diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/cp/search.c | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/cp/search.c')
-rw-r--r-- | gcc/cp/search.c | 2624 |
1 files changed, 2624 insertions, 0 deletions
diff --git a/gcc/cp/search.c b/gcc/cp/search.c new file mode 100644 index 000000000..07ec9efd3 --- /dev/null +++ b/gcc/cp/search.c @@ -0,0 +1,2624 @@ +/* Breadth-first and depth-first routines for + searching multiple-inheritance lattice for GNU C++. + Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, + 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Michael Tiemann (tiemann@cygnus.com) + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* High-level class interface. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "cp-tree.h" +#include "intl.h" +#include "flags.h" +#include "output.h" +#include "toplev.h" +#include "target.h" + +static int is_subobject_of_p (tree, tree); +static tree dfs_lookup_base (tree, void *); +static tree dfs_dcast_hint_pre (tree, void *); +static tree dfs_dcast_hint_post (tree, void *); +static tree dfs_debug_mark (tree, void *); +static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data); +static void dfs_unmark_r (tree); +static int check_hidden_convs (tree, int, int, tree, tree, tree); +static tree split_conversions (tree, tree, tree, tree); +static int lookup_conversions_r (tree, int, int, + tree, tree, tree, tree, tree *, tree *); +static int look_for_overrides_r (tree, tree); +static tree lookup_field_r (tree, void *); +static tree dfs_accessible_post (tree, void *); +static tree dfs_walk_once_accessible_r (tree, bool, bool, + tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), + void *data); +static tree dfs_walk_once_accessible (tree, bool, + tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), + void *data); +static tree dfs_access_in_type (tree, void *); +static access_kind access_in_type (tree, tree); +static int protected_accessible_p (tree, tree, tree); +static int friend_accessible_p (tree, tree, tree); +static tree dfs_get_pure_virtuals (tree, void *); + + +/* Variables for gathering statistics. */ +#ifdef GATHER_STATISTICS +static int n_fields_searched; +static int n_calls_lookup_field, n_calls_lookup_field_1; +static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1; +static int n_calls_get_base_type; +static int n_outer_fields_searched; +static int n_contexts_saved; +#endif /* GATHER_STATISTICS */ + + +/* Data for lookup_base and its workers. */ + +struct lookup_base_data_s +{ + tree t; /* type being searched. */ + tree base; /* The base type we're looking for. */ + tree binfo; /* Found binfo. */ + bool via_virtual; /* Found via a virtual path. */ + bool ambiguous; /* Found multiply ambiguous */ + bool repeated_base; /* Whether there are repeated bases in the + hierarchy. */ + bool want_any; /* Whether we want any matching binfo. */ +}; + +/* Worker function for lookup_base. See if we've found the desired + base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */ + +static tree +dfs_lookup_base (tree binfo, void *data_) +{ + struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_; + + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base)) + { + if (!data->binfo) + { + data->binfo = binfo; + data->via_virtual + = binfo_via_virtual (data->binfo, data->t) != NULL_TREE; + + if (!data->repeated_base) + /* If there are no repeated bases, we can stop now. */ + return binfo; + + if (data->want_any && !data->via_virtual) + /* If this is a non-virtual base, then we can't do + better. */ + return binfo; + + return dfs_skip_bases; + } + else + { + gcc_assert (binfo != data->binfo); + + /* We've found more than one matching binfo. */ + if (!data->want_any) + { + /* This is immediately ambiguous. */ + data->binfo = NULL_TREE; + data->ambiguous = true; + return error_mark_node; + } + + /* Prefer one via a non-virtual path. */ + if (!binfo_via_virtual (binfo, data->t)) + { + data->binfo = binfo; + data->via_virtual = false; + return binfo; + } + + /* There must be repeated bases, otherwise we'd have stopped + on the first base we found. */ + return dfs_skip_bases; + } + } + + return NULL_TREE; +} + +/* Returns true if type BASE is accessible in T. (BASE is known to be + a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is + true, consider any special access of the current scope, or access + bestowed by friendship. */ + +bool +accessible_base_p (tree t, tree base, bool consider_local_p) +{ + tree decl; + + /* [class.access.base] + + A base class is said to be accessible if an invented public + member of the base class is accessible. + + If BASE is a non-proper base, this condition is trivially + true. */ + if (same_type_p (t, base)) + return true; + /* Rather than inventing a public member, we use the implicit + public typedef created in the scope of every class. */ + decl = TYPE_FIELDS (base); + while (!DECL_SELF_REFERENCE_P (decl)) + decl = DECL_CHAIN (decl); + while (ANON_AGGR_TYPE_P (t)) + t = TYPE_CONTEXT (t); + return accessible_p (t, decl, consider_local_p); +} + +/* Lookup BASE in the hierarchy dominated by T. Do access checking as + ACCESS specifies. Return the binfo we discover. If KIND_PTR is + non-NULL, fill with information about what kind of base we + discovered. + + If the base is inaccessible, or ambiguous, and the ba_quiet bit is + not set in ACCESS, then an error is issued and error_mark_node is + returned. If the ba_quiet bit is set, then no error is issued and + NULL_TREE is returned. */ + +tree +lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr) +{ + tree binfo; + tree t_binfo; + base_kind bk; + + if (t == error_mark_node || base == error_mark_node) + { + if (kind_ptr) + *kind_ptr = bk_not_base; + return error_mark_node; + } + gcc_assert (TYPE_P (base)); + + if (!TYPE_P (t)) + { + t_binfo = t; + t = BINFO_TYPE (t); + } + else + { + t = complete_type (TYPE_MAIN_VARIANT (t)); + t_binfo = TYPE_BINFO (t); + } + + base = TYPE_MAIN_VARIANT (base); + + /* If BASE is incomplete, it can't be a base of T--and instantiating it + might cause an error. */ + if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base)) + { + struct lookup_base_data_s data; + + data.t = t; + data.base = base; + data.binfo = NULL_TREE; + data.ambiguous = data.via_virtual = false; + data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t); + data.want_any = access == ba_any; + + dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data); + binfo = data.binfo; + + if (!binfo) + bk = data.ambiguous ? bk_ambig : bk_not_base; + else if (binfo == t_binfo) + bk = bk_same_type; + else if (data.via_virtual) + bk = bk_via_virtual; + else + bk = bk_proper_base; + } + else + { + binfo = NULL_TREE; + bk = bk_not_base; + } + + /* Check that the base is unambiguous and accessible. */ + if (access != ba_any) + switch (bk) + { + case bk_not_base: + break; + + case bk_ambig: + if (!(access & ba_quiet)) + { + error ("%qT is an ambiguous base of %qT", base, t); + binfo = error_mark_node; + } + break; + + default: + if ((access & ba_check_bit) + /* If BASE is incomplete, then BASE and TYPE are probably + the same, in which case BASE is accessible. If they + are not the same, then TYPE is invalid. In that case, + there's no need to issue another error here, and + there's no implicit typedef to use in the code that + follows, so we skip the check. */ + && COMPLETE_TYPE_P (base) + && !accessible_base_p (t, base, !(access & ba_ignore_scope))) + { + if (!(access & ba_quiet)) + { + error ("%qT is an inaccessible base of %qT", base, t); + binfo = error_mark_node; + } + else + binfo = NULL_TREE; + bk = bk_inaccessible; + } + break; + } + + if (kind_ptr) + *kind_ptr = bk; + + return binfo; +} + +/* Data for dcast_base_hint walker. */ + +struct dcast_data_s +{ + tree subtype; /* The base type we're looking for. */ + int virt_depth; /* Number of virtual bases encountered from most + derived. */ + tree offset; /* Best hint offset discovered so far. */ + bool repeated_base; /* Whether there are repeated bases in the + hierarchy. */ +}; + +/* Worker for dcast_base_hint. Search for the base type being cast + from. */ + +static tree +dfs_dcast_hint_pre (tree binfo, void *data_) +{ + struct dcast_data_s *data = (struct dcast_data_s *) data_; + + if (BINFO_VIRTUAL_P (binfo)) + data->virt_depth++; + + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype)) + { + if (data->virt_depth) + { + data->offset = ssize_int (-1); + return data->offset; + } + if (data->offset) + data->offset = ssize_int (-3); + else + data->offset = BINFO_OFFSET (binfo); + + return data->repeated_base ? dfs_skip_bases : data->offset; + } + + return NULL_TREE; +} + +/* Worker for dcast_base_hint. Track the virtual depth. */ + +static tree +dfs_dcast_hint_post (tree binfo, void *data_) +{ + struct dcast_data_s *data = (struct dcast_data_s *) data_; + + if (BINFO_VIRTUAL_P (binfo)) + data->virt_depth--; + + return NULL_TREE; +} + +/* The dynamic cast runtime needs a hint about how the static SUBTYPE type + started from is related to