT) 0xffffffff) + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ +((C) == 'I' ? SMALL_INT (VALUE) \ + : (C) == 'J' ? LARGE_INT (VALUE) \ + : (C) == 'K' ? 1 \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. */ +/* 'G' is used for integer values for the multiplication insns where the + operands are extended from 4 bytes to 8 bytes. + 'H' is used when any 64-bit constant is allowed. */ +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ +((C) == 'G' ? arc_double_limm_p (VALUE) \ + : (C) == 'H' ? 1 \ + : 0) + +/* A C expression that defines the optional machine-dependent constraint + letters that can be used to segregate specific types of operands, + usually memory references, for the target machine. It should return 1 if + VALUE corresponds to the operand type represented by the constraint letter + C. If C is not defined as an extra constraint, the value returned should + be 0 regardless of VALUE. */ +/* ??? This currently isn't used. Waiting for PIC. */ +#if 0 +#define EXTRA_CONSTRAINT(VALUE, C) \ +((C) == 'R' ? (SYMBOL_REF_FUNCTION_P (VALUE) || GET_CODE (VALUE) == LABEL_REF) \ + : 0) +#endif + +/* Stack layout and stack pointer usage. */ + +/* Define this macro if pushing a word onto the stack moves the stack + pointer to a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this to nonzero if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD 1 + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ +#define STARTING_FRAME_OFFSET 0 + +/* Offset from the stack pointer register to the first location at which + outgoing arguments are placed. */ +#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET (0) + +/* Offset of first parameter from the argument pointer register value. */ +/* 4 bytes for each of previous fp, return address, and previous gp. + 4 byte reserved area for future considerations. */ +#define FIRST_PARM_OFFSET(FNDECL) 16 + +/* A C expression whose value is RTL representing the address in a + stack frame where the pointer to the caller's frame is stored. + Assume that FRAMEADDR is an RTL expression for the address of the + stack frame itself. + + If you don't define this macro, the default is to return the value + of FRAMEADDR--that is, the stack frame address is also the address + of the stack word that points to the previous frame. */ +/* ??? unfinished */ +/*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/ + +/* A C expression whose value is RTL representing the value of the + return address for the frame COUNT steps up from the current frame. + FRAMEADDR is the frame pointer of the COUNT frame, or the frame + pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' + is defined. */ +/* The current return address is in r31. The return address of anything + farther back is at [%fp,4]. */ +#if 0 /* The default value should work. */ +#define RETURN_ADDR_RTX(COUNT, FRAME) \ +(((COUNT) == -1) \ + ? gen_rtx_REG (Pmode, 31) \ + : copy_to_reg (gen_rtx_MEM (Pmode, \ + memory_address (Pmode, \ + plus_constant ((FRAME), \ + UNITS_PER_WORD))))) +#endif + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 28 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 27 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM + +/* Register in which static-chain is passed to a function. This must + not be a register used by the prologue. */ +#define STATIC_CHAIN_REGNUM 24 + +/* C statement to store the difference between the frame pointer + and the stack pointer values immediately after the function prologue. */ +#define INITIAL_FRAME_POINTER_OFFSET(VAR) \ +((VAR) = arc_compute_frame_size (get_frame_size ())) + +/* Function argument passing. */ + +/* If defined, the maximum amount of space required for outgoing + arguments will be computed and placed into the variable + `crtl->outgoing_args_size'. No space will be pushed + onto the stack for each call; instead, the function prologue should + increase the stack frame size by this amount. */ +#define ACCUMULATE_OUTGOING_ARGS 1 + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. */ +#define CUMULATIVE_ARGS int + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ +#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ +((CUM) = 0) + +/* The number of registers used for parameter passing. Local to this file. */ +#define MAX_ARC_PARM_REGS 8 + +/* 1 if N is a possible register number for function argument passing. */ +#define FUNCTION_ARG_REGNO_P(N) \ +((unsigned) (N) < MAX_ARC_PARM_REGS) + + +/* Function results. */ + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ +#define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx_REG (TYPE_MODE (VALTYPE), 0) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ +#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0) + +/* 1 if N is a possible register number for a function value + as seen by the caller. */ +/* ??? What about r1 in DI/DF values. */ +#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) + +/* Tell GCC to use TARGET_RETURN_IN_MEMORY. */ +#define DEFAULT_PCC_STRUCT_RETURN 0 + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ +#define EXIT_IGNORE_STACK 0 + +/* Epilogue delay slots. */ +#define DELAY_SLOTS_FOR_EPILOGUE arc_delay_slots_for_epilogue () + +#define ELIGIBLE_FOR_EPILOGUE_DELAY(TRIAL, SLOTS_FILLED) \ +arc_eligible_for_epilogue_delay (TRIAL, SLOTS_FILLED) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ +#define FUNCTION_PROFILER(FILE, LABELNO) + +#define TRAMPOLINE_ALIGNMENT 32 +#define TRAMPOLINE_SIZE 16 + +/* Addressing modes, and classification of registers for them. */ + +/* Maximum number of registers that can appear in a valid memory address. */ +/* The `ld' insn allows 2, but the `st' insn only allows 1. */ +#define MAX_REGS_PER_ADDRESS 1 + +/* We have pre inc/dec (load/store with update). */ +#define HAVE_PRE_INCREMENT 1 +#define HAVE_PRE_DECREMENT 1 + +/* Recognize any constant value that is a valid address. */ +#define CONSTANT_ADDRESS_P(X) \ +(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST) + +/* Nonzero if the constant value X is a legitimate general operand. + We can handle any 32- or 64-bit constant. */ +/* "1" should work since the largest constant should be a 64 bit critter. */ +/* ??? Not sure what to do for 64x32 compiler. */ +#define LEGITIMATE_CONSTANT_P(X) 1 + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) \ +((unsigned) REGNO (X) - 32 >= FIRST_PSEUDO_REGISTER - 32) +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) \ +((unsigned) REGNO (X) - 32 >= FIRST_PSEUDO_REGISTER - 32) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. */ +/* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm] + but the `st' insn only allows [reg],[reg+shimm],[limm]. + The only thing we can do is only allow the most strict case `st' and hope + other parts optimize out the restrictions for `ld'. */ + +/* local to this file */ +#define RTX_OK_FOR_BASE_P(X) \ +(REG_P (X) && REG_OK_FOR_BASE_P (X)) + +/* local to this file */ +#define RTX_OK_FOR_INDEX_P(X) \ +(0 && /*???*/ REG_P (X) && REG_OK_FOR_INDEX_P (X)) + +/* local to this file */ +/* ??? Loads can handle any constant, stores can only handle small ones. */ +#define RTX_OK_FOR_OFFSET_P(X) \ +(GET_CODE (X) == CONST_INT && SMALL_INT (INTVAL (X))) + +#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \ +(GET_CODE (X) == PLUS \ + && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \ + && (RTX_OK_FOR_INDEX_P (XEXP (X, 1)) \ + || RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))) + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ if (RTX_OK_FOR_BASE_P (X)) \ + goto ADDR; \ + if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \ + goto ADDR; \ + if (GET_CODE (X) == CONST_INT && LARGE_INT (INTVAL (X))) \ + goto ADDR; \ + if (GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == LABEL_REF \ + || GET_CODE (X) == CONST) \ + goto ADDR; \ + if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \ + /* We're restricted here by the `st' insn. */ \ + && RTX_OK_FOR_BASE_P (XEXP ((X), 0))) \ + goto ADDR; \ +} + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, + return the mode to be used for the comparison. */ +#define SELECT_CC_MODE(OP, X, Y) \ +arc_select_cc_mode (OP, X, Y) + +/* Return nonzero if SELECT_CC_MODE will never return MODE for a + floating point inequality comparison. */ +#define REVERSIBLE_CC_MODE(MODE) 1 /*???