diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/double-int.c | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/double-int.c')
-rw-r--r-- | gcc/double-int.c | 1150 |
1 files changed, 1150 insertions, 0 deletions
diff --git a/gcc/double-int.c b/gcc/double-int.c new file mode 100644 index 000000000..834eaf9d6 --- /dev/null +++ b/gcc/double-int.c @@ -0,0 +1,1150 @@ +/* Operations with long integers. + Copyright (C) 2006, 2007, 2009, 2010 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" /* For SHIFT_COUNT_TRUNCATED. */ +#include "tree.h" + +/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring + overflow. Suppose A, B and SUM have the same respective signs as A1, B1, + and SUM1. Then this yields nonzero if overflow occurred during the + addition. + + Overflow occurs if A and B have the same sign, but A and SUM differ in + sign. Use `^' to test whether signs differ, and `< 0' to isolate the + sign. */ +#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0) + +/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic. + We do that by representing the two-word integer in 4 words, with only + HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive + number. The value of the word is LOWPART + HIGHPART * BASE. */ + +#define LOWPART(x) \ + ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1)) +#define HIGHPART(x) \ + ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2) +#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2) + +/* Unpack a two-word integer into 4 words. + LOW and HI are the integer, as two `HOST_WIDE_INT' pieces. + WORDS points to the array of HOST_WIDE_INTs. */ + +static void +encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) +{ + words[0] = LOWPART (low); + words[1] = HIGHPART (low); + words[2] = LOWPART (hi); + words[3] = HIGHPART (hi); +} + +/* Pack an array of 4 words into a two-word integer. + WORDS points to the array of words. + The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */ + +static void +decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low, + HOST_WIDE_INT *hi) +{ + *low = words[0] + words[1] * BASE; + *hi = words[2] + words[3] * BASE; +} + +/* Add two doubleword integers with doubleword result. + Return nonzero if the operation overflows according to UNSIGNED_P. + Each argument is given as two `HOST_WIDE_INT' pieces. + One argument is L1 and H1; the other, L2 and H2. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool unsigned_p) +{ + unsigned HOST_WIDE_INT l; + HOST_WIDE_INT h; + + l = l1 + l2; + h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1 + + (unsigned HOST_WIDE_INT) h2 + + (l < l1)); + + *lv = l; + *hv = h; + + if (unsigned_p) + return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1 + || (h == h1 + && l < l1)); + else + return OVERFLOW_SUM_SIGN (h1, h2, h); +} + +/* Negate a doubleword integer with doubleword result. + Return nonzero if the operation overflows, assuming it's signed. + The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) +{ + if (l1 == 0) + { + *lv = 0; + *hv = - h1; + return (*hv & h1) < 0; + } + else + { + *lv = -l1; + *hv = ~h1; + return 0; + } +} + +/* Multiply two doubleword integers with doubleword result. + Return nonzero if the operation overflows according to UNSIGNED_P. + Each argument is given as two `HOST_WIDE_INT' pieces. + One argument is L1 and H1; the other, L2 and H2. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool unsigned_p) +{ + HOST_WIDE_INT arg1[4]; + HOST_WIDE_INT arg2[4]; + HOST_WIDE_INT prod[4 * 2]; + unsigned HOST_WIDE_INT carry; + int i, j, k; + unsigned HOST_WIDE_INT toplow, neglow; + HOST_WIDE_INT tophigh, neghigh; + + encode (arg1, l1, h1); + encode (arg2, l2, h2); + + memset (prod, 0, sizeof prod); + + for (i = 0; i < 4; i++) + { + carry = 0; + for (j = 0; j < 4; j++) + { + k = i + j; + /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */ + carry += arg1[i] * arg2[j]; + /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */ + carry += prod[k]; + prod[k] = LOWPART (carry); + carry = HIGHPART (carry); + } + prod[i + 4] = carry; + } + + decode (prod, lv, hv); + decode (prod + 4, &toplow, &tophigh); + + /* Unsigned overflow is immediate. */ + if (unsigned_p) + return (toplow | tophigh) != 0; + + /* Check for signed overflow by calculating the signed representation of the + top half of the result; it should agree with the low half's sign bit. */ + if (h1 < 0) + { + neg_double (l2, h2, &neglow, &neghigh); + add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); + } + if (h2 < 0) + { + neg_double (l1, h1, &neglow, &neghigh); + add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); + } + return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0; +} + +/* Shift the doubleword integer in L1, H1 left by COUNT places + keeping only PREC bits of result. + Shift right if COUNT is negative. + ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith) +{ + unsigned HOST_WIDE_INT signmask; + + if (count < 0) + { + rshift_double (l1, h1, -count, prec, lv, hv, arith); + return; + } + + if (SHIFT_COUNT_TRUNCATED) + count %= prec; + + if (count >= 2 * HOST_BITS_PER_WIDE_INT) + { + /* Shifting by the host word size is undefined according to the + ANSI standard, so we must handle this as a special case. */ + *hv = 0; + *lv = 0; + } + else if (count >= HOST_BITS_PER_WIDE_INT) + { + *hv = l1 << (count - HOST_BITS_PER_WIDE_INT); + *lv = 0; + } + else + { + *hv = (((unsigned HOST_WIDE_INT) h1 << count) + | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); + *lv = l1 << count; + } + + /* Sign extend all bits that are beyond the precision. */ + + signmask = -((prec > HOST_BITS_PER_WIDE_INT + ? ((unsigned HOST_WIDE_INT) *hv + >> (prec - HOST_BITS_PER_WIDE_INT - 1)) + : (*lv >> (prec - 1))) & 1); + + if (prec >= 2 * HOST_BITS_PER_WIDE_INT) + ; + else if (prec >= HOST_BITS_PER_WIDE_INT) + { + *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); + *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = signmask; + *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec); + *lv |= signmask << prec; + } +} + +/* Shift the doubleword integer in L1, H1 right by COUNT places + keeping only PREC bits of result. Shift left if COUNT is negative. + ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool arith) +{ + unsigned HOST_WIDE_INT signmask; + + if (count < 0) + { + lshift_double (l1, h1, -count, prec, lv, hv, arith); + return; + } + + signmask = (arith + ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1)) + : 0); + + if (SHIFT_COUNT_TRUNCATED) + count %= prec; + + if (count >= 2 * HOST_BITS_PER_WIDE_INT) + { + /* Shifting by the host word size is undefined according to the + ANSI standard, so we must handle this as a special case. */ + *hv = 0; + *lv = 0; + } + else if (count >= HOST_BITS_PER_WIDE_INT) + { + *hv = 0; + *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = (unsigned HOST_WIDE_INT) h1 >> count; + *lv = ((l1 >> count) + | ((unsigned HOST_WIDE_INT) h1 + << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); + } + + /* Zero / sign extend all bits that are beyond the precision. */ + + if (count >= (HOST_WIDE_INT)prec) + { + *hv = signmask; + *lv = signmask; + } + else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT) + ; + else if ((prec - count) >= HOST_BITS_PER_WIDE_INT) + { + *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT)); + *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = signmask; + *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count)); + *lv |= signmask << (prec - count); + } +} + +/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN + for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM). + CODE is a tree code for a kind of division, one of + TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR + or EXACT_DIV_EXPR + It controls how the quotient is rounded to an