the required TARGET type, in order to optimize + the inheritance graph search. This information is independent of the + current context, and ignores private paths, hence get_base_distance is + inappropriate. Return a TREE specifying the base offset, BOFF. + BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF, + and there are no public virtual SUBTYPE bases. + BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases. + BOFF == -2, SUBTYPE is not a public base. + BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */ + +tree +dcast_base_hint (tree subtype, tree target) +{ + struct dcast_data_s data; + + data.subtype = subtype; + data.virt_depth = 0; + data.offset = NULL_TREE; + data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target); + + dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false, + dfs_dcast_hint_pre, dfs_dcast_hint_post, &data); + return data.offset ? data.offset : ssize_int (-2); +} + +/* Search for a member with name NAME in a multiple inheritance + lattice specified by TYPE. If it does not exist, return NULL_TREE. + If the member is ambiguously referenced, return `error_mark_node'. + Otherwise, return a DECL with the indicated name. If WANT_TYPE is + true, type declarations are preferred. */ + +/* Do a 1-level search for NAME as a member of TYPE. The caller must + figure out whether it can access this field. (Since it is only one + level, this is reasonable.) */ + +tree +lookup_field_1 (tree type, tree name, bool want_type) +{ + tree field; + + if (TREE_CODE (type) == TEMPLATE_TYPE_PARM + || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM + || TREE_CODE (type) == TYPENAME_TYPE) + /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and + BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all; + instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously, + the code often worked even when we treated the index as a list + of fields!) + The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */ + return NULL_TREE; + + if (CLASSTYPE_SORTED_FIELDS (type)) + { + tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0]; + int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len; + int i; + + while (lo < hi) + { + i = (lo + hi) / 2; + +#ifdef GATHER_STATISTICS + n_fields_searched++; +#endif /* GATHER_STATISTICS */ + + if (DECL_NAME (fields[i]) > name) + hi = i; + else if (DECL_NAME (fields[i]) < name) + lo = i + 1; + else + { + field = NULL_TREE; + + /* We might have a nested class and a field with the + same name; we sorted them appropriately via + field_decl_cmp, so just look for the first or last + field with this name. */ + if (want_type) + { + do + field = fields[i--]; + while (i >= lo && DECL_NAME (fields[i]) == name); + if (TREE_CODE (field) != TYPE_DECL + && !DECL_CLASS_TEMPLATE_P (field)) + field = NULL_TREE; + } + else + { + do + field = fields[i++]; + while (i < hi && DECL_NAME (fields[i]) == name); + } + return field; + } + } + return NULL_TREE; + } + + field = TYPE_FIELDS (type); + +#ifdef GATHER_STATISTICS + n_calls_lookup_field_1++; +#endif /* GATHER_STATISTICS */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { +#ifdef GATHER_STATISTICS + n_fields_searched++; +#endif /* GATHER_STATISTICS */ + gcc_assert (DECL_P (field)); + if (DECL_NAME (field) == NULL_TREE + && ANON_AGGR_TYPE_P (TREE_TYPE (field))) + { + tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type); + if (temp) + return temp; + } + if (TREE_CODE (field) == USING_DECL) + { + /* We generally treat class-scope using-declarations as + ARM-style access specifications, because support for the + ISO semantics has not been implemented. So, in general, + there's no reason to return a USING_DECL, and the rest of + the compiler cannot handle that. Once the class is + defined, USING_DECLs are purged from TYPE_FIELDS; see + handle_using_decl. However, we make special efforts to + make using-declarations in class templates and class + template partial specializations work correctly. */ + if (!DECL_DEPENDENT_P (field)) + continue; + } + + if (DECL_NAME (field) == name + && (!want_type + || TREE_CODE (field) == TYPE_DECL + || DECL_CLASS_TEMPLATE_P (field))) + return field; + } + /* Not found. */ + if (name == vptr_identifier) + { + /* Give the user what s/he thinks s/he wants. */ + if (TYPE_POLYMORPHIC_P (type)) + return TYPE_VFIELD (type); + } + return NULL_TREE; +} + +/* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or + NAMESPACE_DECL corresponding to the innermost non-block scope. */ + +tree +current_scope (void) +{ + /* There are a number of cases we need to be aware of here: + current_class_type current_function_decl + global NULL NULL + fn-local NULL SET + class-local SET NULL + class->fn SET SET + fn->class SET SET + + Those last two make life interesting. If we're in a function which is + itself inside a class, we need decls to go into the fn's decls (our + second case below). But if we're in a class and the class itself is + inside a function, we need decls to go into the decls for the class. To + achieve this last goal, we must see if, when both current_class_ptr and + current_function_decl are set, the class was declared inside that + function. If so, we know to put the decls into the class's scope. */ + if (current_function_decl && current_class_type + && ((DECL_FUNCTION_MEMBER_P (current_function_decl) + && same_type_p (DECL_CONTEXT (current_function_decl), + current_class_type)) + || (DECL_FRIEND_CONTEXT (current_function_decl) + && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl), + current_class_type)))) + return current_function_decl; + if (current_class_type) + return current_class_type; + if (current_function_decl) + return current_function_decl; + return current_namespace; +} + +/* Returns nonzero if we are currently in a function scope. Note + that this function returns zero if we are within a local class, but + not within a member function body of the local class. */ + +int +at_function_scope_p (void) +{ + tree cs = current_scope (); + return cs && TREE_CODE (cs) == FUNCTION_DECL; +} + +/* Returns true if the innermost active scope is a class scope. */ + +bool +at_class_scope_p (void) +{ + tree cs = current_scope (); + return cs && TYPE_P (cs); +} + +/* Returns true if the innermost active scope is a namespace scope. */ + +bool +at_namespace_scope_p (void) +{ + tree cs = current_scope (); + return cs && TREE_CODE (cs) == NAMESPACE_DECL; +} + +/* Return the scope of DECL, as appropriate when doing name-lookup. */ + +tree +context_for_name_lookup (tree decl) +{ + /* [class.union] + + For the purposes of name lookup, after the anonymous union + definition, the members of the anonymous union are considered to + have been defined in the scope in which the anonymous union is + declared. */ + tree context = DECL_CONTEXT (decl); + + while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context)) + context = TYPE_CONTEXT (context); + if (!context) + context = global_namespace; + + return context; +} + +/* The accessibility routines use BINFO_ACCESS for scratch space + during the computation of the accessibility of some declaration. */ + +#define BINFO_ACCESS(NODE) \ + ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE))) + +/* Set the access associated with NODE to ACCESS. */ + +#define SET_BINFO_ACCESS(NODE, ACCESS) \ + ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \ + (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0)) + +/* Called from access_in_type via dfs_walk. Calculate the access to + DATA (which is really a DECL) in BINFO. */ + +static tree +dfs_access_in_type (tree binfo, void *data) +{ + tree decl = (tree) data; + tree type = BINFO_TYPE (binfo); + access_kind access = ak_none; + + if (context_for_name_lookup (decl) == type) + { + /* If we have descended to the scope of DECL, just note the + appropriate access. */ + if (TREE_PRIVATE (decl)) + access = ak_private; + else if (TREE_PROTECTED (decl)) + access = ak_protected; + else + access = ak_public; + } + else + { + /* First, check for an access-declaration that gives us more + access to the DECL. The CONST_DECL for an enumeration + constant will not have DECL_LANG_SPECIFIC, and thus no + DECL_ACCESS. */ + if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)) + { + tree decl_access = purpose_member (type, DECL_ACCESS (decl)); + + if (decl_access) + { + decl_access = TREE_VALUE (decl_access); + + if (decl_access == access_public_node) + access = ak_public; + else if (decl_access == access_protected_node) + access = ak_protected; + else if (decl_access == access_private_node) + access = ak_private; + else + gcc_unreachable (); + } + } + + if (!access) + { + int i; + tree base_binfo; + VEC(tree,gc) *accesses; + + /* Otherwise, scan our baseclasses, and pick the most favorable + access. */ + accesses = BINFO_BASE_ACCESSES (binfo); + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + { + tree base_access = VEC_index (tree, accesses, i); + access_kind base_access_now = BINFO_ACCESS (base_binfo); + + if (base_access_now == ak_none || base_access_now == ak_private) + /* If it was not accessible in the base, or only + accessible as a private member, we can't access it + all. */ + base_access_now = ak_none; + else if (base_access == access_protected_node) + /* Public and protected members in the base become + protected here. */ + base_access_now = ak_protected; + else if (base_access == access_private_node) + /* Public and protected members in the base become + private here. */ + base_access_now = ak_private; + + /* See if the new access, via this base, gives more + access than our previous best access. */ + if (base_access_now != ak_none + && (access == ak_none || base_access_now < access)) + { + access = base_access_now; + + /* If the new access is public, we can't do better. */ + if (access == ak_public) + break; + } + } + } + } + + /* Note the access to DECL in TYPE. */ + SET_BINFO_ACCESS (binfo, access); + + return NULL_TREE; +} + +/* Return the access to DECL in TYPE. */ + +static access_kind +access_in_type (tree type, tree decl) +{ + tree binfo = TYPE_BINFO (type); + + /* We must take into account + + [class.paths] + + If a name can be reached by several paths through a multiple + inheritance graph, the access is that of the path that gives + most access. + + The algorithm we use is to make a post-order depth-first traversal + of the base-class hierarchy. As we come up the tree, we annotate + each node with the most lenient access. */ + dfs_walk_once (binfo, NULL, dfs_access_in_type, decl); + + return BINFO_ACCESS (binfo); +} + +/* Returns nonzero if it is OK to access DECL through an object + indicated by BINFO in the context of DERIVED. */ + +static int +protected_accessible_p (tree decl, tree derived, tree binfo) +{ + access_kind access; + + /* We're checking this clause from [class.access.base] + + m as a member of N is protected, and the reference occurs in a + member or friend of class N, or in a member or friend of a + class P derived from N, where m as a member of P is public, private + or protected. + + Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */ + + /* If DERIVED isn't derived from N, then it can't be a P. */ + if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived)) + return 0; + + access = access_in_type (derived, decl); + + /* If m is inaccessible in DERIVED, then it's not a P. */ + if (access == ak_none) + return 0; + + /* [class.protected] + + When a friend or a member function of a derived class references + a protected nonstatic member of a base class, an access check + applies in addition to those described earlier in clause + _class.access_) Except when forming a pointer to member + (_expr.unary.op_), the access must be through a pointer to, + reference to, or object of the derived class itself (or any class + derived from that class) (_expr.ref_). If the access is to form + a pointer to member, the nested-name-specifier shall name the + derived class (or any class derived from that class). */ + if (DECL_NONSTATIC_MEMBER_P (decl)) + { + /* We can tell through what the reference is occurring by + chasing BINFO up to the root. */ + tree t = binfo; + while (BINFO_INHERITANCE_CHAIN (t)) + t = BINFO_INHERITANCE_CHAIN (t); + + if (!DERIVED_FROM_P (derived, BINFO_TYPE (t))) + return 0; + } + + return 1; +} + +/* Returns nonzero if SCOPE is a friend of a type which would be able + to access DECL through the object indicated by BINFO. */ + +static int +friend_accessible_p (tree scope, tree decl, tree binfo) +{ + tree befriending_classes; + tree t; + + if (!scope) + return 0; + + if (TREE_CODE (scope) == FUNCTION_DECL + || DECL_FUNCTION_TEMPLATE_P (scope)) + befriending_classes = DECL_BEFRIENDING_CLASSES (scope); + else if (TYPE_P (scope)) + befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope); + else + return 0; + + for (t = befriending_classes; t; t = TREE_CHAIN (t)) + if (protected_accessible_p (decl, TREE_VALUE (t), binfo)) + return 1; + + /* Nested classes have the same access as their enclosing types, as + per DR 45 (this is a change from the standard). */ + if (TYPE_P (scope)) + for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t)) + if (protected_accessible_p (decl, t, binfo)) + return 1; + + if (TREE_CODE (scope) == FUNCTION_DECL + || DECL_FUNCTION_TEMPLATE_P (scope)) + { + /* Perhaps this SCOPE is a member of a class which is a + friend. */ + if (DECL_CLASS_SCOPE_P (scope) + && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo)) + return 1; + + /* Or an instantiation of something which is a friend. */ + if (DECL_TEMPLATE_INFO (scope)) + { + int ret; + /* Increment processing_template_decl to make sure that + dependent_type_p works correctly. */ + ++processing_template_decl; + ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo); + --processing_template_decl; + return ret; + } + } + + return 0; +} + +/* Called via dfs_walk_once_accessible from accessible_p */ + +static tree +dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED) +{ + if (BINFO_ACCESS (binfo) != ak_none) + { + tree scope = current_scope (); + if (scope && TREE_CODE (scope) != NAMESPACE_DECL + && is_friend (BINFO_TYPE (binfo), scope)) + return binfo; + } + + return NULL_TREE; +} + +/* DECL is a declaration from a base class of TYPE, which was the + class used to name DECL. Return nonzero if, in the current + context, DECL is accessible. If TYPE is actually a BINFO node, + then we can tell in what context the access is occurring by looking + at the most derived class along the path indicated by BINFO. If + CONSIDER_LOCAL is true, do consider special access the current + scope or friendship thereof we might have. */ + +int +accessible_p (tree type, tree decl, bool consider_local_p) +{ + tree binfo; + tree scope; + access_kind access; + + /* Nonzero if it's OK to access DECL if it has protected + accessibility in TYPE. */ + int protected_ok = 0; + + /* If this declaration is in a block or namespace scope, there's no + access control. */ + if (!TYPE_P (context_for_name_lookup (decl))) + return 1; + + /* There is no need to perform access checks inside a thunk. */ + scope = current_scope (); + if (scope && DECL_THUNK_P (scope)) + return 1; + + /* In a template declaration, we cannot be sure whether the + particular specialization that is instantiated will be a friend + or not. Therefore, all access checks are deferred until + instantiation. However, PROCESSING_TEMPLATE_DECL is set in the + parameter list for a template (because we may see dependent types + in default arguments for template parameters), and access + checking should be performed in the outermost parameter list. */ + if (processing_template_decl + && (!processing_template_parmlist || processing_template_decl > 1)) + return 1; + + if (!TYPE_P (type)) + { + binfo = type; + type = BINFO_TYPE (type); + } + else + binfo = TYPE_BINFO (type); + + /* [class.access.base] + + A member m is accessible when named in class N if + + --m as a member of N is public, or + + --m as a member of N is private, and the reference occurs in a + member or friend of class N, or + + --m as a member of N is protected, and the reference occurs in a + member or friend of class N, or in a member or friend of a + class P derived from N, where m as a member of P is private or + protected, or + + --there exists a base class B of N that is accessible at the point + of reference, and m is accessible when named in class B. + + We walk the base class hierarchy, checking these conditions. */ + + if (consider_local_p) + { + /* Figure out where the reference is occurring. Check to see if + DECL is private or protected in this scope, since that will + determine whether protected access is allowed. */ + if (current_class_type) + protected_ok = protected_accessible_p (decl, + current_class_type, binfo); + + /* Now, loop through the classes of which we are a friend. */ + if (!protected_ok) + protected_ok = friend_accessible_p (scope, decl, binfo); + } + + /* Standardize the binfo that access_in_type will use. We don't + need to know what path was chosen from this point onwards. */ + binfo = TYPE_BINFO (type); + + /* Compute the accessibility of DECL in the class hierarchy + dominated by type. */ + access = access_in_type (type, decl); + if (access == ak_public + || (access == ak_protected && protected_ok)) + return 1; + + if (!consider_local_p) + return 0; + + /* Walk the hierarchy again, looking for a base class that allows + access. */ + return dfs_walk_once_accessible (binfo, /*friends=*/true, + NULL, dfs_accessible_post, NULL) + != NULL_TREE; +} + +struct lookup_field_info { + /* The type in which we're looking. */ + tree type; + /* The name of the field for which we're looking. */ + tree name; + /* If non-NULL, the current result of the lookup. */ + tree rval; + /* The path to RVAL. */ + tree rval_binfo; + /* If non-NULL, the lookup was ambiguous, and this is a list of the + candidates. */ + tree ambiguous; + /* If nonzero, we are looking for types, not data members. */ + int want_type; + /* If something went wrong, a message