diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/cp/class.c | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/cp/class.c')
-rw-r--r-- | gcc/cp/class.c | 8472 |
1 files changed, 8472 insertions, 0 deletions
diff --git a/gcc/cp/class.c b/gcc/cp/class.c new file mode 100644 index 000000000..c6fbbabdb --- /dev/null +++ b/gcc/cp/class.c @@ -0,0 +1,8472 @@ +/* Functions related to building classes and their related objects. + Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998, + 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + Contributed by Michael Tiemann (tiemann@cygnus.com) + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* High-level class interface. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "cp-tree.h" +#include "flags.h" +#include "output.h" +#include "toplev.h" +#include "target.h" +#include "convert.h" +#include "cgraph.h" +#include "tree-dump.h" +#include "splay-tree.h" + +/* The number of nested classes being processed. If we are not in the + scope of any class, this is zero. */ + +int current_class_depth; + +/* In order to deal with nested classes, we keep a stack of classes. + The topmost entry is the innermost class, and is the entry at index + CURRENT_CLASS_DEPTH */ + +typedef struct class_stack_node { + /* The name of the class. */ + tree name; + + /* The _TYPE node for the class. */ + tree type; + + /* The access specifier pending for new declarations in the scope of + this class. */ + tree access; + + /* If were defining TYPE, the names used in this class. */ + splay_tree names_used; + + /* Nonzero if this class is no longer open, because of a call to + push_to_top_level. */ + size_t hidden; +}* class_stack_node_t; + +typedef struct vtbl_init_data_s +{ + /* The base for which we're building initializers. */ + tree binfo; + /* The type of the most-derived type. */ + tree derived; + /* The binfo for the dynamic type. This will be TYPE_BINFO (derived), + unless ctor_vtbl_p is true. */ + tree rtti_binfo; + /* The negative-index vtable initializers built up so far. These + are in order from least negative index to most negative index. */ + VEC(constructor_elt,gc) *inits; + /* The binfo for the virtual base for which we're building + vcall offset initializers. */ + tree vbase; + /* The functions in vbase for which we have already provided vcall + offsets. */ + VEC(tree,gc) *fns; + /* The vtable index of the next vcall or vbase offset. */ + tree index; + /* Nonzero if we are building the initializer for the primary + vtable. */ + int primary_vtbl_p; + /* Nonzero if we are building the initializer for a construction + vtable. */ + int ctor_vtbl_p; + /* True when adding vcall offset entries to the vtable. False when + merely computing the indices. */ + bool generate_vcall_entries; +} vtbl_init_data; + +/* The type of a function passed to walk_subobject_offsets. */ +typedef int (*subobject_offset_fn) (tree, tree, splay_tree); + +/* The stack itself. This is a dynamically resized array. The + number of elements allocated is CURRENT_CLASS_STACK_SIZE. */ +static int current_class_stack_size; +static class_stack_node_t current_class_stack; + +/* The size of the largest empty class seen in this translation unit. */ +static GTY (()) tree sizeof_biggest_empty_class; + +/* An array of all local classes present in this translation unit, in + declaration order. */ +VEC(tree,gc) *local_classes; + +static tree get_vfield_name (tree); +static void finish_struct_anon (tree); +static tree get_vtable_name (tree); +static tree get_basefndecls (tree, tree); +static int build_primary_vtable (tree, tree); +static int build_secondary_vtable (tree); +static void finish_vtbls (tree); +static void modify_vtable_entry (tree, tree, tree, tree, tree *); +static void finish_struct_bits (tree); +static int alter_access (tree, tree, tree); +static void handle_using_decl (tree, tree); +static tree dfs_modify_vtables (tree, void *); +static tree modify_all_vtables (tree, tree); +static void determine_primary_bases (tree); +static void finish_struct_methods (tree); +static void maybe_warn_about_overly_private_class (tree); +static int method_name_cmp (const void *, const void *); +static int resort_method_name_cmp (const void *, const void *); +static void add_implicitly_declared_members (tree, int, int); +static tree fixed_type_or_null (tree, int *, int *); +static tree build_simple_base_path (tree expr, tree binfo); +static tree build_vtbl_ref_1 (tree, tree); +static void build_vtbl_initializer (tree, tree, tree, tree, int *, + VEC(constructor_elt,gc) **); +static int count_fields (tree); +static int add_fields_to_record_type (tree, struct sorted_fields_type*, int); +static bool check_bitfield_decl (tree); +static void check_field_decl (tree, tree, int *, int *, int *); +static void check_field_decls (tree, tree *, int *, int *); +static tree *build_base_field (record_layout_info, tree, splay_tree, tree *); +static void build_base_fields (record_layout_info, splay_tree, tree *); +static void check_methods (tree); +static void remove_zero_width_bit_fields (tree); +static void check_bases (tree, int *, int *); +static void check_bases_and_members (tree); +static tree create_vtable_ptr (tree, tree *); +static void include_empty_classes (record_layout_info); +static void layout_class_type (tree, tree *); +static void propagate_binfo_offsets (tree, tree); +static void layout_virtual_bases (record_layout_info, splay_tree); +static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *); +static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *); +static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *); +static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *); +static void add_vcall_offset (tree, tree, vtbl_init_data *); +static void layout_vtable_decl (tree, int); +static tree dfs_find_final_overrider_pre (tree, void *); +static tree dfs_find_final_overrider_post (tree, void *); +static tree find_final_overrider (tree, tree, tree); +static int make_new_vtable (tree, tree); +static tree get_primary_binfo (tree); +static int maybe_indent_hierarchy (FILE *, int, int); +static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int); +static void dump_class_hierarchy (tree); +static void dump_class_hierarchy_1 (FILE *, int, tree); +static void dump_array (FILE *, tree); +static void dump_vtable (tree, tree, tree); +static void dump_vtt (tree, tree); +static void dump_thunk (FILE *, int, tree); +static tree build_vtable (tree, tree, tree); +static void initialize_vtable (tree, VEC(constructor_elt,gc) *); +static void layout_nonempty_base_or_field (record_layout_info, + tree, tree, splay_tree); +static tree end_of_class (tree, int); +static bool layout_empty_base (record_layout_info, tree, tree, splay_tree); +static void accumulate_vtbl_inits (tree, tree, tree, tree, tree, + VEC(constructor_elt,gc) **); +static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree, + VEC(constructor_elt,gc) **); +static void build_rtti_vtbl_entries (tree, vtbl_init_data *); +static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *); +static void clone_constructors_and_destructors (tree); +static tree build_clone (tree, tree); +static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned); +static void build_ctor_vtbl_group (tree, tree); +static void build_vtt (tree); +static tree binfo_ctor_vtable (tree); +static void build_vtt_inits (tree, tree, VEC(constructor_elt,gc) **, tree *); +static tree dfs_build_secondary_vptr_vtt_inits (tree, void *); +static tree dfs_fixup_binfo_vtbls (tree, void *); +static int record_subobject_offset (tree, tree, splay_tree); +static int check_subobject_offset (tree, tree, splay_tree); +static int walk_subobject_offsets (tree, subobject_offset_fn, + tree, splay_tree, tree, int); +static void record_subobject_offsets (tree, tree, splay_tree, bool); +static int layout_conflict_p (tree, tree, splay_tree, int); +static int splay_tree_compare_integer_csts (splay_tree_key k1, + splay_tree_key k2); +static void warn_about_ambiguous_bases (tree); +static bool type_requires_array_cookie (tree); +static bool contains_empty_class_p (tree); +static bool base_derived_from (tree, tree); +static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree); +static tree end_of_base (tree); +static tree get_vcall_index (tree, tree); + +/* Variables shared between class.c and call.c. */ + +#ifdef GATHER_STATISTICS +int n_vtables = 0; +int n_vtable_entries = 0; +int n_vtable_searches = 0; +int n_vtable_elems = 0; +int n_convert_harshness = 0; +int n_compute_conversion_costs = 0; +int n_inner_fields_searched = 0; +#endif + +/* Convert to or from a base subobject. EXPR is an expression of type + `A' or `A*', an expression of type `B' or `B*' is returned. To + convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for + the B base instance within A. To convert base A to derived B, CODE + is MINUS_EXPR and BINFO is the binfo for the A instance within B. + In this latter case, A must not be a morally virtual base of B. + NONNULL is true if EXPR is known to be non-NULL (this is only + needed when EXPR is of pointer type). CV qualifiers are preserved + from EXPR. */ + +tree +build_base_path (enum tree_code code, + tree expr, + tree binfo, + int nonnull) +{ + tree v_binfo = NULL_TREE; + tree d_binfo = NULL_TREE; + tree probe; + tree offset; + tree target_type; + tree null_test = NULL; + tree ptr_target_type; + int fixed_type_p; + int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE; + bool has_empty = false; + bool virtual_access; + + if (expr == error_mark_node || binfo == error_mark_node || !binfo) + return error_mark_node; + + for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) + { + d_binfo = probe; + if (is_empty_class (BINFO_TYPE (probe))) + has_empty = true; + if (!v_binfo && BINFO_VIRTUAL_P (probe)) + v_binfo = probe; + } + + probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr)); + if (want_pointer) + probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe)); + + gcc_assert ((code == MINUS_EXPR + && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe)) + || (code == PLUS_EXPR + && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))); + + if (binfo == d_binfo) + /* Nothing to do. */ + return expr; + + if (code == MINUS_EXPR && v_binfo) + { + error ("cannot convert from base %qT to derived type %qT via virtual base %qT", + BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo)); + return error_mark_node; + } + + if (!want_pointer) + /* This must happen before the call to save_expr. */ + expr = cp_build_addr_expr (expr, tf_warning_or_error); + else + expr = mark_rvalue_use (expr); + + offset = BINFO_OFFSET (binfo); + fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull); + target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo); + /* TARGET_TYPE has been extracted from BINFO, and, is therefore always + cv-unqualified. Extract the cv-qualifiers from EXPR so that the + expression returned matches the input. */ + target_type = cp_build_qualified_type + (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr)))); + ptr_target_type = build_pointer_type (target_type); + + /* Do we need to look in the vtable for the real offset? */ + virtual_access = (v_binfo && fixed_type_p <= 0); + + /* Don't bother with the calculations inside sizeof; they'll ICE if the + source type is incomplete and the pointer value doesn't matter. */ + if (cp_unevaluated_operand != 0) + { + expr = build_nop (ptr_target_type, expr); + if (!want_pointer) + expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL); + return expr; + } + + /* Do we need to check for a null pointer? */ + if (want_pointer && !nonnull) + { + /* If we know the conversion will not actually change the value + of EXPR, then we can avoid testing the expression for NULL. + We have to avoid generating a COMPONENT_REF for a base class + field, because other parts of the compiler know that such + expressions are always non-NULL. */ + if (!virtual_access && integer_zerop (offset)) + return build_nop (ptr_target_type, expr); + null_test = error_mark_node; + } + + /* Protect against multiple evaluation if necessary. */ + if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access)) + expr = save_expr (expr); + + /* Now that we've saved expr, build the real null test. */ + if (null_test) + { + tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node); + null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, + expr, zero); + } + + /* If this is a simple base reference, express it as a COMPONENT_REF. */ + if (code == PLUS_EXPR && !virtual_access + /* We don't build base fields for empty bases, and they aren't very + interesting to the optimizers anyway. */ + && !has_empty) + { + expr = cp_build_indirect_ref (expr, RO_NULL, tf_warning_or_error); + expr = build_simple_base_path (expr, binfo); + if (want_pointer) + expr = build_address (expr); + target_type = TREE_TYPE (expr); + goto out; + } + + if (virtual_access) + { + /* Going via virtual base V_BINFO. We need the static offset + from V_BINFO to BINFO, and the dynamic offset from D_BINFO to + V_BINFO. That offset is an entry in D_BINFO's vtable. */ + tree v_offset; + + if (fixed_type_p < 0 && in_base_initializer) + { + /* In a base member initializer, we cannot rely on the + vtable being set up. We have to indirect via the + vtt_parm. */ + tree t; + + t = TREE_TYPE (TYPE_VFIELD (current_class_type)); + t = build_pointer_type (t); + v_offset = convert (t, current_vtt_parm); + v_offset = cp_build_indirect_ref (v_offset, RO_NULL, + tf_warning_or_error); + } + else + v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL, + tf_warning_or_error), + TREE_TYPE (TREE_TYPE (expr))); + + v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset), + v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo))); + v_offset = build1 (NOP_EXPR, + build_pointer_type (ptrdiff_type_node), + v_offset); + v_offset = cp_build_indirect_ref (v_offset, RO_NULL, tf_warning_or_error); + TREE_CONSTANT (v_offset) = 1; + + offset = convert_to_integer (ptrdiff_type_node, + size_diffop_loc (input_location, offset, + BINFO_OFFSET (v_binfo))); + + if (!integer_zerop (offset)) + v_offset = build2 (code, ptrdiff_type_node, v_offset, offset); + + if (fixed_type_p < 0) + /* Negative fixed_type_p means this is a constructor or destructor; + virtual base layout is fixed in in-charge [cd]tors, but not in + base [cd]tors. */ + offset = build3 (COND_EXPR, ptrdiff_type_node, + build2 (EQ_EXPR, boolean_type_node, + current_in_charge_parm, integer_zero_node), + v_offset, + convert_to_integer (ptrdiff_type_node, + BINFO_OFFSET (binfo))); + else + offset = v_offset; + } + + if (want_pointer) + target_type = ptr_target_type; + + expr = build1 (NOP_EXPR, ptr_target_type, expr); + + if (!integer_zerop (offset)) + { + offset = fold_convert (sizetype, offset); + if (code == MINUS_EXPR) + offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset); + expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset); + } + else + null_test = NULL; + + if (!want_pointer) + expr = cp_build_indirect_ref (expr, RO_NULL, tf_warning_or_error); + + out: + if (null_test) + expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr, + build_zero_cst (target_type)); + + return expr; +} + +/* Subroutine of build_base_path; EXPR and BINFO are as in that function. + Perform a derived-to-base conversion by recursively building up a + sequence of COMPONENT_REFs to the appropriate base fields. */ + +static tree +build_simple_base_path (tree expr, tree binfo) +{ + tree type = BINFO_TYPE (binfo); + tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo); + tree field; + + if (d_binfo == NULL_TREE) + { + tree temp; + + gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type); + + /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x' + into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only + an lvalue in the front end; only _DECLs and _REFs are lvalues + in the back end. */ + temp = unary_complex_lvalue (ADDR_EXPR, expr); + if (temp) + expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error); + + return expr; + } + + /* Recurse. */ + expr = build_simple_base_path (expr, d_binfo); + + for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo)); + field; field = DECL_CHAIN (field)) + /* Is this the base field created by build_base_field? */ + if (TREE_CODE (field) == FIELD_DECL + && DECL_FIELD_IS_BASE (field) + && TREE_TYPE (field) == type + /* If we're looking for a field in the most-derived class, + also check the field offset; we can have two base fields + of the same type if one is an indirect virtual base and one + is a direct non-virtual base. */ + && (BINFO_INHERITANCE_CHAIN (d_binfo) + || tree_int_cst_equal (byte_position (field), + BINFO_OFFSET (binfo)))) + { + /* We don't use build_class_member_access_expr here, as that + has unnecessary checks, and more importantly results in + recursive calls to dfs_walk_once. */ + int type_quals = cp_type_quals (TREE_TYPE (expr)); + + expr = build3 (COMPONENT_REF, + cp_build_qualified_type (type, type_quals), + expr, field, NULL_TREE); + expr = fold_if_not_in_template (expr); + + /* Mark the expression const or volatile, as appropriate. + Even though we've dealt with the type above, we still have + to mark the expression itself. */ + if (type_quals & TYPE_QUAL_CONST) + TREE_READONLY (expr) = 1; + if (type_quals & TYPE_QUAL_VOLATILE) + TREE_THIS_VOLATILE (expr) = 1; + + return expr; + } + + /* Didn't find the base field?!? */ + gcc_unreachable (); +} + +/* Convert OBJECT to the base TYPE. OBJECT is an expression whose + type is a class type or a pointer to a class type. In the former + case, TYPE is also a class type; in the latter it is another + pointer type. If CHECK_ACCESS is true, an error message is emitted + if TYPE is inaccessible. If OBJECT has pointer type, the value is + assumed to be non-NULL. */ + +tree +convert_to_base (tree object, tree type, bool check_access, bool nonnull, + tsubst_flags_t complain) +{ + tree binfo; + tree object_type; + base_access access; + + if (TYPE_PTR_P (TREE_TYPE (object))) + { + object_type = TREE_TYPE (TREE_TYPE (object)); + type = TREE_TYPE (type); + } + else + object_type = TREE_TYPE (object); + + access = check_access ? ba_check : ba_unique; + if (!(complain & tf_error)) + access |= ba_quiet; + binfo = lookup_base (object_type, type, + access, + NULL); + if (!binfo || binfo == error_mark_node) + return error_mark_node; + + return build_base_path (PLUS_EXPR, object, binfo, nonnull); +} + +/* EXPR is an expression with unqualified class type. BASE is a base + binfo of that class type. Returns EXPR, converted to the BASE + type. This function assumes that EXPR is the most derived class; + therefore virtual bases can be found at their static offsets. */ + +tree +convert_to_base_statically (tree expr, tree base) +{ + tree expr_type; + + expr_type = TREE_TYPE (expr); + if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type)) + { + tree pointer_type; + + /* If this is a non-empty base, use a COMPONENT_REF. */ + if (!is_empty_class (BINFO_TYPE (base))) + return build_simple_base_path (expr, base); + + pointer_type = build_pointer_type (expr_type); + + /* We use fold_build2 and fold_convert below to simplify the trees + provided to the optimizers. It is not safe to call these functions + when processing a template because they do not handle C++-specific + trees. */ + gcc_assert (!processing_template_decl); + expr = cp_build_addr_expr (expr, tf_warning_or_error); + if (!integer_zerop (BINFO_OFFSET (base))) + expr = fold_build2_loc (input_location, + POINTER_PLUS_EXPR, pointer_type, expr, + fold_convert (sizetype, BINFO_OFFSET (base))); + expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr); + expr = build_fold_indirect_ref_loc (input_location, expr); + } + + return expr; +} + + +tree +build_vfield_ref (tree datum, tree type) +{ + tree vfield, vcontext; + + if (datum == error_mark_node) + return error_mark_node; + + /* First, convert to the requested type. */ + if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type)) + datum = convert_to_base (datum, type, /*check_access=*/false, + /*nonnull=*/true, tf_warning_or_error); + + /* Second, the requested type may not be the owner of its own vptr. + If not, convert to the base class that owns it. We cannot use + convert_to_base here, because VCONTEXT may appear more than once + in the inheritance hierarchy of TYPE, and thus direct conversion + between the types may be ambiguous. Following the path back up + one step at a time via primary bases avoids the problem. */ + vfield = TYPE_VFIELD (type); + vcontext = DECL_CONTEXT (vfield); + while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type)) + { + datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type)); + type = TREE_TYPE (datum); + } + + return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE); +} + +/* Given an object INSTANCE, return an expression which yields the + vtable element corresponding to INDEX. There are many special + cases for INSTANCE which we take care of here, mainly to avoid + creating extra tree nodes when we don't have to. */ + +static tree +build_vtbl_ref_1 (tree instance, tree idx) +{ + tree aref; + tree vtbl = NULL_TREE; + + /* Try to figure out what a reference refers to, and + access its virtual function table directly. */ + + int cdtorp = 0; + tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp); + + tree basetype = non_reference (TREE_TYPE (instance)); + + if (fixed_type && !cdtorp) + { + tree binfo = lookup_base (fixed_type, basetype, + ba_unique | ba_quiet, NULL); + if (binfo) + vtbl = unshare_expr (BINFO_VTABLE (binfo)); + } + + if (!vtbl) + vtbl = build_vfield_ref (instance, basetype); + + aref = build_array_ref (input_location, vtbl, idx); + TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx); + + return aref; +} + +tree +build_vtbl_ref (tree instance, tree idx) +{ + tree aref = build_vtbl_ref_1 (instance, idx); + + return aref; +} + +/* Given a stable object pointer INSTANCE_PTR, return an expression which + yields a function pointer corresponding to vtable element INDEX. */ + +tree +build_vfn_ref (tree instance_ptr, tree idx) +{ + tree aref; + + aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL, + tf_warning_or_error), + idx); + + /* When using function descriptors, the address of the + vtable entry is treated as a function pointer. */ + if (TARGET_VTABLE_USES_DESCRIPTORS) + aref = build1 (NOP_EXPR, TREE_TYPE (aref), + cp_build_addr_expr (aref, tf_warning_or_error)); + + /* Remember this as a method reference, for later devirtualization. */ + aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx); + + return aref; +} + +/* Return the name of the virtual function table (as an IDENTIFIER_NODE) + for the given TYPE. */ + +static tree +get_vtable_name (tree type) +{ + return mangle_vtbl_for_type (type); +} + +/* DECL is an entity associated with TYPE, like a virtual table or an + implicitly generated constructor. Determine whether or not DECL + should have external or internal linkage at the object file + level. This routine does not deal with COMDAT linkage and other + similar complexities; it simply sets TREE_PUBLIC if it possible for + entities in other translation units to contain copies of DECL, in + the abstract. */ + +void +set_linkage_according_to_type (tree type ATTRIBUTE_UNUSED, tree decl) +{ + TREE_PUBLIC (decl) = 1; + determine_visibility (decl); +} + +/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE. + (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.) + Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */ + +static tree +build_vtable (tree class_type, tree name, tree vtable_type) +{ + tree decl; + + decl = build_lang_decl (VAR_DECL, name, vtable_type); + /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME + now to avoid confusion in mangle_decl. */ + SET_DECL_ASSEMBLER_NAME (decl, name); + DECL_CONTEXT (decl) = class_type; + DECL_ARTIFICIAL (decl) = 1; + TREE_STATIC (decl) = 1; + TREE_READONLY (decl) = 1; + DECL_VIRTUAL_P (decl) = 1; + DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN; + DECL_VTABLE_OR_VTT_P (decl) = 1; + /* At one time the vtable info was grabbed 2 words at a time. This + fails on sparc unless you have 8-byte alignment. (tiemann) */ + DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node), + DECL_ALIGN (decl)); + set_linkage_according_to_type (class_type, decl); + /* The vtable has not been defined -- yet. */ + DECL_EXTERNAL (decl) = 1; + DECL_NOT_REALLY_EXTERN (decl) = 1; + + /* Mark the VAR_DECL node representing the vtable itself as a + "gratuitous" one, thereby forcing dwarfout.c to ignore it. It + is rather important that such things be ignored because any + effort to actually generate DWARF for them will run into + trouble when/if we encounter code like: + + #pragma interface + struct S { virtual void member (); }; + + because the artificial declaration of the vtable itself (as + manufactured by the g++ front end) will say that the vtable is + a static member of `S' but only *after* the debug output for + the definition of `S' has already been output. This causes + grief because the DWARF entry for the definition of the vtable + will try to refer back to an earlier *declaration* of the + vtable as a static member of `S' and there won't be one. We + might be able to arrange to have the "vtable static member" + attached to the member list for `S' before the debug info for + `S' get written (which would solve the problem) but that would + require more intrusive changes to the g++ front end. */ + DECL_IGNORED_P (decl) = 1; + + return decl; +} + +/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic, + or even complete. If this does not exist, create it. If COMPLETE is + nonzero, then complete the definition of it -- that will render it + impossible to actually build the vtable, but is useful to get at those + which are known to exist in the runtime. */ + +tree +get_vtable_decl (tree type, int complete) +{ + tree decl; + + if (CLASSTYPE_VTABLES (type)) + return CLASSTYPE_VTABLES (type); + + decl = build_vtable (type, get_vtable_name (type), vtbl_type_node); + CLASSTYPE_VTABLES (type) = decl; + + if (complete) + { + DECL_EXTERNAL (decl) = 1; + cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0); + } + + return decl; +} + +/* Build the primary virtual function table for TYPE. If BINFO is + non-NULL, build the vtable starting with the initial approximation + that it is the same as the one which is the head of the association + list. Returns a nonzero value if a new vtable is actually + created. */ + +static int +build_primary_vtable (tree binfo, tree type) +{ + tree decl; + tree virtuals; + + decl = get_vtable_decl (type, /*complete=*/0); + + if (binfo) + { + if (BINFO_NEW_VTABLE_MARKED (binfo)) + /* We have already created a vtable for this base, so there's + no need to do it again. */ + return 0; + + virtuals = copy_list (BINFO_VIRTUALS (binfo)); + TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo)); + DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl)); + DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl)); + } + else + { + gcc_assert (TREE_TYPE (decl) == vtbl_type_node); + virtuals = NULL_TREE; + } + +#ifdef GATHER_STATISTICS + n_vtables += 1; + n_vtable_elems += list_length (virtuals); +#endif + + /* Initialize the association list for this type, based + on our first approximation. */ + BINFO_VTABLE (TYPE_BINFO (type)) = decl; + BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals; + SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type)); + return 1; +} + +/* Give BINFO a new virtual function table which is initialized + with a skeleton-copy of its original initialization. The only + entry that changes is the `delta' entry, so we can really + share a lot of structure. + + FOR_TYPE is the most derived type which caused this table to + be needed. + + Returns nonzero if we haven't met BINFO before. + + The order in which vtables are built (by calling this function) for + an object must remain the same, otherwise a binary incompatibility + can result. */ + +static int +build_secondary_vtable (tree binfo) +{ + if (BINFO_NEW_VTABLE_MARKED (binfo)) + /* We already created a vtable for this base. There's no need to + do it again. */ + return 0; + + /* Remember that we've created a vtable for this BINFO, so that we + don't try to do so again. */ + SET_BINFO_NEW_VTABLE_MARKED (binfo); + + /* Make fresh virtual list, so we can smash it later. */ + BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo)); + + /* Secondary vtables are laid out as part of the same structure as + the primary vtable. */ + BINFO_VTABLE (binfo) = NULL_TREE; + return 1; +} + +/* Create a new vtable for BINFO which is the hierarchy dominated by + T. Return nonzero if we actually created a new vtable. */ + +static int +make_new_vtable (tree t, tree binfo) +{ + if (binfo == TYPE_BINFO (t)) + /* In this case, it is *type*'s vtable we are modifying. We start + with the approximation that its vtable is that of the + immediate base class. */ + return build_primary_vtable (binfo, t); + else + /* This is our very own copy of `basetype' to play with. Later, + we will fill in all the virtual functions that override the + virtual functions in these base classes which are not defined + by the current type. */ + return build_secondary_vtable (binfo); +} + +/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO + (which is in the hierarchy dominated by T) list FNDECL as its + BV_FN. DELTA is the required constant adjustment from the `this' + pointer where the vtable entry appears to the `this' required when + the function is actually called. */ + +static void +modify_vtable_entry (tree t, + tree binfo, + tree fndecl, + tree delta, + tree *virtuals) +{ + tree v; + + v = *virtuals; + + if (fndecl != BV_FN (v) + || !tree_int_cst_equal (delta, BV_DELTA (v))) + { + /* We need a new vtable for BINFO. */ + if (make_new_vtable (t, binfo)) + { + /* If we really did make a new vtable, we also made a copy + of the BINFO_VIRTUALS list. Now, we have to find the + corresponding entry in that list. */ + *virtuals = BINFO_VIRTUALS (binfo); + while (BV_FN (*virtuals) != BV_FN (v)) + *virtuals = TREE_CHAIN (*virtuals); + v = *virtuals; + } + + BV_DELTA (v) = delta; + BV_VCALL_INDEX (v) = NULL_TREE; + BV_FN (v) = fndecl; + } +} + + +/* Add method METHOD to class TYPE. If USING_DECL is non-null, it is + the USING_DECL naming METHOD. Returns true if the method could be + added to the method vec. */ + +bool +add_method (tree type, tree method, tree using_decl) +{ + unsigned slot; + tree overload; + bool template_conv_p = false; + bool conv_p; + VEC(tree,gc) *method_vec; + bool complete_p; + bool insert_p = false; + tree current_fns; + tree fns; + + if (method == error_mark_node) + return false; + + complete_p = COMPLETE_TYPE_P (type); + conv_p = DECL_CONV_FN_P (method); + if (conv_p) + template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL + && DECL_TEMPLATE_CONV_FN_P (method)); + + method_vec = CLASSTYPE_METHOD_VEC (type); + if (!method_vec) + { + /* Make a new method vector. We start with 8 entries. We must + allocate at least two (for constructors and destructors), and + we're going to end up with an assignment operator at some + point as well. */ + method_vec = VEC_alloc (tree, gc, 8); + /* Create slots for constructors and destructors. */ + VEC_quick_push (tree, method_vec, NULL_TREE); + VEC_quick_push (tree, method_vec, NULL_TREE); + CLASSTYPE_METHOD_VEC (type) = method_vec; + } + + /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */ + grok_special_member_properties (method); + + /* Constructors and destructors go in special slots. */ + if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method)) + slot = CLASSTYPE_CONSTRUCTOR_SLOT; + else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method)) + { + slot = CLASSTYPE_DESTRUCTOR_SLOT; + + if (TYPE_FOR_JAVA (type)) + { + if (!DECL_ARTIFICIAL (method)) + error ("Java class %qT cannot have a destructor", type); + else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) + error ("Java class %qT cannot have an implicit non-trivial " + "destructor", + type); + } + } + else + { + tree m; + + insert_p = true; + /* See if we already have an entry with this name. */ + for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, slot, m); + ++slot) + { + m = OVL_CURRENT (m); + if (template_conv_p) + { + if (TREE_CODE (m) == TEMPLATE_DECL + && DECL_TEMPLATE_CONV_FN_P (m)) + insert_p = false; + break; + } + if (conv_p && !DECL_CONV_FN_P (m)) + break; + if (DECL_NAME (m) == DECL_NAME (method)) + { + insert_p = false; + break; + } + if (complete_p + && !DECL_CONV_FN_P (m) + && DECL_NAME (m) > DECL_NAME (method)) + break; + } + } + current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot); + + /* Check to see if we've already got this method. */ + for (fns = current_fns; fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + tree fn_type; + tree method_type; + tree parms1; + tree parms2; + + if (TREE_CODE (fn) != TREE_CODE (method)) + continue; + + /* [over.load] Member function declarations with the + same name and the same parameter types cannot be + overloaded if any of them is a static member + function declaration. + + [namespace.udecl] When a using-declaration brings names + from a base class into a derived class scope, member + functions in the derived class override and/or hide member + functions with the same name and parameter types in a base + class (rather than conflicting). */ + fn_type = TREE_TYPE (fn); + method_type = TREE_TYPE (method); + parms1 = TYPE_ARG_TYPES (fn_type); + parms2 = TYPE_ARG_TYPES (method_type); + + /* Compare the quals on the 'this' parm. Don't compare + the whole types, as used functions are treated as + coming from the using class in overload resolution. */ + if (! DECL_STATIC_FUNCTION_P (fn) + && ! DECL_STATIC_FUNCTION_P (method) + && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node + && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node + && (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1))) + != cp_type_quals (TREE_TYPE (TREE_VALUE (parms2))))) + continue; + + /* For templates, the return type and template parameters + must be identical. */ + if (TREE_CODE (fn) == TEMPLATE_DECL + && (!same_type_p (TREE_TYPE (fn_type), + TREE_TYPE (method_type)) + || !comp_template_parms (DECL_TEMPLATE_PARMS (fn), + DECL_TEMPLATE_PARMS (method)))) + continue; + + if (! DECL_STATIC_FUNCTION_P (fn)) + parms1 = TREE_CHAIN (parms1); + if (! DECL_STATIC_FUNCTION_P (method)) + parms2 = TREE_CHAIN (parms2); + + if (compparms (parms1, parms2) + && (!DECL_CONV_FN_P (fn) + || same_type_p (TREE_TYPE (fn_type), + TREE_TYPE (method_type)))) + { + if (using_decl) + { + if (DECL_CONTEXT (fn) == type) + /* Defer to the local function. */ + return false; + if (DECL_CONTEXT (fn) == DECL_CONTEXT (method)) + error ("repeated using declaration %q+D", using_decl); + else + error ("using declaration %q+D conflicts with a previous using declaration", + using_decl); + } + else + { + error ("%q+#D cannot be overloaded", method); + error ("with %q+#D", fn); + } + + /* We don't call duplicate_decls here to merge the + declarations because that will confuse things if the + methods have inline definitions. In particular, we + will crash while processing the definitions. */ + return false; + } + } + + /* A class should never have more than one destructor. */ + if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method)) + return false; + + /* Add the new binding. */ + overload = build_overload (method, current_fns); + + if (conv_p) + TYPE_HAS_CONVERSION (type) = 1; + else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p) + push_class_level_binding (DECL_NAME (method), overload); + + if (insert_p) + { + bool reallocated; + + /* We only expect to add few methods in the COMPLETE_P case, so + just make room for one more method in that case. */ + if (complete_p) + reallocated = VEC_reserve_exact (tree, gc, method_vec, 1); + else + reallocated = VEC_reserve (tree, gc, method_vec, 1); + if (reallocated) + CLASSTYPE_METHOD_VEC (type) = method_vec; + if (slot == VEC_length (tree, method_vec)) + VEC_quick_push (tree, method_vec, overload); + else + VEC_quick_insert (tree, method_vec, slot, overload); + } + else + /* Replace the current slot. */ + VEC_replace (tree, method_vec, slot, overload); + return true; +} + +/* Subroutines of finish_struct. */ + +/* Change the access of FDECL to ACCESS in T. Return 1 if change was + legit, otherwise return 0. */ + +static int +alter_access (tree t, tree fdecl, tree access) +{ + tree elem; + + if (!DECL_LANG_SPECIFIC (fdecl)) + retrofit_lang_decl (fdecl); + + gcc_assert (!DECL_DISCRIMINATOR_P (fdecl)); + + elem = purpose_member (t, DECL_ACCESS (fdecl)); + if (elem) + { + if (TREE_VALUE (elem) != access) + { + if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL) + error ("conflicting access specifications for method" + " %q+D, ignored", TREE_TYPE (fdecl)); + else + error ("conflicting access specifications for field %qE, ignored", + DECL_NAME (fdecl)); + } + else + { + /* They're changing the access to the same thing they changed + it to before. That's OK. */ + ; + } + } + else + { + perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl); + DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl)); + return 1; + } + return 0; +} + +/* Process the USING_DECL, which is a member of T. */ + +static void +handle_using_decl (tree using_decl, tree t) +{ + tree decl = USING_DECL_DECLS (using_decl); + tree name = DECL_NAME (using_decl); + tree access + = TREE_PRIVATE (using_decl) ? access_private_node + : TREE_PROTECTED (using_decl) ? access_protected_node + : access_public_node; + tree flist = NULL_TREE; + tree old_value; + + gcc_assert (!processing_template_decl && decl); + + old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false); + if (old_value) + { + if (is_overloaded_fn (old_value)) + old_value = OVL_CURRENT (old_value); + + if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t) + /* OK */; + else + old_value = NULL_TREE; + } + + cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl)); + + if (is_overloaded_fn (decl)) + flist = decl; + + if (! old_value) + ; + else if (is_overloaded_fn (old_value)) + { + if (flist) + /* It's OK to use functions from a base when there are functions with + the same name already present in the current class. */; + else + { + error ("%q+D invalid in %q#T", using_decl, t); + error (" because of local method %q+#D with same name", + OVL_CURRENT (old_value)); + return; + } + } + else if (!DECL_ARTIFICIAL (old_value)) + { + error ("%q+D invalid in %q#T", using_decl, t); + error (" because of local member %q+#D with same name", old_value); + return; + } + + /* Make type T see field decl FDECL with access ACCESS. */ + if (flist) + for (; flist; flist = OVL_NEXT (flist)) + { + add_method (t, OVL_CURRENT (flist), using_decl); + alter_access (t, OVL_CURRENT (flist), access); + } + else + alter_access (t, decl, access); +} + +/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P, + and NO_CONST_ASN_REF_P. Also set flag bits in T based on + properties of the bases. */ + +static void +check_bases (tree t, + int* cant_have_const_ctor_p, + int* no_const_asn_ref_p) +{ + int i; + int seen_non_virtual_nearly_empty_base_p; + tree base_binfo; + tree binfo; + tree field = NULL_TREE; + + seen_non_virtual_nearly_empty_base_p = 0; + + if (!CLASSTYPE_NON_STD_LAYOUT (t)) + for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL) + break; + + for (binfo = TYPE_BINFO (t), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + { + tree basetype = TREE_TYPE (base_binfo); + + gcc_assert (COMPLETE_TYPE_P (basetype)); + + /* If any base class is non-literal, so is the derived class. */ + if (!CLASSTYPE_LITERAL_P (basetype)) + CLASSTYPE_LITERAL_P (t) = false; + + /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P + here because the case of virtual functions but non-virtual + dtor is handled in finish_struct_1. */ + if (!TYPE_POLYMORPHIC_P (basetype)) + warning (OPT_Weffc__, + "base class %q#T has a non-virtual destructor", basetype); + + /* If the base class doesn't have copy constructors or + assignment operators that take const references, then the + derived class cannot have such a member automatically + generated. */ + if (TYPE_HAS_COPY_CTOR (basetype) + && ! TYPE_HAS_CONST_COPY_CTOR (basetype)) + *cant_have_const_ctor_p = 1; + if (TYPE_HAS_COPY_ASSIGN (basetype) + && !TYPE_HAS_CONST_COPY_ASSIGN (basetype)) + *no_const_asn_ref_p = 1; + + if (BINFO_VIRTUAL_P (base_binfo)) + /* A virtual base does not effect nearly emptiness. */ + ; + else if (CLASSTYPE_NEARLY_EMPTY_P (basetype)) + { + if (seen_non_virtual_nearly_empty_base_p) + /* And if there is more than one nearly empty base, then the + derived class is not nearly empty either. */ + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + else + /* Remember we've seen one. */ + seen_non_virtual_nearly_empty_base_p = 1; + } + else if (!is_empty_class (basetype)) + /* If the base class is not empty or nearly empty, then this + class cannot be nearly empty. */ + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + + /* A lot of properties from the bases also apply to the derived + class. */ + TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype); + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) + |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype); + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) + |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype) + || !TYPE_HAS_COPY_ASSIGN (basetype)); + TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype) + || !TYPE_HAS_COPY_CTOR (basetype)); + TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) + |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype); + TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype); + TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype); + CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) + |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype); + TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype) + || TYPE_HAS_COMPLEX_DFLT (basetype)); + + /* A standard-layout class is a class that: + ... + * has no non-standard-layout base classes, */ + CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype); + if (!CLASSTYPE_NON_STD_LAYOUT (t)) + { + tree basefield; + /* ...has no base classes of the same type as the first non-static + data member... */ + if (field && DECL_CONTEXT (field) == t + && (same_type_ignoring_top_level_qualifiers_p + (TREE_TYPE (field), basetype))) + CLASSTYPE_NON_STD_LAYOUT (t) = 1; + else + /* ...either has no non-static data members in the most-derived + class and at most one base class with non-static data + members, or has no base classes with non-static data + members */ + for (basefield = TYPE_FIELDS (basetype); basefield; + basefield = DECL_CHAIN (basefield)) + if (TREE_CODE (basefield) == FIELD_DECL) + { + if (field) + CLASSTYPE_NON_STD_LAYOUT (t) = 1; + else + field = basefield; + break; + } + } + } +} + +/* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for + those that are primaries. Sets BINFO_LOST_PRIMARY_P for those + that have had a nearly-empty virtual primary base stolen by some + other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for + T. */ + +static void +determine_primary_bases (tree t) +{ + unsigned i; + tree primary = NULL_TREE; + tree type_binfo = TYPE_BINFO (t); + tree base_binfo; + + /* Determine the primary bases of our bases. */ + for (base_binfo = TREE_CHAIN (type_binfo); base_binfo; + base_binfo = TREE_CHAIN (base_binfo)) + { + tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo)); + + /* See if we're the non-virtual primary of our inheritance + chain. */ + if (!BINFO_VIRTUAL_P (base_binfo)) + { + tree parent = BINFO_INHERITANCE_CHAIN (base_binfo); + tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent)); + + if (parent_primary + && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), + BINFO_TYPE (parent_primary))) + /* We are the primary binfo. */ + BINFO_PRIMARY_P (base_binfo) = 1; + } + /* Determine if we have a virtual primary base, and mark it so. + */ + if (primary && BINFO_VIRTUAL_P (primary)) + { + tree this_primary = copied_binfo (primary, base_binfo); + + if (BINFO_PRIMARY_P (this_primary)) + /* Someone already claimed this base. */ + BINFO_LOST_PRIMARY_P (base_binfo) = 1; + else + { + tree delta; + + BINFO_PRIMARY_P (this_primary) = 1; + BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo; + + /* A virtual binfo might have been copied from within + another hierarchy. As we're about to use it as a + primary base, make sure the offsets match. */ + delta = size_diffop_loc (input_location, + convert (ssizetype, + BINFO_OFFSET (base_binfo)), + convert (ssizetype, + BINFO_OFFSET (this_primary))); + + propagate_binfo_offsets (this_primary, delta); + } + } + } + + /* First look for a dynamic direct non-virtual base. */ + for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++) + { + tree basetype = BINFO_TYPE (base_binfo); + + if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo)) + { + primary = base_binfo; + goto found; + } + } + + /* A "nearly-empty" virtual base class can be the primary base + class, if no non-virtual polymorphic base can be found. Look for + a nearly-empty virtual dynamic base that is not already a primary + base of something in the hierarchy. If there is no such base, + just pick the first nearly-empty virtual base. */ + + for (base_binfo = TREE_CHAIN (type_binfo); base_binfo; + base_binfo = TREE_CHAIN (base_binfo)) + if (BINFO_VIRTUAL_P (base_binfo) + && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo))) + { + if (!BINFO_PRIMARY_P (base_binfo)) + { + /* Found one that is not primary. */ + primary = base_binfo; + goto found; + } + else if (!primary) + /* Remember the first candidate. */ + primary = base_binfo; + } + + found: + /* If we've got a primary base, use it. */ + if (primary) + { + tree basetype = BINFO_TYPE (primary); + + CLASSTYPE_PRIMARY_BINFO (t) = primary; + if (BINFO_PRIMARY_P (primary)) + /* We are stealing a primary base. */ + BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1; + BINFO_PRIMARY_P (primary) = 1; + if (BINFO_VIRTUAL_P (primary)) + { + tree delta; + + BINFO_INHERITANCE_CHAIN (primary) = type_binfo; + /* A virtual binfo might have been copied from within + another hierarchy. As we're about to use it as a primary + base, make sure the offsets match. */ + delta = size_diffop_loc (input_location, ssize_int (0), + convert (ssizetype, BINFO_OFFSET (primary))); + + propagate_binfo_offsets (primary, delta); + } + + primary = TYPE_BINFO (basetype); + + TYPE_VFIELD (t) = TYPE_VFIELD (basetype); + BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary); + BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary); + } +} + +/* Update the variant types of T. */ + +void +fixup_type_variants (tree t) +{ + tree variants; + + if (!t) + return; + + for (variants = TYPE_NEXT_VARIANT (t); + variants; + variants = TYPE_NEXT_VARIANT (variants)) + { + /* These fields are in the _TYPE part of the node, not in + the TYPE_LANG_SPECIFIC component, so they are not shared. */ + TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t); + TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t); + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants) + = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t); + + TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t); + + TYPE_BINFO (variants) = TYPE_BINFO (t); + + /* Copy whatever these are holding today. */ + TYPE_VFIELD (variants) = TYPE_VFIELD (t); + TYPE_METHODS (variants) = TYPE_METHODS (t); + TYPE_FIELDS (variants) = TYPE_FIELDS (t); + } +} + +/* Early variant fixups: we apply attributes at the beginning of the class + definition, and we need to fix up any variants that have already been + made via elaborated-type-specifier so that check_qualified_type works. */ + +void +fixup_attribute_variants (tree t) +{ + tree variants; + + if (!t) + return; + + for (variants = TYPE_NEXT_VARIANT (t); + variants; + variants = TYPE_NEXT_VARIANT (variants)) + { + /* These are the two fields that check_qualified_type looks at and + are affected by attributes. */ + TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t); + TYPE_ALIGN (variants) = TYPE_ALIGN (t); + } +} + +/* Set memoizing fields and bits of T (and its variants) for later + use. */ + +static void +finish_struct_bits (tree t) +{ + /* Fix up variants (if any). */ + fixup_type_variants (t); + + if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t)) + /* For a class w/o baseclasses, 'finish_struct' has set + CLASSTYPE_PURE_VIRTUALS correctly (by definition). + Similarly for a class whose base classes do not have vtables. + When neither of these is true, we might have removed abstract + virtuals (by providing a definition), added some (by declaring + new ones), or redeclared ones from a base class. We need to + recalculate what's really an abstract virtual at this point (by + looking in the vtables). */ + get_pure_virtuals (t); + + /* If this type has a copy constructor or a destructor, force its + mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be + nonzero. This will cause it to be passed by invisible reference + and prevent it from being returned in a register. */ + if (type_has_nontrivial_copy_init (t) + || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)) + { + tree variants; + DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode; + for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants)) + { + SET_TYPE_MODE (variants, BLKmode); + TREE_ADDRESSABLE (variants) = 1; + } + } +} + +/* Issue warnings about T having private constructors, but no friends, + and so forth. + + HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or + static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any + non-private static member functions. */ + +static void +maybe_warn_about_overly_private_class (tree t) +{ + int has_member_fn = 0; + int has_nonprivate_method = 0; + tree fn; + + if (!warn_ctor_dtor_privacy + /* If the class has friends, those entities might create and + access instances, so we should not warn. */ + || (CLASSTYPE_FRIEND_CLASSES (t) + || DECL_FRIENDLIST (TYPE_MAIN_DECL (t))) + /* We will have warned when the template was declared; there's + no need to warn on every instantiation. */ + || CLASSTYPE_TEMPLATE_INSTANTIATION (t)) + /* There's no reason to even consider warning about this + class. */ + return; + + /* We only issue one warning, if more than one applies, because + otherwise, on code like: + + class A { + // Oops - forgot `public:' + A(); + A(const A&); + ~A(); + }; + + we warn several times about essentially the same problem. */ + + /* Check to see if all (non-constructor, non-destructor) member + functions are private. (Since there are no friends or + non-private statics, we can't ever call any of the private member + functions.) */ + for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) + /* We're not interested in compiler-generated methods; they don't + provide any way to call private members. */ + if (!DECL_ARTIFICIAL (fn)) + { + if (!TREE_PRIVATE (fn)) + { + if (DECL_STATIC_FUNCTION_P (fn)) + /* A non-private static member function is just like a + friend; it can create and invoke private member + functions, and be accessed without a class + instance. */ + return; + + has_nonprivate_method = 1; + /* Keep searching for a static member function. */ + } + else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn)) + has_member_fn = 1; + } + + if (!has_nonprivate_method && has_member_fn) + { + /* There are no non-private methods, and there's at least one + private member function that isn't a constructor or + destructor. (If all the private members are + constructors/destructors we want to use the code below that + issues error messages specifically referring to + constructors/destructors.) */ + unsigned i; + tree binfo = TYPE_BINFO (t); + + for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++) + if (BINFO_BASE_ACCESS (binfo, i) != access_private_node) + { + has_nonprivate_method = 1; + break; + } + if (!has_nonprivate_method) + { + warning (OPT_Wctor_dtor_privacy, + "all member functions in class %qT are private", t); + return; + } + } + + /* Even if some of the member functions are non-private, the class + won't be useful for much if all the constructors or destructors + are private: such an object can never be created or destroyed. */ + fn = CLASSTYPE_DESTRUCTORS (t); + if (fn && TREE_PRIVATE (fn)) + { + warning (OPT_Wctor_dtor_privacy, + "%q#T only defines a private destructor and has no friends", + t); + return; + } + + /* Warn about classes that have private constructors and no friends. */ + if (TYPE_HAS_USER_CONSTRUCTOR (t) + /* Implicitly generated constructors are always public. */ + && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t) + || !CLASSTYPE_LAZY_COPY_CTOR (t))) + { + int nonprivate_ctor = 0; + + /* If a non-template class does not define a copy + constructor, one is defined for it, enabling it to avoid + this warning. For a template class, this does not + happen, and so we would normally get a warning on: + + template <class T> class C { private: C(); }; + + To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All + complete non-template or fully instantiated classes have this + flag set. */ + if (!TYPE_HAS_COPY_CTOR (t)) + nonprivate_ctor = 1; + else + for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn)) + { + tree ctor = OVL_CURRENT (fn); + /* Ideally, we wouldn't count copy constructors (or, in + fact, any constructor that takes an argument of the + class type as a parameter) because such things cannot + be used to construct an instance of the class unless + you already have one. But, for now at least, we're + more generous. */ + if (! TREE_PRIVATE (ctor)) + { + nonprivate_ctor = 1; + break; + } + } + + if (nonprivate_ctor == 0) + { + warning (OPT_Wctor_dtor_privacy, + "%q#T only defines private constructors and has no friends", + t); + return; + } + } +} + +static struct { + gt_pointer_operator new_value; + void *cookie; +} resort_data; + +/* Comparison function to compare two TYPE_METHOD_VEC entries by name. */ + +static int +method_name_cmp (const void* m1_p, const void* m2_p) +{ + const tree *const m1 = (const tree *) m1_p; + const tree *const m2 = (const tree *) m2_p; + + if (*m1 == NULL_TREE && *m2 == NULL_TREE) + return 0; + if (*m1 == NULL_TREE) + return -1; + if (*m2 == NULL_TREE) + return 1; + if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2))) + return -1; + return 1; +} + +/* This routine compares two fields like method_name_cmp but using the + pointer operator in resort_field_decl_data. */ + +static int +resort_method_name_cmp (const void* m1_p, const void* m2_p) +{ + const tree *const m1 = (const tree *) m1_p; + const tree *const m2 = (const tree *) m2_p; + if (*m1 == NULL_TREE && *m2 == NULL_TREE) + return 0; + if (*m1 == NULL_TREE) + return -1; + if (*m2 == NULL_TREE) + return 1; + { + tree d1 = DECL_NAME (OVL_CURRENT (*m1)); + tree d2 = DECL_NAME (OVL_CURRENT (*m2)); + resort_data.new_value (&d1, resort_data.cookie); + resort_data.new_value (&d2, resort_data.cookie); + if (d1 < d2) + return -1; + } + return 1; +} + +/* Resort TYPE_METHOD_VEC because pointers have been reordered. */ + +void +resort_type_method_vec (void* obj, + void* orig_obj ATTRIBUTE_UNUSED , + gt_pointer_operator new_value, + void* cookie) +{ + VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj; + int len = VEC_length (tree, method_vec); + size_t slot; + tree fn; + + /* The type conversion ops have to live at the front of the vec, so we + can't sort them. */ + for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, slot, fn); + ++slot) + if (!DECL_CONV_FN_P (OVL_CURRENT (fn))) + break; + + if (len - slot > 1) + { + resort_data.new_value = new_value; + resort_data.cookie = cookie; + qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree), + resort_method_name_cmp); + } +} + +/* Warn about duplicate methods in fn_fields. + + Sort methods that are not special (i.e., constructors, destructors, + and type conversion operators) so that we can find them faster in + search. */ + +static void +finish_struct_methods (tree t) +{ + tree fn_fields; + VEC(tree,gc) *method_vec; + int slot, len; + + method_vec = CLASSTYPE_METHOD_VEC (t); + if (!method_vec) + return; + + len = VEC_length (tree, method_vec); + + /* Clear DECL_IN_AGGR_P for all functions. */ + for (fn_fields = TYPE_METHODS (t); fn_fields; + fn_fields = DECL_CHAIN (fn_fields)) + DECL_IN_AGGR_P (fn_fields) = 0; + + /* Issue warnings about private constructors and such. If there are + no methods, then some public defaults are generated. */ + maybe_warn_about_overly_private_class (t); + + /* The type conversion ops have to live at the front of the vec, so we + can't sort them. */ + for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, slot, fn_fields); + ++slot) + if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields))) + break; + if (len - slot > 1) + qsort (VEC_address (tree, method_vec) + slot, + len-slot, sizeof (tree), method_name_cmp); +} + +/* Make BINFO's vtable have N entries, including RTTI entries, + vbase and vcall offsets, etc. Set its type and call the back end + to lay it out. */ + +static void +layout_vtable_decl (tree binfo, int n) +{ + tree atype; + tree vtable; + + atype = build_array_of_n_type (vtable_entry_type, n); + layout_type (atype); + + /* We may have to grow the vtable. */ + vtable = get_vtbl_decl_for_binfo (binfo); + if (!same_type_p (TREE_TYPE (vtable), atype)) + { + TREE_TYPE (vtable) = atype; + DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE; + layout_decl (vtable, 0); + } +} + +/* True iff FNDECL and BASE_FNDECL (both non-static member functions) + have the same signature. */ + +int +same_signature_p (const_tree fndecl, const_tree base_fndecl) +{ + /* One destructor overrides another if they are the same kind of + destructor. */ + if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl) + && special_function_p (base_fndecl) == special_function_p (fndecl)) + return 1; + /* But a non-destructor never overrides a destructor, nor vice + versa, nor do different kinds of destructors override + one-another. For example, a complete object destructor does not + override a deleting destructor. */ + if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl)) + return 0; + + if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl) + || (DECL_CONV_FN_P (fndecl) + && DECL_CONV_FN_P (base_fndecl) + && same_type_p (DECL_CONV_FN_TYPE (fndecl), + DECL_CONV_FN_TYPE (base_fndecl)))) + { + tree types, base_types; + types = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); + base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl)); + if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types))) + == cp_type_quals (TREE_TYPE (TREE_VALUE (types)))) + && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types))) + return 1; + } + return 0; +} + +/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a + subobject. */ + +static bool +base_derived_from (tree derived, tree base) +{ + tree probe; + + for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) + { + if (probe == derived) + return true; + else if (BINFO_VIRTUAL_P (probe)) + /* If we meet a virtual base, we can't follow the inheritance + any more. See if the complete type of DERIVED contains + such a virtual base. */ + return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived)) + != NULL_TREE); + } + return false; +} + +typedef struct find_final_overrider_data_s { + /* The function for which we are trying to find a final overrider. */ + tree fn; + /* The base class in which the function was declared. */ + tree declaring_base; + /* The candidate overriders. */ + tree candidates; + /* Path to most derived. */ + VEC(tree,heap) *path; +} find_final_overrider_data; + +/* Add the overrider along the current path to FFOD->CANDIDATES. + Returns true if an overrider was found; false otherwise. */ + +static bool +dfs_find_final_overrider_1 (tree binfo, + find_final_overrider_data *ffod, + unsigned depth) +{ + tree method; + + /* If BINFO is not the most derived type, try a more derived class. + A definition there will overrider a definition here. */ + if (depth) + { + depth--; + if (dfs_find_final_overrider_1 + (VEC_index (tree, ffod->path, depth), ffod, depth)) + return true; + } + + method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn); + if (method) + { + tree *candidate = &ffod->candidates; + + /* Remove any candidates overridden by this new function. */ + while (*candidate) + { + /* If *CANDIDATE overrides METHOD, then METHOD + cannot override anything else on the list. */ + if (base_derived_from (TREE_VALUE (*candidate), binfo)) + return true; + /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */ + if (base_derived_from (binfo, TREE_VALUE (*candidate))) + *candidate = TREE_CHAIN (*candidate); + else + candidate = &TREE_CHAIN (*candidate); + } + + /* Add the new function. */ + ffod->candidates = tree_cons (method, binfo, ffod->candidates); + return true; + } + + return false; +} + +/* Called from find_final_overrider via dfs_walk. */ + +static tree +dfs_find_final_overrider_pre (tree binfo, void *data) +{ + find_final_overrider_data *ffod = (find_final_overrider_data *) data; + + if (binfo == ffod->declaring_base) + dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path)); + VEC_safe_push (tree, heap, ffod->path, binfo); + + return NULL_TREE; +} + +static tree +dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data) +{ + find_final_overrider_data *ffod = (find_final_overrider_data *) data; + VEC_pop (tree, ffod->path); + + return NULL_TREE; +} + +/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for + FN and whose TREE_VALUE is the binfo for the base where the + overriding occurs. BINFO (in the hierarchy dominated by the binfo + DERIVED) is the base object in which FN is declared. */ + +static tree +find_final_overrider (tree derived, tree binfo, tree fn) +{ + find_final_overrider_data ffod; + + /* Getting this right is a little tricky. This is valid: + + struct S { virtual void f (); }; + struct T { virtual void f (); }; + struct U : public S, public T { }; + + even though calling `f' in `U' is ambiguous. But, + + struct R { virtual void f(); }; + struct S : virtual public R { virtual void f (); }; + struct T : virtual public R { virtual void f (); }; + struct U : public S, public T { }; + + is not -- there's no way to decide whether to put `S::f' or + `T::f' in the vtable for `R'. + + The solution is to look at all paths to BINFO. If we find + different overriders along any two, then there is a problem. */ + if (DECL_THUNK_P (fn)) + fn = THUNK_TARGET (fn); + + /* Determine the depth of the hierarchy. */ + ffod.fn = fn; + ffod.declaring_base = binfo; + ffod.candidates = NULL_TREE; + ffod.path = VEC_alloc (tree, heap, 30); + + dfs_walk_all (derived, dfs_find_final_overrider_pre, + dfs_find_final_overrider_post, &ffod); + + VEC_free (tree, heap, ffod.path); + + /* If there was no winner, issue an error message. */ + if (!ffod.candidates || TREE_CHAIN (ffod.candidates)) + return error_mark_node; + + return ffod.candidates; +} + +/* Return the index of the vcall offset for FN when TYPE is used as a + virtual base. */ + +static tree +get_vcall_index (tree fn, tree type) +{ + VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type); + tree_pair_p p; + unsigned ix; + + FOR_EACH_VEC_ELT (tree_pair_s, indices, ix, p) + if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose)) + || same_signature_p (fn, p->purpose)) + return p->value; + + /* There should always be an appropriate index. */ + gcc_unreachable (); +} + +/* Update an entry in the vtable for BINFO, which is in the hierarchy + dominated by T. FN is the old function; VIRTUALS points to the + corresponding position in the new BINFO_VIRTUALS list. IX is the index + of that entry in the list. */ + +static void +update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals, + unsigned ix) +{ + tree b; + tree overrider; + tree delta; + tree virtual_base; + tree first_defn; + tree overrider_fn, overrider_target; + tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn; + tree over_return, base_return; + bool lost = false; + + /* Find the nearest primary base (possibly binfo itself) which defines + this function; this is the class the caller will convert to when + calling FN through BINFO. */ + for (b = binfo; ; b = get_primary_binfo (b)) + { + gcc_assert (b); + if (look_for_overrides_here (BINFO_TYPE (b), target_fn)) + break; + + /* The nearest definition is from a lost primary. */ + if (BINFO_LOST_PRIMARY_P (b)) + lost = true; + } + first_defn = b; + + /* Find the final overrider. */ + overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn); + if (overrider == error_mark_node) + { + error ("no unique final overrider for %qD in %qT", target_fn, t); + return; + } + overrider_target = overrider_fn = TREE_PURPOSE (overrider); + + /* Check for adjusting covariant return types. */ + over_return = TREE_TYPE (TREE_TYPE (overrider_target)); + base_return = TREE_TYPE (TREE_TYPE (target_fn)); + + if (POINTER_TYPE_P (over_return) + && TREE_CODE (over_return) == TREE_CODE (base_return) + && CLASS_TYPE_P (TREE_TYPE (over_return)) + && CLASS_TYPE_P (TREE_TYPE (base_return)) + /* If the overrider is invalid, don't even try. */ + && !DECL_INVALID_OVERRIDER_P (overrider_target)) + { + /* If FN is a covariant thunk, we must figure out the adjustment + to the final base FN was converting to. As OVERRIDER_TARGET might + also be converting to the return type of FN, we have to + combine the two conversions here. */ + tree fixed_offset, virtual_offset; + + over_return = TREE_TYPE (over_return); + base_return = TREE_TYPE (base_return); + + if (DECL_THUNK_P (fn)) + { + gcc_assert (DECL_RESULT_THUNK_P (fn)); + fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn)); + virtual_offset = THUNK_VIRTUAL_OFFSET (fn); + } + else + fixed_offset = virtual_offset = NULL_TREE; + + if (virtual_offset) + /* Find the equivalent binfo within the return type of the + overriding function. We will want the vbase offset from + there. */ + virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset), + over_return); + else if (!same_type_ignoring_top_level_qualifiers_p + (over_return, base_return)) + { + /* There was no existing virtual thunk (which takes + precedence). So find the binfo of the base function's + return type within the overriding function's return type. + We cannot call lookup base here, because we're inside a + dfs_walk, and will therefore clobber the BINFO_MARKED + flags. Fortunately we know the covariancy is valid (it + has already been checked), so we can just iterate along + the binfos, which have been chained in inheritance graph + order. Of course it is lame that we have to repeat the + search here anyway -- we should really be caching pieces + of the vtable and avoiding this repeated work. */ + tree thunk_binfo, base_binfo; + + /* Find the base binfo within the overriding function's + return type. We will always find a thunk_binfo, except + when the covariancy is invalid (which we will have + already diagnosed). */ + for (base_binfo = TYPE_BINFO (base_return), + thunk_binfo = TYPE_BINFO (over_return); + thunk_binfo; + thunk_binfo = TREE_CHAIN (thunk_binfo)) + if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo), + BINFO_TYPE (base_binfo))) + break; + + /* See if virtual inheritance is involved. */ + for (virtual_offset = thunk_binfo; + virtual_offset; + virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset)) + if (BINFO_VIRTUAL_P (virtual_offset)) + break; + + if (virtual_offset + || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo))) + { + tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo)); + + if (virtual_offset) + { + /* We convert via virtual base. Adjust the fixed + offset to be from there. */ + offset = + size_diffop (offset, + convert (ssizetype, + BINFO_OFFSET (virtual_offset))); + } + if (fixed_offset) + /* There was an existing fixed offset, this must be + from the base just converted to, and the base the + FN was thunking to. */ + fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset); + else + fixed_offset = offset; + } + } + + if (fixed_offset || virtual_offset) + /* Replace the overriding function with a covariant thunk. We + will emit the overriding function in its own slot as + well. */ + overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0, + fixed_offset, virtual_offset); + } + else + gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) || + !DECL_THUNK_P (fn)); + + /* If we need a covariant thunk, then we may need to adjust first_defn. + The ABI specifies that the thunks emitted with a function are + determined by which bases the function overrides, so we need to be + sure that we're using a thunk for some overridden base; even if we + know that the necessary this adjustment is zero, there may not be an + appropriate zero-this-adjusment thunk for us to use since thunks for + overriding virtual bases always use the vcall offset. + + Furthermore, just choosing any base that overrides this function isn't + quite right, as this slot won't be used for calls through a type that + puts a covariant thunk here. Calling the function through such a type + will use a different slot, and that slot is the one that determines + the thunk emitted for that base. + + So, keep looking until we find the base that we're really overriding + in this slot: the nearest primary base that doesn't use a covariant + thunk in this slot. */ + if (overrider_target != overrider_fn) + { + if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target)) + /* We already know that the overrider needs a covariant thunk. */ + b = get_primary_binfo (b); + for (; ; b = get_primary_binfo (b)) + { + tree main_binfo = TYPE_BINFO (BINFO_TYPE (b)); + tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo)); + if (!DECL_THUNK_P (TREE_VALUE (bv))) + break; + if (BINFO_LOST_PRIMARY_P (b)) + lost = true; + } + first_defn = b; + } + + /* Assume that we will produce a thunk that convert all the way to + the final overrider, and not to an intermediate virtual base. */ + virtual_base = NULL_TREE; + + /* See if we can convert to an intermediate virtual base first, and then + use the vcall offset located there to finish the conversion. */ + for (; b; b = BINFO_INHERITANCE_CHAIN (b)) + { + /* If we find the final overrider, then we can stop + walking. */ + if (SAME_BINFO_TYPE_P (BINFO_TYPE (b), + BINFO_TYPE (TREE_VALUE (overrider)))) + break; + + /* If we find a virtual base, and we haven't yet found the + overrider, then there is a virtual base between the + declaring base (first_defn) and the final overrider. */ + if (BINFO_VIRTUAL_P (b)) + { + virtual_base = b; + break; + } + } + + /* Compute the constant adjustment to the `this' pointer. The + `this' pointer, when this function is called, will point at BINFO + (or one of its primary bases, which are at the same offset). */ + if (virtual_base) + /* The `this' pointer needs to be adjusted from the declaration to + the nearest virtual base. */ + delta = size_diffop_loc (input_location, + convert (ssizetype, BINFO_OFFSET (virtual_base)), + convert (ssizetype, BINFO_OFFSET (first_defn))); + else if (lost) + /* If the nearest definition is in a lost primary, we don't need an + entry in our vtable. Except possibly in a constructor vtable, + if we happen to get our primary back. In that case, the offset + will be zero, as it will be a primary base. */ + delta = size_zero_node; + else + /* The `this' pointer needs to be adjusted from pointing to + BINFO to pointing at the base where the final overrider + appears. */ + delta = size_diffop_loc (input_location, + convert (ssizetype, + BINFO_OFFSET (TREE_VALUE (overrider))), + convert (ssizetype, BINFO_OFFSET (binfo))); + + modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals); + + if (virtual_base) + BV_VCALL_INDEX (*virtuals) + = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base)); + else + BV_VCALL_INDEX (*virtuals) = NULL_TREE; + + BV_LOST_PRIMARY (*virtuals) = lost; +} + +/* Called from modify_all_vtables via dfs_walk. */ + +static tree +dfs_modify_vtables (tree binfo, void* data) +{ + tree t = (tree) data; + tree virtuals; + tree old_virtuals; + unsigned ix; + + if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) + /* A base without a vtable needs no modification, and its bases + are uninteresting. */ + return dfs_skip_bases; + + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t) + && !CLASSTYPE_HAS_PRIMARY_BASE_P (t)) + /* Don't do the primary vtable, if it's new. */ + return NULL_TREE; + + if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo)) + /* There's no need to modify the vtable for a non-virtual primary + base; we're not going to use that vtable anyhow. We do still + need to do this for virtual primary bases, as they could become + non-primary in a construction vtable. */ + return NULL_TREE; + + make_new_vtable (t, binfo); + + /* Now, go through each of the virtual functions in the virtual + function table for BINFO. Find the final overrider, and update + the BINFO_VIRTUALS list appropriately. */ + for (ix = 0, virtuals = BINFO_VIRTUALS (binfo), + old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo))); + virtuals; + ix++, virtuals = TREE_CHAIN (virtuals), + old_virtuals = TREE_CHAIN (old_virtuals)) + update_vtable_entry_for_fn (t, + binfo, + BV_FN (old_virtuals), + &virtuals, ix); + + return NULL_TREE; +} + +/* Update all of the primary and secondary vtables for T. Create new + vtables as required, and initialize their RTTI information. Each + of the functions in VIRTUALS is declared in T and may override a + virtual function from a base class; find and modify the appropriate + entries to point to the overriding functions. Returns a list, in + declaration order, of the virtual functions that are declared in T, + but do not appear in the primary base class vtable, and which + should therefore be appended to the end of the vtable for T. */ + +static tree +modify_all_vtables (tree t, tree virtuals) +{ + tree binfo = TYPE_BINFO (t); + tree *fnsp; + + /* Update all of the vtables. */ + dfs_walk_once (binfo, dfs_modify_vtables, NULL, t); + + /* Add virtual functions not already in our primary vtable. These + will be both those introduced by this class, and those overridden + from secondary bases. It does not include virtuals merely + inherited from secondary bases. */ + for (fnsp = &virtuals; *fnsp; ) + { + tree fn = TREE_VALUE (*fnsp); + + if (!value_member (fn, BINFO_VIRTUALS (binfo)) + || DECL_VINDEX (fn) == error_mark_node) + { + /* We don't need to adjust the `this' pointer when + calling this function. */ + BV_DELTA (*fnsp) = integer_zero_node; + BV_VCALL_INDEX (*fnsp) = NULL_TREE; + + /* This is a function not already in our vtable. Keep it. */ + fnsp = &TREE_CHAIN (*fnsp); + } + else + /* We've already got an entry for this function. Skip it. */ + *fnsp = TREE_CHAIN (*fnsp); + } + + return virtuals; +} + +/* Get the base virtual function declarations in T that have the + indicated NAME. */ + +static tree +get_basefndecls (tree name, tree t) +{ + tree methods; + tree base_fndecls = NULL_TREE; + int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t)); + int i; + + /* Find virtual functions in T with the indicated NAME. */ + i = lookup_fnfields_1 (t, name); + if (i != -1) + for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i); + methods; + methods = OVL_NEXT (methods)) + { + tree method = OVL_CURRENT (methods); + + if (TREE_CODE (method) == FUNCTION_DECL + && DECL_VINDEX (method)) + base_fndecls = tree_cons (NULL_TREE, method, base_fndecls); + } + + if (base_fndecls) + return base_fndecls; + + for (i = 0; i < n_baseclasses; i++) + { + tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i)); + base_fndecls = chainon (get_basefndecls (name, basetype), + base_fndecls); + } + + return base_fndecls; +} + +/* If this declaration supersedes the declaration of + a method declared virtual in the base class, then + mark this field as being virtual as well. */ + +void +check_for_override (tree decl, tree ctype) +{ + if (TREE_CODE (decl) == TEMPLATE_DECL) + /* In [temp.mem] we have: + + A specialization of a member function template does not + override a virtual function from a base class. */ + return; + if ((DECL_DESTRUCTOR_P (decl) + || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) + || DECL_CONV_FN_P (decl)) + && look_for_overrides (ctype, decl) + && !DECL_STATIC_FUNCTION_P (decl)) + /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor + the error_mark_node so that we know it is an overriding + function. */ + DECL_VINDEX (decl) = decl; + + if (DECL_VIRTUAL_P (decl)) + { + if (!DECL_VINDEX (decl)) + DECL_VINDEX (decl) = error_mark_node; + IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1; + } +} + +/* Warn about hidden virtual functions that are not overridden in t. + We know that constructors and destructors don't apply. */ + +static void +warn_hidden (tree t) +{ + VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t); + tree fns; + size_t i; + + /* We go through each separately named virtual function. */ + for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, i, fns); + ++i) + { + tree fn; + tree name; + tree fndecl; + tree base_fndecls; + tree base_binfo; + tree binfo; + int j; + + /* All functions in this slot in the CLASSTYPE_METHOD_VEC will + have the same name. Figure out what name that is. */ + name = DECL_NAME (OVL_CURRENT (fns)); + /* There are no possibly hidden functions yet. */ + base_fndecls = NULL_TREE; + /* Iterate through all of the base classes looking for possibly + hidden functions. */ + for (binfo = TYPE_BINFO (t), j = 0; + BINFO_BASE_ITERATE (binfo, j, base_binfo); j++) + { + tree basetype = BINFO_TYPE (base_binfo); + base_fndecls = chainon (get_basefndecls (name, basetype), + base_fndecls); + } + + /* If there are no functions to hide, continue. */ + if (!base_fndecls) + continue; + + /* Remove any overridden functions. */ + for (fn = fns; fn; fn = OVL_NEXT (fn)) + { + fndecl = OVL_CURRENT (fn); + if (DECL_VINDEX (fndecl)) + { + tree *prev = &base_fndecls; + + while (*prev) + /* If the method from the base class has the same + signature as the method from the derived class, it + has been overridden. */ + if (same_signature_p (fndecl, TREE_VALUE (*prev))) + *prev = TREE_CHAIN (*prev); + else + prev = &TREE_CHAIN (*prev); + } + } + + /* Now give a warning for all base functions without overriders, + as they are hidden. */ + while (base_fndecls) + { + /* Here we know it is a hider, and no overrider exists. */ + warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls)); + warning (OPT_Woverloaded_virtual, " by %q+D", fns); + base_fndecls = TREE_CHAIN (base_fndecls); + } + } +} + +/* Check for things that are invalid. There are probably plenty of other + things we should check for also. */ + +static void +finish_struct_anon (tree t) +{ + tree field; + + for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) + { + if (TREE_STATIC (field)) + continue; + if (TREE_CODE (field) != FIELD_DECL) + continue; + + if (DECL_NAME (field) == NULL_TREE + && ANON_AGGR_TYPE_P (TREE_TYPE (field))) + { + bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE; + tree elt = TYPE_FIELDS (TREE_TYPE (field)); + for (; elt; elt = DECL_CHAIN (elt)) + { + /* We're generally only interested in entities the user + declared, but we also find nested classes by noticing + the TYPE_DECL that we create implicitly. You're + allowed to put one anonymous union inside another, + though, so we explicitly tolerate that. We use + TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that + we also allow unnamed types used for defining fields. */ + if (DECL_ARTIFICIAL (elt) + && (!DECL_IMPLICIT_TYPEDEF_P (elt) + || TYPE_ANONYMOUS_P (TREE_TYPE (elt)))) + continue; + + if (TREE_CODE (elt) != FIELD_DECL) + { + if (is_union) + permerror (input_location, "%q+#D invalid; an anonymous union can " + "only have non-static data members", elt); + else + permerror (input_location, "%q+#D invalid; an anonymous struct can " + "only have non-static data members", elt); + continue; + } + + if (TREE_PRIVATE (elt)) + { + if (is_union) + permerror (input_location, "private member %q+#D in anonymous union", elt); + else + permerror (input_location, "private member %q+#D in anonymous struct", elt); + } + else if (TREE_PROTECTED (elt)) + { + if (is_union) + permerror (input_location, "protected member %q+#D in anonymous union", elt); + else + permerror (input_location, "protected member %q+#D in anonymous struct", elt); + } + + TREE_PRIVATE (elt) = TREE_PRIVATE (field); + TREE_PROTECTED (elt) = TREE_PROTECTED (field); + } + } + } +} + +/* Add T to CLASSTYPE_DECL_LIST of current_class_type which + will be used later during class template instantiation. + When FRIEND_P is zero, T can be a static member data (VAR_DECL), + a non-static member data (FIELD_DECL), a member function + (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE), + a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL) + When FRIEND_P is nonzero, T is either a friend class + (RECORD_TYPE, TEMPLATE_DECL) or a friend function + (FUNCTION_DECL, TEMPLATE_DECL). */ + +void +maybe_add_class_template_decl_list (tree type, tree t, int friend_p) +{ + /* Save some memory by not creating TREE_LIST if TYPE is not template. */ + if (CLASSTYPE_TEMPLATE_INFO (type)) + CLASSTYPE_DECL_LIST (type) + = tree_cons (friend_p ? NULL_TREE : type, + t, CLASSTYPE_DECL_LIST (type)); +} + +/* This function is called from declare_virt_assop_and_dtor via + dfs_walk_all. + + DATA is a type that direcly or indirectly inherits the base + represented by BINFO. If BINFO contains a virtual assignment [copy + assignment or move assigment] operator or a virtual constructor, + declare that function in DATA if it hasn't been already declared. */ + +static tree +dfs_declare_virt_assop_and_dtor (tree binfo, void *data) +{ + tree bv, fn, t = (tree)data; + tree opname = ansi_assopname (NOP_EXPR); + + gcc_assert (t && CLASS_TYPE_P (t)); + gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO); + + if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) + /* A base without a vtable needs no modification, and its bases + are uninteresting. */ + return dfs_skip_bases; + + if (BINFO_PRIMARY_P (binfo)) + /* If this is a primary base, then we have already looked at the + virtual functions of its vtable. */ + return NULL_TREE; + + for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv)) + { + fn = BV_FN (bv); + + if (DECL_NAME (fn) == opname) + { + if (CLASSTYPE_LAZY_COPY_ASSIGN (t)) + lazily_declare_fn (sfk_copy_assignment, t); + if (CLASSTYPE_LAZY_MOVE_ASSIGN (t)) + lazily_declare_fn (sfk_move_assignment, t); + } + else if (DECL_DESTRUCTOR_P (fn) + && CLASSTYPE_LAZY_DESTRUCTOR (t)) + lazily_declare_fn (sfk_destructor, t); + } + + return NULL_TREE; +} + +/* If the class type T has a direct or indirect base that contains a + virtual assignment operator or a virtual destructor, declare that + function in T if it hasn't been already declared. */ + +static void +declare_virt_assop_and_dtor (tree t) +{ + if (!(TYPE_POLYMORPHIC_P (t) + && (CLASSTYPE_LAZY_COPY_ASSIGN (t) + || CLASSTYPE_LAZY_MOVE_ASSIGN (t) + || CLASSTYPE_LAZY_DESTRUCTOR (t)))) + return; + + dfs_walk_all (TYPE_BINFO (t), + dfs_declare_virt_assop_and_dtor, + NULL, t); +} + +/* Create default constructors, assignment operators, and so forth for + the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR, + and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason, + the class cannot have a default constructor, copy constructor + taking a const reference argument, or an assignment operator taking + a const reference, respectively. */ + +static void +add_implicitly_declared_members (tree t, + int cant_have_const_cctor, + int cant_have_const_assignment) +{ + /* Destructor. */ + if (!CLASSTYPE_DESTRUCTORS (t)) + { + /* In general, we create destructors lazily. */ + CLASSTYPE_LAZY_DESTRUCTOR (t) = 1; + + if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) + && TYPE_FOR_JAVA (t)) + /* But if this is a Java class, any non-trivial destructor is + invalid, even if compiler-generated. Therefore, if the + destructor is non-trivial we create it now. */ + lazily_declare_fn (sfk_destructor, t); + } + + /* [class.ctor] + + If there is no user-declared constructor for a class, a default + constructor is implicitly declared. */ + if (! TYPE_HAS_USER_CONSTRUCTOR (t)) + { + TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1; + CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1; + if (cxx_dialect >= cxx0x) + TYPE_HAS_CONSTEXPR_CTOR (t) + = synthesized_default_constructor_is_constexpr (t); + } + + /* [class.ctor] + + If a class definition does not explicitly declare a copy + constructor, one is declared implicitly. */ + if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t) + && !type_has_move_constructor (t)) + { + TYPE_HAS_COPY_CTOR (t) = 1; + TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor; + CLASSTYPE_LAZY_COPY_CTOR (t) = 1; + if (cxx_dialect >= cxx0x) + CLASSTYPE_LAZY_MOVE_CTOR (t) = 1; + } + + /* If there is no assignment operator, one will be created if and + when it is needed. For now, just record whether or not the type + of the parameter to the assignment operator will be a const or + non-const reference. */ + if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t) + && !type_has_move_assign (t)) + { + TYPE_HAS_COPY_ASSIGN (t) = 1; + TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment; + CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1; + if (cxx_dialect >= cxx0x) + CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1; + } + + /* We can't be lazy about declaring functions that might override + a virtual function from a base class. */ + declare_virt_assop_and_dtor (t); +} + +/* Subroutine of finish_struct_1. Recursively count the number of fields + in TYPE, including anonymous union members. */ + +static int +count_fields (tree fields) +{ + tree x; + int n_fields = 0; + for (x = fields; x; x = DECL_CHAIN (x)) + { + if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x))) + n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x))); + else + n_fields += 1; + } + return n_fields; +} + +/* Subroutine of finish_struct_1. Recursively add all the fields in the + TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */ + +static int +add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx) +{ + tree x; + for (x = fields; x; x = DECL_CHAIN (x)) + { + if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x))) + idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx); + else + field_vec->elts[idx++] = x; + } + return idx; +} + +/* FIELD is a bit-field. We are finishing the processing for its + enclosing type. Issue any appropriate messages and set appropriate + flags. Returns false if an error has been diagnosed. */ + +static bool +check_bitfield_decl (tree field) +{ + tree type = TREE_TYPE (field); + tree w; + + /* Extract the declared width of the bitfield, which has been + temporarily stashed in DECL_INITIAL. */ + w = DECL_INITIAL (field); + gcc_assert (w != NULL_TREE); + /* Remove the bit-field width indicator so that the rest of the + compiler does not treat that value as an initializer. */ + DECL_INITIAL (field) = NULL_TREE; + + /* Detect invalid bit-field type. */ + if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type)) + { + error ("bit-field %q+#D with non-integral type", field); + w = error_mark_node; + } + else + { + location_t loc = input_location; + /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */ + STRIP_NOPS (w); + + /* detect invalid field size. */ + input_location = DECL_SOURCE_LOCATION (field); + w = cxx_constant_value (w); + input_location = loc; + + if (TREE_CODE (w) != INTEGER_CST) + { + error ("bit-field %q+D width not an integer constant", field); + w = error_mark_node; + } + else if (tree_int_cst_sgn (w) < 0) + { + error ("negative width in bit-field %q+D", field); + w = error_mark_node; + } + else if (integer_zerop (w) && DECL_NAME (field) != 0) + { + error ("zero width for bit-field %q+D", field); + w = error_mark_node; + } + else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0 + && TREE_CODE (type) != ENUMERAL_TYPE + && TREE_CODE (type) != BOOLEAN_TYPE) + warning (0, "width of %q+D exceeds its type", field); + else if (TREE_CODE (type) == ENUMERAL_TYPE + && (0 > (compare_tree_int + (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type)))))) + warning (0, "%q+D is too small to hold all values of %q#T", field, type); + } + + if (w != error_mark_node) + { + DECL_SIZE (field) = convert (bitsizetype, w); + DECL_BIT_FIELD (field) = 1; + return true; + } + else + { + /* Non-bit-fields are aligned for their type. */ + DECL_BIT_FIELD (field) = 0; + CLEAR_DECL_C_BIT_FIELD (field); + return false; + } +} + +/* FIELD is a non bit-field. We are finishing the processing for its + enclosing type T. Issue any appropriate messages and set appropriate + flags. */ + +static void +check_field_decl (tree field, + tree t, + int* cant_have_const_ctor, + int* no_const_asn_ref, + int* any_default_members) +{ + tree type = strip_array_types (TREE_TYPE (field)); + + /* In C++98 an anonymous union cannot contain any fields which would change + the settings of CANT_HAVE_CONST_CTOR and friends. */ + if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x) + ; + /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous + structs. So, we recurse through their fields here. */ + else if (ANON_AGGR_TYPE_P (type)) + { + tree fields; + + for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields)) + if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field)) + check_field_decl (fields, t, cant_have_const_ctor, + no_const_asn_ref, any_default_members); + } + /* Check members with class type for constructors, destructors, + etc. */ + else if (CLASS_TYPE_P (type)) + { + /* Never let anything with uninheritable virtuals + make it through without complaint. */ + abstract_virtuals_error (field, type); + + if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x) + { + static bool warned; + int oldcount = errorcount; + if (TYPE_NEEDS_CONSTRUCTING (type)) + error ("member %q+#D with constructor not allowed in union", + field); + if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) + error ("member %q+#D with destructor not allowed in union", field); + if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)) + error ("member %q+#D with copy assignment operator not allowed in union", + field); + if (!warned && errorcount > oldcount) + { + inform (DECL_SOURCE_LOCATION (field), "unrestricted unions " + "only available with -std=c++0x or -std=gnu++0x"); + warned = true; + } + } + else + { + TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type); + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) + |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type); + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) + |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type) + || !TYPE_HAS_COPY_ASSIGN (type)); + TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type) + || !TYPE_HAS_COPY_CTOR (type)); + TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type); + TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type); + TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type) + || TYPE_HAS_COMPLEX_DFLT (type)); + } + + if (TYPE_HAS_COPY_CTOR (type) + && !TYPE_HAS_CONST_COPY_CTOR (type)) + *cant_have_const_ctor = 1; + + if (TYPE_HAS_COPY_ASSIGN (type) + && !TYPE_HAS_CONST_COPY_ASSIGN (type)) + *no_const_asn_ref = 1; + } + if (DECL_INITIAL (field) != NULL_TREE) + { + /* `build_class_init_list' does not recognize + non-FIELD_DECLs. */ + if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0) + error ("multiple fields in union %qT initialized", t); + *any_default_members = 1; + } +} + +/* Check the data members (both static and non-static), class-scoped + typedefs, etc., appearing in the declaration of T. Issue + appropriate diagnostics. Sets ACCESS_DECLS to a list (in + declaration order) of access declarations; each TREE_VALUE in this + list is a USING_DECL. + + In addition, set the following flags: + + EMPTY_P + The class is empty, i.e., contains no non-static data members. + + CANT_HAVE_CONST_CTOR_P + This class cannot have an implicitly generated copy constructor + taking a const reference. + + CANT_HAVE_CONST_ASN_REF + This class cannot have an implicitly generated assignment + operator taking a const reference. + + All of these flags should be initialized before calling this + function. + + Returns a pointer to the end of the TYPE_FIELDs chain; additional + fields can be added by adding to this chain. */ + +static void +check_field_decls (tree t, tree *access_decls, + int *cant_have_const_ctor_p, + int *no_const_asn_ref_p) +{ + tree *field; + tree *next; + bool has_pointers; + int any_default_members; + int cant_pack = 0; + int field_access = -1; + + /* Assume there are no access declarations. */ + *access_decls = NULL_TREE; + /* Assume this class has no pointer members. */ + has_pointers = false; + /* Assume none of the members of this class have default + initializations. */ + any_default_members = 0; + + for (field = &TYPE_FIELDS (t); *field; field = next) + { + tree x = *field; + tree type = TREE_TYPE (x); + int this_field_access; + + next = &DECL_CHAIN (x); + + if (TREE_CODE (x) == USING_DECL) + { + /* Prune the access declaration from the list of fields. */ + *field = DECL_CHAIN (x); + + /* Save the access declarations for our caller. */ + *access_decls = tree_cons (NULL_TREE, x, *access_decls); + + /* Since we've reset *FIELD there's no reason to skip to the + next field. */ + next = field; + continue; + } + + if (TREE_CODE (x) == TYPE_DECL + || TREE_CODE (x) == TEMPLATE_DECL) + continue; + + /* If we've gotten this far, it's a data member, possibly static, + or an enumerator. */ + DECL_CONTEXT (x) = t; + + /* When this goes into scope, it will be a non-local reference. */ + DECL_NONLOCAL (x) = 1; + + if (TREE_CODE (t) == UNION_TYPE) + { + /* [class.union] + + If a union contains a static data member, or a member of + reference type, the program is ill-formed. */ + if (TREE_CODE (x) == VAR_DECL) + { + error ("%q+D may not be static because it is a member of a union", x); + continue; + } + if (TREE_CODE (type) == REFERENCE_TYPE) + { + error ("%q+D may not have reference type %qT because" + " it is a member of a union", + x, type); + continue; + } + } + + /* Perform error checking that did not get done in + grokdeclarator. */ + if (TREE_CODE (type) == FUNCTION_TYPE) + { + error ("field %q+D invalidly declared function type", x); + type = build_pointer_type (type); + TREE_TYPE (x) = type; + } + else if (TREE_CODE (type) == METHOD_TYPE) + { + error ("field %q+D invalidly declared method type", x); + type = build_pointer_type (type); + TREE_TYPE (x) = type; + } + + if (type == error_mark_node) + continue; + + if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL) + continue; + + /* Now it can only be a FIELD_DECL. */ + + if (TREE_PRIVATE (x) || TREE_PROTECTED (x)) + CLASSTYPE_NON_AGGREGATE (t) = 1; + + /* If at least one non-static data member is non-literal, the whole + class becomes non-literal. */ + if (!literal_type_p (type)) + CLASSTYPE_LITERAL_P (t) = false; + + /* A standard-layout class is a class that: + ... + has the same access control (Clause 11) for all non-static data members, + ... */ + this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0; + if (field_access == -1) + field_access = this_field_access; + else if (this_field_access != field_access) + CLASSTYPE_NON_STD_LAYOUT (t) = 1; + + /* If this is of reference type, check if it needs an init. */ + if (TREE_CODE (type) == REFERENCE_TYPE) + { + CLASSTYPE_NON_LAYOUT_POD_P (t) = 1; + CLASSTYPE_NON_STD_LAYOUT (t) = 1; + if (DECL_INITIAL (x) == NULL_TREE) + SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1); + + /* ARM $12.6.2: [A member initializer list] (or, for an + aggregate, initialization by a brace-enclosed list) is the + only way to initialize nonstatic const and reference + members. */ + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; + TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1; + } + + type = strip_array_types (type); + + if (TYPE_PACKED (t)) + { + if (!layout_pod_type_p (type) && !TYPE_PACKED (type)) + { + warning + (0, + "ignoring packed attribute because of unpacked non-POD field %q+#D", + x); + cant_pack = 1; + } + else if (DECL_C_BIT_FIELD (x) + || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT) + DECL_PACKED (x) = 1; + } + + if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x))) + /* We don't treat zero-width bitfields as making a class + non-empty. */ + ; + else + { + /* The class is non-empty. */ + CLASSTYPE_EMPTY_P (t) = 0; + /* The class is not even nearly empty. */ + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + /* If one of the data members contains an empty class, + so does T. */ + if (CLASS_TYPE_P (type) + && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type)) + CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1; + } + + /* This is used by -Weffc++ (see below). Warn only for pointers + to members which might hold dynamic memory. So do not warn + for pointers to functions or pointers to members. */ + if (TYPE_PTR_P (type) + && !TYPE_PTRFN_P (type) + && !TYPE_PTR_TO_MEMBER_P (type)) + has_pointers = true; + + if (CLASS_TYPE_P (type)) + { + if (CLASSTYPE_REF_FIELDS_NEED_INIT (type)) + SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1); + if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type)) + SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1); + } + + if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type)) + CLASSTYPE_HAS_MUTABLE (t) = 1; + + if (! layout_pod_type_p (type)) + /* DR 148 now allows pointers to members (which are POD themselves), + to be allowed in POD structs. */ + CLASSTYPE_NON_LAYOUT_POD_P (t) = 1; + + if (!std_layout_type_p (type)) + CLASSTYPE_NON_STD_LAYOUT (t) = 1; + + if (! zero_init_p (type)) + CLASSTYPE_NON_ZERO_INIT_P (t) = 1; + + /* We set DECL_C_BIT_FIELD in grokbitfield. + If the type and width are valid, we'll also set DECL_BIT_FIELD. */ + if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x)) + check_field_decl (x, t, + cant_have_const_ctor_p, + no_const_asn_ref_p, + &any_default_members); + + /* If any field is const, the structure type is pseudo-const. */ + if (CP_TYPE_CONST_P (type)) + { + C_TYPE_FIELDS_READONLY (t) = 1; + if (DECL_INITIAL (x) == NULL_TREE) + SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1); + + /* ARM $12.6.2: [A member initializer list] (or, for an + aggregate, initialization by a brace-enclosed list) is the + only way to initialize nonstatic const and reference + members. */ + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; + TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1; + } + /* A field that is pseudo-const makes the structure likewise. */ + else if (CLASS_TYPE_P (type)) + { + C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type); + SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, + CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) + | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type)); + } + + /* Core issue 80: A nonstatic data member is required to have a + different name from the class iff the class has a + user-declared constructor. */ + if (constructor_name_p (DECL_NAME (x), t) + && TYPE_HAS_USER_CONSTRUCTOR (t)) + permerror (input_location, "field %q+#D with same name as class", x); + } + + /* Effective C++ rule 11: if a class has dynamic memory held by pointers, + it should also define a copy constructor and an assignment operator to + implement the correct copy semantic (deep vs shallow, etc.). As it is + not feasible to check whether the constructors do allocate dynamic memory + and store it within members, we approximate the warning like this: + + -- Warn only if there are members which are pointers + -- Warn only if there is a non-trivial constructor (otherwise, + there cannot be memory allocated). + -- Warn only if there is a non-trivial destructor. We assume that the + user at least implemented the cleanup correctly, and a destructor + is needed to free dynamic memory. + + This seems enough for practical purposes. */ + if (warn_ecpp + && has_pointers + && TYPE_HAS_USER_CONSTRUCTOR (t) + && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) + && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t))) + { + warning (OPT_Weffc__, "%q#T has pointer data members", t); + + if (! TYPE_HAS_COPY_CTOR (t)) + { + warning (OPT_Weffc__, + " but does not override %<%T(const %T&)%>", t, t); + if (!TYPE_HAS_COPY_ASSIGN (t)) + warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t); + } + else if (! TYPE_HAS_COPY_ASSIGN (t)) + warning (OPT_Weffc__, + " but does not override %<operator=(const %T&)%>", t); + } + + /* If any of the fields couldn't be packed, unset TYPE_PACKED. */ + if (cant_pack) + TYPE_PACKED (t) = 0; + + /* Check anonymous struct/anonymous union fields. */ + finish_struct_anon (t); + + /* We've built up the list of access declarations in reverse order. + Fix that now. */ + *access_decls = nreverse (*access_decls); +} + +/* If TYPE is an empty class type, records its OFFSET in the table of + OFFSETS. */ + +static int +record_subobject_offset (tree type, tree offset, splay_tree offsets) +{ + splay_tree_node n; + + if (!is_empty_class (type)) + return 0; + + /* Record the location of this empty object in OFFSETS. */ + n = splay_tree_lookup (offsets, (splay_tree_key) offset); + if (!n) + n = splay_tree_insert (offsets, + (splay_tree_key) offset, + (splay_tree_value) NULL_TREE); + n->value = ((splay_tree_value) + tree_cons (NULL_TREE, + type, + (tree) n->value)); + + return 0; +} + +/* Returns nonzero if TYPE is an empty class type and there is + already an entry in OFFSETS for the same TYPE as the same OFFSET. */ + +static int +check_subobject_offset (tree type, tree offset, splay_tree offsets) +{ + splay_tree_node n; + tree t; + + if (!is_empty_class (type)) + return 0; + + /* Record the location of this empty object in OFFSETS. */ + n = splay_tree_lookup (offsets, (splay_tree_key) offset); + if (!n) + return 0; + + for (t = (tree) n->value; t; t = TREE_CHAIN (t)) + if (same_type_p (TREE_VALUE (t), type)) + return 1; + + return 0; +} + +/* Walk through all the subobjects of TYPE (located at OFFSET). Call + F for every subobject, passing it the type, offset, and table of + OFFSETS. If VBASES_P is one, then virtual non-primary bases should + be traversed. + + If MAX_OFFSET is non-NULL, then subobjects with an offset greater + than MAX_OFFSET will not be walked. + + If F returns a nonzero value, the traversal ceases, and that value + is returned. Otherwise, returns zero. */ + +static int +walk_subobject_offsets (tree type, + subobject_offset_fn f, + tree offset, + splay_tree offsets, + tree max_offset, + int vbases_p) +{ + int r = 0; + tree type_binfo = NULL_TREE; + + /* If this OFFSET is bigger than the MAX_OFFSET, then we should + stop. */ + if (max_offset && INT_CST_LT (max_offset, offset)) + return 0; + + if (type == error_mark_node) + return 0; + + if (!TYPE_P (type)) + { + if (abi_version_at_least (2)) + type_binfo = type; + type = BINFO_TYPE (type); + } + + if (CLASS_TYPE_P (type)) + { + tree field; + tree binfo; + int i; + + /* Avoid recursing into objects that are not interesting. */ + if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type)) + return 0; + + /* Record the location of TYPE. */ + r = (*f) (type, offset, offsets); + if (r) + return r; + + /* Iterate through the direct base classes of TYPE. */ + if (!type_binfo) + type_binfo = TYPE_BINFO (type); + for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++) + { + tree binfo_offset; + + if (abi_version_at_least (2) + && BINFO_VIRTUAL_P (binfo)) + continue; + + if (!vbases_p + && BINFO_VIRTUAL_P (binfo) + && !BINFO_PRIMARY_P (binfo)) + continue; + + if (!abi_version_at_least (2)) + binfo_offset = size_binop (PLUS_EXPR, + offset, + BINFO_OFFSET (binfo)); + else + { + tree orig_binfo; + /* We cannot rely on BINFO_OFFSET being set for the base + class yet, but the offsets for direct non-virtual + bases can be calculated by going back to the TYPE. */ + orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i); + binfo_offset = size_binop (PLUS_EXPR, + offset, + BINFO_OFFSET (orig_binfo)); + } + + r = walk_subobject_offsets (binfo, + f, + binfo_offset, + offsets, + max_offset, + (abi_version_at_least (2) + ? /*vbases_p=*/0 : vbases_p)); + if (r) + return r; + } + + if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type)) + { + unsigned ix; + VEC(tree,gc) *vbases; + + /* Iterate through the virtual base classes of TYPE. In G++ + 3.2, we included virtual bases in the direct base class + loop above, which results in incorrect results; the + correct offsets for virtual bases are only known when + working with the most derived type. */ + if (vbases_p) + for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0; + VEC_iterate (tree, vbases, ix, binfo); ix++) + { + r = walk_subobject_offsets (binfo, + f, + size_binop (PLUS_EXPR, + offset, + BINFO_OFFSET (binfo)), + offsets, + max_offset, + /*vbases_p=*/0); + if (r) + return r; + } + else + { + /* We still have to walk the primary base, if it is + virtual. (If it is non-virtual, then it was walked + above.) */ + tree vbase = get_primary_binfo (type_binfo); + + if (vbase && BINFO_VIRTUAL_P (vbase) + && BINFO_PRIMARY_P (vbase) + && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo) + { + r = (walk_subobject_offsets + (vbase, f, offset, + offsets, max_offset, /*vbases_p=*/0)); + if (r) + return r; + } + } + } + + /* Iterate through the fields of TYPE. */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field)) + { + tree field_offset; + + if (abi_version_at_least (2)) + field_offset = byte_position (field); + else + /* In G++ 3.2, DECL_FIELD_OFFSET was used. */ + field_offset = DECL_FIELD_OFFSET (field); + + r = walk_subobject_offsets (TREE_TYPE (field), + f, + size_binop (PLUS_EXPR, + offset, + field_offset), + offsets, + max_offset, + /*vbases_p=*/1); + if (r) + return r; + } + } + else if (TREE_CODE (type) == ARRAY_TYPE) + { + tree element_type = strip_array_types (type); + tree domain = TYPE_DOMAIN (type); + tree index; + + /* Avoid recursing into objects that are not interesting. */ + if (!CLASS_TYPE_P (element_type) + || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type)) + return 0; + + /* Step through each of the elements in the array. */ + for (index = size_zero_node; + /* G++ 3.2 had an off-by-one error here. */ + (abi_version_at_least (2) + ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index) + : INT_CST_LT (index, TYPE_MAX_VALUE (domain))); + index = size_binop (PLUS_EXPR, index, size_one_node)) + { + r = walk_subobject_offsets (TREE_TYPE (type), + f, + offset, + offsets, + max_offset, + /*vbases_p=*/1); + if (r) + return r; + offset = size_binop (PLUS_EXPR, offset, + TYPE_SIZE_UNIT (TREE_TYPE (type))); + /* If this new OFFSET is bigger than the MAX_OFFSET, then + there's no point in iterating through the remaining + elements of the array. */ + if (max_offset && INT_CST_LT (max_offset, offset)) + break; + } + } + + return 0; +} + +/* Record all of the empty subobjects of TYPE (either a type or a + binfo). If IS_DATA_MEMBER is true, then a non-static data member + is being placed at OFFSET; otherwise, it is a base class that is + being placed at OFFSET. */ + +static void +record_subobject_offsets (tree type, + tree offset, + splay_tree offsets, + bool is_data_member) +{ + tree max_offset; + /* If recording subobjects for a non-static data member or a + non-empty base class , we do not need to record offsets beyond + the size of the biggest empty class. Additional data members + will go at the end of the class. Additional base classes will go + either at offset zero (if empty, in which case they cannot + overlap with offsets past the size of the biggest empty class) or + at the end of the class. + + However, if we are placing an empty base class, then we must record + all offsets, as either the empty class is at offset zero (where + other empty classes might later be placed) or at the end of the + class (where other objects might then be placed, so other empty + subobjects might later overlap). */ + if (is_data_member + || !is_empty_class (BINFO_TYPE (type))) + max_offset = sizeof_biggest_empty_class; + else + max_offset = NULL_TREE; + walk_subobject_offsets (type, record_subobject_offset, offset, + offsets, max_offset, is_data_member); +} + +/* Returns nonzero if any of the empty subobjects of TYPE (located at + OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero, + virtual bases of TYPE are examined. */ + +static int +layout_conflict_p (tree type, + tree offset, + splay_tree offsets, + int vbases_p) +{ + splay_tree_node max_node; + + /* Get the node in OFFSETS that indicates the maximum offset where + an empty subobject is located. */ + max_node = splay_tree_max (offsets); + /* If there aren't any empty subobjects, then there's no point in + performing this check. */ + if (!max_node) + return 0; + + return walk_subobject_offsets (type, check_subobject_offset, offset, + offsets, (tree) (max_node->key), + vbases_p); +} + +/* DECL is a FIELD_DECL corresponding either to a base subobject of a + non-static data member of the type indicated by RLI. BINFO is the + binfo corresponding to the base subobject, OFFSETS maps offsets to + types already located at those offsets. This function determines + the position of the DECL. */ + +static void +layout_nonempty_base_or_field (record_layout_info rli, + tree decl, + tree binfo, + splay_tree offsets) +{ + tree offset = NULL_TREE; + bool field_p; + tree type; + + if (binfo) + { + /* For the purposes of determining layout conflicts, we want to + use the class type of BINFO; TREE_TYPE (DECL) will be the + CLASSTYPE_AS_BASE version, which does not contain entries for + zero-sized bases. */ + type = TREE_TYPE (binfo); + field_p = false; + } + else + { + type = TREE_TYPE (decl); + field_p = true; + } + + /* Try to place the field. It may take more than one try if we have + a hard time placing the field without putting two objects of the + same type at the same address. */ + while (1) + { + struct record_layout_info_s old_rli = *rli; + + /* Place this field. */ + place_field (rli, decl); + offset = byte_position (decl); + + /* We have to check to see whether or not there is already + something of the same type at the offset we're about to use. + For example, consider: + + struct S {}; + struct T : public S { int i; }; + struct U : public S, public T {}; + + Here, we put S at offset zero in U. Then, we can't put T at + offset zero -- its S component would be at the same address + as the S we already allocated. So, we have to skip ahead. + Since all data members, including those whose type is an + empty class, have nonzero size, any overlap can happen only + with a direct or indirect base-class -- it can't happen with + a data member. */ + /* In a union, overlap is permitted; all members are placed at + offset zero. */ + if (TREE_CODE (rli->t) == UNION_TYPE) + break; + /* G++ 3.2 did not check for overlaps when placing a non-empty + virtual base. */ + if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo)) + break; + if (layout_conflict_p (field_p ? type : binfo, offset, + offsets, field_p)) + { + /* Strip off the size allocated to this field. That puts us + at the first place we could have put the field with + proper alignment. */ + *rli = old_rli; + + /* Bump up by the alignment required for the type. */ + rli->bitpos + = size_binop (PLUS_EXPR, rli->bitpos, + bitsize_int (binfo + ? CLASSTYPE_ALIGN (type) + : TYPE_ALIGN (type))); + normalize_rli (rli); + } + else + /* There was no conflict. We're done laying out this field. */ + break; + } + + /* Now that we know where it will be placed, update its + BINFO_OFFSET. */ + if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo))) + /* Indirect virtual bases may have a nonzero BINFO_OFFSET at + this point because their BINFO_OFFSET is copied from another + hierarchy. Therefore, we may not need to add the entire + OFFSET. */ + propagate_binfo_offsets (binfo, + size_diffop_loc (input_location, + convert (ssizetype, offset), + convert (ssizetype, + BINFO_OFFSET (binfo)))); +} + +/* Returns true if TYPE is empty and OFFSET is nonzero. */ + +static int +empty_base_at_nonzero_offset_p (tree type, + tree offset, + splay_tree offsets ATTRIBUTE_UNUSED) +{ + return is_empty_class (type) && !integer_zerop (offset); +} + +/* Layout the empty base BINFO. EOC indicates the byte currently just + past the end of the class, and should be correctly aligned for a + class of the type indicated by BINFO; OFFSETS gives the offsets of + the empty bases allocated so far. T is the most derived + type. Return nonzero iff we added it at the end. */ + +static bool +layout_empty_base (record_layout_info rli, tree binfo, + tree eoc, splay_tree offsets) +{ + tree alignment; + tree basetype = BINFO_TYPE (binfo); + bool atend = false; + + /* This routine should only be used for empty classes. */ + gcc_assert (is_empty_class (basetype)); + alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype)); + + if (!integer_zerop (BINFO_OFFSET (binfo))) + { + if (abi_version_at_least (2)) + propagate_binfo_offsets + (binfo, size_diffop_loc (input_location, + size_zero_node, BINFO_OFFSET (binfo))); + else + warning (OPT_Wabi, + "offset of empty base %qT may not be ABI-compliant and may" + "change in a future version of GCC", + BINFO_TYPE (binfo)); + } + + /* This is an empty base class. We first try to put it at offset + zero. */ + if (layout_conflict_p (binfo, + BINFO_OFFSET (binfo), + offsets, + /*vbases_p=*/0)) + { + /* That didn't work. Now, we move forward from the next + available spot in the class. */ + atend = true; + propagate_binfo_offsets (binfo, convert (ssizetype, eoc)); + while (1) + { + if (!layout_conflict_p (binfo, + BINFO_OFFSET (binfo), + offsets, + /*vbases_p=*/0)) + /* We finally found a spot where there's no overlap. */ + break; + + /* There's overlap here, too. Bump along to the next spot. */ + propagate_binfo_offsets (binfo, alignment); + } + } + + if (CLASSTYPE_USER_ALIGN (basetype)) + { + rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype)); + if (warn_packed) + rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype)); + TYPE_USER_ALIGN (rli->t) = 1; + } + + return atend; +} + +/* Layout the base given by BINFO in the class indicated by RLI. + *BASE_ALIGN is a running maximum of the alignments of + any base class. OFFSETS gives the location of empty base + subobjects. T is the most derived type. Return nonzero if the new + object cannot be nearly-empty. A new FIELD_DECL is inserted at + *NEXT_FIELD, unless BINFO is for an empty base class. + + Returns the location at which the next field should be inserted. */ + +static tree * +build_base_field (record_layout_info rli, tree binfo, + splay_tree offsets, tree *next_field) +{ + tree t = rli->t; + tree basetype = BINFO_TYPE (binfo); + + if (!COMPLETE_TYPE_P (basetype)) + /* This error is now reported in xref_tag, thus giving better + location information. */ + return next_field; + + /* Place the base class. */ + if (!is_empty_class (basetype)) + { + tree decl; + + /* The containing class is non-empty because it has a non-empty + base class. */ + CLASSTYPE_EMPTY_P (t) = 0; + + /* Create the FIELD_DECL. */ + decl = build_decl (input_location, + FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype)); + DECL_ARTIFICIAL (decl) = 1; + DECL_IGNORED_P (decl) = 1; + DECL_FIELD_CONTEXT (decl) = t; + if (CLASSTYPE_AS_BASE (basetype)) + { + DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype); + DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype); + DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype); + DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype); + DECL_MODE (decl) = TYPE_MODE (basetype); + DECL_FIELD_IS_BASE (decl) = 1; + + /* Try to place the field. It may take more than one try if we + have a hard time placing the field without putting two + objects of the same type at the same address. */ + layout_nonempty_base_or_field (rli, decl, binfo, offsets); + /* Add the new FIELD_DECL to the list of fields for T. */ + DECL_CHAIN (decl) = *next_field; + *next_field = decl; + next_field = &DECL_CHAIN (decl); + } + } + else + { + tree eoc; + bool atend; + + /* On some platforms (ARM), even empty classes will not be + byte-aligned. */ + eoc = round_up_loc (input_location, + rli_size_unit_so_far (rli), + CLASSTYPE_ALIGN_UNIT (basetype)); + atend = layout_empty_base (rli, binfo, eoc, offsets); + /* A nearly-empty class "has no proper base class that is empty, + not morally virtual, and at an offset other than zero." */ + if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t)) + { + if (atend) + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + /* The check above (used in G++ 3.2) is insufficient because + an empty class placed at offset zero might itself have an + empty base at a nonzero offset. */ + else if (walk_subobject_offsets (basetype, + empty_base_at_nonzero_offset_p, + size_zero_node, + /*offsets=*/NULL, + /*max_offset=*/NULL_TREE, + /*vbases_p=*/true)) + { + if (abi_version_at_least (2)) + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + else + warning (OPT_Wabi, + "class %qT will be considered nearly empty in a " + "future version of GCC", t); + } + } + + /* We do not create a FIELD_DECL for empty base classes because + it might overlap some other field. We want to be able to + create CONSTRUCTORs for the class by iterating over the + FIELD_DECLs, and the back end does not handle overlapping + FIELD_DECLs. */ + + /* An empty virtual base causes a class to be non-empty + -- but in that case we do not need to clear CLASSTYPE_EMPTY_P + here because that was already done when the virtual table + pointer was created. */ + } + + /* Record the offsets of BINFO and its base subobjects. */ + record_subobject_offsets (binfo, + BINFO_OFFSET (binfo), + offsets, + /*is_data_member=*/false); + + return next_field; +} + +/* Layout all of the non-virtual base classes. Record empty + subobjects in OFFSETS. T is the most derived type. Return nonzero + if the type cannot be nearly empty. The fields created + corresponding to the base classes will be inserted at + *NEXT_FIELD. */ + +static void +build_base_fields (record_layout_info rli, + splay_tree offsets, tree *next_field) +{ + /* Chain to hold all the new FIELD_DECLs which stand in for base class + subobjects. */ + tree t = rli->t; + int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t)); + int i; + + /* The primary base class is always allocated first. */ + if (CLASSTYPE_HAS_PRIMARY_BASE_P (t)) + next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t), + offsets, next_field); + + /* Now allocate the rest of the bases. */ + for (i = 0; i < n_baseclasses; ++i) + { + tree base_binfo; + + base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i); + + /* The primary base was already allocated above, so we don't + need to allocate it again here. */ + if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t)) + continue; + + /* Virtual bases are added at the end (a primary virtual base + will have already been added). */ + if (BINFO_VIRTUAL_P (base_binfo)) + continue; + + next_field = build_base_field (rli, base_binfo, + offsets, next_field); + } +} + +/* Go through the TYPE_METHODS of T issuing any appropriate + diagnostics, figuring out which methods override which other + methods, and so forth. */ + +static void +check_methods (tree t) +{ + tree x; + + for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x)) + { + check_for_override (x, t); + if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x)) + error ("initializer specified for non-virtual method %q+D", x); + /* The name of the field is the original field name + Save this in auxiliary field for later overloading. */ + if (DECL_VINDEX (x)) + { + TYPE_POLYMORPHIC_P (t) = 1; + if (DECL_PURE_VIRTUAL_P (x)) + VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x); + } + /* All user-provided destructors are non-trivial. + Constructors and assignment ops are handled in + grok_special_member_properties. */ + if (DECL_DESTRUCTOR_P (x) && user_provided_p (x)) + TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1; + } +} + +/* FN is a constructor or destructor. Clone the declaration to create + a specialized in-charge or not-in-charge version, as indicated by + NAME. */ + +static tree +build_clone (tree fn, tree name) +{ + tree parms; + tree clone; + + /* Copy the function. */ + clone = copy_decl (fn); + /* Reset the function name. */ + DECL_NAME (clone) = name; + SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE); + /* Remember where this function came from. */ + DECL_ABSTRACT_ORIGIN (clone) = fn; + /* Make it easy to find the CLONE given the FN. */ + DECL_CHAIN (clone) = DECL_CHAIN (fn); + DECL_CHAIN (fn) = clone; + + /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */ + if (TREE_CODE (clone) == TEMPLATE_DECL) + { + tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name); + DECL_TEMPLATE_RESULT (clone) = result; + DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result)); + DECL_TI_TEMPLATE (result) = clone; + TREE_TYPE (clone) = TREE_TYPE (result); + return clone; + } + + DECL_CLONED_FUNCTION (clone) = fn; + /* There's no pending inline data for this function. */ + DECL_PENDING_INLINE_INFO (clone) = NULL; + DECL_PENDING_INLINE_P (clone) = 0; + + /* The base-class destructor is not virtual. */ + if (name == base_dtor_identifier) + { + DECL_VIRTUAL_P (clone) = 0; + if (TREE_CODE (clone) != TEMPLATE_DECL) + DECL_VINDEX (clone) = NULL_TREE; + } + + /* If there was an in-charge parameter, drop it from the function + type. */ + if (DECL_HAS_IN_CHARGE_PARM_P (clone)) + { + tree basetype; + tree parmtypes; + tree exceptions; + + exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone)); + basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone)); + parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone)); + /* Skip the `this' parameter. */ + parmtypes = TREE_CHAIN (parmtypes); + /* Skip the in-charge parameter. */ + parmtypes = TREE_CHAIN (parmtypes); + /* And the VTT parm, in a complete [cd]tor. */ + if (DECL_HAS_VTT_PARM_P (fn) + && ! DECL_NEEDS_VTT_PARM_P (clone)) + parmtypes = TREE_CHAIN (parmtypes); + /* If this is subobject constructor or destructor, add the vtt + parameter. */ + TREE_TYPE (clone) + = build_method_type_directly (basetype, + TREE_TYPE (TREE_TYPE (clone)), + parmtypes); + if (exceptions) + TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone), + exceptions); + TREE_TYPE (clone) + = cp_build_type_attribute_variant (TREE_TYPE (clone), + TYPE_ATTRIBUTES (TREE_TYPE (fn))); + } + + /* Copy the function parameters. */ + DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone)); + /* Remove the in-charge parameter. */ + if (DECL_HAS_IN_CHARGE_PARM_P (clone)) + { + DECL_CHAIN (DECL_ARGUMENTS (clone)) + = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))); + DECL_HAS_IN_CHARGE_PARM_P (clone) = 0; + } + /* And the VTT parm, in a complete [cd]tor. */ + if (DECL_HAS_VTT_PARM_P (fn)) + { + if (DECL_NEEDS_VTT_PARM_P (clone)) + DECL_HAS_VTT_PARM_P (clone) = 1; + else + { + DECL_CHAIN (DECL_ARGUMENTS (clone)) + = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))); + DECL_HAS_VTT_PARM_P (clone) = 0; + } + } + + for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms)) + { + DECL_CONTEXT (parms) = clone; + cxx_dup_lang_specific_decl (parms); + } + + /* Create the RTL for this function. */ + SET_DECL_RTL (clone, NULL); + rest_of_decl_compilation (clone, /*top_level=*/1, at_eof); + + if (pch_file) + note_decl_for_pch (clone); + + return clone; +} + +/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do + not invoke this function directly. + + For a non-thunk function, returns the address of the slot for storing + the function it is a clone of. Otherwise returns NULL_TREE. + + If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if + cloned_function is unset. This is to support the separate + DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter + on a template makes sense, but not the former. */ + +tree * +decl_cloned_function_p (const_tree decl, bool just_testing) +{ + tree *ptr; + if (just_testing) + decl = STRIP_TEMPLATE (decl); + + if (TREE_CODE (decl) != FUNCTION_DECL + || !DECL_LANG_SPECIFIC (decl) + || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p) + { +#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) + if (!just_testing) + lang_check_failed (__FILE__, __LINE__, __FUNCTION__); + else +#endif + return NULL; + } + + ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function; + if (just_testing && *ptr == NULL_TREE) + return NULL; + else + return ptr; +} + +/* Produce declarations for all appropriate clones of FN. If + UPDATE_METHOD_VEC_P is nonzero, the clones are added to the + CLASTYPE_METHOD_VEC as well. */ + +void +clone_function_decl (tree fn, int update_method_vec_p) +{ + tree clone; + + /* Avoid inappropriate cloning. */ + if (DECL_CHAIN (fn) + && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn))) + return; + + if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn)) + { + /* For each constructor, we need two variants: an in-charge version + and a not-in-charge version. */ + clone = build_clone (fn, complete_ctor_identifier); + if (update_method_vec_p) + add_method (DECL_CONTEXT (clone), clone, NULL_TREE); + clone = build_clone (fn, base_ctor_identifier); + if (update_method_vec_p) + add_method (DECL_CONTEXT (clone), clone, NULL_TREE); + } + else + { + gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)); + + /* For each destructor, we need three variants: an in-charge + version, a not-in-charge version, and an in-charge deleting + version. We clone the deleting version first because that + means it will go second on the TYPE_METHODS list -- and that + corresponds to the correct layout order in the virtual + function table. + + For a non-virtual destructor, we do not build a deleting + destructor. */ + if (DECL_VIRTUAL_P (fn)) + { + clone = build_clone (fn, deleting_dtor_identifier); + if (update_method_vec_p) + add_method (DECL_CONTEXT (clone), clone, NULL_TREE); + } + clone = build_clone (fn, complete_dtor_identifier); + if (update_method_vec_p) + add_method (DECL_CONTEXT (clone), clone, NULL_TREE); + clone = build_clone (fn, base_dtor_identifier); + if (update_method_vec_p) + add_method (DECL_CONTEXT (clone), clone, NULL_TREE); + } + + /* Note that this is an abstract function that is never emitted. */ + DECL_ABSTRACT (fn) = 1; +} + +/* DECL is an in charge constructor, which is being defined. This will + have had an in class declaration, from whence clones were + declared. An out-of-class definition can specify additional default + arguments. As it is the clones that are