integer. + Return nonzero if the operation overflows. + UNS nonzero says do unsigned division. */ + +int +div_and_round_double (unsigned code, int uns, + /* num == numerator == dividend */ + unsigned HOST_WIDE_INT lnum_orig, + HOST_WIDE_INT hnum_orig, + /* den == denominator == divisor */ + unsigned HOST_WIDE_INT lden_orig, + HOST_WIDE_INT hden_orig, + unsigned HOST_WIDE_INT *lquo, + HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem, + HOST_WIDE_INT *hrem) +{ + int quo_neg = 0; + HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */ + HOST_WIDE_INT den[4], quo[4]; + int i, j; + unsigned HOST_WIDE_INT work; + unsigned HOST_WIDE_INT carry = 0; + unsigned HOST_WIDE_INT lnum = lnum_orig; + HOST_WIDE_INT hnum = hnum_orig; + unsigned HOST_WIDE_INT lden = lden_orig; + HOST_WIDE_INT hden = hden_orig; + int overflow = 0; + + if (hden == 0 && lden == 0) + overflow = 1, lden = 1; + + /* Calculate quotient sign and convert operands to unsigned. */ + if (!uns) + { + if (hnum < 0) + { + quo_neg = ~ quo_neg; + /* (minimum integer) / (-1) is the only overflow case. */ + if (neg_double (lnum, hnum, &lnum, &hnum) + && ((HOST_WIDE_INT) lden & hden) == -1) + overflow = 1; + } + if (hden < 0) + { + quo_neg = ~ quo_neg; + neg_double (lden, hden, &lden, &hden); + } + } + + if (hnum == 0 && hden == 0) + { /* single precision */ + *hquo = *hrem = 0; + /* This unsigned division rounds toward zero. */ + *lquo = lnum / lden; + goto finish_up; + } + + if (hnum == 0) + { /* trivial case: dividend < divisor */ + /* hden != 0 already checked. */ + *hquo = *lquo = 0; + *hrem = hnum; + *lrem = lnum; + goto finish_up; + } + + memset (quo, 0, sizeof quo); + + memset (num, 0, sizeof num); /* to zero 9th element */ + memset (den, 0, sizeof den); + + encode (num, lnum, hnum); + encode (den, lden, hden); + + /* Special code for when the divisor < BASE. */ + if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE) + { + /* hnum != 0 already checked. */ + for (i = 4 - 1; i >= 0; i--) + { + work = num[i] + carry * BASE; + quo[i] = work / lden; + carry = work % lden; + } + } + else + { + /* Full double precision division, + with thanks to Don Knuth's "Seminumerical Algorithms". */ + int num_hi_sig, den_hi_sig; + unsigned HOST_WIDE_INT quo_est, scale; + + /* Find the highest nonzero divisor digit. */ + for (i = 4 - 1;; i--) + if (den[i] != 0) + { + den_hi_sig = i; + break; + } + + /* Insure that the first digit of the divisor is at least BASE/2. + This is required by the quotient digit estimation algorithm. */ + + scale = BASE / (den[den_hi_sig] + 1); + if (scale > 1) + { /* scale divisor and dividend */ + carry = 0; + for (i = 0; i <= 4 - 1; i++) + { + work = (num[i] * scale) + carry; + num[i] = LOWPART (work); + carry = HIGHPART (work); + } + + num[4] = carry; + carry = 0; + for (i = 0; i <= 4 - 1; i++) + { + work = (den[i] * scale) + carry; + den[i] = LOWPART (work); + carry = HIGHPART (work); + if (den[i] != 0) den_hi_sig = i; + } + } + + num_hi_sig = 4; + + /* Main loop */ + for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) + { + /* Guess the next quotient digit, quo_est, by dividing the first + two remaining dividend digits by the high order quotient digit. + quo_est is never low and is at most 2 high. */ + unsigned HOST_WIDE_INT tmp; + + num_hi_sig = i + den_hi_sig + 1; + work = num[num_hi_sig] * BASE + num[num_hi_sig - 1]; + if (num[num_hi_sig] != den[den_hi_sig]) + quo_est = work / den[den_hi_sig]; + else + quo_est = BASE - 1; + + /* Refine quo_est so it's usually correct, and at most one high. */ + tmp = work - quo_est * den[den_hi_sig]; + if (tmp < BASE + && (den[den_hi_sig - 1] * quo_est + > (tmp * BASE + num[num_hi_sig - 2]))) + quo_est--; + + /* Try QUO_EST as the quotient digit, by multiplying the + divisor by QUO_EST and subtracting from the remaining dividend. + Keep in mind that QUO_EST is the I - 1st digit. */ + + carry = 0; + for (j = 0; j <= den_hi_sig; j++) + { + work = quo_est * den[j] + carry; + carry = HIGHPART (work); + work = num[i + j] - LOWPART (work); + num[i + j] = LOWPART (work); + carry += HIGHPART (work) != 0; + } + + /* If quo_est was high by one, then num[i] went negative and + we need to correct things. */ + if (num[num_hi_sig] < (HOST_WIDE_INT) carry) + { + quo_est--; + carry = 0; /* add divisor back in */ + for (j = 0; j <= den_hi_sig; j++) + { + work = num[i + j] + den[j] + carry; + carry = HIGHPART (work); + num[i + j] = LOWPART (work); + } + + num [num_hi_sig] += carry; + } + + /* Store the quotient digit. */ + quo[i] = quo_est; + } + } + + decode (quo, lquo, hquo); + + finish_up: + /* If result is negative, make it so. */ + if (quo_neg) + neg_double (*lquo, *hquo, lquo, hquo); + + /* Compute trial remainder: rem = num - (quo * den) */ + mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); + neg_double (*lrem, *hrem, lrem, hrem); + add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); + + switch (code) + { + case TRUNC_DIV_EXPR: + case TRUNC_MOD_EXPR: /* round toward zero */ + case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */ + return overflow; + + case FLOOR_DIV_EXPR: + case FLOOR_MOD_EXPR: /* round toward negative infinity */ + if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */ + { + /* quo = quo - 1; */ + add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, + lquo, hquo); + } + else + return overflow; + break; + + case CEIL_DIV_EXPR: + case CEIL_MOD_EXPR: /* round toward positive infinity */ + if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */ + { + add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, + lquo, hquo); + } + else + return overflow; + break; + + case ROUND_DIV_EXPR: + case ROUND_MOD_EXPR: /* round to closest integer */ + { + unsigned HOST_WIDE_INT labs_rem = *lrem; + HOST_WIDE_INT habs_rem = *hrem; + unsigned HOST_WIDE_INT labs_den = lden, ltwice; + HOST_WIDE_INT habs_den = hden, htwice; + + /* Get absolute values. */ + if (*hrem < 0) + neg_double (*lrem, *hrem, &labs_rem, &habs_rem); + if (hden < 0) + neg_double (lden, hden, &labs_den, &habs_den); + + /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */ + mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0, + labs_rem, habs_rem, <wice, &htwice); + + if (((unsigned HOST_WIDE_INT) habs_den + < (unsigned HOST_WIDE_INT) htwice) + || (((unsigned HOST_WIDE_INT) habs_den + == (unsigned HOST_WIDE_INT) htwice) + && (labs_den <= ltwice))) + { + if (*hquo < 0) + /* quo = quo - 1; */ + add_double (*lquo, *hquo, + (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); + else + /* quo = quo + 1; */ + add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, + lquo, hquo); + } + else + return overflow; + } + break; + + default: + gcc_unreachable (); + } + + /* Compute true remainder: rem = num - (quo * den) */ + mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); + neg_double (*lrem, *hrem, lrem, hrem); + add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); + return overflow; +} + + +/* Returns mask for PREC bits. */ + +double_int +double_int_mask (unsigned prec) +{ + unsigned HOST_WIDE_INT m; + double_int mask; + + if (prec > HOST_BITS_PER_WIDE_INT) + { + prec -= HOST_BITS_PER_WIDE_INT; + m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; + mask.high = (HOST_WIDE_INT) m; + mask.low = ALL_ONES; + } + else + { + mask.high = 0; + mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; + } + + return mask; +} + +/* Clears the bits of CST over the precision PREC. If UNS is false, the bits + outside of the precision are set to the sign bit (i.e., the PREC-th one), + otherwise they are set to zero. + + This corresponds to returning the value represented by PREC lowermost bits + of CST, with the given signedness. */ + +double_int +double_int_ext (double_int cst, unsigned prec, bool uns) +{ + if (uns) + return double_int_zext (cst, prec); + else + return double_int_sext (cst, prec); +} + +/* The same as double_int_ext with UNS = true. */ + +double_int +double_int_zext (double_int cst, unsigned prec) +{ + double_int mask = double_int_mask (prec); + double_int r; + + r.low = cst.low & mask.low; + r.high = cst.high & mask.high; + + return r; +} + +/* The same as double_int_ext with UNS = false. */ + +double_int +double_int_sext (double_int cst, unsigned prec) +{ + double_int mask = double_int_mask (prec); + double_int r; + unsigned HOST_WIDE_INT snum; + + if (prec <= HOST_BITS_PER_WIDE_INT) + snum = cst.low; + else + { + prec -= HOST_BITS_PER_WIDE_INT; + snum = (unsigned HOST_WIDE_INT) cst.high; + } + if (((snum >> (prec - 1)) & 1) == 1) + { + r.low = cst.low | ~mask.low; + r.high = cst.high | ~mask.high; + } + else + { + r.low = cst.low & mask.low; + r.high = cst.high & mask.high; + } + + return r; +} + +/* Returns true if CST fits in signed HOST_WIDE_INT. */ + +bool +double_int_fits_in_shwi_p (double_int cst) +{ + if (cst.high == 0) + return (HOST_WIDE_INT) cst.low >= 0; + else if (cst.high == -1) + return (HOST_WIDE_INT) cst.low < 0; + else + return false; +} + +/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in + unsigned HOST_WIDE_INT if UNS is true. */ + +bool +double_int_fits_in_hwi_p (double_int cst, bool uns) +{ + if (uns) + return double_int_fits_in_uhwi_p (cst); + else + return double_int_fits_in_shwi_p (cst); +} + +/* Returns A * B. */ + +double_int +double_int_mul (double_int a, double_int b) +{ + double_int ret; + mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); + return ret; +} + +/* Returns A * B. If the operation overflows according to UNSIGNED_P, + *OVERFLOW is set to nonzero. */ + +double_int +double_int_mul_with_sign (double_int a, double_int b, + bool unsigned_p, int *overflow) +{ + double_int ret; + *overflow = mul_double_with_sign (a.low, a.high, b.low, b.high, + &ret.low, &ret.high, unsigned_p); + return ret; +} + +/* Returns A + B. */ + +double_int +double_int_add (double_int a, double_int b) +{ + double_int ret; + add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); + return ret; +} + +/* Returns A - B. */ + +double_int +double_int_sub (double_int a, double_int b) +{ + double_int ret; + neg_double (b.low, b.high, &b.low, &b.high); + add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); + return ret; +} + +/* Returns -A. */ + +double_int +double_int_neg (double_int a) +{ + double_int ret; + neg_double (a.low, a.high, &ret.low, &ret.high); + return ret; +} + +/* Returns A / B (computed as unsigned depending on UNS, and rounded as + specified by CODE). CODE is enum tree_code in fact, but double_int.h + must be included before tree.h. The remainder after the division is + stored to MOD. */ + +double_int +double_int_divmod (double_int a, double_int b, bool uns, unsigned code, + double_int *mod) +{ + double_int ret; + + div_and_round_double (code, uns, a.low, a.high, + b.low, b.high, &ret.low, &ret.high, + &mod->low, &mod->high); + return ret; +} + +/* The same as double_int_divmod with UNS = false. */ + +double_int +double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod) +{ + return double_int_divmod (a, b, false, code, mod); +} + +/* The same as double_int_divmod with UNS = true. */ + +double_int +double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod) +{ + return double_int_divmod (a, b, true, code, mod); +} + +/* Returns A / B (computed as unsigned depending on UNS, and rounded as + specified by CODE). CODE is enum tree_code in fact, but double_int.h + must be included before tree.h. */ + +double_int +double_int_div (double_int a, double_int b, bool uns, unsigned code) +{ + double_int mod; + + return double_int_divmod (a, b, uns, code, &mod); +} + +/* The same as double_int_div with UNS = false. */ + +double_int +double_int_sdiv (double_int a, double_int b, unsigned code) +{ + return double_int_div (a, b, false, code); +} + +/* The same as double_int_div