indicating what. */ + const char *errstr; +}; + +/* Nonzero for a class member means that it is shared between all objects + of that class. + + [class.member.lookup]:If the resulting set of declarations are not all + from sub-objects of the same type, or the set has a nonstatic member + and includes members from distinct sub-objects, there is an ambiguity + and the program is ill-formed. + + This function checks that T contains no nonstatic members. */ + +int +shared_member_p (tree t) +{ + if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \ + || TREE_CODE (t) == CONST_DECL) + return 1; + if (is_overloaded_fn (t)) + { + t = get_fns (t); + for (; t; t = OVL_NEXT (t)) + { + tree fn = OVL_CURRENT (t); + if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)) + return 0; + } + return 1; + } + return 0; +} + +/* Routine to see if the sub-object denoted by the binfo PARENT can be + found as a base class and sub-object of the object denoted by + BINFO. */ + +static int +is_subobject_of_p (tree parent, tree binfo) +{ + tree probe; + + for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) + { + if (probe == binfo) + return 1; + if (BINFO_VIRTUAL_P (probe)) + return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo)) + != NULL_TREE); + } + return 0; +} + +/* DATA is really a struct lookup_field_info. Look for a field with + the name indicated there in BINFO. If this function returns a + non-NULL value it is the result of the lookup. Called from + lookup_field via breadth_first_search. */ + +static tree +lookup_field_r (tree binfo, void *data) +{ + struct lookup_field_info *lfi = (struct lookup_field_info *) data; + tree type = BINFO_TYPE (binfo); + tree nval = NULL_TREE; + + /* If this is a dependent base, don't look in it. */ + if (BINFO_DEPENDENT_BASE_P (binfo)) + return NULL_TREE; + + /* If this base class is hidden by the best-known value so far, we + don't need to look. */ + if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo + && !BINFO_VIRTUAL_P (binfo)) + return dfs_skip_bases; + + /* First, look for a function. There can't be a function and a data + member with the same name, and if there's a function and a type + with the same name, the type is hidden by the function. */ + if (!lfi->want_type) + { + int idx = lookup_fnfields_1 (type, lfi->name); + if (idx >= 0) + nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx); + } + + if (!nval) + /* Look for a data member or type. */ + nval = lookup_field_1 (type, lfi->name, lfi->want_type); + + /* If there is no declaration with the indicated name in this type, + then there's nothing to do. */ + if (!nval) + goto done; + + /* If we're looking up a type (as with an elaborated type specifier) + we ignore all non-types we find. */ + if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL + && !DECL_CLASS_TEMPLATE_P (nval)) + { + if (lfi->name == TYPE_IDENTIFIER (type)) + { + /* If the aggregate has no user defined constructors, we allow + it to have fields with the same name as the enclosing type. + If we are looking for that name, find the corresponding + TYPE_DECL. */ + for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval)) + if (DECL_NAME (nval) == lfi->name + && TREE_CODE (nval) == TYPE_DECL) + break; + } + else + nval = NULL_TREE; + if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL) + { + binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type), + lfi->name); + if (e != NULL) + nval = TYPE_MAIN_DECL (e->type); + else + goto done; + } + } + + /* If the lookup already found a match, and the new value doesn't + hide the old one, we might have an ambiguity. */ + if (lfi->rval_binfo + && !is_subobject_of_p (lfi->rval_binfo, binfo)) + + { + if (nval == lfi->rval && shared_member_p (nval)) + /* The two things are really the same. */ + ; + else if (is_subobject_of_p (binfo, lfi->rval_binfo)) + /* The previous value hides the new one. */ + ; + else + { + /* We have a real ambiguity. We keep a chain of all the + candidates. */ + if (!lfi->ambiguous && lfi->rval) + { + /* This is the first time we noticed an ambiguity. Add + what we previously thought was a reasonable candidate + to the list. */ + lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE); + TREE_TYPE (lfi->ambiguous) = error_mark_node; + } + + /* Add the new value. */ + lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous); + TREE_TYPE (lfi->ambiguous) = error_mark_node; + lfi->errstr = G_("request for member %qD is ambiguous"); + } + } + else + { + lfi->rval = nval; + lfi->rval_binfo = binfo; + } + + done: + /* Don't look for constructors or destructors in base classes. */ + if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name)) + return dfs_skip_bases; + return NULL_TREE; +} + +/* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO, + BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO, + FUNCTIONS, and OPTYPE respectively. */ + +tree +build_baselink (tree binfo, tree access_binfo, tree functions, tree optype) +{ + tree baselink; + + gcc_assert (TREE_CODE (functions) == FUNCTION_DECL + || TREE_CODE (functions) == TEMPLATE_DECL + || TREE_CODE (functions) == TEMPLATE_ID_EXPR + || TREE_CODE (functions) == OVERLOAD); + gcc_assert (!optype || TYPE_P (optype)); + gcc_assert (TREE_TYPE (functions)); + + baselink = make_node (BASELINK); + TREE_TYPE (baselink) = TREE_TYPE (functions); + BASELINK_BINFO (baselink) = binfo; + BASELINK_ACCESS_BINFO (baselink) = access_binfo; + BASELINK_FUNCTIONS (baselink) = functions; + BASELINK_OPTYPE (baselink) = optype; + + return baselink; +} + +/* Look for a member named NAME in an inheritance lattice dominated by + XBASETYPE. If PROTECT is 0 or two, we do not check access. If it + is 1, we enforce accessibility. If PROTECT is zero, then, for an + ambiguous lookup, we return NULL. If PROTECT is 1, we issue error + messages about inaccessible or ambiguous lookup. If PROTECT is 2, + we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose + TREE_VALUEs are the list of ambiguous candidates. + + WANT_TYPE is 1 when we should only return TYPE_DECLs. + + If nothing can be found return NULL_TREE and do not issue an error. */ + +tree +lookup_member (tree xbasetype, tree name, int protect, bool want_type) +{ + tree rval, rval_binfo = NULL_TREE; + tree type = NULL_TREE, basetype_path = NULL_TREE; + struct lookup_field_info lfi; + + /* rval_binfo is the binfo associated with the found member, note, + this can be set with useful information, even when rval is not + set, because it must deal with ALL members, not just non-function + members. It is used for ambiguity checking and the hidden + checks. Whereas rval is only set if a proper (not hidden) + non-function member is found. */ + + const char *errstr = 0; + + if (name == error_mark_node) + return NULL_TREE; + + gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); + + if (TREE_CODE (xbasetype) == TREE_BINFO) + { + type = BINFO_TYPE (xbasetype); + basetype_path = xbasetype; + } + else + { + if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype))) + return NULL_TREE; + type = xbasetype; + xbasetype = NULL_TREE; + } + + type = complete_type (type); + if (!basetype_path) + basetype_path = TYPE_BINFO (type); + + if (!basetype_path) + return NULL_TREE; + +#ifdef GATHER_STATISTICS + n_calls_lookup_field++; +#endif /* GATHER_STATISTICS */ + + memset (&lfi, 0, sizeof (lfi)); + lfi.type = type; + lfi.name = name; + lfi.want_type = want_type; + dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi); + rval = lfi.rval; + rval_binfo = lfi.rval_binfo; + if (rval_binfo) + type = BINFO_TYPE (rval_binfo); + errstr = lfi.errstr; + + /* If we are not interested in ambiguities, don't report them; + just return NULL_TREE. */ + if (!protect && lfi.ambiguous) + return NULL_TREE; + + if (protect == 2) + { + if (lfi.ambiguous) + return lfi.ambiguous; + else + protect = 0; + } + + /* [class.access] + + In the case of overloaded function names, access control is + applied to the function selected by overloaded resolution. + + We cannot check here, even if RVAL is only a single non-static + member function, since we do not know what the "this" pointer + will be. For: + + class A { protected: void f(); }; + class B : public A { + void g(A *p) { + f(); // OK + p->f(); // Not OK. + } + }; + + only the first call to "f" is valid. However, if the function is + static, we can check. */ + if (rval && protect + && !really_overloaded_fn (rval) + && !