involved in overload + resolution, we must propagate the information from the DECL to its + clones. */ + +void +adjust_clone_args (tree decl) +{ + tree clone; + + for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone); + clone = DECL_CHAIN (clone)) + { + tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone)); + tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl)); + tree decl_parms, clone_parms; + + clone_parms = orig_clone_parms; + + /* Skip the 'this' parameter. */ + orig_clone_parms = TREE_CHAIN (orig_clone_parms); + orig_decl_parms = TREE_CHAIN (orig_decl_parms); + + if (DECL_HAS_IN_CHARGE_PARM_P (decl)) + orig_decl_parms = TREE_CHAIN (orig_decl_parms); + if (DECL_HAS_VTT_PARM_P (decl)) + orig_decl_parms = TREE_CHAIN (orig_decl_parms); + + clone_parms = orig_clone_parms; + if (DECL_HAS_VTT_PARM_P (clone)) + clone_parms = TREE_CHAIN (clone_parms); + + for (decl_parms = orig_decl_parms; decl_parms; + decl_parms = TREE_CHAIN (decl_parms), + clone_parms = TREE_CHAIN (clone_parms)) + { + gcc_assert (same_type_p (TREE_TYPE (decl_parms), + TREE_TYPE (clone_parms))); + + if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms)) + { + /* A default parameter has been added. Adjust the + clone's parameters. */ + tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone)); + tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone)); + tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone)); + tree type; + + clone_parms = orig_decl_parms; + + if (DECL_HAS_VTT_PARM_P (clone)) + { + clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms), + TREE_VALUE (orig_clone_parms), + clone_parms); + TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms); + } + type = build_method_type_directly (basetype, + TREE_TYPE (TREE_TYPE (clone)), + clone_parms); + if (exceptions) + type = build_exception_variant (type, exceptions); + if (attrs) + type = cp_build_type_attribute_variant (type, attrs); + TREE_TYPE (clone) = type; + + clone_parms = NULL_TREE; + break; + } + } + gcc_assert (!clone_parms); + } +} + +/* For each of the constructors and destructors in T, create an + in-charge and not-in-charge variant. */ + +static void +clone_constructors_and_destructors (tree t) +{ + tree fns; + + /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail + out now. */ + if (!CLASSTYPE_METHOD_VEC (t)) + return; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1); + for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1); +} + +/* Returns true iff class T has a user-defined constructor other than + the default constructor. */ + +bool +type_has_user_nondefault_constructor (tree t) +{ + tree fns; + + if (!TYPE_HAS_USER_CONSTRUCTOR (t)) + return false; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + if (!DECL_ARTIFICIAL (fn) + && (TREE_CODE (fn) == TEMPLATE_DECL + || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn)) + != NULL_TREE))) + return true; + } + + return false; +} + +/* Returns the defaulted constructor if T has one. Otherwise, returns + NULL_TREE. */ + +tree +in_class_defaulted_default_constructor (tree t) +{ + tree fns, args; + + if (!TYPE_HAS_USER_CONSTRUCTOR (t)) + return NULL_TREE; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + + if (DECL_DEFAULTED_IN_CLASS_P (fn)) + { + args = FUNCTION_FIRST_USER_PARMTYPE (fn); + while (args && TREE_PURPOSE (args)) + args = TREE_CHAIN (args); + if (!args || args == void_list_node) + return fn; + } + } + + return NULL_TREE; +} + +/* Returns true iff FN is a user-provided function, i.e. user-declared + and not defaulted at its first declaration; or explicit, private, + protected, or non-const. */ + +bool +user_provided_p (tree fn) +{ + if (TREE_CODE (fn) == TEMPLATE_DECL) + return true; + else + return (!DECL_ARTIFICIAL (fn) + && !DECL_DEFAULTED_IN_CLASS_P (fn)); +} + +/* Returns true iff class T has a user-provided constructor. */ + +bool +type_has_user_provided_constructor (tree t) +{ + tree fns; + + if (!CLASS_TYPE_P (t)) + return false; + + if (!TYPE_HAS_USER_CONSTRUCTOR (t)) + return false; + + /* This can happen in error cases; avoid crashing. */ + if (!CLASSTYPE_METHOD_VEC (t)) + return false; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + if (user_provided_p (OVL_CURRENT (fns))) + return true; + + return false; +} + +/* Returns true iff class T has a user-provided default constructor. */ + +bool +type_has_user_provided_default_constructor (tree t) +{ + tree fns; + + if (!TYPE_HAS_USER_CONSTRUCTOR (t)) + return false; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + if (TREE_CODE (fn) == FUNCTION_DECL + && user_provided_p (fn) + && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn))) + return true; + } + + return false; +} + +/* If default-initialization leaves part of TYPE uninitialized, returns + a DECL for the field or TYPE itself (DR 253). */ + +tree +default_init_uninitialized_part (tree type) +{ + tree t, r, binfo; + int i; + + type = strip_array_types (type); + if (!CLASS_TYPE_P (type)) + return type; + if (type_has_user_provided_default_constructor (type)) + return NULL_TREE; + for (binfo = TYPE_BINFO (type), i = 0; + BINFO_BASE_ITERATE (binfo, i, t); ++i) + { + r = default_init_uninitialized_part (BINFO_TYPE (t)); + if (r) + return r; + } + for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t)) + if (TREE_CODE (t) == FIELD_DECL + && !DECL_ARTIFICIAL (t) + && !DECL_INITIAL (t)) + { + r = default_init_uninitialized_part (TREE_TYPE (t)); + if (r) + return DECL_P (r) ? r : t; + } + + return NULL_TREE; +} + +/* Returns true iff for class T, a synthesized default constructor + would be constexpr. */ + +bool +synthesized_default_constructor_is_constexpr (tree t) +{ + /* A defaulted default constructor is constexpr + if there is nothing to initialize. */ + /* FIXME adjust for non-static data member initializers. */ + return is_really_empty_class (t); +} + +/* Returns true iff class T has a constexpr default constructor. */ + +bool +type_has_constexpr_default_constructor (tree t) +{ + tree fns; + + if (!CLASS_TYPE_P (t)) + { + /* The caller should have stripped an enclosing array. */ + gcc_assert (TREE_CODE (t) != ARRAY_TYPE); + return false; + } + if (CLASSTYPE_LAZY_DEFAULT_CTOR (t)) + return synthesized_default_constructor_is_constexpr (t); + fns = locate_ctor (t); + return (fns && DECL_DECLARED_CONSTEXPR_P (fns)); +} + +/* Returns true iff class TYPE has a virtual destructor. */ + +bool +type_has_virtual_destructor (tree type) +{ + tree dtor; + + if (!CLASS_TYPE_P (type)) + return false; + + gcc_assert (COMPLETE_TYPE_P (type)); + dtor = CLASSTYPE_DESTRUCTORS (type); + return (dtor && DECL_VIRTUAL_P (dtor)); +} + +/* Returns true iff class T has a move constructor. */ + +bool +type_has_move_constructor (tree t) +{ + tree fns; + + if (CLASSTYPE_LAZY_MOVE_CTOR (t)) + { + gcc_assert (COMPLETE_TYPE_P (t)); + lazily_declare_fn (sfk_move_constructor, t); + } + + if (!CLASSTYPE_METHOD_VEC (t)) + return false; + + for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) + if (move_fn_p (OVL_CURRENT (fns))) + return true; + + return false; +} + +/* Returns true iff class T has a move assignment operator. */ + +bool +type_has_move_assign (tree t) +{ + tree fns; + + if (CLASSTYPE_LAZY_MOVE_ASSIGN (t)) + { + gcc_assert (COMPLETE_TYPE_P (t)); + lazily_declare_fn (sfk_move_assignment, t); + } + + for (fns = lookup_fnfields_slot (t, ansi_assopname (NOP_EXPR)); + fns; fns = OVL_NEXT (fns)) + if (move_fn_p (OVL_CURRENT (fns))) + return true; + + return false; +} + +/* Remove all zero-width bit-fields from T. */ + +static void +remove_zero_width_bit_fields (tree t) +{ + tree *fieldsp; + + fieldsp = &TYPE_FIELDS (t); + while (*fieldsp) + { + if (TREE_CODE (*fieldsp) == FIELD_DECL + && DECL_C_BIT_FIELD (*fieldsp) + /* We should not be confused by the fact that grokbitfield + temporarily sets the width of the bit field into + DECL_INITIAL (*fieldsp). + check_bitfield_decl eventually sets DECL_SIZE (*fieldsp) + to that width. */ + && integer_zerop (DECL_SIZE (*fieldsp))) + *fieldsp = DECL_CHAIN (*fieldsp); + else + fieldsp = &DECL_CHAIN (*fieldsp); + } +} + +/* Returns TRUE iff we need a cookie when dynamically allocating an + array whose elements have the indicated class TYPE. */ + +static bool +type_requires_array_cookie (tree type) +{ + tree fns; + bool has_two_argument_delete_p = false; + + gcc_assert (CLASS_TYPE_P (type)); + + /* If there's a non-trivial destructor, we need a cookie. In order + to iterate through the array calling the destructor for each + element, we'll have to know how many elements there are. */ + if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) + return true; + + /* If the usual deallocation function is a two-argument whose second + argument is of type `size_t', then we have to pass the size of + the array to the deallocation function, so we will need to store + a cookie. */ + fns = lookup_fnfields (TYPE_BINFO (type), + ansi_opname (VEC_DELETE_EXPR), + /*protect=*/0); + /* If there are no `operator []' members, or the lookup is + ambiguous, then we don't need a cookie. */ + if (!fns || fns == error_mark_node) + return false; + /* Loop through all of the functions. */ + for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns)) + { + tree fn; + tree second_parm; + + /* Select the current function. */ + fn = OVL_CURRENT (fns); + /* See if this function is a one-argument delete function. If + it is, then it will be the usual deallocation function. */ + second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))); + if (second_parm == void_list_node) + return false; + /* Do not consider this function if its second argument is an + ellipsis. */ + if (!second_parm) + continue; + /* Otherwise, if we have a two-argument function and the second + argument is `size_t', it will be the usual deallocation + function -- unless there is one-argument function, too. */ + if (TREE_CHAIN (second_parm) == void_list_node + && same_type_p (TREE_VALUE (second_parm), size_type_node)) + has_two_argument_delete_p = true; + } + + return has_two_argument_delete_p; +} + +/* Finish computing the `literal type' property of class type T. + + At this point, we have already processed base classes and + non-static data members. We need to check whether the copy + constructor is trivial, the destructor is trivial, and there + is a trivial default constructor or at least one constexpr + constructor other than the copy constructor. */ + +static void +finalize_literal_type_property (tree t) +{ + tree fn; + + if (cxx_dialect < cxx0x + || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) + /* FIXME These constraints seem unnecessary; remove from standard. + || !TYPE_HAS_TRIVIAL_COPY_CTOR (t) + || TYPE_HAS_COMPLEX_MOVE_CTOR (t)*/ ) + CLASSTYPE_LITERAL_P (t) = false; + else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t) + && !TYPE_HAS_CONSTEXPR_CTOR (t)) + CLASSTYPE_LITERAL_P (t) = false; + + if (!CLASSTYPE_LITERAL_P (t)) + for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) + if (DECL_DECLARED_CONSTEXPR_P (fn) + && TREE_CODE (fn) != TEMPLATE_DECL + && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn) + && !DECL_CONSTRUCTOR_P (fn)) + { + DECL_DECLARED_CONSTEXPR_P (fn) = false; + if (!DECL_TEMPLATE_INFO (fn)) + error ("enclosing class of %q+#D is not a literal type", fn); + } +} + +/* Check the validity of the bases and members declared in T. Add any + implicitly-generated functions (like copy-constructors and + assignment operators). Compute various flag bits (like + CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++ + level: i.e., independently of the ABI in use. */ + +static void +check_bases_and_members (tree t) +{ + /* Nonzero if the implicitly generated copy constructor should take + a non-const reference argument. */ + int cant_have_const_ctor; + /* Nonzero if the implicitly generated assignment operator + should take a non-const reference argument. */ + int no_const_asn_ref; + tree access_decls; + bool saved_complex_asn_ref; + bool saved_nontrivial_dtor; + tree fn; + + /* By default, we use const reference arguments and generate default + constructors. */ + cant_have_const_ctor = 0; + no_const_asn_ref = 0; + + /* Check all the base-classes. */ + check_bases (t, &cant_have_const_ctor, + &no_const_asn_ref); + + /* Check all the method declarations. */ + check_methods (t); + + /* Save the initial values of these flags which only indicate whether + or not the class has user-provided functions. As we analyze the + bases and members we can set these flags for other reasons. */ + saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t); + saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t); + + /* Check all the data member declarations. We cannot call + check_field_decls until we have called check_bases check_methods, + as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR + being set appropriately. */ + check_field_decls (t, &access_decls, + &cant_have_const_ctor, + &no_const_asn_ref); + + /* A nearly-empty class has to be vptr-containing; a nearly empty + class contains just a vptr. */ + if (!TYPE_CONTAINS_VPTR_P (t)) + CLASSTYPE_NEARLY_EMPTY_P (t) = 0; + + /* Do some bookkeeping that will guide the generation of implicitly + declared member functions. */ + TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t); + TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t); + /* We need to call a constructor for this class if it has a + user-provided constructor, or if the default constructor is going + to initialize the vptr. (This is not an if-and-only-if; + TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members + themselves need constructing.) */ + TYPE_NEEDS_CONSTRUCTING (t) + |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t)); + /* [dcl.init.aggr] + + An aggregate is an array or a class with no user-provided + constructors ... and no virtual functions. + + Again, other conditions for being an aggregate are checked + elsewhere. */ + CLASSTYPE_NON_AGGREGATE (t) + |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t)); + /* This is the C++98/03 definition of POD; it changed in C++0x, but we + retain the old definition internally for ABI reasons. */ + CLASSTYPE_NON_LAYOUT_POD_P (t) + |= (CLASSTYPE_NON_AGGREGATE (t) + || saved_nontrivial_dtor || saved_complex_asn_ref); + CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t); + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t); + TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t); + TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t); + + /* If the class has no user-declared constructor, but does have + non-static const or reference data members that can never be + initialized, issue a warning. */ + if (warn_uninitialized + /* Classes with user-declared constructors are presumed to + initialize these members. */ + && !TYPE_HAS_USER_CONSTRUCTOR (t) + /* Aggregates can be initialized with brace-enclosed + initializers. */ + && CLASSTYPE_NON_AGGREGATE (t)) + { + tree field; + + for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) + { + tree type; + + if (TREE_CODE (field) != FIELD_DECL) + continue; + + type = TREE_TYPE (field); + if (TREE_CODE (type) == REFERENCE_TYPE) + warning (OPT_Wuninitialized, "non-static reference %q+#D " + "in class without a constructor", field); + else if (CP_TYPE_CONST_P (type) + && (!CLASS_TYPE_P (type) + || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type))) + warning (OPT_Wuninitialized, "non-static const member %q+#D " + "in class without a constructor", field); + } + } + + /* Synthesize any needed methods. */ + add_implicitly_declared_members (t, + cant_have_const_ctor, + no_const_asn_ref); + + /* Check defaulted declarations here so we have cant_have_const_ctor + and don't need to worry about clones. */ + for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) + if (DECL_DEFAULTED_IN_CLASS_P (fn)) + { + int copy = copy_fn_p (fn); + if (copy > 0) + { + bool imp_const_p + = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor + : !no_const_asn_ref); + bool fn_const_p = (copy == 2); + + if (fn_const_p && !imp_const_p) + /* If the function is defaulted outside the class, we just + give the synthesis error. */ + error ("%q+D declared to take const reference, but implicit " + "declaration would take non-const", fn); + else if (imp_const_p && !fn_const_p) + error ("%q+D declared to take non-const reference cannot be " + "defaulted in the class body", fn); + } + defaulted_late_check (fn); + } + + if (LAMBDA_TYPE_P (t)) + { + /* "The closure type associated with a lambda-expression has a deleted + default constructor and a deleted copy assignment operator." */ + TYPE_NEEDS_CONSTRUCTING (t) = 1; + TYPE_HAS_COMPLEX_DFLT (t) = 1; + TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; + CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0; + + /* "This class type is not an aggregate." */ + CLASSTYPE_NON_AGGREGATE (t) = 1; + } + + /* Compute the 'literal type' property before we + do anything with non-static member functions. */ + finalize_literal_type_property (t); + + /* Create the in-charge and not-in-charge variants of constructors + and destructors. */ + clone_constructors_and_destructors (t); + + /* Process the using-declarations. */ + for (; access_decls; access_decls = TREE_CHAIN (access_decls)) + handle_using_decl (TREE_VALUE (access_decls), t); + + /* Build and sort the CLASSTYPE_METHOD_VEC. */ + finish_struct_methods (t); + + /* Figure out whether or not we will need a cookie when dynamically + allocating an array of this type. */ + TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie + = type_requires_array_cookie (t); +} + +/* If T needs a pointer to its virtual function table, set TYPE_VFIELD + accordingly. If a new vfield was created (because T doesn't have a + primary base class), then the newly created field is returned. It + is not added to the TYPE_FIELDS list; it is the caller's + responsibility to do that. Accumulate declared virtual functions + on VIRTUALS_P. */ + +static tree +create_vtable_ptr (tree t, tree* virtuals_p) +{ + tree fn; + + /* Collect the virtual functions declared in T. */ + for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) + if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn) + && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST) + { + tree new_virtual = make_node (TREE_LIST); + + BV_FN (new_virtual) = fn; + BV_DELTA (new_virtual) = integer_zero_node; + BV_VCALL_INDEX (new_virtual) = NULL_TREE; + + TREE_CHAIN (new_virtual) = *virtuals_p; + *virtuals_p = new_virtual; + } + + /* If we couldn't find an appropriate base class, create a new field + here. Even if there weren't any new virtual functions, we might need a + new virtual function table if we're supposed to include vptrs in + all classes that need them. */ + if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t))) + { + /* We build this decl with vtbl_ptr_type_node, which is a + `vtable_entry_type*'. It might seem more precise to use + `vtable_entry_type (*)[N]' where N is the number of virtual + functions. However, that would require the vtable pointer in + base classes to have a different type than the vtable pointer + in derived classes. We could make that happen, but that + still wouldn't solve all the problems. In particular, the + type-based alias analysis code would decide that assignments + to the base class vtable pointer can't alias assignments to + the derived class vtable pointer, since they have different + types. Thus, in a derived class destructor, where the base + class constructor was inlined, we could generate bad code for + setting up the vtable pointer. + + Therefore, we use one type for all vtable pointers. We still + use a type-correct type; it's just doesn't indicate the array + bounds. That's better than using `void*' or some such; it's + cleaner, and it let's the alias analysis code know that these + stores cannot alias stores to void*! */ + tree field; + + field = build_decl (input_location, + FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node); + DECL_VIRTUAL_P (field) = 1; + DECL_ARTIFICIAL (field) = 1; + DECL_FIELD_CONTEXT (field) = t; + DECL_FCONTEXT (field) = t; + if (TYPE_PACKED (t)) + DECL_PACKED (field) = 1; + + TYPE_VFIELD (t) = field; + + /* This class is non-empty. */ + CLASSTYPE_EMPTY_P (t) = 0; + + return field; + } + + return NULL_TREE; +} + +/* Add OFFSET to all base types of BINFO which is a base in the + hierarchy dominated by T. + + OFFSET, which is a type offset, is number of bytes. */ + +static void +propagate_binfo_offsets (tree binfo, tree offset) +{ + int i; + tree primary_binfo; + tree base_binfo; + + /* Update BINFO's offset. */ + BINFO_OFFSET (binfo) + = convert (sizetype, + size_binop (PLUS_EXPR, + convert (ssizetype, BINFO_OFFSET (binfo)), + offset)); + + /* Find the primary base class. */ + primary_binfo = get_primary_binfo (binfo); + + if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo) + propagate_binfo_offsets (primary_binfo, offset); + + /* Scan all of the bases, pushing the BINFO_OFFSET adjust + downwards. */ + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + { + /* Don't do the primary base twice. */ + if (base_binfo == primary_binfo) + continue; + + if (BINFO_VIRTUAL_P (base_binfo)) + continue; + + propagate_binfo_offsets (base_binfo, offset); + } +} + +/* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update + TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of + empty subobjects of T. */ + +static void +layout_virtual_bases (record_layout_info rli, splay_tree offsets) +{ + tree vbase; + tree t = rli->t; + bool first_vbase = true; + tree *next_field; + + if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0) + return; + + if (!abi_version_at_least(2)) + { + /* In G++ 3.2, we incorrectly rounded the size before laying out + the virtual bases. */ + finish_record_layout (rli, /*free_p=*/false); +#ifdef STRUCTURE_SIZE_BOUNDARY + /* Packed structures don't need to have minimum size. */ + if (! TYPE_PACKED (t)) + TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY); +#endif + rli->offset = TYPE_SIZE_UNIT (t); + rli->bitpos = bitsize_zero_node; + rli->record_align = TYPE_ALIGN (t); + } + + /* Find the last field. The artificial fields created for virtual + bases will go after the last extant field to date. */ + next_field = &TYPE_FIELDS (t); + while (*next_field) + next_field = &DECL_CHAIN (*next_field); + + /* Go through the virtual bases, allocating space for each virtual + base that is not already a primary base class. These are + allocated in inheritance graph order. */ + for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase)) + { + if (!BINFO_VIRTUAL_P (vbase)) + continue; + + if (!BINFO_PRIMARY_P (vbase)) + { + tree basetype = TREE_TYPE (vbase); + + /* This virtual base is not a primary base of any class in the + hierarchy, so we have to add space for it. */ + next_field = build_base_field (rli, vbase, + offsets, next_field); + + /* If the first virtual base might have been placed at a + lower address, had we started from CLASSTYPE_SIZE, rather + than TYPE_SIZE, issue a warning. There can be both false + positives and false negatives from this warning in rare + cases; to deal with all the possibilities would probably + require performing both layout algorithms and comparing + the results which is not particularly tractable. */ + if (warn_abi + && first_vbase + && (tree_int_cst_lt + (size_binop (CEIL_DIV_EXPR, + round_up_loc (input_location, + CLASSTYPE_SIZE (t), + CLASSTYPE_ALIGN (basetype)), + bitsize_unit_node), + BINFO_OFFSET (vbase)))) + warning (OPT_Wabi, + "offset of virtual base %qT is not ABI-compliant and " + "may change in a future version of GCC", + basetype); + + first_vbase = false; + } + } +} + +/* Returns the offset of the byte just past the end of the base class + BINFO. */ + +static tree +end_of_base (tree binfo) +{ + tree size; + + if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo))) + size = TYPE_SIZE_UNIT (char_type_node); + else if (is_empty_class (BINFO_TYPE (binfo))) + /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to + allocate some space for it. It cannot have virtual bases, so + TYPE_SIZE_UNIT is fine. */ + size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo)); + else + size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo)); + + return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size); +} + +/* Returns the offset of the byte just past the end of the base class + with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then + only non-virtual bases are included. */ + +static tree +end_of_class (tree t, int include_virtuals_p) +{ + tree result = size_zero_node; + VEC(tree,gc) *vbases; + tree binfo; + tree base_binfo; + tree offset; + int i; + + for (binfo = TYPE_BINFO (t), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + { + if (!include_virtuals_p + && BINFO_VIRTUAL_P (base_binfo) + && (!BINFO_PRIMARY_P (base_binfo) + || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t))) + continue; + + offset = end_of_base (base_binfo); + if (INT_CST_LT_UNSIGNED (result, offset)) + result = offset; + } + + /* G++ 3.2 did not check indirect virtual bases. */ + if (abi_version_at_least (2) && include_virtuals_p) + for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; + VEC_iterate (tree, vbases, i, base_binfo); i++) + { + offset = end_of_base (base_binfo); + if (INT_CST_LT_UNSIGNED (result, offset)) + result = offset; + } + + return result; +} + +/* Warn about bases of T that are inaccessible because they are + ambiguous. For example: + + struct S {}; + struct T : public S {}; + struct U : public S, public T {}; + + Here, `(S*) new U' is not allowed because there are two `S' + subobjects of U. */ + +static void +warn_about_ambiguous_bases (tree t) +{ + int i; + VEC(tree,gc) *vbases; + tree basetype; + tree binfo; + tree base_binfo; + + /* If there are no repeated bases, nothing can be ambiguous. */ + if (!CLASSTYPE_REPEATED_BASE_P (t)) + return; + + /* Check direct bases. */ + for (binfo = TYPE_BINFO (t), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + { + basetype = BINFO_TYPE (base_binfo); + + if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL)) + warning (0, "direct base %qT inaccessible in %qT due to ambiguity", + basetype, t); + } + + /* Check for ambiguous virtual bases. */ + if (extra_warnings) + for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; + VEC_iterate (tree, vbases, i, binfo); i++) + { + basetype = BINFO_TYPE (binfo); + + if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL)) + warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity", + basetype, t); + } +} + +/* Compare two INTEGER_CSTs K1 and K2. */ + +static int +splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2) +{ + return tree_int_cst_compare ((tree) k1, (tree) k2); +} + +/* Increase the size indicated in RLI to account for empty classes + that are "off the end" of the class. */ + +static void +include_empty_classes (record_layout_info rli) +{ + tree eoc; + tree rli_size; + + /* It might be the case that we grew the class to allocate a + zero-sized base class. That won't be reflected in RLI, yet, + because we are willing to overlay multiple bases at the same + offset. However, now we need to make sure that RLI is big enough + to reflect the entire class. */ + eoc = end_of_class (rli->t, + CLASSTYPE_AS_BASE (rli->t) != NULL_TREE); + rli_size = rli_size_unit_so_far (rli); + if (TREE_CODE (rli_size) == INTEGER_CST + && INT_CST_LT_UNSIGNED (rli_size, eoc)) + { + if (!abi_version_at_least (2)) + /* In version 1 of the ABI, the size of a class that ends with + a bitfield was not rounded up to a whole multiple of a + byte. Because rli_size_unit_so_far returns only the number + of fully allocated bytes, any extra bits were not included + in the size. */ + rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT); + else + /* The size should have been rounded to a whole byte. */ + gcc_assert (tree_int_cst_equal + (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT))); + rli->bitpos + = size_binop (PLUS_EXPR, + rli->bitpos, + size_binop (MULT_EXPR, + convert (bitsizetype, + size_binop (MINUS_EXPR, + eoc, rli_size)), + bitsize_int (BITS_PER_UNIT))); + normalize_rli (rli); + } +} + +/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate + BINFO_OFFSETs for all of the base-classes. Position the vtable + pointer. Accumulate declared virtual functions on VIRTUALS_P. */ + +static void +layout_class_type (tree t, tree *virtuals_p) +{ + tree non_static_data_members; + tree field; + tree vptr; + record_layout_info rli; + /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of + types that appear at that offset. */ + splay_tree empty_base_offsets; + /* True if the last field layed out was a bit-field. */ + bool last_field_was_bitfield = false; + /* The location at which the next field should be inserted. */ + tree *next_field; + /* T, as a base class. */ + tree base_t; + + /* Keep track of the first non-static data member. */ + non_static_data_members = TYPE_FIELDS (t); + + /* Start laying out the record. */ + rli = start_record_layout (t); + + /* Mark all the primary bases in the hierarchy. */ + determine_primary_bases (t); + + /* Create a pointer to our virtual function table. */ + vptr = create_vtable_ptr (t, virtuals_p); + + /* The vptr is always the first thing in the class. */ + if (vptr) + { + DECL_CHAIN (vptr) = TYPE_FIELDS (t); + TYPE_FIELDS (t) = vptr; + next_field = &DECL_CHAIN (vptr); + place_field (rli, vptr); + } + else + next_field = &TYPE_FIELDS (t); + + /* Build FIELD_DECLs for all of the non-virtual base-types. */ + empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts, + NULL, NULL); + build_base_fields (rli, empty_base_offsets, next_field); + + /* Layout the non-static data members. */ + for (field = non_static_data_members; field; field = DECL_CHAIN (field)) + { + tree type; + tree padding; + + /* We still pass things that aren't non-static data members to + the back end, in case it wants to do something with them. */ + if (TREE_CODE (field) != FIELD_DECL) + { + place_field (rli, field); + /* If the static data member has incomplete type, keep track + of it so that it can be completed later. (The handling + of pending statics in finish_record_layout is + insufficient; consider: + + struct S1; + struct S2 { static S1 s1; }; + + At this point, finish_record_layout will be called, but + S1 is still incomplete.) */ + if (TREE_CODE (field) == VAR_DECL) + { + maybe_register_incomplete_var (field); + /* The visibility of static data members is determined + at their point of declaration, not their point of + definition. */ + determine_visibility (field); + } + continue; + } + + type = TREE_TYPE (field); + if (type == error_mark_node) + continue; + + padding = NULL_TREE; + + /* If this field is a bit-field whose width is greater than its + type, then there are some special rules for allocating + it. */ + if (DECL_C_BIT_FIELD (field) + && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field))) + { + unsigned int itk; + tree integer_type; + bool was_unnamed_p = false; + /* We must allocate the bits as if suitably aligned for the + longest integer type that fits in this many bits. type + of the field. Then, we are supposed to use the left over + bits as additional padding. */ + for (itk = itk_char; itk != itk_none; ++itk) + if (integer_types[itk] != NULL_TREE + && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE), + TYPE_SIZE (integer_types[itk])) + || INT_CST_LT (DECL_SIZE (field), + TYPE_SIZE (integer_types[itk])))) + break; + + /* ITK now indicates a type that is too large for the + field. We have to back up by one to find the largest + type that fits. */ + do + { + --itk; + integer_type = integer_types[itk]; + } while (itk > 0 && integer_type == NULL_TREE); + + /* Figure out how much additional padding is required. GCC + 3.2 always created a padding