with UNS = true. */ + +double_int +double_int_udiv (double_int a, double_int b, unsigned code) +{ + return double_int_div (a, b, true, code); +} + +/* Returns A % B (computed as unsigned depending on UNS, and rounded as + specified by CODE). CODE is enum tree_code in fact, but double_int.h + must be included before tree.h. */ + +double_int +double_int_mod (double_int a, double_int b, bool uns, unsigned code) +{ + double_int mod; + + double_int_divmod (a, b, uns, code, &mod); + return mod; +} + +/* The same as double_int_mod with UNS = false. */ + +double_int +double_int_smod (double_int a, double_int b, unsigned code) +{ + return double_int_mod (a, b, false, code); +} + +/* The same as double_int_mod with UNS = true. */ + +double_int +double_int_umod (double_int a, double_int b, unsigned code) +{ + return double_int_mod (a, b, true, code); +} + +/* Set BITPOS bit in A. */ +double_int +double_int_setbit (double_int a, unsigned bitpos) +{ + if (bitpos < HOST_BITS_PER_WIDE_INT) + a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos; + else + a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); + + return a; +} + +/* Count trailing zeros in A. */ +int +double_int_ctz (double_int a) +{ + unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high; + unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT; + if (!w) + return HOST_BITS_PER_DOUBLE_INT; + bits += ctz_hwi (w); + return bits; +} + +/* Shift A left by COUNT places keeping only PREC bits of result. Shift + right if COUNT is negative. ARITH true specifies arithmetic shifting; + otherwise use logical shift. */ + +double_int +double_int_lshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith) +{ + double_int ret; + lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith); + return ret; +} + +/* Shift A rigth by COUNT places keeping only PREC bits of result. Shift + left if COUNT is negative. ARITH true specifies arithmetic shifting; + otherwise use logical shift. */ + +double_int +double_int_rshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith) +{ + double_int ret; + rshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith); + return ret; +} + +/* Rotate A left by COUNT places keeping only PREC bits of result. + Rotate right if COUNT is negative. */ + +double_int +double_int_lrotate (double_int a, HOST_WIDE_INT count, unsigned int prec) +{ + double_int t1, t2; + + count %= prec; + if (count < 0) + count += prec; + + t1 = double_int_lshift (a, count, prec, false); + t2 = double_int_rshift (a, prec - count, prec, false); + + return double_int_ior (t1, t2); +} + +/* Rotate A rigth by COUNT places keeping only PREC bits of result. + Rotate right if COUNT is negative. */ + +double_int +double_int_rrotate (double_int a, HOST_WIDE_INT count, unsigned int prec) +{ + double_int t1, t2; + + count %= prec; + if (count < 0) + count += prec; + + t1 = double_int_rshift (a, count, prec, false); + t2 = double_int_lshift (a, prec - count, prec, false); + + return double_int_ior (t1, t2); +} + +/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the + comparison is given by UNS. */ + +int +double_int_cmp (double_int a, double_int b, bool uns) +{ + if (uns) + return double_int_ucmp (a, b); + else + return double_int_scmp (a, b); +} + +/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B, + and 1 if A > B. */ + +int +double_int_ucmp (double_int a, double_int b) +{ + if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high) + return -1; + if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high) + return 1; + if (a.low < b.low) + return -1; + if (a.low > b.low) + return 1; + + return 0; +} + +/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B, + and 1 if A > B. */ + +int +double_int_scmp (double_int a, double_int b) +{ + if (a.high < b.high) + return -1; + if (a.high > b.high) + return 1; + if (a.low < b.low) + return -1; + if (a.low > b.low) + return 1; + + return 