(TREE_CODE (rval) == FUNCTION_DECL + && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval))) + perform_or_defer_access_check (basetype_path, rval, rval); + + if (errstr && protect) + { + error (errstr, name, type); + if (lfi.ambiguous) + print_candidates (lfi.ambiguous); + rval = error_mark_node; + } + + if (rval && is_overloaded_fn (rval)) + rval = build_baselink (rval_binfo, basetype_path, rval, + (IDENTIFIER_TYPENAME_P (name) + ? TREE_TYPE (name): NULL_TREE)); + return rval; +} + +/* Like lookup_member, except that if we find a function member we + return NULL_TREE. */ + +tree +lookup_field (tree xbasetype, tree name, int protect, bool want_type) +{ + tree rval = lookup_member (xbasetype, name, protect, want_type); + + /* Ignore functions, but propagate the ambiguity list. */ + if (!error_operand_p (rval) + && (rval && BASELINK_P (rval))) + return NULL_TREE; + + return rval; +} + +/* Like lookup_member, except that if we find a non-function member we + return NULL_TREE. */ + +tree +lookup_fnfields (tree xbasetype, tree name, int protect) +{ + tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false); + + /* Ignore non-functions, but propagate the ambiguity list. */ + if (!error_operand_p (rval) + && (rval && !BASELINK_P (rval))) + return NULL_TREE; + + return rval; +} + +/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE + corresponding to "operator TYPE ()", or -1 if there is no such + operator. Only CLASS_TYPE itself is searched; this routine does + not scan the base classes of CLASS_TYPE. */ + +static int +lookup_conversion_operator (tree class_type, tree type) +{ + int tpl_slot = -1; + + if (TYPE_HAS_CONVERSION (class_type)) + { + int i; + tree fn; + VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type); + + for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, methods, i, fn); ++i) + { + /* All the conversion operators come near the beginning of + the class. Therefore, if FN is not a conversion + operator, there is no matching conversion operator in + CLASS_TYPE. */ + fn = OVL_CURRENT (fn); + if (!DECL_CONV_FN_P (fn)) + break; + + if (TREE_CODE (fn) == TEMPLATE_DECL) + /* All the templated conversion functions are on the same + slot, so remember it. */ + tpl_slot = i; + else if (same_type_p (DECL_CONV_FN_TYPE (fn), type)) + return i; + } + } + + return tpl_slot; +} + +/* TYPE is a class type. Return the index of the fields within + the method vector with name NAME, or -1 if no such field exists. */ + +int +lookup_fnfields_1 (tree type, tree name) +{ + VEC(tree,gc) *method_vec; + tree fn; + tree tmp; + size_t i; + + if (!CLASS_TYPE_P (type)) + return -1; + + if (COMPLETE_TYPE_P (type)) + { + if ((name == ctor_identifier + || name == base_ctor_identifier + || name == complete_ctor_identifier)) + { + if (CLASSTYPE_LAZY_DEFAULT_CTOR (type)) + lazily_declare_fn (sfk_constructor, type); + if (CLASSTYPE_LAZY_COPY_CTOR (type)) + lazily_declare_fn (sfk_copy_constructor, type); + if (CLASSTYPE_LAZY_MOVE_CTOR (type)) + lazily_declare_fn (sfk_move_constructor, type); + } + else if (name == ansi_assopname (NOP_EXPR)) + { + if (CLASSTYPE_LAZY_COPY_ASSIGN (type)) + lazily_declare_fn (sfk_copy_assignment, type); + if (CLASSTYPE_LAZY_MOVE_ASSIGN (type)) + lazily_declare_fn (sfk_move_assignment, type); + } + else if ((name == dtor_identifier + || name == base_dtor_identifier + || name == complete_dtor_identifier + || name == deleting_dtor_identifier) + && CLASSTYPE_LAZY_DESTRUCTOR (type)) + lazily_declare_fn (sfk_destructor, type); + } + + method_vec = CLASSTYPE_METHOD_VEC (type); + if (!method_vec) + return -1; + +#ifdef GATHER_STATISTICS + n_calls_lookup_fnfields_1++; +#endif /* GATHER_STATISTICS */ + + /* Constructors are first... */ + if (name == ctor_identifier) + { + fn = CLASSTYPE_CONSTRUCTORS (type); + return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1; + } + /* and destructors are second. */ + if (name == dtor_identifier) + { + fn = CLASSTYPE_DESTRUCTORS (type); + return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1; + } + if (IDENTIFIER_TYPENAME_P (name)) + return lookup_conversion_operator (type, TREE_TYPE (name)); + + /* Skip the conversion operators. */ + for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, i, fn); + ++i) + if (!DECL_CONV_FN_P (OVL_CURRENT (fn))) + break; + + /* If the type is complete, use binary search. */ + if (COMPLETE_TYPE_P (type)) + { + int lo; + int hi; + + lo = i; + hi = VEC_length (tree, method_vec); + while (lo < hi) + { + i = (lo + hi) / 2; + +#ifdef GATHER_STATISTICS + n_outer_fields_searched++; +#endif /* GATHER_STATISTICS */ + + tmp = VEC_index (tree, method_vec, i); + tmp = DECL_NAME (OVL_CURRENT (tmp)); + if (tmp > name) + hi = i; + else if (tmp < name) + lo = i + 1; + else + return i; + } + } + else + for (; VEC_iterate (tree, method_vec, i, fn); ++i) + { +#ifdef GATHER_STATISTICS + n_outer_fields_searched++; +#endif /* GATHER_STATISTICS */ + if (DECL_NAME (OVL_CURRENT (fn)) == name) + return i; + } + + return -1; +} + +/* TYPE is a class type. Return the field within the method vector with + name NAME, or NULL_TREE if no such field exists. */ + +tree +lookup_fnfields_slot (tree type, tree name) +{ + int ix = lookup_fnfields_1 (type, name); + if (ix < 0) + return NULL_TREE; + return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix); +} + +/* Like lookup_fnfields_1, except that the name is extracted from + FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */ + +int +class_method_index_for_fn (tree class_type, tree function) +{ + gcc_assert (TREE_CODE (function) == FUNCTION_DECL + || DECL_FUNCTION_TEMPLATE_P (function)); + + return lookup_fnfields_1 (class_type, + DECL_CONSTRUCTOR_P (function) ? ctor_identifier : + DECL_DESTRUCTOR_P (function) ? dtor_identifier : + DECL_NAME (function)); +} + + +/* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is + the class or namespace used to qualify the name. CONTEXT_CLASS is + the class corresponding to the object in which DECL will be used. + Return a possibly modified version of DECL that takes into account + the CONTEXT_CLASS. + + In particular, consider an expression like `B::m' in the context of + a derived class `D'. If `B::m' has been resolved to a BASELINK, + then the most derived class indicated by the BASELINK_BINFO will be + `B', not `D'. This function makes that adjustment. */ + +tree +adjust_result_of_qualified_name_lookup (tree decl, + tree qualifying_scope, + tree context_class) +{ + if (context_class && context_class != error_mark_node + && CLASS_TYPE_P (context_class) + && CLASS_TYPE_P (qualifying_scope) + && DERIVED_FROM_P (qualifying_scope, context_class) + && BASELINK_P (decl)) + { + tree base; + + /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS. + Because we do not yet know which function will be chosen by + overload resolution, we cannot yet check either accessibility + or ambiguity -- in either case, the choice of a static member + function might make the usage valid. */ + base = lookup_base (context_class, qualifying_scope, + ba_unique | ba_quiet, NULL); + if (base) + { + BASELINK_ACCESS_BINFO (decl) = base; + BASELINK_BINFO (decl) + = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)), + ba_unique | ba_quiet, + NULL); + } + } + + return decl; +} + + +/* Walk the class hierarchy within BINFO, in a depth-first traversal. + PRE_FN is called in preorder, while POST_FN is called in postorder. + If PRE_FN returns DFS_SKIP_BASES, child binfos will not be + walked. If PRE_FN or POST_FN returns a different non-NULL value, + that value is immediately returned and the walk is terminated. One + of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and + POST_FN are passed the binfo to examine and the caller's DATA + value. All paths are walked, thus virtual and morally virtual + binfos can be multiply walked. */ + +tree +dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data) +{ + tree rval; + unsigned ix; + tree base_binfo; + + /* Call the pre-order walking function. */ + if (pre_fn) + { + rval = pre_fn (binfo, data); + if (rval) + { + if (rval == dfs_skip_bases) + goto skip_bases; + return rval; + } + } + + /* Find the next child binfo to walk. */ + for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) + { + rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data); + if (rval) + return rval; + } + + skip_bases: + /* Call the post-order walking function. */ + if (post_fn) + { + rval = post_fn (binfo, data); + gcc_assert (rval != dfs_skip_bases); + return rval; + } + + return NULL_TREE; +} + +/* Worker for dfs_walk_once. This behaves as dfs_walk_all, except + that binfos are walked at most once. */ + +static tree +dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data) +{ + tree rval; + unsigned ix; + tree base_binfo; + + /* Call the pre-order walking function. */ + if (pre_fn) + { + rval = pre_fn (binfo, data); + if (rval) + { + if (rval == dfs_skip_bases) + goto skip_bases; + + return rval; + } + } + + /* Find the next child binfo to walk. */ + for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) + { + if (BINFO_VIRTUAL_P (base_binfo)) + { + if (BINFO_MARKED (base_binfo)) + continue; + BINFO_MARKED (base_binfo) = 1; + } + + rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data); + if (rval) + return rval; + } + + skip_bases: + /* Call the post-order walking function. */ + if (post_fn) + { + rval = post_fn (binfo, data); + gcc_assert (rval != dfs_skip_bases); + return rval; + } + + return NULL_TREE; +} + +/* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of + BINFO. */ + +static void +dfs_unmark_r (tree binfo) +{ + unsigned ix; + tree base_binfo; + + /* Process