field, even if it had zero + width. */ + if (!abi_version_at_least (2) + || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field))) + { + if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE) + /* In a union, the padding field must have the full width + of the bit-field; all fields start at offset zero. */ + padding = DECL_SIZE (field); + else + { + if (TREE_CODE (t) == UNION_TYPE) + warning (OPT_Wabi, "size assigned to %qT may not be " + "ABI-compliant and may change in a future " + "version of GCC", + t); + padding = size_binop (MINUS_EXPR, DECL_SIZE (field), + TYPE_SIZE (integer_type)); + } + } +#ifdef PCC_BITFIELD_TYPE_MATTERS + /* An unnamed bitfield does not normally affect the + alignment of the containing class on a target where + PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not + make any exceptions for unnamed bitfields when the + bitfields are longer than their types. Therefore, we + temporarily give the field a name. */ + if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field)) + { + was_unnamed_p = true; + DECL_NAME (field) = make_anon_name (); + } +#endif + DECL_SIZE (field) = TYPE_SIZE (integer_type); + DECL_ALIGN (field) = TYPE_ALIGN (integer_type); + DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type); + layout_nonempty_base_or_field (rli, field, NULL_TREE, + empty_base_offsets); + if (was_unnamed_p) + DECL_NAME (field) = NULL_TREE; + /* Now that layout has been performed, set the size of the + field to the size of its declared type; the rest of the + field is effectively invisible. */ + DECL_SIZE (field) = TYPE_SIZE (type); + /* We must also reset the DECL_MODE of the field. */ + if (abi_version_at_least (2)) + DECL_MODE (field) = TYPE_MODE (type); + else if (warn_abi + && DECL_MODE (field) != TYPE_MODE (type)) + /* Versions of G++ before G++ 3.4 did not reset the + DECL_MODE. */ + warning (OPT_Wabi, + "the offset of %qD may not be ABI-compliant and may " + "change in a future version of GCC", field); + } + else + layout_nonempty_base_or_field (rli, field, NULL_TREE, + empty_base_offsets); + + /* Remember the location of any empty classes in FIELD. */ + if (abi_version_at_least (2)) + record_subobject_offsets (TREE_TYPE (field), + byte_position(field), + empty_base_offsets, + /*is_data_member=*/true); + + /* If a bit-field does not immediately follow another bit-field, + and yet it starts in the middle of a byte, we have failed to + comply with the ABI. */ + if (warn_abi + && DECL_C_BIT_FIELD (field) + /* The TREE_NO_WARNING flag gets set by Objective-C when + laying out an Objective-C class. The ObjC ABI differs + from the C++ ABI, and so we do not want a warning + here. */ + && !TREE_NO_WARNING (field) + && !last_field_was_bitfield + && !integer_zerop (size_binop (TRUNC_MOD_EXPR, + DECL_FIELD_BIT_OFFSET (field), + bitsize_unit_node))) + warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may " + "change in a future version of GCC", field); + + /* G++ used to use DECL_FIELD_OFFSET as if it were the byte + offset of the field. */ + if (warn_abi + && !abi_version_at_least (2) + && !tree_int_cst_equal (DECL_FIELD_OFFSET (field), + byte_position (field)) + && contains_empty_class_p (TREE_TYPE (field))) + warning (OPT_Wabi, "%q+D contains empty classes which may cause base " + "classes to be placed at different locations in a " + "future version of GCC", field); + + /* The middle end uses the type of expressions to determine the + possible range of expression values. In order to optimize + "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end + must be made aware of the width of "i", via its type. + + Because C++ does not have integer types of arbitrary width, + we must (for the purposes of the front end) convert from the + type assigned here to the declared type of the bitfield + whenever a bitfield expression is used as an rvalue. + Similarly, when assigning a value to a bitfield, the value + must be converted to the type given the bitfield here. */ + if (DECL_C_BIT_FIELD (field)) + { + unsigned HOST_WIDE_INT width; + tree ftype = TREE_TYPE (field); + width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1); + if (width != TYPE_PRECISION (ftype)) + { + TREE_TYPE (field) + = c_build_bitfield_integer_type (width, + TYPE_UNSIGNED (ftype)); + TREE_TYPE (field) + = cp_build_qualified_type (TREE_TYPE (field), + cp_type_quals (ftype)); + } + } + + /* If we needed additional padding after this field, add it + now. */ + if (padding) + { + tree padding_field; + + padding_field = build_decl (input_location, + FIELD_DECL, + NULL_TREE, + char_type_node); + DECL_BIT_FIELD (padding_field) = 1; + DECL_SIZE (padding_field) = padding; + DECL_CONTEXT (padding_field) = t; + DECL_ARTIFICIAL (padding_field) = 1; + DECL_IGNORED_P (padding_field) = 1; + layout_nonempty_base_or_field (rli, padding_field, + NULL_TREE, + empty_base_offsets); + } + + last_field_was_bitfield = DECL_C_BIT_FIELD (field); + } + + if (abi_version_at_least (2) && !integer_zerop (rli->bitpos)) + { + /* Make sure that we are on a byte boundary so that the size of + the class without virtual bases will always be a round number + of bytes. */ + rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT); + normalize_rli (rli); + } + + /* G++ 3.2 does not allow virtual bases to be overlaid with tail + padding. */ + if (!abi_version_at_least (2)) + include_empty_classes(rli); + + /* Delete all zero-width bit-fields from the list of fields. Now + that the type is laid out they are no longer important. */ + remove_zero_width_bit_fields (t); + + /* Create the version of T used for virtual bases. We do not use + make_class_type for this version; this is an artificial type. For + a POD type, we just reuse T. */ + if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t)) + { + base_t = make_node (TREE_CODE (t)); + + /* Set the size and alignment for the new type. In G++ 3.2, all + empty classes were considered to have size zero when used as + base classes. */ + if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t)) + { + TYPE_SIZE (base_t) = bitsize_zero_node; + TYPE_SIZE_UNIT (base_t) = size_zero_node; + if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli))) + warning (OPT_Wabi, + "layout of classes derived from empty class %qT " + "may change in a future version of GCC", + t); + } + else + { + tree eoc; + + /* If the ABI version is not at least two, and the last + field was a bit-field, RLI may not be on a byte + boundary. In particular, rli_size_unit_so_far might + indicate the last complete byte, while rli_size_so_far + indicates the total number of bits used. Therefore, + rli_size_so_far, rather than rli_size_unit_so_far, is + used to compute TYPE_SIZE_UNIT. */ + eoc = end_of_class (t, /*include_virtuals_p=*/0); + TYPE_SIZE_UNIT (base_t) + = size_binop (MAX_EXPR, + convert (sizetype, + size_binop (CEIL_DIV_EXPR, + rli_size_so_far (rli), + bitsize_int (BITS_PER_UNIT))), + eoc); + TYPE_SIZE (base_t) + = size_binop (MAX_EXPR, + rli_size_so_far (rli), + size_binop (MULT_EXPR, + convert (bitsizetype, eoc), + bitsize_int (BITS_PER_UNIT))); + } + TYPE_ALIGN (base_t) = rli->record_align; + TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t); + + /* Copy the fields from T. */ + next_field = &TYPE_FIELDS (base_t); + for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL) + { + *next_field = build_decl (input_location, + FIELD_DECL, + DECL_NAME (field), + TREE_TYPE (field)); + DECL_CONTEXT (*next_field) = base_t; + DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field); + DECL_FIELD_BIT_OFFSET (*next_field) + = DECL_FIELD_BIT_OFFSET (field); + DECL_SIZE (*next_field) = DECL_SIZE (field); + DECL_MODE (*next_field) = DECL_MODE (field); + next_field = &DECL_CHAIN (*next_field); + } + + /* Record the base version of the type. */ + CLASSTYPE_AS_BASE (t) = base_t; + TYPE_CONTEXT (base_t) = t; + } + else + CLASSTYPE_AS_BASE (t) = t; + + /* Every empty class contains an empty class. */ + if (CLASSTYPE_EMPTY_P (t)) + CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1; + + /* Set the TYPE_DECL for this type to contain the right + value for DECL_OFFSET, so that we can use it as part + of a COMPONENT_REF for multiple inheritance. */ + layout_decl (TYPE_MAIN_DECL (t), 0); + + /* Now fix up any virtual base class types that we left lying + around. We must get these done before we try to lay out the + virtual function table. As a side-effect, this will remove the + base subobject fields. */ + layout_virtual_bases (rli, empty_base_offsets); + + /* Make sure that empty classes are reflected in RLI at this + point. */ + include_empty_classes(rli); + + /* Make sure not to create any structures with zero size. */ + if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t)) + place_field (rli, + build_decl (input_location, + FIELD_DECL, NULL_TREE, char_type_node)); + + /* If this is a non-POD, declaring it packed makes a difference to how it + can be used as a field; don't let finalize_record_size undo it. */ + if (TYPE_PACKED (t) && !layout_pod_type_p (t)) + rli->packed_maybe_necessary = true; + + /* Let the back end lay out the type. */ + finish_record_layout (rli, /*free_p=*/true); + + /* Warn about bases that can't be talked about due to ambiguity. */ + warn_about_ambiguous_bases (t); + + /* Now that we're done with layout, give the base fields the real types. */ + for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) + if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field))) + TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field)); + + /* Clean up. */ + splay_tree_delete (empty_base_offsets); + + if (CLASSTYPE_EMPTY_P (t) + && tree_int_cst_lt (sizeof_biggest_empty_class, + TYPE_SIZE_UNIT (t))) + sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t); +} + +/* Determine the "key method" for the class type indicated by TYPE, + and set CLASSTYPE_KEY_METHOD accordingly. */ + +void +determine_key_method (tree type) +{ + tree method; + + if (TYPE_FOR_JAVA (type) + || processing_template_decl + || CLASSTYPE_TEMPLATE_INSTANTIATION (type) + || CLASSTYPE_INTERFACE_KNOWN (type)) + return; + + /* The key method is the first non-pure virtual function that is not + inline at the point of class definition. On some targets the + key function may not be inline; those targets should not call + this function until the end of the translation unit. */ + for (method = TYPE_METHODS (type); method != NULL_TREE; + method = DECL_CHAIN (method)) + if (DECL_VINDEX (method) != NULL_TREE + && ! DECL_DECLARED_INLINE_P (method) + && ! DECL_PURE_VIRTUAL_P (method)) + { + CLASSTYPE_KEY_METHOD (type) = method; + break; + } + + return; +} + +/* Perform processing required when the definition of T (a class type) + is complete. */ + +void +finish_struct_1 (tree t) +{ + tree x; + /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */ + tree virtuals = NULL_TREE; + int n_fields = 0; + + if (COMPLETE_TYPE_P (t)) + { + gcc_assert (MAYBE_CLASS_TYPE_P (t)); + error ("redefinition of %q#T", t); + popclass (); + return; + } + + /* If this type was previously laid out as a forward reference, + make sure we lay it out again. */ + TYPE_SIZE (t) = NULL_TREE; + CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE; + + /* Make assumptions about the class; we'll reset the flags if + necessary. */ + CLASSTYPE_EMPTY_P (t) = 1; + CLASSTYPE_NEARLY_EMPTY_P (t) = 1; + CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0; + CLASSTYPE_LITERAL_P (t) = true; + + /* Do end-of-class semantic processing: checking the validity of the + bases and members and add implicitly generated methods. */ + check_bases_and_members (t); + + /* Find the key method. */ + if (TYPE_CONTAINS_VPTR_P (t)) + { + /* The Itanium C++ ABI permits the key method to be chosen when + the class is defined -- even though the key method so + selected may later turn out to be an inline function. On + some systems (such as ARM Symbian OS) the key method cannot + be determined until the end of the translation unit. On such + systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which + will cause the class to be added to KEYED_CLASSES. Then, in + finish_file we will determine the key method. */ + if (targetm.cxx.key_method_may_be_inline ()) + determine_key_method (t); + + /* If a polymorphic class has no key method, we may emit the vtable + in every translation unit where the class definition appears. */ + if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE) + keyed_classes = tree_cons (NULL_TREE, t, keyed_classes); + } + + /* Layout the class itself. */ + layout_class_type (t, &virtuals); + if (CLASSTYPE_AS_BASE (t) != t) + /* We use the base type for trivial assignments, and hence it + needs a mode. */ + compute_record_mode (CLASSTYPE_AS_BASE (t)); + + virtuals = modify_all_vtables (t, nreverse (virtuals)); + + /* If necessary, create the primary vtable for this class. */ + if (virtuals || TYPE_CONTAINS_VPTR_P (t)) + { + /* We must enter these virtuals into the table. */ + if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t)) + build_primary_vtable (NULL_TREE, t); + else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t))) + /* Here we know enough to change the type of our virtual + function table, but we will wait until later this function. */ + build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t); + } + + if (TYPE_CONTAINS_VPTR_P (t)) + { + int vindex; + tree fn; + + if (BINFO_VTABLE (TYPE_BINFO (t))) + gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t)))); + if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t)) + gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE); + + /* Add entries for virtual functions introduced by this class. */ + BINFO_VIRTUALS (TYPE_BINFO (t)) + = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals); + + /* Set DECL_VINDEX for all functions declared in this class. */ + for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t)); + fn; + fn = TREE_CHAIN (fn), + vindex += (TARGET_VTABLE_USES_DESCRIPTORS + ? TARGET_VTABLE_USES_DESCRIPTORS : 1)) + { + tree fndecl = BV_FN (fn); + + if (DECL_THUNK_P (fndecl)) + /* A thunk. We should never be calling this entry directly + from this vtable -- we'd use the entry for the non + thunk base function. */ + DECL_VINDEX (fndecl) = NULL_TREE; + else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST) + DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex); + } + } + + finish_struct_bits (t); + + /* Complete the rtl for any static member objects of the type we're + working on. */ + for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x)) + if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x) + && TREE_TYPE (x) != error_mark_node + && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t)) + DECL_MODE (x) = TYPE_MODE (t); + + /* Done with FIELDS...now decide whether to sort these for + faster lookups later. + + We use a small number because most searches fail (succeeding + ultimately as the search bores through the inheritance + hierarchy), and we want this failure to occur quickly. */ + + n_fields = count_fields (TYPE_FIELDS (t)); + if (n_fields > 7) + { + struct sorted_fields_type *field_vec = ggc_alloc_sorted_fields_type + (sizeof (struct sorted_fields_type) + n_fields * sizeof (tree)); + field_vec->len = n_fields; + add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0); + qsort (field_vec->elts, n_fields, sizeof (tree), + field_decl_cmp); + CLASSTYPE_SORTED_FIELDS (t) = field_vec; + } + + /* Complain if one of the field types requires lower visibility. */ + constrain_class_visibility (t); + + /* Make the rtl for any new vtables we have created, and unmark + the base types we marked. */ + finish_vtbls (t); + + /* Build the VTT for T. */ + build_vtt (t); + + /* This warning does not make sense for Java classes, since they + cannot have destructors. */ + if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t)) + { + tree dtor; + + dtor = CLASSTYPE_DESTRUCTORS (t); + if (/* An implicitly declared destructor is always public. And, + if it were virtual, we would have created it by now. */ + !dtor + || (!DECL_VINDEX (dtor) + && (/* public non-virtual */ + (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor)) + || (/* non-public non-virtual with friends */ + (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor)) + && (CLASSTYPE_FRIEND_CLASSES (t) + || DECL_FRIENDLIST (TYPE_MAIN_DECL (t))))))) + warning (OPT_Wnon_virtual_dtor, + "%q#T has virtual functions and accessible" + " non-virtual destructor", t); + } + + complete_vars (t); + + if (warn_overloaded_virtual) + warn_hidden (t); + + /* Class layout, assignment of virtual table slots, etc., is now + complete. Give the back end a chance to tweak the visibility of + the class or perform any other required target modifications. */ + targetm.cxx.adjust_class_at_definition (t); + + maybe_suppress_debug_info (t); + + dump_class_hierarchy (t); + + /* Finish debugging output for this type. */ + rest_of_type_compilation (t, ! LOCAL_CLASS_P (t)); + + if (TYPE_TRANSPARENT_AGGR (t)) + { + tree field = first_field (t); + if (field == NULL_TREE || error_operand_p (field)) + { + error ("type transparent class %qT does not have any fields", t); + TYPE_TRANSPARENT_AGGR (t) = 0; + } + else if (DECL_ARTIFICIAL (field)) + { + if (DECL_FIELD_IS_BASE (field)) + error ("type transparent class %qT has base classes", t); + else + { + gcc_checking_assert (DECL_VIRTUAL_P (field)); + error ("type transparent class %qT has virtual functions", t); + } + TYPE_TRANSPARENT_AGGR (t) = 0; + } + } +} + +/* When T was built up, the member declarations were added in reverse + order. Rearrange them to declaration order. */ + +void +unreverse_member_declarations (tree t) +{ + tree next; + tree prev; + tree x; + + /* The following lists are all in reverse order. Put them in + declaration order now. */ + TYPE_METHODS (t) = nreverse (TYPE_METHODS (t)); + CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t)); + + /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in + reverse order, so we can't just use nreverse. */ + prev = NULL_TREE; + for (x = TYPE_FIELDS (t); + x && TREE_CODE (x) != TYPE_DECL; + x = next) + { + next = DECL_CHAIN (x); + DECL_CHAIN (x) = prev; + prev = x; + } + if (prev) + { + DECL_CHAIN (TYPE_FIELDS (t)) = x; + if (prev) + TYPE_FIELDS (t) = prev; + } +} + +tree +finish_struct (tree t, tree attributes) +{ + location_t saved_loc = input_location; + + /* Now that we've got all the field declarations, reverse everything + as necessary. */ + unreverse_member_declarations (t); + + cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE); + + /* Nadger the current location so that diagnostics point to the start of + the struct, not the end. */ + input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t)); + + if (processing_template_decl) + { + tree x; + + finish_struct_methods (t); + TYPE_SIZE (t) = bitsize_zero_node; + TYPE_SIZE_UNIT (t) = size_zero_node; + + /* We need to emit an error message if this type was used as a parameter + and it is an abstract type, even if it is a template. We construct + a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into + account and we call complete_vars with this type, which will check + the PARM_DECLS. Note that while the type is being defined, + CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends + (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */ + CLASSTYPE_PURE_VIRTUALS (t) = NULL; + for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x)) + if (DECL_PURE_VIRTUAL_P (x)) + VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x); + complete_vars (t); + + /* Remember current #pragma pack value. */ + TYPE_PRECISION (t) = maximum_field_alignment; + } + else + finish_struct_1 (t); + + input_location = saved_loc; + + TYPE_BEING_DEFINED (t) = 0; + + if (current_class_type) + popclass (); + else + error ("trying to finish struct, but kicked out due to previous parse errors"); + + if (processing_template_decl && at_function_scope_p ()) + add_stmt (build_min (TAG_DEFN, t)); + + return t; +} + +/* Return the dynamic type of INSTANCE, if known. + Used to determine whether the virtual function table is needed + or not. + + *NONNULL is set iff INSTANCE can be known to be nonnull, regardless + of our knowledge of its type. *NONNULL should be initialized + before this function is called. */ + +static tree +fixed_type_or_null (tree instance, int *nonnull, int *cdtorp) +{ +#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp) + + switch (TREE_CODE (instance)) + { + case INDIRECT_REF: + if (POINTER_TYPE_P (TREE_TYPE (instance))) + return NULL_TREE; + else + return RECUR (TREE_OPERAND (instance, 0)); + + case CALL_EXPR: + /* This is a call to a constructor, hence it's never zero. */ + if (TREE_HAS_CONSTRUCTOR (instance)) + { + if (nonnull) + *nonnull = 1; + return TREE_TYPE (instance); + } + return NULL_TREE; + + case SAVE_EXPR: + /* This is a call to a constructor, hence it's never zero. */ + if (TREE_HAS_CONSTRUCTOR (instance)) + { + if (nonnull) + *nonnull = 1; + return TREE_TYPE (instance); + } + return RECUR (TREE_OPERAND (instance, 0)); + + case POINTER_PLUS_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR) + return RECUR (TREE_OPERAND (instance, 0)); + if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST) + /* Propagate nonnull. */ + return RECUR (TREE_OPERAND (instance, 0)); + + return NULL_TREE; + + CASE_CONVERT: + return RECUR (TREE_OPERAND (instance, 0)); + + case ADDR_EXPR: + instance = TREE_OPERAND (instance, 0); + if (nonnull) + { + /* Just because we see an ADDR_EXPR doesn't mean we're dealing + with a real object -- given &p->f, p can still be null. */ + tree t = get_base_address (instance); + /* ??? Probably should check DECL_WEAK here. */ + if (t && DECL_P (t)) + *nonnull = 1; + } + return RECUR (instance); + + case COMPONENT_REF: + /* If this component is really a base class reference, then the field + itself isn't definitive. */ + if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1))) + return RECUR (TREE_OPERAND (instance, 0)); + return RECUR (TREE_OPERAND (instance, 1)); + + case VAR_DECL: + case FIELD_DECL: + if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE + && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance)))) + { + if (nonnull) + *nonnull = 1; + return TREE_TYPE (TREE_TYPE (instance)); + } + /* fall through... */ + case TARGET_EXPR: + case PARM_DECL: + case RESULT_DECL: + if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance))) + { + if (nonnull) + *nonnull = 1; + return TREE_TYPE (instance); + } + else if (instance == current_class_ptr) + { + if (nonnull) + *nonnull = 1; + + /* if we're in a ctor or dtor, we know our type. */ + if (DECL_LANG_SPECIFIC (current_function_decl) + && (DECL_CONSTRUCTOR_P (current_function_decl) + || DECL_DESTRUCTOR_P (current_function_decl))) + { + if (cdtorp) + *cdtorp = 1; + return TREE_TYPE (TREE_TYPE (instance)); + } + } + else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE) + { + /* We only need one hash table because it is always left empty. */ + static htab_t ht; + if (!ht) + ht = htab_create (37, + htab_hash_pointer, + htab_eq_pointer, + /*htab_del=*/NULL); + + /* Reference variables should be references to objects. */ + if (nonnull) + *nonnull = 1; + + /* Enter the INSTANCE in a table to prevent recursion; a + variable's initializer may refer to the variable + itself. */ + if (TREE_CODE (instance) == VAR_DECL + && DECL_INITIAL (instance) + && !type_dependent_expression_p_push (DECL_INITIAL (instance)) + && !htab_find (ht, instance)) + { + tree type; + void **slot; + + slot = htab_find_slot (ht, instance, INSERT); + *slot = instance; + type = RECUR (DECL_INITIAL (instance)); + htab_remove_elt (ht, instance); + + return type; + } + } + return NULL_TREE; + + default: + return NULL_TREE; + } +#undef RECUR +} + +/* Return nonzero if the dynamic type of INSTANCE is known, and + equivalent to the static type. We also handle the case where + INSTANCE is really a pointer. Return negative if this is a + ctor/dtor. There the dynamic type is known, but this might not be + the most derived base of the original object, and hence virtual + bases may not be layed out according to this type. + + Used to determine whether the virtual function table is needed + or not. + + *NONNULL is set iff INSTANCE can be known to be nonnull, regardless + of our knowledge of its type. *NONNULL should be initialized + before this function is called. */ + +int +resolves_to_fixed_type_p (tree instance, int* nonnull) +{ + tree t = TREE_TYPE (instance); + int cdtorp = 0; + tree fixed; + + if (processing_template_decl) + { + /* In a template we only care about the type of the result. */ + if (nonnull) + *nonnull = true; + return true; + } + + fixed = fixed_type_or_null (instance, nonnull, &cdtorp); + if (fixed == NULL_TREE) + return 0; + if (POINTER_TYPE_P (t)) + t = TREE_TYPE (t); + if (!same_type_ignoring_top_level_qualifiers_p (t, fixed)) + return 0; + return cdtorp ? -1 : 1; +} + + +void +init_class_processing (void) +{ + current_class_depth = 0; + current_class_stack_size = 10; + current_class_stack + = XNEWVEC (struct class_stack_node, current_class_stack_size); + local_classes = VEC_alloc (tree, gc, 8); + sizeof_biggest_empty_class = size_zero_node; + + ridpointers[(int) RID_PUBLIC] = access_public_node; + ridpointers[(int) RID_PRIVATE] = access_private_node; + ridpointers[(int) RID_PROTECTED] = access_protected_node; +} + +/* Restore the cached PREVIOUS_CLASS_LEVEL. */ + +static void +restore_class_cache (void) +{ + tree type; + + /* We are re-entering the same class we just left, so we don't + have to search the whole inheritance matrix to find all the + decls to bind again. Instead, we install the cached + class_shadowed list and walk through it binding names. */ + push_binding_level (previous_class_level); + class_binding_level = previous_class_level; + /* Restore IDENTIFIER_TYPE_VALUE. */ + for (type = class_binding_level->type_shadowed; + type; + type = TREE_CHAIN (type)) + SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type)); +} + +/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as + appropriate for TYPE. + + So that we may avoid calls to lookup_name, we cache the _TYPE + nodes of local TYPE_DECLs in the TREE_TYPE field of the name. + + For multiple inheritance, we perform a two-pass depth-first search + of the type lattice. */ + +void +pushclass (tree type) +{ + class_stack_node_t csn; + + type = TYPE_MAIN_VARIANT (type); + + /* Make sure there is enough room for the new entry on the stack. */ + if (current_class_depth + 1 >= current_class_stack_size) + { + current_class_stack_size *= 2; + current_class_stack + = XRESIZEVEC (struct class_stack_node, current_class_stack, + current_class_stack_size); + } + + /* Insert a new entry on the class stack. */ + csn = current_class_stack + current_class_depth; + csn->name = current_class_name; + csn->type = current_class_type; + csn->access = current_access_specifier; + csn->names_used = 0; + csn->hidden = 0; + current_class_depth++; + + /* Now set up the new type. */ + current_class_name = TYPE_NAME (type); + if (TREE_CODE (current_class_name) == TYPE_DECL) + current_class_name = DECL_NAME (current_class_name); + current_class_type = type; + + /* By default, things in classes are private, while things in + structures or unions are public. */ + current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type) + ? access_private_node + : access_public_node); + + if (previous_class_level + && type != previous_class_level->this_entity + && current_class_depth == 1) + { + /* Forcibly remove any old class remnants. */ + invalidate_class_lookup_cache (); + } + + if (!previous_class_level + || type != previous_class_level->this_entity + || current_class_depth > 1) + pushlevel_class (); + else + restore_class_cache (); +} + +/* When we exit a toplevel class scope, we save its binding level so + that we can restore it quickly. Here, we've entered some other + class, so we must invalidate our cache. */ + +void +invalidate_class_lookup_cache (void) +{ + previous_class_level = NULL; +} + +/* Get out of the current class scope. If we were in a class scope + previously, that is the one popped to. */ + +void +popclass (void) +{ + poplevel_class (); + + current_class_depth--; + current_class_name = current_class_stack[current_class_depth].name; + current_class_type = current_class_stack[current_class_depth].type; + current_access_specifier = current_class_stack[current_class_depth].access; + if (current_class_stack[current_class_depth].names_used) + splay_tree_delete (current_class_stack[current_class_depth].names_used); +} + +/* Mark the top of the class stack as hidden. */ + +void +push_class_stack (void) +{ + if (current_class_depth) + ++current_class_stack[current_class_depth - 1].hidden; +} + +/* Mark the top of the class stack as un-hidden. */ + +void +pop_class_stack (void) +{ + if (current_class_depth) + --current_class_stack[current_class_depth - 1].hidden; +} + +/* Returns 1 if the class type currently being defined is either T or + a nested type of T. */ + +bool +currently_open_class (tree t) +{ + int i; + + if (!CLASS_TYPE_P (t)) + return false; + + t = TYPE_MAIN_VARIANT (t); + + /* We start looking from 1 because entry 0 is from global scope, + and has no type. */ + for (i = current_class_depth; i > 0; --i) + { + tree c; + if (i == current_class_depth) + c = current_class_type; + else + { + if (current_class_stack[i].hidden) + break; + c = current_class_stack[i].type; + } + if (!c) + continue; + if (same_type_p (c, t)) + return true; + } + return false; +} + +/* If either current_class_type or one of its enclosing classes are derived + from T, return the appropriate type. Used to determine how we found + something via unqualified lookup. */ + +tree +currently_open_derived_class (tree t) +{ + int i; + + /* The bases of a dependent type are unknown. */ + if (dependent_type_p (t)) + return NULL_TREE; + + if (!current_class_type) + return NULL_TREE; + + if (DERIVED_FROM_P (t, current_class_type)) + return current_class_type; + + for (i = current_class_depth - 1; i > 0; --i) + { + if (current_class_stack[i].hidden) + break; + if (DERIVED_FROM_P (t, current_class_stack[i].type)) + return current_class_stack[i].type; + } + + return NULL_TREE; +} + +/* Returns the innermost class type which is not a lambda closure type. */ + +tree +current_nonlambda_class_type (void) +{ + int i; + + /* We start looking from 1 because entry 0 is from global scope, + and has no type. */ + for (i = current_class_depth; i > 0; --i) + { + tree c; + if (i == current_class_depth) + c = current_class_type; + else + { + if (current_class_stack[i].hidden) + break; + c = current_class_stack[i].type; + } + if (!c) + continue; + if (!LAMBDA_TYPE_P (c)) + return c; + } + return NULL_TREE; +} + +/* When entering a class scope, all enclosing class scopes' names with + static meaning (static variables, static functions, types and + enumerators) have to be visible. This recursive function calls + pushclass for all enclosing class contexts until global or a local + scope is reached. TYPE is the enclosed class. */ + +void +push_nested_class (tree type) +{ + /* A namespace might be passed in error cases, like A::B:C. */ + if (type == NULL_TREE + || !CLASS_TYPE_P (type)) + return; + + push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type))); + + pushclass (type); +} + +/* Undoes a push_nested_class call. */ + +void +pop_nested_class (void) +{ + tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type)); + + popclass (); + if (context && CLASS_TYPE_P (context)) + pop_nested_class (); +} + +/* Returns the number of extern "LANG" blocks we are nested within. */ + +int +current_lang_depth (void) +{ + return VEC_length (tree, current_lang_base); +} + +/* Set global variables CURRENT_LANG_NAME to appropriate value + so that behavior of