0; +} + +/* Compares two values A and B. Returns max value. Signedness of the + comparison is given by UNS. */ + +double_int +double_int_max (double_int a, double_int b, bool uns) +{ + return (double_int_cmp (a, b, uns) == 1) ? a : b; +} + +/* Compares two signed values A and B. Returns max value. */ + +double_int double_int_smax (double_int a, double_int b) +{ + return (double_int_scmp (a, b) == 1) ? a : b; +} + +/* Compares two unsigned values A and B. Returns max value. */ + +double_int double_int_umax (double_int a, double_int b) +{ + return (double_int_ucmp (a, b) == 1) ? a : b; +} + +/* Compares two values A and B. Returns mix value. Signedness of the + comparison is given by UNS. */ + +double_int double_int_min (double_int a, double_int b, bool uns) +{ + return (double_int_cmp (a, b, uns) == -1) ? a : b; +} + +/* Compares two signed values A and B. Returns min value. */ + +double_int double_int_smin (double_int a, double_int b) +{ + return (double_int_scmp (a, b) == -1) ? a : b; +} + +/* Compares two unsigned values A and B. Returns min value. */ + +double_int double_int_umin (double_int a, double_int b) +{ + return (double_int_ucmp (a, b) == -1) ? a : b; +} + +/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */ + +static unsigned +double_int_split_digit (double_int *cst, unsigned base) +{ + unsigned HOST_WIDE_INT resl, reml; + HOST_WIDE_INT resh, remh; + + div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0, + &resl, &resh, &reml, &remh); + cst->high = resh; + cst->low = resl; + + return reml; +} + +/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned, + otherwise it is signed. */ + +void +dump_double_int (FILE *file, double_int cst, bool uns) +{ + unsigned digits[100], n; + int i; + + if (double_int_zero_p (cst)) + { + fprintf (file, "0"); + return; + } + + if (!uns && double_int_negative_p (cst)) + { + fprintf (file, "-"); + cst = double_int_neg (cst); + } + + for (n = 0; !double_int_zero_p (cst); n++) + digits[n] = double_int_split_digit (&cst, 10); + for (i = n - 1; i >= 0; i--) + fprintf (file, "%u", digits[i]); +} + + +/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed + otherwise. */ + +void +mpz_set_double_int (mpz_t result, double_int val, bool uns) +{ + bool negate = false; + unsigned HOST_WIDE_INT vp[2]; + + if (!uns && double_int_negative_p (val)) + { + negate = true; + val = double_int_neg (val); + } + + vp[0] = val.low; + vp[1] = (unsigned HOST_WIDE_INT) val.high; + mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp); + + if (negate) + mpz_neg (result, result); +} + +/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range + values of VAL will be wrapped; otherwise, they will be set to the + appropriate minimum or maximum TYPE bound. */ + +double_int +mpz_get_double_int (const_tree type, mpz_t val, bool wrap) +{ + unsigned HOST_WIDE_INT *vp; + size_t count, numb; + double_int res; + + if (!wrap) + { + mpz_t min, max; + + mpz_init (min); + mpz_init (max); + get_type_static_bounds (type, min, max); + + if (mpz_cmp (val, min) < 0) + mpz_set (val, min); + else if (mpz_cmp (val, max) > 0) + mpz_set (val, max); + + mpz_clear (min); + mpz_clear (max); + } + + /* Determine the number of unsigned HOST_WIDE_INT that are required + for representing the value. The code to calculate count is + extracted from the GMP manual, section "Integer Import and Export": + http://gmplib.org/manual/Integer-Import-and-Export.html */ + numb = 8*sizeof(HOST_WIDE_INT); + count = (mpz_sizeinbase (val, 2) + numb-1) / numb; + if (count < 2) + count = 2; + vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT)); + + vp[0] = 0; + vp[1] = 0; + mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val); + + gcc_assert (wrap || count <= 2); + + res.low = vp[0]; + res.high = (HOST_WIDE_INT) vp[1]; + + res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type)); + if (mpz_sgn (val) < 0) + res = double_int_neg (res); + + return res; +} |