the basetypes. */ + for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) + { + if (BINFO_VIRTUAL_P (base_binfo)) + { + if (!BINFO_MARKED (base_binfo)) + continue; + BINFO_MARKED (base_binfo) = 0; + } + /* Only walk, if it can contain more virtual bases. */ + if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo))) + dfs_unmark_r (base_binfo); + } +} + +/* Like dfs_walk_all, except that binfos are not multiply walked. For + non-diamond shaped hierarchies this is the same as dfs_walk_all. + For diamond shaped hierarchies we must mark the virtual bases, to + avoid multiple walks. */ + +tree +dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data) +{ + static int active = 0; /* We must not be called recursively. */ + tree rval; + + gcc_assert (pre_fn || post_fn); + gcc_assert (!active); + active++; + + if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo))) + /* We are not diamond shaped, and therefore cannot encounter the + same binfo twice. */ + rval = dfs_walk_all (binfo, pre_fn, post_fn, data); + else + { + rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data); + if (!BINFO_INHERITANCE_CHAIN (binfo)) + { + /* We are at the top of the hierarchy, and can use the + CLASSTYPE_VBASECLASSES list for unmarking the virtual + bases. */ + VEC(tree,gc) *vbases; + unsigned ix; + tree base_binfo; + + for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0; + VEC_iterate (tree, vbases, ix, base_binfo); ix++) + BINFO_MARKED (base_binfo) = 0; + } + else + dfs_unmark_r (binfo); + } + + active--; + + return rval; +} + +/* Worker function for dfs_walk_once_accessible. Behaves like + dfs_walk_once_r, except (a) FRIENDS_P is true if special + access given by the current context should be considered, (b) ONCE + indicates whether bases should be marked during traversal. */ + +static tree +dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once, + tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data) +{ + tree rval = NULL_TREE; + unsigned ix; + tree base_binfo; + + /* Call the pre-order walking function. */ + if (pre_fn) + { + rval = pre_fn (binfo, data); + if (rval) + { + if (rval == dfs_skip_bases) + goto skip_bases; + + return rval; + } + } + + /* Find the next child binfo to walk. */ + for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) + { + bool mark = once && BINFO_VIRTUAL_P (base_binfo); + + if (mark && BINFO_MARKED (base_binfo)) + continue; + + /* If the base is inherited via private or protected + inheritance, then we can't see it, unless we are a friend of + the current binfo. */ + if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node) + { + tree scope; + if (!friends_p) + continue; + scope = current_scope (); + if (!scope + || TREE_CODE (scope) == NAMESPACE_DECL + || !is_friend (BINFO_TYPE (binfo), scope)) + continue; + } + + if (mark) + BINFO_MARKED (base_binfo) = 1; + + rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once, + pre_fn, post_fn, data); + if (rval) + return rval; + } + + skip_bases: + /* Call the post-order walking function. */ + if (post_fn) + { + rval = post_fn (binfo, data); + gcc_assert (rval != dfs_skip_bases); + return rval; + } + + return NULL_TREE; +} + +/* Like dfs_walk_once except that only accessible bases are walked. + FRIENDS_P indicates whether friendship of the local context + should be considered when determining accessibility. */ + +static tree +dfs_walk_once_accessible (tree binfo, bool friends_p, + tree (*pre_fn) (tree, void *), + tree (*post_fn) (tree, void *), void *data) +{ + bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)); + tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped, + pre_fn, post_fn, data); + + if (diamond_shaped) + { + if (!BINFO_INHERITANCE_CHAIN (binfo)) + { + /* We are at the top of the hierarchy, and can use the + CLASSTYPE_VBASECLASSES list for unmarking the virtual + bases. */ + VEC(tree,gc) *vbases; + unsigned ix; + tree base_binfo; + + for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0; + VEC_iterate (tree, vbases, ix, base_binfo); ix++) + BINFO_MARKED (base_binfo) = 0; + } + else + dfs_unmark_r (binfo); + } + return rval; +} + +/* Check that virtual overrider OVERRIDER is acceptable for base function + BASEFN. Issue diagnostic, and return zero, if unacceptable. */ + +static int +check_final_overrider (tree overrider, tree basefn) +{ + tree over_type = TREE_TYPE (overrider); + tree base_type = TREE_TYPE (basefn); + tree over_return = TREE_TYPE (over_type); + tree base_return = TREE_TYPE (base_type); + tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type); + tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type); + int fail = 0; + + if (DECL_INVALID_OVERRIDER_P (overrider)) + return 0; + + if (same_type_p (base_return, over_return)) + /* OK */; + else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return)) + || (TREE_CODE (base_return) == TREE_CODE (over_return) + && POINTER_TYPE_P (base_return))) + { + /* Potentially covariant. */ + unsigned base_quals, over_quals; + + fail = !POINTER_TYPE_P (base_return); + if (!fail) + { + fail = cp_type_quals (base_return) != cp_type_quals (over_return); + + base_return = TREE_TYPE (base_return); + over_return = TREE_TYPE (over_return); + } + base_quals = cp_type_quals (base_return); + over_quals = cp_type_quals (over_return); + + if ((base_quals & over_quals) != over_quals) + fail = 1; + + if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return)) + { + /* Strictly speaking, the standard requires the return type to be + complete even if it only differs in cv-quals, but that seems + like a bug in the wording. */ + if (!same_type_ignoring_top_level_qualifiers_p (base_return, over_return)) + { + tree binfo = lookup_base (over_return, base_return, + ba_check | ba_quiet, NULL); + + if (!binfo) + fail = 1; + } + } + else if (!pedantic + && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type))) + /* GNU extension, allow trivial pointer conversions such as + converting to void *, or qualification conversion. */ + { + /* can_convert will permit user defined conversion from a + (reference to) class type. We must reject them. */ + over_return = non_reference (TREE_TYPE (over_type)); + if (CLASS_TYPE_P (over_return)) + fail = 2; + else + { + warning (0, "deprecated covariant return type for %q+#D", + overrider); + warning (0, " overriding %q+#D", basefn); + } + } + else + fail = 2; + } + else + fail = 2; + if (!fail) + /* OK */; + else + { + if (fail == 1) + { + error ("invalid covariant return type for %q+#D", overrider); + error (" overriding %q+#D", basefn); + } + else + { + error ("conflicting return type specified for %q+#D", overrider); + error (" overriding %q+#D", basefn); + } + DECL_INVALID_OVERRIDER_P (overrider) = 1; + return 0; + } + + /* Check throw specifier is at least as strict. */ + if (!comp_except_specs (base_throw, over_throw, ce_derived)) + { + error ("looser throw specifier for %q+#F", overrider); + error (" overriding %q+#F", basefn); + DECL_INVALID_OVERRIDER_P (overrider) = 1; + return 0; + } + + /* Check for conflicting type attributes. */ + if (!targetm.comp_type_attributes (over_type, base_type)) + { + error ("conflicting type attributes specified for %q+#D", overrider); + error (" overriding %q+#D", basefn); + DECL_INVALID_OVERRIDER_P (overrider) = 1; + return 0; + } + + if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider)) + { + if (DECL_DELETED_FN (overrider)) + { + error ("deleted function %q+D", overrider); + error ("overriding non-deleted function %q+D", basefn); + maybe_explain_implicit_delete (overrider); + } + else + { + error ("non-deleted function %q+D", overrider); + error ("overriding deleted function %q+D", basefn); + } + return 0; + } + return 1; +} + +/* Given a class TYPE, and a function decl FNDECL, look for + virtual functions in TYPE's hierarchy which FNDECL overrides. + We do not look in TYPE itself, only its bases. + + Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we + find that it overrides anything. + + We check that every function which is overridden, is correctly + overridden. */ + +int +look_for_overrides (tree type, tree fndecl) +{ + tree binfo = TYPE_BINFO (type); + tree base_binfo; + int ix; + int found = 0; + + /* A constructor for a class T does not override a function T + in a base class. */ + if (DECL_CONSTRUCTOR_P (fndecl)) + return 0; + + for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) + { + tree basetype = BINFO_TYPE (base_binfo); + + if (TYPE_POLYMORPHIC_P (basetype)) + found += look_for_overrides_r (basetype, fndecl); + } + return found; +} + +/* Look in TYPE for virtual functions with the same signature as + FNDECL. */ + +tree +look_for_overrides_here (tree type, tree fndecl) +{ + int ix; + + /* If there are no methods in TYPE (meaning that only implicitly + declared methods will ever be provided for TYPE), then there are + no virtual functions. */ + if (!CLASSTYPE_METHOD_VEC (type)) + return NULL_TREE; + + if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl)) + ix = CLASSTYPE_DESTRUCTOR_SLOT; + else + ix = lookup_fnfields_1 (type, DECL_NAME (fndecl)); + if (ix >= 0) + { + tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix); + + for (; fns; fns = OVL_NEXT (fns)) + { + tree fn = OVL_CURRENT (fns); + + if (!DECL_VIRTUAL_P (fn)) + /* Not a virtual. */; + else if (DECL_CONTEXT (fn) != type) + /* Introduced with a using declaration. */; + else if (DECL_STATIC_FUNCTION_P (fndecl)) + { + tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn)); + tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); + if (compparms (TREE_CHAIN (btypes), dtypes)) + return fn; + } + else if (same_signature_p (fndecl, fn)) + return fn; + } + } + return NULL_TREE; +} + +/* Look in TYPE for virtual functions overridden by FNDECL. Check both + TYPE itself and its bases. */ + +static int +look_for_overrides_r (tree type, tree fndecl) +{ + tree fn = look_for_overrides_here (type, fndecl); + if (fn) + { + if (DECL_STATIC_FUNCTION_P (fndecl)) + { + /* A static member function cannot match an inherited + virtual member function. */ + error ("%q+#D cannot be declared", fndecl); + error (" since %q+#D declared in base class", fn); + } + else + { + /* It's definitely virtual, even if not explicitly set. */ + DECL_VIRTUAL_P (fndecl) = 1; + check_final_overrider (fndecl, fn); + } + return 1; + } + + /* We failed to find one declared in this class. Look in its bases. */ + return look_for_overrides (type, fndecl); +} + +/* Called via dfs_walk from dfs_get_pure_virtuals. */ + +static tree +dfs_get_pure_virtuals (tree binfo, void *data) +{ + tree type = (tree) data; + + /* We're not interested in primary base classes; the derived class + of which they are a primary base will contain the information we + need. */ + if (!BINFO_PRIMARY_P (binfo)) + { + tree virtuals; + + for (virtuals = BINFO_VIRTUALS (binfo); + virtuals; + virtuals = TREE_CHAIN (virtuals)) + if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals))) + VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type), + BV_FN (virtuals)); + } + + return NULL_TREE; +} + +/* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */ + +void +get_pure_virtuals (tree type) +{ + /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there + is going to be overridden. */ + CLASSTYPE_PURE_VIRTUALS (type) = NULL; + /* Now, run through all the bases which are not primary bases, and + collect the pure virtual functions. We look at the vtable in + each class to determine what pure virtual functions are present. + (A primary base is not interesting because the derived class of + which it is a primary base will contain vtable entries for the + pure virtuals in the base class. */ + dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type); +} + +/* Debug info for C++ classes can get very large; try to avoid + emitting it everywhere. + + Note that this optimization wins even when the target supports + BINCL (if only slightly), and reduces the amount of work for the + linker. */ + +void +maybe_suppress_debug_info (tree t) +{ + if (write_symbols == NO_DEBUG) + return; + + /* We might have set this earlier in cp_finish_decl. */ + TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0; + + /* Always emit the information for each class every time. */ + if (flag_emit_class_debug_always) + return; + + /* If we already know how we're handling this class, handle debug info + the same way. */ + if (CLASSTYPE_INTERFACE_KNOWN (t)) + { + if (CLASSTYPE_INTERFACE_ONLY (t)) + TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; + /* else don't set it. */ + } + /* If the class has a vtable, write out the debug info along with + the vtable. */ + else if (TYPE_CONTAINS_VPTR_P (t)) + TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; + + /* Otherwise, just emit the debug info normally. */ +} + +/* Note that we want debugging information for a base class of a class + whose vtable is being emitted. Normally, this would happen because + calling the constructor for a derived class implies calling the + constructors for all bases, which involve initializing the + appropriate vptr with the vtable for the base class; but in the + presence of optimization, this initialization may be optimized + away, so we tell finish_vtable_vardecl that we want the debugging + information anyway. */ + +static tree +dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED) +{ + tree t = BINFO_TYPE (binfo); + + if (CLASSTYPE_DEBUG_REQUESTED (t)) + return dfs_skip_bases; + + CLASSTYPE_DEBUG_REQUESTED (t) = 1; + + return NULL_TREE; +} + +/* Write out the debugging information for TYPE, whose vtable is being + emitted. Also walk through our bases and note that we want to + write out information for them. This avoids the problem of not + writing any debug info for intermediate basetypes whose + constructors, and thus the references to their vtables, and thus + the vtables themselves, were optimized away. */ + +void +note_debug_info_needed (tree type) +{ + if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type))) + { + TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0; + rest_of_type_compilation (type, toplevel_bindings_p ()); + } + + dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0); +} + +void +print_search_statistics (void) +{ +#ifdef GATHER_STATISTICS + fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n", + n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1); + fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n", + n_outer_fields_searched, n_calls_lookup_fnfields); + fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type); +#else /* GATHER_STATISTICS */ + fprintf (stderr, "no search statistics\n"); +#endif /* GATHER_STATISTICS */ +} + +void +reinit_search_statistics (void) +{ +#ifdef GATHER_STATISTICS + n_fields_searched = 0; + n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0; + n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0; + n_calls_get_base_type = 0; + n_outer_fields_searched = 0; + n_contexts_saved = 0; +#endif /* GATHER_STATISTICS */ +} + +/* Helper for lookup_conversions_r. TO_TYPE is the type converted to + by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if + BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual + bases have been encountered already in the tree walk. PARENT_CONVS + is the list of lists of conversion functions that could hide CONV + and OTHER_CONVS is the list of lists of conversion functions that + could hide or be hidden by CONV, should virtualness be involved in + the hierarchy. Merely checking the conversion op's name is not + enough because two conversion operators to the same type can have + different names. Return nonzero if we are visible. */ + +static int +check_hidden_convs (tree binfo, int virtual_depth, int virtualness, + tree to_type, tree parent_convs, tree other_convs) +{ + tree level, probe; + + /* See if we are hidden by a parent conversion. */ + for (level = parent_convs; level; level = TREE_CHAIN (level)) + for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe)) + if (same_type_p (to_type, TREE_TYPE (probe))) + return 0; + + if (virtual_depth || virtualness) + { + /* In a virtual hierarchy, we could be hidden, or could hide a + conversion function on the other_convs list. */ + for (level = other_convs; level; level = TREE_CHAIN (level)) + { + int we_hide_them; + int they_hide_us; + tree *prev, other; + + if (!(virtual_depth || TREE_STATIC (level))) + /* Neither is morally virtual, so cannot hide each other. */ + continue; + + if (!TREE_VALUE (level)) + /* They evaporated away already. */ + continue; + + they_hide_us = (virtual_depth + && original_binfo (binfo, TREE_PURPOSE (level))); + we_hide_them = (!they_hide_us && TREE_STATIC (level) + && original_binfo (TREE_PURPOSE (level), binfo)); + + if (!