name-mangling machinery is correct. */ + +void +push_lang_context (tree name) +{ + VEC_safe_push (tree, gc, current_lang_base, current_lang_name); + + if (name == lang_name_cplusplus) + { + current_lang_name = name; + } + else if (name == lang_name_java) + { + current_lang_name = name; + /* DECL_IGNORED_P is initially set for these types, to avoid clutter. + (See record_builtin_java_type in decl.c.) However, that causes + incorrect debug entries if these types are actually used. + So we re-enable debug output after extern "Java". */ + DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0; + DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0; + } + else if (name == lang_name_c) + { + current_lang_name = name; + } + else + error ("language string %<\"%E\"%> not recognized", name); +} + +/* Get out of the current language scope. */ + +void +pop_lang_context (void) +{ + current_lang_name = VEC_pop (tree, current_lang_base); +} + +/* Type instantiation routines. */ + +/* Given an OVERLOAD and a TARGET_TYPE, return the function that + matches the TARGET_TYPE. If there is no satisfactory match, return + error_mark_node, and issue an error & warning messages under + control of FLAGS. Permit pointers to member function if FLAGS + permits. If TEMPLATE_ONLY, the name of the overloaded function was + a template-id, and EXPLICIT_TARGS are the explicitly provided + template arguments. + + If OVERLOAD is for one or more member functions, then ACCESS_PATH + is the base path used to reference those member functions. If + TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is + resolved to a member function, access checks will be performed and + errors issued if appropriate. */ + +static tree +resolve_address_of_overloaded_function (tree target_type, + tree overload, + tsubst_flags_t flags, + bool template_only, + tree explicit_targs, + tree access_path) +{ + /* Here's what the standard says: + + [over.over] + + If the name is a function template, template argument deduction + is done, and if the argument deduction succeeds, the deduced + arguments are used to generate a single template function, which + is added to the set of overloaded functions considered. + + Non-member functions and static member functions match targets of + type "pointer-to-function" or "reference-to-function." Nonstatic + member functions match targets of type "pointer-to-member + function;" the function type of the pointer to member is used to + select the member function from the set of overloaded member + functions. If a nonstatic member function is selected, the + reference to the overloaded function name is required to have the + form of a pointer to member as described in 5.3.1. + + If more than one function is selected, any template functions in + the set are eliminated if the set also contains a non-template + function, and any given template function is eliminated if the + set contains a second template function that is more specialized + than the first according to the partial ordering rules 14.5.5.2. + After such eliminations, if any, there shall remain exactly one + selected function. */ + + int is_ptrmem = 0; + /* We store the matches in a TREE_LIST rooted here. The functions + are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy + interoperability with most_specialized_instantiation. */ + tree matches = NULL_TREE; + tree fn; + tree target_fn_type; + + /* By the time we get here, we should be seeing only real + pointer-to-member types, not the internal POINTER_TYPE to + METHOD_TYPE representation. */ + gcc_assert (TREE_CODE (target_type) != POINTER_TYPE + || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE); + + gcc_assert (is_overloaded_fn (overload)); + + /* Check that the TARGET_TYPE is reasonable. */ + if (TYPE_PTRFN_P (target_type)) + /* This is OK. */; + else if (TYPE_PTRMEMFUNC_P (target_type)) + /* This is OK, too. */ + is_ptrmem = 1; + else if (TREE_CODE (target_type) == FUNCTION_TYPE) + /* This is OK, too. This comes from a conversion to reference + type. */ + target_type = build_reference_type (target_type); + else + { + if (flags & tf_error) + error ("cannot resolve overloaded function %qD based on" + " conversion to type %qT", + DECL_NAME (OVL_FUNCTION (overload)), target_type); + return error_mark_node; + } + + /* Non-member functions and static member functions match targets of type + "pointer-to-function" or "reference-to-function." Nonstatic member + functions match targets of type "pointer-to-member-function;" the + function type of the pointer to member is used to select the member + function from the set of overloaded member functions. + + So figure out the FUNCTION_TYPE that we want to match against. */ + target_fn_type = static_fn_type (target_type); + + /* If we can find a non-template function that matches, we can just + use it. There's no point in generating template instantiations + if we're just going to throw them out anyhow. But, of course, we + can only do this when we don't *need* a template function. */ + if (!template_only) + { + tree fns; + + for (fns = overload; fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + + if (TREE_CODE (fn) == TEMPLATE_DECL) + /* We're not looking for templates just yet. */ + continue; + + if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) + != is_ptrmem) + /* We're looking for a non-static member, and this isn't + one, or vice versa. */ + continue; + + /* Ignore functions which haven't been explicitly + declared. */ + if (DECL_ANTICIPATED (fn)) + continue; + + /* See if there's a match. */ + if (same_type_p (target_fn_type, static_fn_type (fn))) + matches = tree_cons (fn, NULL_TREE, matches); + } + } + + /* Now, if we've already got a match (or matches), there's no need + to proceed to the template functions. But, if we don't have a + match we need to look at them, too. */ + if (!matches) + { + tree target_arg_types; + tree target_ret_type; + tree fns; + tree *args; + unsigned int nargs, ia; + tree arg; + + target_arg_types = TYPE_ARG_TYPES (target_fn_type); + target_ret_type = TREE_TYPE (target_fn_type); + + nargs = list_length (target_arg_types); + args = XALLOCAVEC (tree, nargs); + for (arg = target_arg_types, ia = 0; + arg != NULL_TREE && arg != void_list_node; + arg = TREE_CHAIN (arg), ++ia) + args[ia] = TREE_VALUE (arg); + nargs = ia; + + for (fns = overload; fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + tree instantiation; + tree targs; + + if (TREE_CODE (fn) != TEMPLATE_DECL) + /* We're only looking for templates. */ + continue; + + if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) + != is_ptrmem) + /* We're not looking for a non-static member, and this is + one, or vice versa. */ + continue; + + /* Try to do argument deduction. */ + targs = make_tree_vec (DECL_NTPARMS (fn)); + if (fn_type_unification (fn, explicit_targs, targs, args, nargs, + target_ret_type, DEDUCE_EXACT, + LOOKUP_NORMAL)) + /* Argument deduction failed. */ + continue; + + /* Instantiate the template. */ + instantiation = instantiate_template (fn, targs, flags); + if (instantiation == error_mark_node) + /* Instantiation failed. */ + continue; + + /* See if there's a match. */ + if (same_type_p (target_fn_type, static_fn_type (instantiation))) + matches = tree_cons (instantiation, fn, matches); + } + + /* Now, remove all but the most specialized of the matches. */ + if (matches) + { + tree match = most_specialized_instantiation (matches); + + if (match != error_mark_node) + matches = tree_cons (TREE_PURPOSE (match), + NULL_TREE, + NULL_TREE); + } + } + + /* Now we should have exactly one function in MATCHES. */ + if (matches == NULL_TREE) + { + /* There were *no* matches. */ + if (flags & tf_error) + { + error ("no matches converting function %qD to type %q#T", + DECL_NAME (OVL_CURRENT (overload)), + target_type); + + /* print_candidates expects a chain with the functions in + TREE_VALUE slots, so we cons one up here (we're losing anyway, + so why be clever?). */ + for (; overload; overload = OVL_NEXT (overload)) + matches = tree_cons (NULL_TREE, OVL_CURRENT (overload), + matches); + + print_candidates (matches); + } + return error_mark_node; + } + else if (TREE_CHAIN (matches)) + { + /* There were too many matches. First check if they're all + the same function. */ + tree match; + + fn = TREE_PURPOSE (matches); + for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match)) + if (!decls_match (fn, TREE_PURPOSE (match))) + break; + + if (match) + { + if (flags & tf_error) + { + error ("converting overloaded function %qD to type %q#T is ambiguous", + DECL_NAME (OVL_FUNCTION (overload)), + target_type); + + /* Since print_candidates expects the functions in the + TREE_VALUE slot, we flip them here. */ + for (match = matches; match; match = TREE_CHAIN (match)) + TREE_VALUE (match) = TREE_PURPOSE (match); + + print_candidates (matches); + } + + return error_mark_node; + } + } + + /* Good, exactly one match. Now, convert it to the correct type. */ + fn = TREE_PURPOSE (matches); + + if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn) + && !(flags & tf_ptrmem_ok) && !flag_ms_extensions) + { + static int explained; + + if (!(flags & tf_error)) + return error_mark_node; + + permerror (input_location, "assuming pointer to member %qD", fn); + if (!explained) + { + inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn); + explained = 1; + } + } + + /* If we're doing overload resolution purely for the purpose of + determining conversion sequences, we should not consider the + function used. If this conversion sequence is selected, the + function will be marked as used at this point. */ + if (!(flags & tf_conv)) + { + /* Make =delete work with SFINAE. */ + if (DECL_DELETED_FN (fn) && !(flags & tf_error)) + return error_mark_node; + + mark_used (fn); + } + + /* We could not check access to member functions when this + expression was originally created since we did not know at that + time to which function the expression referred. */ + if (!(flags & tf_no_access_control) + && DECL_FUNCTION_MEMBER_P (fn)) + { + gcc_assert (access_path); + perform_or_defer_access_check (access_path, fn, fn); + } + + if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type)) + return cp_build_addr_expr (fn, flags); + else + { + /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op + will mark the function as addressed, but here we must do it + explicitly. */ + cxx_mark_addressable (fn); + + return fn; + } +} + +/* This function will instantiate the type of the expression given in + RHS to match the type of LHSTYPE. If errors exist, then return + error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then + we complain on errors. If we are not complaining, never modify rhs, + as overload resolution wants to try many possible instantiations, in + the hope that at least one will work. + + For non-recursive calls, LHSTYPE should be a function, pointer to + function, or a pointer to member function. */ + +tree +instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags) +{ + tsubst_flags_t flags_in = flags; + tree access_path = NULL_TREE; + + flags &= ~tf_ptrmem_ok; + + if (lhstype == unknown_type_node) + { + if (flags & tf_error) + error ("not enough type information"); + return error_mark_node; + } + + if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs))) + { + if (same_type_p (lhstype, TREE_TYPE (rhs))) + return rhs; + if (flag_ms_extensions + && TYPE_PTRMEMFUNC_P (lhstype) + && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs))) + /* Microsoft allows `A::f' to be resolved to a + pointer-to-member. */ + ; + else + { + if (flags & tf_error) + error ("argument of type %qT does not match %qT", + TREE_TYPE (rhs), lhstype); + return error_mark_node; + } + } + + if (TREE_CODE (rhs) == BASELINK) + { + access_path = BASELINK_ACCESS_BINFO (rhs); + rhs = BASELINK_FUNCTIONS (rhs); + } + + /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot + deduce any type information. */ + if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR) + { + if (flags & tf_error) + error ("not enough type information"); + return error_mark_node; + } + + /* There only a few kinds of expressions that may have a type + dependent on overload resolution. */ + gcc_assert (TREE_CODE (rhs) == ADDR_EXPR + || TREE_CODE (rhs) == COMPONENT_REF + || really_overloaded_fn (rhs) + || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL)); + + /* This should really only be used when attempting to distinguish + what sort of a pointer to function we have. For now, any + arithmetic operation which is not supported on pointers + is rejected as an error. */ + + switch (TREE_CODE (rhs)) + { + case COMPONENT_REF: + { + tree member = TREE_OPERAND (rhs, 1); + + member = instantiate_type (lhstype, member, flags); + if (member != error_mark_node + && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0))) + /* Do not lose object's side effects. */ + return build2 (COMPOUND_EXPR, TREE_TYPE (member), + TREE_OPERAND (rhs, 0), member); + return member; + } + + case OFFSET_REF: + rhs = TREE_OPERAND (rhs, 1); + if (BASELINK_P (rhs)) + return instantiate_type (lhstype, rhs, flags_in); + + /* This can happen if we are forming a pointer-to-member for a + member template. */ + gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR); + + /* Fall through. */ + + case TEMPLATE_ID_EXPR: + { + tree fns = TREE_OPERAND (rhs, 0); + tree args = TREE_OPERAND (rhs, 1); + + return + resolve_address_of_overloaded_function (lhstype, fns, flags_in, + /*template_only=*/true, + args, access_path); + } + + case OVERLOAD: + case FUNCTION_DECL: + return + resolve_address_of_overloaded_function (lhstype, rhs, flags_in, + /*template_only=*/false, + /*explicit_targs=*/NULL_TREE, + access_path); + + case ADDR_EXPR: + { + if (PTRMEM_OK_P (rhs)) + flags |= tf_ptrmem_ok; + + return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags); + } + + case ERROR_MARK: + return error_mark_node; + + default: + gcc_unreachable (); + } + return error_mark_node; +} + +/* Return the name of the virtual function pointer field + (as an IDENTIFIER_NODE) for the given TYPE. Note that + this may have to look back through base types to find the + ultimate field name. (For single inheritance, these could + all be the same name. Who knows for multiple inheritance). */ + +static tree +get_vfield_name (tree type) +{ + tree binfo, base_binfo; + char *buf; + + for (binfo = TYPE_BINFO (type); + BINFO_N_BASE_BINFOS (binfo); + binfo = base_binfo) + { + base_binfo = BINFO_BASE_BINFO (binfo, 0); + + if (BINFO_VIRTUAL_P (base_binfo) + || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo))) + break; + } + + type = BINFO_TYPE (binfo); + buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT) + + TYPE_NAME_LENGTH (type) + 2); + sprintf (buf, VFIELD_NAME_FORMAT, + IDENTIFIER_POINTER (constructor_name (type))); + return get_identifier (buf); +} + +void +print_class_statistics (void) +{ +#ifdef GATHER_STATISTICS + fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness); + fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs); + if (n_vtables) + { + fprintf (stderr, "vtables = %d; vtable searches = %d\n", + n_vtables, n_vtable_searches); + fprintf (stderr, "vtable entries = %d; vtable elems = %d\n", + n_vtable_entries, n_vtable_elems); + } +#endif +} + +/* Build a dummy reference to ourselves so Derived::Base (and A::A) works, + according to [class]: + The class-name is also inserted + into the scope of the class itself. For purposes of access checking, + the inserted class name is treated as if it were a public member name. */ + +void +build_self_reference (void) +{ + tree name = constructor_name (current_class_type); + tree value = build_lang_decl (TYPE_DECL, name, current_class_type); + tree saved_cas; + + DECL_NONLOCAL (value) = 1; + DECL_CONTEXT (value) = current_class_type; + DECL_ARTIFICIAL (value) = 1; + SET_DECL_SELF_REFERENCE_P (value); + set_underlying_type (value); + + if (processing_template_decl) + value = push_template_decl (value); + + saved_cas = current_access_specifier; + current_access_specifier = access_public_node; + finish_member_declaration (value); + current_access_specifier = saved_cas; +} + +/* Returns 1 if TYPE contains only padding bytes. */ + +int +is_empty_class (tree type) +{ + if (type == error_mark_node) + return 0; + + if (! CLASS_TYPE_P (type)) + return 0; + + /* In G++ 3.2, whether or not a class was empty was determined by + looking at its size. */ + if (abi_version_at_least (2)) + return CLASSTYPE_EMPTY_P (type); + else + return integer_zerop (CLASSTYPE_SIZE (type)); +} + +/* Returns true if TYPE contains an empty class. */ + +static bool +contains_empty_class_p (tree type) +{ + if (is_empty_class (type)) + return true; + if (CLASS_TYPE_P (type)) + { + tree field; + tree binfo; + tree base_binfo; + int i; + + for (binfo = TYPE_BINFO (type), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + if (contains_empty_class_p (BINFO_TYPE (base_binfo))) + return true; + for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && !DECL_ARTIFICIAL (field) + && is_empty_class (TREE_TYPE (field))) + return true; + } + else if (TREE_CODE (type) == ARRAY_TYPE) + return contains_empty_class_p (TREE_TYPE (type)); + return false; +} + +/* Returns true if TYPE contains no actual data, just various + possible combinations of empty classes and possibly a vptr. */ + +bool +is_really_empty_class (tree type) +{ + if (CLASS_TYPE_P (type)) + { + tree field; + tree binfo; + tree base_binfo; + int i; + + /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid + out, but we'd like to be able to check this before then. */ + if (COMPLETE_TYPE_P (type) && is_empty_class (type)) + return true; + + for (binfo = TYPE_BINFO (type), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + if (!is_really_empty_class (BINFO_TYPE (base_binfo))) + return false; + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && !DECL_ARTIFICIAL (field) + && !is_really_empty_class (TREE_TYPE (field))) + return false; + return true; + } + else if (TREE_CODE (type) == ARRAY_TYPE) + return is_really_empty_class (TREE_TYPE (type)); + return false; +} + +/* Note that NAME was looked up while the current class was being + defined and that the result of that lookup was DECL. */ + +void +maybe_note_name_used_in_class (tree name, tree decl) +{ + splay_tree names_used; + + /* If we're not defining a class, there's nothing to do. */ + if (!(innermost_scope_kind() == sk_class + && TYPE_BEING_DEFINED (current_class_type) + && !LAMBDA_TYPE_P (current_class_type))) + return; + + /* If there's already a binding for this NAME, then we don't have + anything to worry about. */ + if (lookup_member (current_class_type, name, + /*protect=*/0, /*want_type=*/false)) + return; + + if (!current_class_stack[current_class_depth - 1].names_used) + current_class_stack[current_class_depth - 1].names_used + = splay_tree_new (splay_tree_compare_pointers, 0, 0); + names_used = current_class_stack[current_class_depth - 1].names_used; + + splay_tree_insert (names_used, + (splay_tree_key) name, + (splay_tree_value) decl); +} + +/* Note that NAME was declared (as DECL) in the current class. Check + to see that the declaration is valid. */ + +void +note_name_declared_in_class (tree name, tree decl) +{ + splay_tree names_used; + splay_tree_node n; + + /* Look to see if we ever used this name. */ + names_used + = current_class_stack[current_class_depth - 1].names_used; + if (!names_used) + return; + /* The C language allows members to be declared with a type of the same + name, and the C++ standard says this diagnostic is not required. So + allow it in extern "C" blocks unless predantic is specified. + Allow it in all cases if -ms-extensions is specified. */ + if ((!pedantic && current_lang_name == lang_name_c) + || flag_ms_extensions) + return; + n = splay_tree_lookup (names_used, (splay_tree_key) name); + if (n) + { + /* [basic.scope.class] + + A name N used in a class S shall refer to the same declaration + in its context and when re-evaluated in the completed scope of + S. */ + permerror (input_location, "declaration of %q#D", decl); + permerror (input_location, "changes meaning of %qD from %q+#D", + DECL_NAME (OVL_CURRENT (decl)), (tree) n->value); + } +} + +/* Returns the VAR_DECL for the complete vtable associated with BINFO. + Secondary vtables are merged with primary vtables; this function + will return the VAR_DECL for the primary vtable. */ + +tree +get_vtbl_decl_for_binfo (tree binfo) +{ + tree decl; + + decl = BINFO_VTABLE (binfo); + if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR) + { + gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR); + decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0); + } + if (decl) + gcc_assert (TREE_CODE (decl) == VAR_DECL); + return decl; +} + + +/* Returns the binfo for the primary base of BINFO. If the resulting + BINFO is a virtual base, and it is inherited elsewhere in the + hierarchy, then the returned binfo might not be the primary base of + BINFO in the complete object. Check BINFO_PRIMARY_P or + BINFO_LOST_PRIMARY_P to be sure. */ + +static tree +get_primary_binfo (tree binfo) +{ + tree primary_base; + + primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo)); + if (!primary_base) + return NULL_TREE; + + return copied_binfo (primary_base, binfo); +} + +/* If INDENTED_P is zero, indent to INDENT. Return nonzero. */ + +static int +maybe_indent_hierarchy (FILE * stream, int indent, int indented_p) +{ + if (!indented_p) + fprintf (stream, "%*s", indent, ""); + return 1; +} + +/* Dump the offsets of all the bases rooted at BINFO to STREAM. + INDENT should be zero when called from the top level; it is + incremented recursively. IGO indicates the next expected BINFO in + inheritance graph ordering. */ + +static tree +dump_class_hierarchy_r (FILE *stream, + int flags, + tree binfo, + tree igo, + int indent) +{ + int indented = 0; + tree base_binfo; + int i; + + indented = maybe_indent_hierarchy (stream, indent, 0); + fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ", + type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER), + (HOST_WIDE_INT) (uintptr_t) binfo); + if (binfo != igo) + { + fprintf (stream, "alternative-path\n"); + return igo; + } + igo = TREE_CHAIN (binfo); + + fprintf (stream, HOST_WIDE_INT_PRINT_DEC, + tree_low_cst (BINFO_OFFSET (binfo), 0)); + if (is_empty_class (BINFO_TYPE (binfo))) + fprintf (stream, " empty"); + else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo))) + fprintf (stream, " nearly-empty"); + if (BINFO_VIRTUAL_P (binfo)) + fprintf (stream, " virtual"); + fprintf (stream, "\n"); + + indented = 0; + if (BINFO_PRIMARY_P (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")", + type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)), + TFF_PLAIN_IDENTIFIER), + (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo)); + } + if (BINFO_LOST_PRIMARY_P (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " lost-primary"); + } + if (indented) + fprintf (stream, "\n"); + + if (!(flags & TDF_SLIM)) + { + int indented = 0; + + if (BINFO_SUBVTT_INDEX (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " subvttidx=%s", + expr_as_string (BINFO_SUBVTT_INDEX (binfo), + TFF_PLAIN_IDENTIFIER)); + } + if (BINFO_VPTR_INDEX (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " vptridx=%s", + expr_as_string (BINFO_VPTR_INDEX (binfo), + TFF_PLAIN_IDENTIFIER)); + } + if (BINFO_VPTR_FIELD (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " vbaseoffset=%s", + expr_as_string (BINFO_VPTR_FIELD (binfo), + TFF_PLAIN_IDENTIFIER)); + } + if (BINFO_VTABLE (binfo)) + { + indented = maybe_indent_hierarchy (stream, indent + 3, indented); + fprintf (stream, " vptr=%s", + expr_as_string (BINFO_VTABLE (binfo), + TFF_PLAIN_IDENTIFIER)); + } + + if (indented) + fprintf (stream, "\n"); + } + + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2); + + return igo; +} + +/* Dump the BINFO hierarchy for T. */ + +static void +dump_class_hierarchy_1 (FILE *stream, int flags, tree t) +{ + fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER)); + fprintf (stream, " size=%lu align=%lu\n", + (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT), + (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT)); + fprintf (stream, " base size=%lu base align=%lu\n", + (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0) + / BITS_PER_UNIT), + (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t)) + / BITS_PER_UNIT)); + dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0); + fprintf (stream, "\n"); +} + +/* Debug interface to hierarchy dumping. */ + +void +debug_class (tree t) +{ + dump_class_hierarchy_1 (stderr, TDF_SLIM, t); +} + +static void +dump_class_hierarchy (tree t) +{ + int flags; + FILE *stream = dump_begin (TDI_class, &flags); + + if (stream) + { + dump_class_hierarchy_1 (stream, flags, t); + dump_end (TDI_class, stream); + } +} + +static void +dump_array (FILE * stream, tree decl) +{ + tree value; + unsigned HOST_WIDE_INT ix; + HOST_WIDE_INT elt; + tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl))); + + elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0) + / BITS_PER_UNIT); + fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER)); + fprintf (stream, " %s entries", + expr_as_string (size_binop (PLUS_EXPR, size, size_one_node), + TFF_PLAIN_IDENTIFIER)); + fprintf (stream, "\n"); + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)), + ix, value) + fprintf (stream, "%-4ld %s\n", (long)(ix * elt), + expr_as_string (value, TFF_PLAIN_IDENTIFIER)); +} + +static void +dump_vtable (tree t, tree binfo, tree vtable) +{ + int flags; + FILE *stream = dump_begin (TDI_class, &flags); + + if (!stream) + return; + + if (!(flags & TDF_SLIM)) + { + int ctor_vtbl_p = TYPE_BINFO (t) != binfo; + + fprintf (stream, "%s for %s", + ctor_vtbl_p ? "Construction vtable" : "Vtable", + type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER)); + if (ctor_vtbl_p) + { + if (!BINFO_VIRTUAL_P (binfo)) + fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)", + (HOST_WIDE_INT) (uintptr_t) binfo); + fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER)); + } + fprintf (stream, "\n"); + dump_array (stream, vtable); + fprintf (stream, "\n"); + } + + dump_end (TDI_class, stream); +} + +static void +dump_vtt (tree t, tree vtt) +{ + int flags; + FILE *stream = dump_begin (TDI_class, &flags); + + if (!stream) + return; + + if (!(flags & TDF_SLIM)) + { + fprintf (stream, "VTT for %s\n", + type_as_string (t, TFF_PLAIN_IDENTIFIER)); + dump_array (stream, vtt); + fprintf (stream, "\n"); + } + + dump_end (TDI_class, stream); +} + +/* Dump a function or thunk and its thunkees. */ + +static void +dump_thunk (FILE *stream, int indent, tree thunk) +{ + static const char spaces[] = " "; + tree name = DECL_NAME (thunk); + tree thunks; + + fprintf (stream, "%.*s%p %s %s", indent, spaces, + (void *)thunk, + !DECL_THUNK_P (thunk) ? "function" + : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk", + name ? IDENTIFIER_POINTER (name) : "<unset>"); + if (DECL_THUNK_P (thunk)) + { + HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk); + tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk); + + fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust); + if (!virtual_adjust) + /*NOP*/; + else if (DECL_THIS_THUNK_P (thunk)) + fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC, + tree_low_cst (virtual_adjust, 0)); + else + fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)", + tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0), + type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE)); + if (THUNK_ALIAS (thunk)) + fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk)); + } + fprintf (stream, "\n"); + for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks)) + dump_thunk (stream, indent + 2, thunks); +} + +/* Dump the thunks for FN. */ + +void +debug_thunks (tree fn) +{ + dump_thunk (stderr, 0, fn); +} + +/* Virtual function table initialization. */ + +/* Create all the necessary vtables for T and its base classes. */ + +static void +finish_vtbls (tree t) +{ + tree vbase; + VEC(constructor_elt,gc) *v = NULL; + tree vtable = BINFO_VTABLE (TYPE_BINFO (t)); + + /* We lay out the primary and secondary vtables in one contiguous + vtable. The primary vtable is first, followed by the non-virtual + secondary vtables in inheritance graph order. */ + accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t), + vtable, t, &v); + + /* Then come the virtual bases, also in inheritance graph order. */ + for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase)) + { + if (!BINFO_VIRTUAL_P (vbase)) + continue; + accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v); + } + + if (BINFO_VTABLE (TYPE_BINFO (t))) + initialize_vtable (TYPE_BINFO (t), v); +} + +/* Initialize the vtable for BINFO with the INITS. */ + +static void +initialize_vtable (tree binfo, VEC(constructor_elt,gc) *inits) +{ + tree decl; + + layout_vtable_decl (binfo, VEC_length (constructor_elt, inits)); + decl = get_vtbl_decl_for_binfo (binfo); + initialize_artificial_var (decl, inits); + dump_vtable (BINFO_TYPE (binfo), binfo, decl); +} + +/* Build the VTT (virtual table table) for T. + A class requires a VTT if it has virtual bases. + + This holds + 1 - primary virtual pointer for complete object T + 2 - secondary VTTs for each direct non-virtual base of T which requires a + VTT + 3 - secondary virtual pointers for each direct or indirect base of T which + has virtual bases or is reachable via a virtual path from T. + 4 - secondary VTTs for each direct or indirect virtual base of T. + + Secondary VTTs look like complete object VTTs without part 4. */ + +static void +build_vtt (tree t) +{ + tree type; + tree vtt; + tree index; + VEC(constructor_elt,gc) *inits; + + /* Build up the initializers for the VTT. */ + inits = NULL; + index = size_zero_node; + build_vtt_inits (TYPE_BINFO (t), t, &inits, &index); + + /* If we didn't need a VTT, we're done. */ + if (!inits) + return; + + /* Figure out the type of the VTT. */ + type = build_array_of_n_type (const_ptr_type_node, + VEC_length (constructor_elt, inits)); + + /* Now, build the VTT object itself. */ + vtt = build_vtable (t, mangle_vtt_for_type (t), type); + initialize_artificial_var (vtt, inits); + /* Add the VTT to the vtables list. */ + DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t)); + DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt; + + dump_vtt (t, vtt); +} + +/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with + PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo, + and CHAIN the vtable pointer for this binfo after construction is + complete. VALUE can also be another BINFO, in which case we recurse. */ + +static tree +binfo_ctor_vtable (tree binfo) +{ + tree vt; + + while (1) + { + vt = BINFO_VTABLE (binfo); + if (TREE_CODE (vt) == TREE_LIST) + vt = TREE_VALUE (vt); + if (TREE_CODE (vt) == TREE_BINFO) + binfo = vt; + else + break; + } + + return vt; +} + +/* Data for secondary VTT initialization. */ +typedef struct secondary_vptr_vtt_init_data_s +{ + /* Is this the primary VTT? */ + bool top_level_p; + + /* Current index into the VTT. */ + tree index; + + /* Vector of initializers built up. */ + VEC(constructor_elt,gc) *inits; + + /* The type being constructed by this secondary VTT. */ + tree type_being_constructed; +} secondary_vptr_vtt_init_data; + +/* Recursively build the VTT-initializer for BINFO (which is in the + hierarchy dominated by T). INITS points to the end of the initializer + list to date. INDEX is the VTT index where the next element will be + replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e. + not a subvtt for some base of T). When that is so, we emit the sub-VTTs + for virtual bases of T. When it is not so, we build the constructor + vtables for the BINFO-in-T variant. */ + +static void +build_vtt_inits (tree