*/ + +/* Costs. */ + +/* Compute extra cost of moving data between one register class + and another. */ +#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 2 + +/* Compute the cost of moving data between registers and memory. */ +/* Memory is 3 times as expensive as registers. + ??? Is that the right way to look at it? */ +#define MEMORY_MOVE_COST(MODE,CLASS,IN) \ +(GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12) + +/* The cost of a branch insn. */ +/* ??? What's the right value here? Branches are certainly more + expensive than reg->reg moves. */ +#define BRANCH_COST(speed_p, predictable_p) 2 + +/* Nonzero if access to memory by bytes is slow and undesirable. + For RISC chips, it means that access to memory by bytes is no + better than access by words when possible, so grab a whole word + and maybe make use of that. */ +#define SLOW_BYTE_ACCESS 1 + +/* Define this macro if it is as good or better to call a constant + function address than to call an address kept in a register. */ +/* On the ARC, calling through registers is slow. */ +#define NO_FUNCTION_CSE + +/* Section selection. */ +/* WARNING: These section names also appear in dwarfout.c. */ + +/* The names of the text, data, and readonly-data sections are runtime + selectable. */ + +#define ARC_SECTION_FORMAT "\t.section %s" +#define ARC_DEFAULT_TEXT_SECTION ".text" +#define ARC_DEFAULT_DATA_SECTION ".data" +#define ARC_DEFAULT_RODATA_SECTION ".rodata" + +extern const char *arc_text_section, *arc_data_section, *arc_rodata_section; + +/* initfini.c uses this in an asm. */ +#if defined (CRT_INIT) || defined (CRT_FINI) +#define TEXT_SECTION_ASM_OP "\t.section .text" +#else +#define TEXT_SECTION_ASM_OP arc_text_section +#endif +#define DATA_SECTION_ASM_OP arc_data_section + +#undef READONLY_DATA_SECTION_ASM_OP +#define READONLY_DATA_SECTION_ASM_OP arc_rodata_section + +#define BSS_SECTION_ASM_OP "\t.section .bss" + +/* Define this macro if jump tables (for tablejump insns) should be + output in the text section, along with the assembler instructions. + Otherwise, the readonly data section is used. + This macro is irrelevant if there is no separate readonly data section. */ +/*#define JUMP_TABLES_IN_TEXT_SECTION*/ + +/* For DWARF. Marginally different than default so output is "prettier" + (and consistent with above). */ +#define PUSHSECTION_ASM_OP "\t.section " + +/* Tell crtstuff.c we're using ELF. */ +#define OBJECT_FORMAT_ELF + +/* PIC */ + +/* The register number of the register used to address a table of static + data addresses in memory. In some cases this register is defined by a + processor's ``application binary interface'' (ABI). When this macro + is defined, RTL is generated for this register once, as with the stack + pointer and frame pointer registers. If this macro is not defined, it + is up to the machine-dependent files to allocate such a register (if + necessary). */ +#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 26 : INVALID_REGNUM) + +/* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is + clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM + is not defined. */ +/* This register is call-saved on the ARC. */ +/*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/ + +/* A C expression that is nonzero if X is a legitimate immediate + operand on the target machine when generating position independent code. + You can assume that X satisfies CONSTANT_P, so you need not + check this. You can also assume `flag_pic' is true, so you need not + check it either. You need not define this macro if all constants + (including SYMBOL_REF) can be immediate operands when generating + position independent code. */ +/*#define LEGITIMATE_PIC_OPERAND_P(X)*/ + +/* Control the assembler format that we output. */ + +/* A C string constant describing how to begin a comment in the target + assembler language. The compiler assumes that the comment will + end at the end of the line. */ +#define ASM_COMMENT_START ";" + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ +#define ASM_APP_ON "" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ +#define ASM_APP_OFF "" + +/* Globalizing directive for a label. */ +#define GLOBAL_ASM_OP "\t.global\t" + +/* This is how to output a reference to a user-level label named NAME. + `assemble_name' uses this. */ +/* We mangle all user labels to provide protection from linking code + compiled for different cpus. */ +/* We work around a dwarfout.c deficiency by watching for labels from it and + not adding the '_' prefix nor the cpu suffix. There is a comment in + dwarfout.c that says it should be using (*targetm.asm_out.internal_label). */ +extern const char *arc_mangle_cpu; +#define ASM_OUTPUT_LABELREF(FILE, NAME) \ +do { \ + if ((NAME)[0] == '.' && (NAME)[1] == 'L') \ + fprintf (FILE, "%s", NAME); \ + else \ + { \ + fputc ('_', FILE); \ + if (TARGET_MANGLE_CPU && arc_mangle_cpu != NULL) \ + fprintf (FILE, "%s_", arc_mangle_cpu); \ + fprintf (FILE, "%s", NAME); \ + } \ +} while (0) + +/* Assembler pseudo-op to equate one value with another. */ +/* ??? This is needed because dwarfout.c provides a default definition too + late for defaults.h (which contains the default definition of ASM_OUTPUT_DEF + that we use). */ +#define SET_ASM_OP "\t.set\t" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ +#define REGISTER_NAMES \ +{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ + "r24", "r25", "r26", "fp", "sp", "ilink1", "ilink2", "blink", \ + "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \ + "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \ + "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \ + "r56", "r57", "r58", "r59", "lp_count", "cc"} + +/* Entry to the insn conditionalizer. */ +#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ +arc_final_prescan_insn (INSN, OPVEC, NOPERANDS) + +/* A C expression which evaluates to true if CODE is a valid + punctuation character for use in the `PRINT_OPERAND' macro. */ +extern char arc_punct_chars[256]; +#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ +arc_punct_chars[(unsigned char) (CHAR)] + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ +#define PRINT_OPERAND(FILE, X, CODE) \ +arc_print_operand (FILE, X, CODE) + +/* A C compound statement to output to stdio stream STREAM the + assembler syntax for an instruction operand that is a memory + reference whose address is ADDR. ADDR is an RTL expression. */ +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ +arc_print_operand_address (FILE, ADDR) + +/* This is how to output an element of a case-vector that is absolute. */ +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ +do { \ + char label[30]; \ + ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ + fprintf (FILE, "\t.word %%st("); \ + assemble_name (FILE, label); \ + fprintf (FILE, ")\n"); \ +} while (0) + +/* This is how to output an element of a case-vector that is relative. */ +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ +do { \ + char label[30]; \ + ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ + fprintf (FILE, "\t.word %%st("); \ + assemble_name (FILE, label); \ + fprintf (FILE, "-"); \ + ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \ + assemble_name (FILE, label); \ + fprintf (FILE, ")\n"); \ +} while (0) + +/* The desired alignment for the location counter at the beginning + of a loop. */ +/* On the ARC, align loops to 32 byte boundaries (cache line size) + if -malign-loops. */ +#define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0) + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ +do { if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); } while (0) + +/* Debugging information. */ + +/* Generate DBX and DWARF debugging information. */ +#define DBX_DEBUGGING_INFO 1 + +/* Prefer STABS (for now). */ +#undef PREFERRED_DEBUGGING_TYPE +#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG + +/* Turn off splitting of long stabs. */ +#define DBX_CONTIN_LENGTH 0 + +/* Miscellaneous. */ + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE Pmode + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD + will either zero-extend or sign-extend. The value of this macro should + be the code that says which one of the two operations is implicitly + done, UNKNOWN if none. */ +#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Define this to be nonzero if shift instructions ignore all but the low-order + few bits. */ +#define SHIFT_COUNT_TRUNCATED 1 + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +/* ??? The arc doesn't have full 32-bit pointers, but making this PSImode has + its own problems (you have to add extendpsisi2 and trucnsipsi2 but how does + one do it without getting excess code?). Try to avoid it. */ +#define Pmode SImode + +/* A function address in a call instruction. */ +#define FUNCTION_MODE SImode + +/* alloca should avoid clobbering the old register save area. */ +/* ??? Not defined in tm.texi. */ +#define SETJMP_VIA_SAVE_AREA + +/* ARC function types. */ +enum arc_function_type { + ARC_FUNCTION_UNKNOWN, ARC_FUNCTION_NORMAL, + /* These are interrupt handlers. The name corresponds to the register + name that contains the return address. */ + ARC_FUNCTION_ILINK1, ARC_FUNCTION_ILINK2 +}; +#define ARC_INTERRUPT_P(TYPE) \ +((TYPE) == ARC_FUNCTION_ILINK1 || (TYPE) == ARC_FUNCTION_ILINK2) +/* Compute the type of a function from its DECL. */ |