(we_hide_them || they_hide_us)) + /* Neither is within the other, so no hiding can occur. */ + continue; + + for (prev = &TREE_VALUE (level), other = *prev; other;) + { + if (same_type_p (to_type, TREE_TYPE (other))) + { + if (they_hide_us) + /* We are hidden. */ + return 0; + + if (we_hide_them) + { + /* We hide the other one. */ + other = TREE_CHAIN (other); + *prev = other; + continue; + } + } + prev = &TREE_CHAIN (other); + other = *prev; + } + } + } + return 1; +} + +/* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists + of conversion functions, the first slot will be for the current + binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists + of conversion functions from children of the current binfo, + concatenated with conversions from elsewhere in the hierarchy -- + that list begins with OTHER_CONVS. Return a single list of lists + containing only conversions from the current binfo and its + children. */ + +static tree +split_conversions (tree my_convs, tree parent_convs, + tree child_convs, tree other_convs) +{ + tree t; + tree prev; + + /* Remove the original other_convs portion from child_convs. */ + for (prev = NULL, t = child_convs; + t != other_convs; prev = t, t = TREE_CHAIN (t)) + continue; + + if (prev) + TREE_CHAIN (prev) = NULL_TREE; + else + child_convs = NULL_TREE; + + /* Attach the child convs to any we had at this level. */ + if (my_convs) + { + my_convs = parent_convs; + TREE_CHAIN (my_convs) = child_convs; + } + else + my_convs = child_convs; + + return my_convs; +} + +/* Worker for lookup_conversions. Lookup conversion functions in + BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in + a morally virtual base, and VIRTUALNESS is nonzero, if we've + encountered virtual bases already in the tree walk. PARENT_CONVS & + PARENT_TPL_CONVS are lists of list of conversions within parent + binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found + elsewhere in the tree. Return the conversions found within this + portion of the graph in CONVS and TPL_CONVS. Return nonzero is we + encountered virtualness. We keep template and non-template + conversions separate, to avoid unnecessary type comparisons. + + The located conversion functions are held in lists of lists. The + TREE_VALUE of the outer list is the list of conversion functions + found in a particular binfo. The TREE_PURPOSE of both the outer + and inner lists is the binfo at which those conversions were + found. TREE_STATIC is set for those lists within of morally + virtual binfos. The TREE_VALUE of the inner list is the conversion + function or overload itself. The TREE_TYPE of each inner list node + is the converted-to type. */ + +static int +lookup_conversions_r (tree binfo, + int virtual_depth, int virtualness, + tree parent_convs, tree parent_tpl_convs, + tree other_convs, tree other_tpl_convs, + tree *convs, tree *tpl_convs) +{ + int my_virtualness = 0; + tree my_convs = NULL_TREE; + tree my_tpl_convs = NULL_TREE; + tree child_convs = NULL_TREE; + tree child_tpl_convs = NULL_TREE; + unsigned i; + tree base_binfo; + VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo)); + tree conv; + + /* If we have no conversion operators, then don't look. */ + if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo))) + { + *convs = *tpl_convs = NULL_TREE; + + return 0; + } + + if (BINFO_VIRTUAL_P (binfo)) + virtual_depth++; + + /* First, locate the unhidden ones at this level. */ + for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; + VEC_iterate (tree, method_vec, i, conv); + ++i) + { + tree cur = OVL_CURRENT (conv); + + if (!DECL_CONV_FN_P (cur)) + break; + + if (TREE_CODE (cur) == TEMPLATE_DECL) + { + /* Only template conversions can be overloaded, and we must + flatten them out and check each one individually. */ + tree tpls; + + for (tpls = conv; tpls; tpls = OVL_NEXT (tpls)) + { + tree tpl = OVL_CURRENT (tpls); + tree type = DECL_CONV_FN_TYPE (tpl); + + if (check_hidden_convs (binfo, virtual_depth, virtualness, + type, parent_tpl_convs, other_tpl_convs)) + { + my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs); + TREE_TYPE (my_tpl_convs) = type; + if (virtual_depth) + { + TREE_STATIC (my_tpl_convs) = 1; + my_virtualness = 1; + } + } + } + } + else + { + tree name = DECL_NAME (cur); + + if (!IDENTIFIER_MARKED (name)) + { + tree type = DECL_CONV_FN_TYPE (cur); + + if (check_hidden_convs (binfo, virtual_depth, virtualness, + type, parent_convs, other_convs)) + { + my_convs = tree_cons (binfo, conv, my_convs); + TREE_TYPE (my_convs) = type; + if (virtual_depth) + { + TREE_STATIC (my_convs) = 1; + my_virtualness = 1; + } + IDENTIFIER_MARKED (name) = 1; + } + } + } + } + + if (my_convs) + { + parent_convs = tree_cons (binfo, my_convs, parent_convs); + if (virtual_depth) + TREE_STATIC (parent_convs) = 1; + } + + if (my_tpl_convs) + { + parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs); + if (virtual_depth) + TREE_STATIC (parent_tpl_convs) = 1; + } + + child_convs = other_convs; + child_tpl_convs = other_tpl_convs; + + /* Now iterate over each base, looking for more conversions. */ + for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + { + tree base_convs, base_tpl_convs; + unsigned base_virtualness; + + base_virtualness = lookup_conversions_r (base_binfo, + virtual_depth, virtualness, + parent_convs, parent_tpl_convs, + child_convs, child_tpl_convs, + &base_convs, &base_tpl_convs); + if (base_virtualness) + my_virtualness = virtualness = 1; + child_convs = chainon (base_convs, child_convs); + child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs); + } + + /* Unmark the conversions found at this level */ + for (conv = my_convs; conv; conv = TREE_CHAIN (conv)) + IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0; + + *convs = split_conversions (my_convs, parent_convs, + child_convs, other_convs); + *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs, + child_tpl_convs, other_tpl_convs); + + return my_virtualness; +} + +/* Return a TREE_LIST containing all the non-hidden user-defined + conversion functions for TYPE (and its base-classes). The + TREE_VALUE of each node is the FUNCTION_DECL of the conversion + function. The TREE_PURPOSE is the BINFO from which the conversion + functions in this node were selected. This function is effectively + performing a set of member lookups as lookup_fnfield does, but + using the type being converted to as the unique key, rather than the + field name. */ + +tree +lookup_conversions (tree type) +{ + tree convs, tpl_convs; + tree list = NULL_TREE; + + complete_type (type); + if (!TYPE_BINFO (type)) + return NULL_TREE; + + lookup_conversions_r (TYPE_BINFO (type), 0, 0, + NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, + &convs, &tpl_convs); + + /* Flatten the list-of-lists */ + for (; convs; convs = TREE_CHAIN (convs)) + { + tree probe, next; + + for (probe = TREE_VALUE (convs); probe; probe = next) + { + next = TREE_CHAIN (probe); + + TREE_CHAIN (probe) = list; + list = probe; + } + } + + for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs)) + { + tree probe, next; + + for (probe = TREE_VALUE (tpl_convs); probe; probe = next) + { + next = TREE_CHAIN (probe); + + TREE_CHAIN (probe) = list; + list = probe; + } + } + + return list; +} + +/* Returns the binfo of the first direct or indirect virtual base derived + from BINFO, or NULL if binfo is not via virtual. */ + +tree +binfo_from_vbase (tree binfo) +{ + for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo)) + { + if (BINFO_VIRTUAL_P (binfo)) + return binfo; + } + return NULL_TREE; +} + +/* Returns the binfo of the first direct or indirect virtual base derived + from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not + via virtual. */ + +tree +binfo_via_virtual (tree binfo, tree limit) +{ + if (limit && !CLASSTYPE_VBASECLASSES (limit)) + /* LIMIT has no virtual bases, so BINFO cannot be via one. */ + return NULL_TREE; + + for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit); + binfo = BINFO_INHERITANCE_CHAIN (binfo)) + { + if (BINFO_VIRTUAL_P (binfo)) + return binfo; + } + return NULL_TREE; +} + +/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE). + Find the equivalent binfo within whatever graph HERE is located. + This is the inverse of original_binfo. */ + +tree +copied_binfo (tree binfo, tree here) +{ + tree result = NULL_TREE; + + if (BINFO_VIRTUAL_P (binfo)) + { + tree t; + + for (t = here; BINFO_INHERITANCE_CHAIN (t); + t = BINFO_INHERITANCE_CHAIN (t)) + continue; + + result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t)); + } + else if (BINFO_INHERITANCE_CHAIN (binfo)) + { + tree cbinfo; + tree base_binfo; + int ix; + + cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here); + for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++) + if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo))) + { + result = base_binfo; + break; + } + } + else + { + gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo))); + result = here; + } + + gcc_assert (result); + return result; +} + +tree +binfo_for_vbase (tree base, tree t) +{ + unsigned ix; + tree binfo; + VEC(tree,gc) *vbases; + + for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0; + VEC_iterate (tree, vbases, ix, binfo); ix++) + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base)) + return binfo; + return NULL; +} + +/* BINFO is some base binfo of HERE, within some other + hierarchy. Return the equivalent binfo, but in the hierarchy + dominated by HERE. This is the inverse of copied_binfo. If BINFO + is not a base binfo of HERE, returns NULL_TREE. */ + +tree +original_binfo (tree binfo, tree here) +{ + tree result = NULL; + + if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here))) + result = here; + else if (BINFO_VIRTUAL_P (binfo)) + result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)) + ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here)) + : NULL_TREE); + else if (BINFO_INHERITANCE_CHAIN (binfo)) + { + tree base_binfos; + + base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here); + if (base_binfos) + { + int ix; + tree base_binfo; + + for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++) + if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), + BINFO_TYPE (binfo))) + { + result = base_binfo; + break; + } + } + } + + return result; +} + |