binfo, tree t, VEC(constructor_elt,gc) **inits, tree *index) +{ + int i; + tree b; + tree init; + secondary_vptr_vtt_init_data data; + int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t); + + /* We only need VTTs for subobjects with virtual bases. */ + if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))) + return; + + /* We need to use a construction vtable if this is not the primary + VTT. */ + if (!top_level_p) + { + build_ctor_vtbl_group (binfo, t); + + /* Record the offset in the VTT where this sub-VTT can be found. */ + BINFO_SUBVTT_INDEX (binfo) = *index; + } + + /* Add the address of the primary vtable for the complete object. */ + init = binfo_ctor_vtable (binfo); + CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); + if (top_level_p) + { + gcc_assert (!BINFO_VPTR_INDEX (binfo)); + BINFO_VPTR_INDEX (binfo) = *index; + } + *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node)); + + /* Recursively add the secondary VTTs for non-virtual bases. */ + for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i) + if (!BINFO_VIRTUAL_P (b)) + build_vtt_inits (b, t, inits, index); + + /* Add secondary virtual pointers for all subobjects of BINFO with + either virtual bases or reachable along a virtual path, except + subobjects that are non-virtual primary bases. */ + data.top_level_p = top_level_p; + data.index = *index; + data.inits = *inits; + data.type_being_constructed = BINFO_TYPE (binfo); + + dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data); + + *index = data.index; + + /* data.inits might have grown as we added secondary virtual pointers. + Make sure our caller knows about the new vector. */ + *inits = data.inits; + + if (top_level_p) + /* Add the secondary VTTs for virtual bases in inheritance graph + order. */ + for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b)) + { + if (!BINFO_VIRTUAL_P (b)) + continue; + + build_vtt_inits (b, t, inits, index); + } + else + /* Remove the ctor vtables we created. */ + dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo); +} + +/* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base + in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */ + +static tree +dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_) +{ + secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_; + + /* We don't care about bases that don't have vtables. */ + if (!TYPE_VFIELD (BINFO_TYPE (binfo))) + return dfs_skip_bases; + + /* We're only interested in proper subobjects of the type being + constructed. */ + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed)) + return NULL_TREE; + + /* We're only interested in bases with virtual bases or reachable + via a virtual path from the type being constructed. */ + if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)) + || binfo_via_virtual (binfo, data->type_being_constructed))) + return dfs_skip_bases; + + /* We're not interested in non-virtual primary bases. */ + if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo)) + return NULL_TREE; + + /* Record the index where this secondary vptr can be found. */ + if (data->top_level_p) + { + gcc_assert (!BINFO_VPTR_INDEX (binfo)); + BINFO_VPTR_INDEX (binfo) = data->index; + + if (BINFO_VIRTUAL_P (binfo)) + { + /* It's a primary virtual base, and this is not a + construction vtable. Find the base this is primary of in + the inheritance graph, and use that base's vtable + now. */ + while (BINFO_PRIMARY_P (binfo)) + binfo = BINFO_INHERITANCE_CHAIN (binfo); + } + } + + /* Add the initializer for the secondary vptr itself. */ + CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo)); + + /* Advance the vtt index. */ + data->index = size_binop (PLUS_EXPR, data->index, + TYPE_SIZE_UNIT (ptr_type_node)); + + return NULL_TREE; +} + +/* Called from build_vtt_inits via dfs_walk. After building + constructor vtables and generating the sub-vtt from them, we need + to restore the BINFO_VTABLES that were scribbled on. DATA is the + binfo of the base whose sub vtt was generated. */ + +static tree +dfs_fixup_binfo_vtbls (tree binfo, void* data) +{ + tree vtable = BINFO_VTABLE (binfo); + + if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) + /* If this class has no vtable, none of its bases do. */ + return dfs_skip_bases; + + if (!vtable) + /* This might be a primary base, so have no vtable in this + hierarchy. */ + return NULL_TREE; + + /* If we scribbled the construction vtable vptr into BINFO, clear it + out now. */ + if (TREE_CODE (vtable) == TREE_LIST + && (TREE_PURPOSE (vtable) == (tree) data)) + BINFO_VTABLE (binfo) = TREE_CHAIN (vtable); + + return NULL_TREE; +} + +/* Build the construction vtable group for BINFO which is in the + hierarchy dominated by T. */ + +static void +build_ctor_vtbl_group (tree binfo, tree t) +{ + tree type; + tree vtbl; + tree id; + tree vbase; + VEC(constructor_elt,gc) *v; + + /* See if we've already created this construction vtable group. */ + id = mangle_ctor_vtbl_for_type (t, binfo); + if (IDENTIFIER_GLOBAL_VALUE (id)) + return; + + gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)); + /* Build a version of VTBL (with the wrong type) for use in + constructing the addresses of secondary vtables in the + construction vtable group. */ + vtbl = build_vtable (t, id, ptr_type_node); + DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1; + + v = NULL; + accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)), + binfo, vtbl, t, &v); + + /* Add the vtables for each of our virtual bases using the vbase in T + binfo. */ + for (vbase = TYPE_BINFO (BINFO_TYPE (binfo)); + vbase; + vbase = TREE_CHAIN (vbase)) + { + tree b; + + if (!BINFO_VIRTUAL_P (vbase)) + continue; + b = copied_binfo (vbase, binfo); + + accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v); + } + + /* Figure out the type of the construction vtable. */ + type = build_array_of_n_type (vtable_entry_type, + VEC_length (constructor_elt, v)); + layout_type (type); + TREE_TYPE (vtbl) = type; + DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE; + layout_decl (vtbl, 0); + + /* Initialize the construction vtable. */ + CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl); + initialize_artificial_var (vtbl, v); + dump_vtable (t, binfo, vtbl); +} + +/* Add the vtbl initializers for BINFO (and its bases other than + non-virtual primaries) to the list of INITS. BINFO is in the + hierarchy dominated by T. RTTI_BINFO is the binfo within T of + the constructor the vtbl inits should be accumulated for. (If this + is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).) + ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO). + BINFO is the active base equivalent of ORIG_BINFO in the inheritance + graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE, + but are not necessarily the same in terms of layout. */ + +static void +accumulate_vtbl_inits (tree binfo, + tree orig_binfo, + tree rtti_binfo, + tree vtbl, + tree t, + VEC(constructor_elt,gc) **inits) +{ + int i; + tree base_binfo; + int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); + + gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo))); + + /* If it doesn't have a vptr, we don't do anything. */ + if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) + return; + + /* If we're building a construction vtable, we're not interested in + subobjects that don't require construction vtables. */ + if (ctor_vtbl_p + && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)) + && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo))) + return; + + /* Build the initializers for the BINFO-in-T vtable. */ + dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits); + + /* Walk the BINFO and its bases. We walk in preorder so that as we + initialize each vtable we can figure out at what offset the + secondary vtable lies from the primary vtable. We can't use + dfs_walk here because we need to iterate through bases of BINFO + and RTTI_BINFO simultaneously. */ + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + { + /* Skip virtual bases. */ + if (BINFO_VIRTUAL_P (base_binfo)) + continue; + accumulate_vtbl_inits (base_binfo, + BINFO_BASE_BINFO (orig_binfo, i), + rtti_binfo, vtbl, t, + inits); + } +} + +/* Called from accumulate_vtbl_inits. Adds the initializers for the + BINFO vtable to L. */ + +static void +dfs_accumulate_vtbl_inits (tree binfo, + tree orig_binfo, + tree rtti_binfo, + tree orig_vtbl, + tree t, + VEC(constructor_elt,gc) **l) +{ + tree vtbl = NULL_TREE; + int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); + int n_inits; + + if (ctor_vtbl_p + && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo)) + { + /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a + primary virtual base. If it is not the same primary in + the hierarchy of T, we'll need to generate a ctor vtable + for it, to place at its location in T. If it is the same + primary, we still need a VTT entry for the vtable, but it + should point to the ctor vtable for the base it is a + primary for within the sub-hierarchy of RTTI_BINFO. + + There are three possible cases: + + 1) We are in the same place. + 2) We are a primary base within a lost primary virtual base of + RTTI_BINFO. + 3) We are primary to something not a base of RTTI_BINFO. */ + + tree b; + tree last = NULL_TREE; + + /* First, look through the bases we are primary to for RTTI_BINFO + or a virtual base. */ + b = binfo; + while (BINFO_PRIMARY_P (b)) + { + b = BINFO_INHERITANCE_CHAIN (b); + last = b; + if (BINFO_VIRTUAL_P (b) || b == rtti_binfo) + goto found; + } + /* If we run out of primary links, keep looking down our + inheritance chain; we might be an indirect primary. */ + for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b)) + if (BINFO_VIRTUAL_P (b) || b == rtti_binfo) + break; + found: + + /* If we found RTTI_BINFO, this is case 1. If we found a virtual + base B and it is a base of RTTI_BINFO, this is case 2. In + either case, we share our vtable with LAST, i.e. the + derived-most base within B of which we are a primary. */ + if (b == rtti_binfo + || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo)))) + /* Just set our BINFO_VTABLE to point to LAST, as we may not have + set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in + binfo_ctor_vtable after everything's been set up. */ + vtbl = last; + + /* Otherwise, this is case 3 and we get our own. */ + } + else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo)) + return; + + n_inits = VEC_length (constructor_elt, *l); + + if (!vtbl) + { + tree index; + int non_fn_entries; + + /* Add the initializer for this vtable. */ + build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo, + &non_fn_entries, l); + + /* Figure out the position to which the VPTR should point. */ + vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl); + index = size_binop (PLUS_EXPR, + size_int (non_fn_entries), + size_int (n_inits)); + index = size_binop (MULT_EXPR, + TYPE_SIZE_UNIT (vtable_entry_type), + index); + vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index); + } + + if (ctor_vtbl_p) + /* For a construction vtable, we can't overwrite BINFO_VTABLE. + So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will + straighten this out. */ + BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo)); + else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo)) + /* Throw away any unneeded intializers. */ + VEC_truncate (constructor_elt, *l, n_inits); + else + /* For an ordinary vtable, set BINFO_VTABLE. */ + BINFO_VTABLE (binfo) = vtbl; +} + +static GTY(()) tree abort_fndecl_addr; + +/* Construct the initializer for BINFO's virtual function table. BINFO + is part of the hierarchy dominated by T. If we're building a + construction vtable, the ORIG_BINFO is the binfo we should use to + find the actual function pointers to put in the vtable - but they + can be overridden on the path to most-derived in the graph that + ORIG_BINFO belongs. Otherwise, + ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the + BINFO that should be indicated by the RTTI information in the + vtable; it will be a base class of T, rather than T itself, if we + are building a construction vtable. + + The value returned is a TREE_LIST suitable for wrapping in a + CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If + NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the + number of non-function entries in the vtable. + + It might seem that this function should never be called with a + BINFO for which BINFO_PRIMARY_P holds, the vtable for such a + base is always subsumed by a derived class vtable. However, when + we are building construction vtables, we do build vtables for + primary bases; we need these while the primary base is being + constructed. */ + +static void +build_vtbl_initializer (tree binfo, + tree orig_binfo, + tree t, + tree rtti_binfo, + int* non_fn_entries_p, + VEC(constructor_elt,gc) **inits) +{ + tree v; + vtbl_init_data vid; + unsigned ix, jx; + tree vbinfo; + VEC(tree,gc) *vbases; + constructor_elt *e; + + /* Initialize VID. */ + memset (&vid, 0, sizeof (vid)); + vid.binfo = binfo; + vid.derived = t; + vid.rtti_binfo = rtti_binfo; + vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t); + vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); + vid.generate_vcall_entries = true; + /* The first vbase or vcall offset is at index -3 in the vtable. */ + vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE); + + /* Add entries to the vtable for RTTI. */ + build_rtti_vtbl_entries (binfo, &vid); + + /* Create an array for keeping track of the functions we've + processed. When we see multiple functions with the same + signature, we share the vcall offsets. */ + vid.fns = VEC_alloc (tree, gc, 32); + /* Add the vcall and vbase offset entries. */ + build_vcall_and_vbase_vtbl_entries (binfo, &vid); + + /* Clear BINFO_VTABLE_PATH_MARKED; it's set by + build_vbase_offset_vtbl_entries. */ + for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0; + VEC_iterate (tree, vbases, ix, vbinfo); ix++) + BINFO_VTABLE_PATH_MARKED (vbinfo) = 0; + + /* If the target requires padding between data entries, add that now. */ + if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1) + { + int n_entries = VEC_length (constructor_elt, vid.inits); + + VEC_safe_grow (constructor_elt, gc, vid.inits, + TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries); + + /* Move data entries into their new positions and add padding + after the new positions. Iterate backwards so we don't + overwrite entries that we would need to process later. */ + for (ix = n_entries - 1; + VEC_iterate (constructor_elt, vid.inits, ix, e); + ix--) + { + int j; + int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix + + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1)); + + VEC_replace (constructor_elt, vid.inits, new_position, e); + + for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j) + { + constructor_elt *f = VEC_index (constructor_elt, vid.inits, + new_position - j); + f->index = NULL_TREE; + f->value = build1 (NOP_EXPR, vtable_entry_type, + null_pointer_node); + } + } + } + + if (non_fn_entries_p) + *non_fn_entries_p = VEC_length (constructor_elt, vid.inits); + + /* The initializers for virtual functions were built up in reverse + order. Straighten them out and add them to the running list in one + step. */ + jx = VEC_length (constructor_elt, *inits); + VEC_safe_grow (constructor_elt, gc, *inits, + (jx + VEC_length (constructor_elt, vid.inits))); + + for (ix = VEC_length (constructor_elt, vid.inits) - 1; + VEC_iterate (constructor_elt, vid.inits, ix, e); + ix--, jx++) + VEC_replace (constructor_elt, *inits, jx, e); + + /* Go through all the ordinary virtual functions, building up + initializers. */ + for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v)) + { + tree delta; + tree vcall_index; + tree fn, fn_original; + tree init = NULL_TREE; + + fn = BV_FN (v); + fn_original = fn; + if (DECL_THUNK_P (fn)) + { + if (!DECL_NAME (fn)) + finish_thunk (fn); + if (THUNK_ALIAS (fn)) + { + fn = THUNK_ALIAS (fn); + BV_FN (v) = fn; + } + fn_original = THUNK_TARGET (fn); + } + + /* If the only definition of this function signature along our + primary base chain is from a lost primary, this vtable slot will + never be used, so just zero it out. This is important to avoid + requiring extra thunks which cannot be generated with the function. + + We first check this in update_vtable_entry_for_fn, so we handle + restored primary bases properly; we also need to do it here so we + zero out unused slots in ctor vtables, rather than filling them + with erroneous values (though harmless, apart from relocation + costs). */ + if (BV_LOST_PRIMARY (v)) + init = size_zero_node; + + if (! init) + { + /* Pull the offset for `this', and the function to call, out of + the list. */ + delta = BV_DELTA (v); + vcall_index = BV_VCALL_INDEX (v); + + gcc_assert (TREE_CODE (delta) == INTEGER_CST); + gcc_assert (TREE_CODE (fn) == FUNCTION_DECL); + + /* You can't call an abstract virtual function; it's abstract. + So, we replace these functions with __pure_virtual. */ + if (DECL_PURE_VIRTUAL_P (fn_original)) + { + fn = abort_fndecl; + if (!TARGET_VTABLE_USES_DESCRIPTORS) + { + if (abort_fndecl_addr == NULL) + abort_fndecl_addr + = fold_convert (vfunc_ptr_type_node, + build_fold_addr_expr (fn)); + init = abort_fndecl_addr; + } + } + else + { + if (!integer_zerop (delta) || vcall_index) + { + fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index); + if (!DECL_NAME (fn)) + finish_thunk (fn); + } + /* Take the address of the function, considering it to be of an + appropriate generic type. */ + if (!TARGET_VTABLE_USES_DESCRIPTORS) + init = fold_convert (vfunc_ptr_type_node, + build_fold_addr_expr (fn)); + } + } + + /* And add it to the chain of initializers. */ + if (TARGET_VTABLE_USES_DESCRIPTORS) + { + int i; + if (init == size_zero_node) + for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i) + CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); + else + for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i) + { + tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node, + fn, build_int_cst (NULL_TREE, i)); + TREE_CONSTANT (fdesc) = 1; + + CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc); + } + } + else + CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); + } +} + +/* Adds to vid->inits the initializers for the vbase and vcall + offsets in BINFO, which is in the hierarchy dominated by T. */ + +static void +build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid) +{ + tree b; + + /* If this is a derived class, we must first create entries + corresponding to the primary base class. */ + b = get_primary_binfo (binfo); + if (b) + build_vcall_and_vbase_vtbl_entries (b, vid); + + /* Add the vbase entries for this base. */ + build_vbase_offset_vtbl_entries (binfo, vid); + /* Add the vcall entries for this base. */ + build_vcall_offset_vtbl_entries (binfo, vid); +} + +/* Returns the initializers for the vbase offset entries in the vtable + for BINFO (which is part of the class hierarchy dominated by T), in + reverse order. VBASE_OFFSET_INDEX gives the vtable index + where the next vbase offset will go. */ + +static void +build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid) +{ + tree vbase; + tree t; + tree non_primary_binfo; + + /* If there are no virtual baseclasses, then there is nothing to + do. */ + if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))) + return; + + t = vid->derived; + + /* We might be a primary base class. Go up the inheritance hierarchy + until we find the most derived class of which we are a primary base: + it is the offset of that which we need to use. */ + non_primary_binfo = binfo; + while (BINFO_INHERITANCE_CHAIN (non_primary_binfo)) + { + tree b; + + /* If we have reached a virtual base, then it must be a primary + base (possibly multi-level) of vid->binfo, or we wouldn't + have called build_vcall_and_vbase_vtbl_entries for it. But it + might be a lost primary, so just skip down to vid->binfo. */ + if (BINFO_VIRTUAL_P (non_primary_binfo)) + { + non_primary_binfo = vid->binfo; + break; + } + + b = BINFO_INHERITANCE_CHAIN (non_primary_binfo); + if (get_primary_binfo (b) != non_primary_binfo) + break; + non_primary_binfo = b; + } + + /* Go through the virtual bases, adding the offsets. */ + for (vbase = TYPE_BINFO (BINFO_TYPE (binfo)); + vbase; + vbase = TREE_CHAIN (vbase)) + { + tree b; + tree delta; + + if (!BINFO_VIRTUAL_P (vbase)) + continue; + + /* Find the instance of this virtual base in the complete + object. */ + b = copied_binfo (vbase, binfo); + + /* If we've already got an offset for this virtual base, we + don't need another one. */ + if (BINFO_VTABLE_PATH_MARKED (b)) + continue; + BINFO_VTABLE_PATH_MARKED (b) = 1; + + /* Figure out where we can find this vbase offset. */ + delta = size_binop (MULT_EXPR, + vid->index, + convert (ssizetype, + TYPE_SIZE_UNIT (vtable_entry_type))); + if (vid->primary_vtbl_p) + BINFO_VPTR_FIELD (b) = delta; + + if (binfo != TYPE_BINFO (t)) + /* The vbase offset had better be the same. */ + gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase))); + + /* The next vbase will come at a more negative offset. */ + vid->index = size_binop (MINUS_EXPR, vid->index, + ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE)); + + /* The initializer is the delta from BINFO to this virtual base. + The vbase offsets go in reverse inheritance-graph order, and + we are walking in inheritance graph order so these end up in + the right order. */ + delta = size_diffop_loc (input_location, + BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo)); + + CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, + fold_build1_loc (input_location, NOP_EXPR, + vtable_entry_type, delta)); + } +} + +/* Adds the initializers for the vcall offset entries in the vtable + for BINFO (which is part of the class hierarchy dominated by VID->DERIVED) + to VID->INITS. */ + +static void +build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid) +{ + /* We only need these entries if this base is a virtual base. We + compute the indices -- but do not add to the vtable -- when + building the main vtable for a class. */ + if (binfo == TYPE_BINFO (vid->derived) + || (BINFO_VIRTUAL_P (binfo) + /* If BINFO is RTTI_BINFO, then (since BINFO does not + correspond to VID->DERIVED), we are building a primary + construction virtual table. Since this is a primary + virtual table, we do not need the vcall offsets for + BINFO. */ + && binfo != vid->rtti_binfo)) + { + /* We need a vcall offset for each of the virtual functions in this + vtable. For example: + + class A { virtual void f (); }; + class B1 : virtual public A { virtual void f (); }; + class B2 : virtual public A { virtual void f (); }; + class C: public B1, public B2 { virtual void f (); }; + + A C object has a primary base of B1, which has a primary base of A. A + C also has a secondary base of B2, which no longer has a primary base + of A. So the B2-in-C construction vtable needs a secondary vtable for + A, which will adjust the A* to a B2* to call f. We have no way of + knowing what (or even whether) this offset will be when we define B2, + so we store this "vcall offset" in the A sub-vtable and look it up in + a "virtual thunk" for B2::f. + + We need entries for all the functions in our primary vtable and + in our non-virtual bases' secondary vtables. */ + vid->vbase = binfo; + /* If we are just computing the vcall indices -- but do not need + the actual entries -- not that. */ + if (!BINFO_VIRTUAL_P (binfo)) + vid->generate_vcall_entries = false; + /* Now, walk through the non-virtual bases, adding vcall offsets. */ + add_vcall_offset_vtbl_entries_r (binfo, vid); + } +} + +/* Build vcall offsets, starting with those for BINFO. */ + +static void +add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid) +{ + int i; + tree primary_binfo; + tree base_binfo; + + /* Don't walk into virtual bases -- except, of course, for the + virtual base for which we are building vcall offsets. Any + primary virtual base will have already had its offsets generated + through the recursion in build_vcall_and_vbase_vtbl_entries. */ + if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo) + return; + + /* If BINFO has a primary base, process it first. */ + primary_binfo = get_primary_binfo (binfo); + if (primary_binfo) + add_vcall_offset_vtbl_entries_r (primary_binfo, vid); + + /* Add BINFO itself to the list. */ + add_vcall_offset_vtbl_entries_1 (binfo, vid); + + /* Scan the non-primary bases of BINFO. */ + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) + if (base_binfo != primary_binfo) + add_vcall_offset_vtbl_entries_r (base_binfo, vid); +} + +/* Called from build_vcall_offset_vtbl_entries_r. */ + +static void +add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid) +{ + /* Make entries for the rest of the virtuals. */ + if (abi_version_at_least (2)) + { + tree orig_fn; + + /* The ABI requires that the methods be processed in declaration + order. G++ 3.2 used the order in the vtable. */ + for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo)); + orig_fn; + orig_fn = DECL_CHAIN (orig_fn)) + if (DECL_VINDEX (orig_fn)) + add_vcall_offset (orig_fn, binfo, vid); + } + else + { + tree derived_virtuals; + tree base_virtuals; + tree orig_virtuals; + /* If BINFO is a primary base, the most derived class which has + BINFO as a primary base; otherwise, just BINFO. */ + tree non_primary_binfo; + + /* We might be a primary base class. Go up the inheritance hierarchy + until we find the most derived class of which we are a primary base: + it is the BINFO_VIRTUALS there that we need to consider. */ + non_primary_binfo = binfo; + while (BINFO_INHERITANCE_CHAIN (non_primary_binfo)) + { + tree b; + + /* If we have reached a virtual base, then it must be vid->vbase, + because we ignore other virtual bases in + add_vcall_offset_vtbl_entries_r. In turn, it must be a primary + base (possibly multi-level) of vid->binfo, or we wouldn't + have called build_vcall_and_vbase_vtbl_entries for it. But it + might be a lost primary, so just skip down to vid->binfo. */ + if (BINFO_VIRTUAL_P (non_primary_binfo)) + { + gcc_assert (non_primary_binfo == vid->vbase); + non_primary_binfo = vid->binfo; + break; + } + + b = BINFO_INHERITANCE_CHAIN (non_primary_binfo); + if (get_primary_binfo (b) != non_primary_binfo) + break; + non_primary_binfo = b; + } + + if (vid->ctor_vtbl_p) + /* For a ctor vtable we need the equivalent binfo within the hierarchy + where rtti_binfo is the most derived type. */ + non_primary_binfo + = original_binfo (non_primary_binfo, vid->rtti_binfo); + + for (base_virtuals = BINFO_VIRTUALS (binfo), + derived_virtuals = BINFO_VIRTUALS (non_primary_binfo), + orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo))); + base_virtuals; + base_virtuals = TREE_CHAIN (base_virtuals), + derived_virtuals = TREE_CHAIN (derived_virtuals), + orig_virtuals = TREE_CHAIN (orig_virtuals)) + { + tree orig_fn; + + /* Find the declaration that originally caused this function to + be present in BINFO_TYPE (binfo). */ + orig_fn = BV_FN (orig_virtuals); + + /* When processing BINFO, we only want to generate vcall slots for + function slots introduced in BINFO. So don't try to generate + one if the function isn't even defined in BINFO. */ + if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn))) + continue; + + add_vcall_offset (orig_fn, binfo, vid); + } + } +} + +/* Add a vcall offset entry for ORIG_FN to the vtable. */ + +static void +add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid) +{ + size_t i; + tree vcall_offset; + tree derived_entry; + + /* If there is already an entry for a function with the same + signature as FN, then we do not need a second vcall offset. + Check the list of functions already present in the derived + class vtable. */ + FOR_EACH_VEC_ELT (tree, vid->fns, i, derived_entry) + { + if (same_signature_p (derived_entry, orig_fn) + /* We only use one vcall offset for virtual destructors, + even though there are two virtual table entries. */ + || (DECL_DESTRUCTOR_P (derived_entry) + && DECL_DESTRUCTOR_P (orig_fn))) + return; + } + + /* If we are building these vcall offsets as part of building + the vtable for the most derived class, remember the vcall + offset. */ + if (vid->binfo == TYPE_BINFO (vid->derived)) + { + tree_pair_p elt = VEC_safe_push (tree_pair_s, gc, + CLASSTYPE_VCALL_INDICES (vid->derived), + NULL); + elt->purpose = orig_fn; + elt->value = vid->index; + } + + /* The next vcall offset will be found at a more negative + offset. */ + vid->index = size_binop (MINUS_EXPR, vid->index, + ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE)); + + /* Keep track of this function. */ + VEC_safe_push (tree, gc, vid->fns, orig_fn); + + if (vid->generate_vcall_entries) + { + tree base; + tree fn; + + /* Find the overriding function. */ + fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn); + if (fn == error_mark_node) + vcall_offset = build_zero_cst (vtable_entry_type); + else + { + base = TREE_VALUE (fn); + + /* The vbase we're working on is a primary base of + vid->binfo. But it might be a lost primary, so its + BINFO_OFFSET might be wrong, so we just use the + BINFO_OFFSET from vid->binfo. */ + vcall_offset = size_diffop_loc (input_location, + BINFO_OFFSET (base), + BINFO_OFFSET (vid->binfo)); + vcall_offset = fold_build1_loc (input_location, + NOP_EXPR, vtable_entry_type, + vcall_offset); + } + /* Add the initializer to the vtable. */ + CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset); + } +} + +/* Return vtbl initializers for the RTTI entries corresponding to the + BINFO's vtable. The RTTI entries should indicate the object given + by VID->rtti_binfo. */ + +static void +build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid) +{ + tree b; + tree t; + tree offset; + tree decl; + tree init; + + t = BINFO_TYPE (vid->rtti_binfo); + + /* To find the complete object, we will first convert to our most + primary base, and then add the offset in the vtbl to that value. */ + b = binfo; + while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b)) + && !BINFO_LOST_PRIMARY_P (b)) + { + tree primary_base; + + primary_base = get_primary_binfo (b); + gcc_assert (BINFO_PRIMARY_P (primary_base) + && BINFO_INHERITANCE_CHAIN (primary_base) == b); + b = primary_base; + } + offset = size_diffop_loc (input_location, + BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b)); + + /* The second entry is the address of the typeinfo object. */ + if (flag_rtti) + decl = build_address (get_tinfo_decl (t)); + else + decl = integer_zero_node; + + /* Convert the declaration to a type that can be stored in the + vtable. */ + init = build_nop (vfunc_ptr_type_node, decl); + CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init); + + /* Add the offset-to-top entry. It comes earlier in the vtable than + the typeinfo entry. Convert the offset to look like a + function pointer, so that we can put it in the vtable. */ + init = build_nop (vfunc_ptr_type_node, offset); + CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init); +} + +/* Fold a OBJ_TYPE_REF expression to the address of a function. + KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */ + +tree +cp_fold_obj_type_ref (tree ref, tree known_type) +{ + HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1); + HOST_WIDE_INT i = 0; + tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type)); + tree fndecl; + + while (i != index) + { + i += (TARGET_VTABLE_USES_DESCRIPTORS + ? TARGET_VTABLE_USES_DESCRIPTORS : 1); + v = TREE_CHAIN (v); + } + + fndecl = BV_FN (v); + +#ifdef ENABLE_CHECKING + gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref), + DECL_VINDEX (fndecl))); +#endif + + cgraph_node (fndecl)->local.vtable_method = true; + + return build_address (fndecl); +} + +#include "gt-cp-class.h" |