diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/gimple.c | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/gimple.c')
-rw-r--r-- | gcc/gimple.c | 5155 |
1 files changed, 5155 insertions, 0 deletions
diff --git a/gcc/gimple.c b/gcc/gimple.c new file mode 100644 index 000000000..12ff7f639 --- /dev/null +++ b/gcc/gimple.c @@ -0,0 +1,5155 @@ +/* Gimple IR support functions. + + Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc. + Contributed by Aldy Hernandez <aldyh@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "target.h" +#include "tree.h" +#include "ggc.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "gimple.h" +#include "diagnostic.h" +#include "tree-flow.h" +#include "value-prof.h" +#include "flags.h" +#include "alias.h" +#include "demangle.h" +#include "langhooks.h" + +/* Global type table. FIXME lto, it should be possible to re-use some + of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup, + etc), but those assume that types were built with the various + build_*_type routines which is not the case with the streamer. */ +static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) + htab_t gimple_types; +static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) + htab_t gimple_canonical_types; +static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map))) + htab_t type_hash_cache; +static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map))) + htab_t canonical_type_hash_cache; + +/* Global type comparison cache. This is by TYPE_UID for space efficiency + and thus cannot use and does not need GC. */ +static htab_t gtc_visited; +static struct obstack gtc_ob; + +/* All the tuples have their operand vector (if present) at the very bottom + of the structure. Therefore, the offset required to find the + operands vector the size of the structure minus the size of the 1 + element tree array at the end (see gimple_ops). */ +#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \ + (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0), +EXPORTED_CONST size_t gimple_ops_offset_[] = { +#include "gsstruct.def" +}; +#undef DEFGSSTRUCT + +#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT), +static const size_t gsstruct_code_size[] = { +#include "gsstruct.def" +}; +#undef DEFGSSTRUCT + +#define DEFGSCODE(SYM, NAME, GSSCODE) NAME, +const char *const gimple_code_name[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE, +EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +#ifdef GATHER_STATISTICS +/* Gimple stats. */ + +int gimple_alloc_counts[(int) gimple_alloc_kind_all]; +int gimple_alloc_sizes[(int) gimple_alloc_kind_all]; + +/* Keep in sync with gimple.h:enum gimple_alloc_kind. */ +static const char * const gimple_alloc_kind_names[] = { + "assignments", + "phi nodes", + "conditionals", + "sequences", + "everything else" +}; + +#endif /* GATHER_STATISTICS */ + +/* A cache of gimple_seq objects. Sequences are created and destroyed + fairly often during gimplification. */ +static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache; + +/* Private API manipulation functions shared only with some + other files. */ +extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *); +extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *); + +/* Gimple tuple constructors. + Note: Any constructor taking a ``gimple_seq'' as a parameter, can + be passed a NULL to start with an empty sequence. */ + +/* Set the code for statement G to CODE. */ + +static inline void +gimple_set_code (gimple g, enum gimple_code code) +{ + g->gsbase.code = code; +} + +/* Return the number of bytes needed to hold a GIMPLE statement with + code CODE. */ + +static inline size_t +gimple_size (enum gimple_code code) +{ + return gsstruct_code_size[gss_for_code (code)]; +} + +/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS + operands. */ + +gimple +gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL) +{ + size_t size; + gimple stmt; + + size = gimple_size (code); + if (num_ops > 0) + size += sizeof (tree) * (num_ops - 1); + +#ifdef GATHER_STATISTICS + { + enum gimple_alloc_kind kind = gimple_alloc_kind (code); + gimple_alloc_counts[(int) kind]++; + gimple_alloc_sizes[(int) kind] += size; + } +#endif + + stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT); + gimple_set_code (stmt, code); + gimple_set_num_ops (stmt, num_ops); + + /* Do not call gimple_set_modified here as it has other side + effects and this tuple is still not completely built. */ + stmt->gsbase.modified = 1; + + return stmt; +} + +/* Set SUBCODE to be the code of the expression computed by statement G. */ + +static inline void +gimple_set_subcode (gimple g, unsigned subcode) +{ + /* We only have 16 bits for the RHS code. Assert that we are not + overflowing it. */ + gcc_assert (subcode < (1 << 16)); + g->gsbase.subcode = subcode; +} + + + +/* Build a tuple with operands. CODE is the statement to build (which + must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code + for the new tuple. NUM_OPS is the number of operands to allocate. */ + +#define gimple_build_with_ops(c, s, n) \ + gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO) + +static gimple +gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode, + unsigned num_ops MEM_STAT_DECL) +{ + gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT); + gimple_set_subcode (s, subcode); + + return s; +} + + +/* Build a GIMPLE_RETURN statement returning RETVAL. */ + +gimple +gimple_build_return (tree retval) +{ + gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1); + if (retval) + gimple_return_set_retval (s, retval); + return s; +} + +/* Reset alias information on call S. */ + +void +gimple_call_reset_alias_info (gimple s) +{ + if (gimple_call_flags (s) & ECF_CONST) + memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution)); + else + pt_solution_reset (gimple_call_use_set (s)); + if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS)) + memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution)); + else + pt_solution_reset (gimple_call_clobber_set (s)); +} + +/* Helper for gimple_build_call, gimple_build_call_vec and + gimple_build_call_from_tree. Build the basic components of a + GIMPLE_CALL statement to function FN with NARGS arguments. */ + +static inline gimple +gimple_build_call_1 (tree fn, unsigned nargs) +{ + gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3); + if (TREE_CODE (fn) == FUNCTION_DECL) + fn = build_fold_addr_expr (fn); + gimple_set_op (s, 1, fn); + gimple_call_reset_alias_info (s); + return s; +} + + +/* Build a GIMPLE_CALL statement to function FN with the arguments + specified in vector ARGS. */ + +gimple +gimple_build_call_vec (tree fn, VEC(tree, heap) *args) +{ + unsigned i; + unsigned nargs = VEC_length (tree, args); + gimple call = gimple_build_call_1 (fn, nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, VEC_index (tree, args, i)); + + return call; +} + + +/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of + arguments. The ... are the arguments. */ + +gimple +gimple_build_call (tree fn, unsigned nargs, ...) +{ + va_list ap; + gimple call; + unsigned i; + + gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); + + call = gimple_build_call_1 (fn, nargs); + + va_start (ap, nargs); + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, va_arg (ap, tree)); + va_end (ap); + + return call; +} + + +/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is + assumed to be in GIMPLE form already. Minimal checking is done of + this fact. */ + +gimple +gimple_build_call_from_tree (tree t) +{ + unsigned i, nargs; + gimple call; + tree fndecl = get_callee_fndecl (t); + + gcc_assert (TREE_CODE (t) == CALL_EXPR); + + nargs = call_expr_nargs (t); + call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i)); + + gimple_set_block (call, TREE_BLOCK (t)); + + /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */ + gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t)); + gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t)); + gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t)); + gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t)); + gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t)); + gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t)); + gimple_call_set_nothrow (call, TREE_NOTHROW (t)); + gimple_set_no_warning (call, TREE_NO_WARNING (t)); + + return call; +} + + +/* Extract the operands and code for expression EXPR into *SUBCODE_P, + *OP1_P, *OP2_P and *OP3_P respectively. */ + +void +extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p, + tree *op2_p, tree *op3_p) +{ + enum gimple_rhs_class grhs_class; + + *subcode_p = TREE_CODE (expr); + grhs_class = get_gimple_rhs_class (*subcode_p); + + if (grhs_class == GIMPLE_TERNARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = TREE_OPERAND (expr, 1); + *op3_p = TREE_OPERAND (expr, 2); + } + else if (grhs_class == GIMPLE_BINARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = TREE_OPERAND (expr, 1); + *op3_p = NULL_TREE; + } + else if (grhs_class == GIMPLE_UNARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = NULL_TREE; + *op3_p = NULL_TREE; + } + else if (grhs_class == GIMPLE_SINGLE_RHS) + { + *op1_p = expr; + *op2_p = NULL_TREE; + *op3_p = NULL_TREE; + } + else + gcc_unreachable (); +} + + +/* Build a GIMPLE_ASSIGN statement. + + LHS of the assignment. + RHS of the assignment which can be unary or binary. */ + +gimple +gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL) +{ + enum tree_code subcode; + tree op1, op2, op3; + + extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3); + return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3 + PASS_MEM_STAT); +} + + +/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands + OP1 and OP2. If OP2 is NULL then SUBCODE must be of class + GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */ + +gimple +gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1, + tree op2, tree op3 MEM_STAT_DECL) +{ + unsigned num_ops; + gimple p; + + /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the + code). */ + num_ops = get_gimple_rhs_num_ops (subcode) + 1; + + p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops + PASS_MEM_STAT); + gimple_assign_set_lhs (p, lhs); + gimple_assign_set_rhs1 (p, op1); + if (op2) + { + gcc_assert (num_ops > 2); + gimple_assign_set_rhs2 (p, op2); + } + + if (op3) + { + gcc_assert (num_ops > 3); + gimple_assign_set_rhs3 (p, op3); + } + + return p; +} + + +/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P. + + DST/SRC are the destination and source respectively. You can pass + ungimplified trees in DST or SRC, in which case they will be + converted to a gimple operand if necessary. + + This function returns the newly created GIMPLE_ASSIGN tuple. */ + +gimple +gimplify_assign (tree dst, tree src, gimple_seq *seq_p) +{ + tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); + gimplify_and_add (t, seq_p); + ggc_free (t); + return gimple_seq_last_stmt (*seq_p); +} + + +/* Build a GIMPLE_COND statement. + + PRED is the condition used to compare LHS and the RHS. + T_LABEL is the label to jump to if the condition is true. + F_LABEL is the label to jump to otherwise. */ + +gimple +gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, + tree t_label, tree f_label) +{ + gimple p; + + gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison); + p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4); + gimple_cond_set_lhs (p, lhs); + gimple_cond_set_rhs (p, rhs); + gimple_cond_set_true_label (p, t_label); + gimple_cond_set_false_label (p, f_label); + return p; +} + + +/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */ + +void +gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p, + tree *lhs_p, tree *rhs_p) +{ + gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison + || TREE_CODE (cond) == TRUTH_NOT_EXPR + || is_gimple_min_invariant (cond) + || SSA_VAR_P (cond)); + + extract_ops_from_tree (cond, code_p, lhs_p, rhs_p); + + /* Canonicalize conditionals of the form 'if (!VAL)'. */ + if (*code_p == TRUTH_NOT_EXPR) + { + *code_p = EQ_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); + } + /* Canonicalize conditionals of the form 'if (VAL)' */ + else if (TREE_CODE_CLASS (*code_p) != tcc_comparison) + { + *code_p = NE_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); + } +} + + +/* Build a GIMPLE_COND statement from the conditional expression tree + COND. T_LABEL and F_LABEL are as in gimple_build_cond. */ + +gimple +gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + return gimple_build_cond (code, lhs, rhs, t_label, f_label); +} + +/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable + boolean expression tree COND. */ + +void +gimple_cond_set_condition_from_tree (gimple stmt, tree cond) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + gimple_cond_set_condition (stmt, code, lhs, rhs); +} + +/* Build a GIMPLE_LABEL statement for LABEL. */ + +gimple +gimple_build_label (tree label) +{ + gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1); + gimple_label_set_label (p, label); + return p; +} + +/* Build a GIMPLE_GOTO statement to label DEST. */ + +gimple +gimple_build_goto (tree dest) +{ + gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1); + gimple_goto_set_dest (p, dest); + return p; +} + + +/* Build a GIMPLE_NOP statement. */ + +gimple +gimple_build_nop (void) +{ + return gimple_alloc (GIMPLE_NOP, 0); +} + + +/* Build a GIMPLE_BIND statement. + VARS are the variables in BODY. + BLOCK is the containing block. */ + +gimple +gimple_build_bind (tree vars, gimple_seq body, tree block) +{ + gimple p = gimple_alloc (GIMPLE_BIND, 0); + gimple_bind_set_vars (p, vars); + if (body) + gimple_bind_set_body (p, body); + if (block) + gimple_bind_set_block (p, block); + return p; +} + +/* Helper function to set the simple fields of a asm stmt. + + STRING is a pointer to a string that is the asm blocks assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + */ + +static inline gimple +gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs, + unsigned nclobbers, unsigned nlabels) +{ + gimple p; + int size = strlen (string); + + /* ASMs with labels cannot have outputs. This should have been + enforced by the front end. */ + gcc_assert (nlabels == 0 || noutputs == 0); + + p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK, + ninputs + noutputs + nclobbers + nlabels); + + p->gimple_asm.ni = ninputs; + p->gimple_asm.no = noutputs; + p->gimple_asm.nc = nclobbers; + p->gimple_asm.nl = nlabels; + p->gimple_asm.string = ggc_alloc_string (string, size); + +#ifdef GATHER_STATISTICS + gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size; +#endif + + return p; +} + +/* Build a GIMPLE_ASM statement. + + STRING is the assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + INPUTS is a vector of the input register parameters. + OUTPUTS is a vector of the output register parameters. + CLOBBERS is a vector of the clobbered register parameters. + LABELS is a vector of destination labels. */ + +gimple +gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs, + VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers, + VEC(tree,gc)* labels) +{ + gimple p; + unsigned i; + + p = gimple_build_asm_1 (string, + VEC_length (tree, inputs), + VEC_length (tree, outputs), + VEC_length (tree, clobbers), + VEC_length (tree, labels)); + + for (i = 0; i < VEC_length (tree, inputs); i++) + gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i)); + + for (i = 0; i < VEC_length (tree, outputs); i++) + gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i)); + + for (i = 0; i < VEC_length (tree, clobbers); i++) + gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i)); + + for (i = 0; i < VEC_length (tree, labels); i++) + gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i)); + + return p; +} + +/* Build a GIMPLE_CATCH statement. + + TYPES are the catch types. + HANDLER is the exception handler. */ + +gimple +gimple_build_catch (tree types, gimple_seq handler) +{ + gimple p = gimple_alloc (GIMPLE_CATCH, 0); + gimple_catch_set_types (p, types); + if (handler) + gimple_catch_set_handler (p, handler); + + return p; +} + +/* Build a GIMPLE_EH_FILTER statement. + + TYPES are the filter's types. + FAILURE is the filter's failure action. */ + +gimple +gimple_build_eh_filter (tree types, gimple_seq failure) +{ + gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0); + gimple_eh_filter_set_types (p, types); + if (failure) + gimple_eh_filter_set_failure (p, failure); + + return p; +} + +/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */ + +gimple +gimple_build_eh_must_not_throw (tree decl) +{ + gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0); + + gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); + gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN); + gimple_eh_must_not_throw_set_fndecl (p, decl); + + return p; +} + +/* Build a GIMPLE_TRY statement. + + EVAL is the expression to evaluate. + CLEANUP is the cleanup expression. + KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on + whether this is a try/catch or a try/finally respectively. */ + +gimple +gimple_build_try (gimple_seq eval, gimple_seq cleanup, + enum gimple_try_flags kind) +{ + gimple p; + + gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY); + p = gimple_alloc (GIMPLE_TRY, 0); + gimple_set_subcode (p, kind); + if (eval) + gimple_try_set_eval (p, eval); + if (cleanup) + gimple_try_set_cleanup (p, cleanup); + + return p; +} + +/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement. + + CLEANUP is the cleanup expression. */ + +gimple +gimple_build_wce (gimple_seq cleanup) +{ + gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0); + if (cleanup) + gimple_wce_set_cleanup (p, cleanup); + + return p; +} + + +/* Build a GIMPLE_RESX statement. */ + +gimple +gimple_build_resx (int region) +{ + gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0); + p->gimple_eh_ctrl.region = region; + return p; +} + + +/* The helper for constructing a gimple switch statement. + INDEX is the switch's index. + NLABELS is the number of labels in the switch excluding the default. + DEFAULT_LABEL is the default label for the switch statement. */ + +gimple +gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label) +{ + /* nlabels + 1 default label + 1 index. */ + gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK, + 1 + (default_label != NULL) + nlabels); + gimple_switch_set_index (p, index); + if (default_label) + gimple_switch_set_default_label (p, default_label); + return p; +} + + +/* Build a GIMPLE_SWITCH statement. + + INDEX is the switch's index. + NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL. + ... are the labels excluding the default. */ + +gimple +gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...) +{ + va_list al; + unsigned i, offset; + gimple p = gimple_build_switch_nlabels (nlabels, index, default_label); + + /* Store the rest of the labels. */ + va_start (al, default_label); + offset = (default_label != NULL); + for (i = 0; i < nlabels; i++) + gimple_switch_set_label (p, i + offset, va_arg (al, tree)); + va_end (al); + + return p; +} + + +/* Build a GIMPLE_SWITCH statement. + + INDEX is the switch's index. + DEFAULT_LABEL is the default label + ARGS is a vector of labels excluding the default. */ + +gimple +gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args) +{ + unsigned i, offset, nlabels = VEC_length (tree, args); + gimple p = gimple_build_switch_nlabels (nlabels, index, default_label); + + /* Copy the labels from the vector to the switch statement. */ + offset = (default_label != NULL); + for (i = 0; i < nlabels; i++) + gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i)); + + return p; +} + +/* Build a GIMPLE_EH_DISPATCH statement. */ + +gimple +gimple_build_eh_dispatch (int region) +{ + gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0); + p->gimple_eh_ctrl.region = region; + return p; +} + +/* Build a new GIMPLE_DEBUG_BIND statement. + + VAR is bound to VALUE; block and location are taken from STMT. */ + +gimple +gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL) +{ + gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG, + (unsigned)GIMPLE_DEBUG_BIND, 2 + PASS_MEM_STAT); + + gimple_debug_bind_set_var (p, var); + gimple_debug_bind_set_value (p, value); + if (stmt) + { + gimple_set_block (p, gimple_block (stmt)); + gimple_set_location (p, gimple_location (stmt)); + } + + return p; +} + + +/* Build a GIMPLE_OMP_CRITICAL statement. + + BODY is the sequence of statements for which only one thread can execute. + NAME is optional identifier for this critical block. */ + +gimple +gimple_build_omp_critical (gimple_seq body, tree name) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0); + gimple_omp_critical_set_name (p, name); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + +/* Build a GIMPLE_OMP_FOR statement. + + BODY is sequence of statements inside the for loop. + CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate, + lastprivate, reductions, ordered, schedule, and nowait. + COLLAPSE is the collapse count. + PRE_BODY is the sequence of statements that are loop invariant. */ + +gimple +gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse, + gimple_seq pre_body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_for_set_clauses (p, clauses); + p->gimple_omp_for.collapse = collapse; + p->gimple_omp_for.iter + = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); + if (pre_body) + gimple_omp_for_set_pre_body (p, pre_body); + + return p; +} + + +/* Build a GIMPLE_OMP_PARALLEL statement. + + BODY is sequence of statements which are executed in parallel. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). */ + +gimple +gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, + tree data_arg) +{ + gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_parallel_set_clauses (p, clauses); + gimple_omp_parallel_set_child_fn (p, child_fn); + gimple_omp_parallel_set_data_arg (p, data_arg); + + return p; +} + + +/* Build a GIMPLE_OMP_TASK statement. + + BODY is sequence of statements which are executed by the explicit task. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). + COPY_FN is the optional function for firstprivate initialization. + ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */ + +gimple +gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn, + tree data_arg, tree copy_fn, tree arg_size, + tree arg_align) +{ + gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_task_set_clauses (p, clauses); + gimple_omp_task_set_child_fn (p, child_fn); + gimple_omp_task_set_data_arg (p, data_arg); + gimple_omp_task_set_copy_fn (p, copy_fn); + gimple_omp_task_set_arg_size (p, arg_size); + gimple_omp_task_set_arg_align (p, arg_align); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTION statement for a sections statement. + + BODY is the sequence of statements in the section. */ + +gimple +gimple_build_omp_section (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_MASTER statement. + + BODY is the sequence of statements to be executed by just the master. */ + +gimple +gimple_build_omp_master (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_CONTINUE statement. + + CONTROL_DEF is the definition of the control variable. + CONTROL_USE is the use of the control variable. */ + +gimple +gimple_build_omp_continue (tree control_def, tree control_use) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0); + gimple_omp_continue_set_control_def (p, control_def); + gimple_omp_continue_set_control_use (p, control_use); + return p; +} + +/* Build a GIMPLE_OMP_ORDERED statement. + + BODY is the sequence of statements inside a loop that will executed in + sequence. */ + +gimple +gimple_build_omp_ordered (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_RETURN statement. + WAIT_P is true if this is a non-waiting return. */ + +gimple +gimple_build_omp_return (bool wait_p) +{ + gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0); + if (wait_p) + gimple_omp_return_set_nowait (p); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS statement. + + BODY is a sequence of section statements. + CLAUSES are any of the OMP sections contsruct's clauses: private, + firstprivate, lastprivate, reduction, and nowait. */ + +gimple +gimple_build_omp_sections (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_sections_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */ + +gimple +gimple_build_omp_sections_switch (void) +{ + return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0); +} + + +/* Build a GIMPLE_OMP_SINGLE statement. + + BODY is the sequence of statements that will be executed once. + CLAUSES are any of the OMP single construct's clauses: private, firstprivate, + copyprivate, nowait. */ + +gimple +gimple_build_omp_single (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_single_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */ + +gimple +gimple_build_omp_atomic_load (tree lhs, tree rhs) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0); + gimple_omp_atomic_load_set_lhs (p, lhs); + gimple_omp_atomic_load_set_rhs (p, rhs); + return p; +} + +/* Build a GIMPLE_OMP_ATOMIC_STORE statement. + + VAL is the value we are storing. */ + +gimple +gimple_build_omp_atomic_store (tree val) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0); + gimple_omp_atomic_store_set_val (p, val); + return p; +} + +/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from + predict.def, OUTCOME is NOT_TAKEN or TAKEN. */ + +gimple +gimple_build_predict (enum br_predictor predictor, enum prediction outcome) +{ + gimple p = gimple_alloc (GIMPLE_PREDICT, 0); + /* Ensure all the predictors fit into the lower bits of the subcode. */ + gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN); + gimple_predict_set_predictor (p, predictor); + gimple_predict_set_outcome (p, outcome); + return p; +} + +#if defined ENABLE_GIMPLE_CHECKING +/* Complain of a gimple type mismatch and die. */ + +void +gimple_check_failed (const_gimple gs, const char *file, int line, + const char *function, enum gimple_code code, + enum tree_code subcode) +{ + internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d", + gimple_code_name[code], + tree_code_name[subcode], + gimple_code_name[gimple_code (gs)], + gs->gsbase.subcode > 0 + ? tree_code_name[gs->gsbase.subcode] + : "", + function, trim_filename (file), line); +} +#endif /* ENABLE_GIMPLE_CHECKING */ + + +/* Allocate a new GIMPLE sequence in GC memory and return it. If + there are free sequences in GIMPLE_SEQ_CACHE return one of those + instead. */ + +gimple_seq +gimple_seq_alloc (void) +{ + gimple_seq seq = gimple_seq_cache; + if (seq) + { + gimple_seq_cache = gimple_seq_cache->next_free; + gcc_assert (gimple_seq_cache != seq); + memset (seq, 0, sizeof (*seq)); + } + else + { + seq = ggc_alloc_cleared_gimple_seq_d (); +#ifdef GATHER_STATISTICS + gimple_alloc_counts[(int) gimple_alloc_kind_seq]++; + gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq); +#endif + } + + return seq; +} + +/* Return SEQ to the free pool of GIMPLE sequences. */ + +void +gimple_seq_free (gimple_seq seq) +{ + if (seq == NULL) + return; + + gcc_assert (gimple_seq_first (seq) == NULL); + gcc_assert (gimple_seq_last (seq) == NULL); + + /* If this triggers, it's a sign that the same list is being freed + twice. */ + gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL); + + /* Add SEQ to the pool of free sequences. */ + seq->next_free = gimple_seq_cache; + gimple_seq_cache = seq; +} + + +/* Link gimple statement GS to the end of the sequence *SEQ_P. If + *SEQ_P is NULL, a new sequence is allocated. */ + +void +gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs) +{ + gimple_stmt_iterator si; + + if (gs == NULL) + return; + + if (*seq_p == NULL) + *seq_p = gimple_seq_alloc (); + + si = gsi_last (*seq_p); + gsi_insert_after (&si, gs, GSI_NEW_STMT); +} + + +/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is + NULL, a new sequence is allocated. */ + +void +gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src) +{ + gimple_stmt_iterator si; + + if (src == NULL) + return; + + if (*dst_p == NULL) + *dst_p = gimple_seq_alloc (); + + si = gsi_last (*dst_p); + gsi_insert_seq_after (&si, src, GSI_NEW_STMT); +} + + +/* Helper function of empty_body_p. Return true if STMT is an empty + statement. */ + +static bool +empty_stmt_p (gimple stmt) +{ + if (gimple_code (stmt) == GIMPLE_NOP) + return true; + if (gimple_code (stmt) == GIMPLE_BIND) + return empty_body_p (gimple_bind_body (stmt)); + return false; +} + + +/* Return true if BODY contains nothing but empty statements. */ + +bool +empty_body_p (gimple_seq body) +{ + gimple_stmt_iterator i; + + if (gimple_seq_empty_p (body)) + return true; + for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i)) + if (!empty_stmt_p (gsi_stmt (i)) + && !is_gimple_debug (gsi_stmt (i))) + return false; + + return true; +} + + +/* Perform a deep copy of sequence SRC and return the result. */ + +gimple_seq +gimple_seq_copy (gimple_seq src) +{ + gimple_stmt_iterator gsi; + gimple_seq new_seq = gimple_seq_alloc (); + gimple stmt; + + for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi)) + { + stmt = gimple_copy (gsi_stmt (gsi)); + gimple_seq_add_stmt (&new_seq, stmt); + } + + return new_seq; +} + + +/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt + on each one. WI is as in walk_gimple_stmt. + + If walk_gimple_stmt returns non-NULL, the walk is stopped, the + value is stored in WI->CALLBACK_RESULT and the statement that + produced the value is returned. + + Otherwise, all the statements are walked and NULL returned. */ + +gimple +walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi); + if (ret) + { + /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist + to hold it. */ + gcc_assert (wi); + wi->callback_result = ret; + return gsi_stmt (gsi); + } + } + + if (wi) + wi->callback_result = NULL_TREE; + + return NULL; +} + + +/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */ + +static tree +walk_gimple_asm (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + tree ret, op; + unsigned noutputs; + const char **oconstraints; + unsigned i, n; + const char *constraint; + bool allows_mem, allows_reg, is_inout; + + noutputs = gimple_asm_noutputs (stmt); + oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); + + if (wi) + wi->is_lhs = true; + + for (i = 0; i < noutputs; i++) + { + op = gimple_asm_output_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + oconstraints[i] = constraint; + parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, + &is_inout); + if (wi) + wi->val_only = (allows_reg || !allows_mem); + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + n = gimple_asm_ninputs (stmt); + for (i = 0; i < n; i++) + { + op = gimple_asm_input_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + parse_input_constraint (&constraint, 0, 0, noutputs, 0, + oconstraints, &allows_mem, &allows_reg); + if (wi) + { + wi->val_only = (allows_reg || !allows_mem); + /* Although input "m" is not really a LHS, we need a lvalue. */ + wi->is_lhs = !wi->val_only; + } + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + + n = gimple_asm_nlabels (stmt); + for (i = 0; i < n; i++) + { + op = gimple_asm_label_op (stmt, i); + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + return NULL_TREE; +} + + +/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in + STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT. + + CALLBACK_OP is called on each operand of STMT via walk_tree. + Additional parameters to walk_tree must be stored in WI. For each operand + OP, walk_tree is called as: + + walk_tree (&OP, CALLBACK_OP, WI, WI->PSET) + + If CALLBACK_OP returns non-NULL for an operand, the remaining + operands are not scanned. + + The return value is that returned by the last call to walk_tree, or + NULL_TREE if no CALLBACK_OP is specified. */ + +tree +walk_gimple_op (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + struct pointer_set_t *pset = (wi) ? wi->pset : NULL; + unsigned i; + tree ret = NULL_TREE; + + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + /* Walk the RHS operands. If the LHS is of a non-renamable type or + is a register variable, we may use a COMPONENT_REF on the RHS. */ + if (wi) + { + tree lhs = gimple_assign_lhs (stmt); + wi->val_only + = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs)) + || !gimple_assign_single_p (stmt); + } + + for (i = 1; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + /* Walk the LHS. If the RHS is appropriate for a memory, we + may use a COMPONENT_REF on the LHS. */ + if (wi) + { + /* If the RHS has more than 1 operand, it is not appropriate + for the memory. */ + wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt)) + || !gimple_assign_single_p (stmt); + wi->is_lhs = true; + } + + ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset); + if (ret) + return ret; + + if (wi) + { + wi->val_only = true; + wi->is_lhs = false; + } + break; + + case GIMPLE_CALL: + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + + ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + for (i = 0; i < gimple_call_num_args (stmt); i++) + { + if (wi) + wi->val_only + = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i))); + ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + if (gimple_call_lhs (stmt)) + { + if (wi) + { + wi->is_lhs = true; + wi->val_only + = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt))); + } + + ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + } + + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + break; + + case GIMPLE_CATCH: + ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_EH_FILTER: + ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_ASM: + ret = walk_gimple_asm (stmt, callback_op, wi); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CONTINUE: + ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CRITICAL: + ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_FOR: + ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op, + wi, pset); + } + if (ret) + return ret; + break; + + case GIMPLE_OMP_PARALLEL: + ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_TASK: + ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_SECTIONS: + ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + break; + + case GIMPLE_OMP_SINGLE: + ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_LOAD: + ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_STORE: + ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + /* Tuples that do not have operands. */ + case GIMPLE_NOP: + case GIMPLE_RESX: + case GIMPLE_OMP_RETURN: + case GIMPLE_PREDICT: + break; + + default: + { + enum gimple_statement_structure_enum gss; + gss = gimple_statement_structure (stmt); + if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS) + for (i = 0; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset); + if (ret) + return ret; + } + } + break; + } + + return NULL_TREE; +} + + +/* Walk the current statement in GSI (optionally using traversal state + stored in WI). If WI is NULL, no state is kept during traversal. + The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates + that it has handled all the operands of the statement, its return + value is returned. Otherwise, the return value from CALLBACK_STMT + is discarded and its operands are scanned. + + If CALLBACK_STMT is NULL or it didn't handle the operands, + CALLBACK_OP is called on each operand of the statement via + walk_gimple_op. If walk_gimple_op returns non-NULL for any + operand, the remaining operands are not scanned. In this case, the + return value from CALLBACK_OP is returned. + + In any other case, NULL_TREE is returned. */ + +tree +walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple ret; + tree tree_ret; + gimple stmt = gsi_stmt (*gsi); + + if (wi) + wi->gsi = *gsi; + + if (wi && wi->want_locations && gimple_has_location (stmt)) + input_location = gimple_location (stmt); + + ret = NULL; + + /* Invoke the statement callback. Return if the callback handled + all of STMT operands by itself. */ + if (callback_stmt) + { + bool handled_ops = false; + tree_ret = callback_stmt (gsi, &handled_ops, wi); + if (handled_ops) + return tree_ret; + + /* If CALLBACK_STMT did not handle operands, it should not have + a value to return. */ + gcc_assert (tree_ret == NULL); + + /* Re-read stmt in case the callback changed it. */ + stmt = gsi_stmt (*gsi); + } + + /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */ + if (callback_op) + { + tree_ret = walk_gimple_op (stmt, callback_op, wi); + if (tree_ret) + return tree_ret; + } + + /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */ + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_CATCH: + ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_EH_FILTER: + ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_TRY: + ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op, + wi); + if (ret) + return wi->callback_result; + + ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_OMP_FOR: + ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + + /* FALL THROUGH. */ + case GIMPLE_OMP_CRITICAL: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op, + wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + default: + gcc_assert (!gimple_has_substatements (stmt)); + break; + } + + return NULL; +} + + +/* Set sequence SEQ to be the GIMPLE body for function FN. */ + +void +gimple_set_body (tree fndecl, gimple_seq seq) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + if (fn == NULL) + { + /* If FNDECL still does not have a function structure associated + with it, then it does not make sense for it to receive a + GIMPLE body. */ + gcc_assert (seq == NULL); + } + else + fn->gimple_body = seq; +} + + +/* Return the body of GIMPLE statements for function FN. After the + CFG pass, the function body doesn't exist anymore because it has + been split up into basic blocks. In this case, it returns + NULL. */ + +gimple_seq +gimple_body (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return fn ? fn->gimple_body : NULL; +} + +/* Return true when FNDECL has Gimple body either in unlowered + or CFG form. */ +bool +gimple_has_body_p (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return (gimple_body (fndecl) || (fn && fn->cfg)); +} + +/* Detect flags from a GIMPLE_CALL. This is just like + call_expr_flags, but for gimple tuples. */ + +int +gimple_call_flags (const_gimple stmt) +{ + int flags; + tree decl = gimple_call_fndecl (stmt); + tree t; + + if (decl) + flags = flags_from_decl_or_type (decl); + else + { + t = TREE_TYPE (gimple_call_fn (stmt)); + if (t && TREE_CODE (t) == POINTER_TYPE) + flags = flags_from_decl_or_type (TREE_TYPE (t)); + else + flags = 0; + } + + if (stmt->gsbase.subcode & GF_CALL_NOTHROW) + flags |= ECF_NOTHROW; + + return flags; +} + +/* Detects argument flags for argument number ARG on call STMT. */ + +int +gimple_call_arg_flags (const_gimple stmt, unsigned arg) +{ + tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))); + tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type)); + if (!attr) + return 0; + + attr = TREE_VALUE (TREE_VALUE (attr)); + if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr)) + return 0; + + switch (TREE_STRING_POINTER (attr)[1 + arg]) + { + case 'x': + case 'X': + return EAF_UNUSED; + + case 'R': + return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE; + + case 'r': + return EAF_NOCLOBBER | EAF_NOESCAPE; + + case 'W': + return EAF_DIRECT | EAF_NOESCAPE; + + case 'w': + return EAF_NOESCAPE; + + case '.': + default: + return 0; + } +} + +/* Detects return flags for the call STMT. */ + +int +gimple_call_return_flags (const_gimple stmt) +{ + tree type; + tree attr = NULL_TREE; + + if (gimple_call_flags (stmt) & ECF_MALLOC) + return ERF_NOALIAS; + + type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))); + attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type)); + if (!attr) + return 0; + + attr = TREE_VALUE (TREE_VALUE (attr)); + if (TREE_STRING_LENGTH (attr) < 1) + return 0; + + switch (TREE_STRING_POINTER (attr)[0]) + { + case '1': + case '2': + case '3': + case '4': + return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1'); + + case 'm': + return ERF_NOALIAS; + + case '.': + default: + return 0; + } +} + + +/* Return true if GS is a copy assignment. */ + +bool +gimple_assign_copy_p (gimple gs) +{ + return (gimple_assign_single_p (gs) + && is_gimple_val (gimple_op (gs, 1))); +} + + +/* Return true if GS is a SSA_NAME copy assignment. */ + +bool +gimple_assign_ssa_name_copy_p (gimple gs) +{ + return (gimple_assign_single_p (gs) + && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME + && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME); +} + + +/* Return true if GS is an assignment with a unary RHS, but the + operator has no effect on the assigned value. The logic is adapted + from STRIP_NOPS. This predicate is intended to be used in tuplifying + instances in which STRIP_NOPS was previously applied to the RHS of + an assignment. + + NOTE: In the use cases that led to the creation of this function + and of gimple_assign_single_p, it is typical to test for either + condition and to proceed in the same manner. In each case, the + assigned value is represented by the single RHS operand of the + assignment. I suspect there may be cases where gimple_assign_copy_p, + gimple_assign_single_p, or equivalent logic is used where a similar + treatment of unary NOPs is appropriate. */ + +bool +gimple_assign_unary_nop_p (gimple gs) +{ + return (is_gimple_assign (gs) + && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)) + || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR) + && gimple_assign_rhs1 (gs) != error_mark_node + && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs))) + == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs))))); +} + +/* Set BB to be the basic block holding G. */ + +void +gimple_set_bb (gimple stmt, basic_block bb) +{ + stmt->gsbase.bb = bb; + + /* If the statement is a label, add the label to block-to-labels map + so that we can speed up edge creation for GIMPLE_GOTOs. */ + if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL) + { + tree t; + int uid; + + t = gimple_label_label (stmt); + uid = LABEL_DECL_UID (t); + if (uid == -1) + { + unsigned old_len = VEC_length (basic_block, label_to_block_map); + LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++; + if (old_len <= (unsigned) uid) + { + unsigned new_len = 3 * uid / 2 + 1; + + VEC_safe_grow_cleared (basic_block, gc, label_to_block_map, + new_len); + } + } + + VEC_replace (basic_block, label_to_block_map, uid, bb); + } +} + + +/* Modify the RHS of the assignment pointed-to by GSI using the + operands in the expression tree EXPR. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. + + This function is useful to convert an existing tree expression into + the flat representation used for the RHS of a GIMPLE assignment. + It will reallocate memory as needed to expand or shrink the number + of operand slots needed to represent EXPR. + + NOTE: If you find yourself building a tree and then calling this + function, you are most certainly doing it the slow way. It is much + better to build a new assignment or to use the function + gimple_assign_set_rhs_with_ops, which does not require an + expression tree to be built. */ + +void +gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr) +{ + enum tree_code subcode; + tree op1, op2, op3; + + extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3); + gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3); +} + + +/* Set the RHS of assignment statement pointed-to by GSI to CODE with + operands OP1, OP2 and OP3. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. */ + +void +gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code, + tree op1, tree op2, tree op3) +{ + unsigned new_rhs_ops = get_gimple_rhs_num_ops (code); + gimple stmt = gsi_stmt (*gsi); + + /* If the new CODE needs more operands, allocate a new statement. */ + if (gimple_num_ops (stmt) < new_rhs_ops + 1) + { + tree lhs = gimple_assign_lhs (stmt); + gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1); + memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt))); + gsi_replace (gsi, new_stmt, true); + stmt = new_stmt; + + /* The LHS needs to be reset as this also changes the SSA name + on the LHS. */ + gimple_assign_set_lhs (stmt, lhs); + } + + gimple_set_num_ops (stmt, new_rhs_ops + 1); + gimple_set_subcode (stmt, code); + gimple_assign_set_rhs1 (stmt, op1); + if (new_rhs_ops > 1) + gimple_assign_set_rhs2 (stmt, op2); + if (new_rhs_ops > 2) + gimple_assign_set_rhs3 (stmt, op3); +} + + +/* Return the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE + for a call to a function that returns no value, or for a + statement other than an assignment or a call. */ + +tree +gimple_get_lhs (const_gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + return gimple_assign_lhs (stmt); + else if (code == GIMPLE_CALL) + return gimple_call_lhs (stmt); + else + return NULL_TREE; +} + + +/* Set the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ + +void +gimple_set_lhs (gimple stmt, tree lhs) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + gimple_assign_set_lhs (stmt, lhs); + else if (code == GIMPLE_CALL) + gimple_call_set_lhs (stmt, lhs); + else + gcc_unreachable(); +} + +/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a + GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an + expression with a different value. + + This will update any annotations (say debug bind stmts) referring + to the original LHS, so that they use the RHS instead. This is + done even if NLHS and LHS are the same, for it is understood that + the RHS will be modified afterwards, and NLHS will not be assigned + an equivalent value. + + Adjusting any non-annotation uses of the LHS, if needed, is a + responsibility of the caller. + + The effect of this call should be pretty much the same as that of + inserting a copy of STMT before STMT, and then removing the + original stmt, at which time gsi_remove() would have update + annotations, but using this function saves all the inserting, + copying and removing. */ + +void +gimple_replace_lhs (gimple stmt, tree nlhs) +{ + if (MAY_HAVE_DEBUG_STMTS) + { + tree lhs = gimple_get_lhs (stmt); + + gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt); + + insert_debug_temp_for_var_def (NULL, lhs); + } + + gimple_set_lhs (stmt, nlhs); +} + +/* Return a deep copy of statement STMT. All the operands from STMT + are reallocated and copied using unshare_expr. The DEF, USE, VDEF + and VUSE operand arrays are set to empty in the new copy. */ + +gimple +gimple_copy (gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + unsigned num_ops = gimple_num_ops (stmt); + gimple copy = gimple_alloc (code, num_ops); + unsigned i; + + /* Shallow copy all the fields from STMT. */ + memcpy (copy, stmt, gimple_size (code)); + + /* If STMT has sub-statements, deep-copy them as well. */ + if (gimple_has_substatements (stmt)) + { + gimple_seq new_seq; + tree t; + + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + new_seq = gimple_seq_copy (gimple_bind_body (stmt)); + gimple_bind_set_body (copy, new_seq); + gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt))); + gimple_bind_set_block (copy, gimple_bind_block (stmt)); + break; + + case GIMPLE_CATCH: + new_seq = gimple_seq_copy (gimple_catch_handler (stmt)); + gimple_catch_set_handler (copy, new_seq); + t = unshare_expr (gimple_catch_types (stmt)); + gimple_catch_set_types (copy, t); + break; + + case GIMPLE_EH_FILTER: + new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt)); + gimple_eh_filter_set_failure (copy, new_seq); + t = unshare_expr (gimple_eh_filter_types (stmt)); + gimple_eh_filter_set_types (copy, t); + break; + + case GIMPLE_TRY: + new_seq = gimple_seq_copy (gimple_try_eval (stmt)); + gimple_try_set_eval (copy, new_seq); + new_seq = gimple_seq_copy (gimple_try_cleanup (stmt)); + gimple_try_set_cleanup (copy, new_seq); + break; + + case GIMPLE_OMP_FOR: + new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt)); + gimple_omp_for_set_pre_body (copy, new_seq); + t = unshare_expr (gimple_omp_for_clauses (stmt)); + gimple_omp_for_set_clauses (copy, t); + copy->gimple_omp_for.iter + = ggc_alloc_vec_gimple_omp_for_iter + (gimple_omp_for_collapse (stmt)); + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + gimple_omp_for_set_cond (copy, i, + gimple_omp_for_cond (stmt, i)); + gimple_omp_for_set_index (copy, i, + gimple_omp_for_index (stmt, i)); + t = unshare_expr (gimple_omp_for_initial (stmt, i)); + gimple_omp_for_set_initial (copy, i, t); + t = unshare_expr (gimple_omp_for_final (stmt, i)); + gimple_omp_for_set_final (copy, i, t); + t = unshare_expr (gimple_omp_for_incr (stmt, i)); + gimple_omp_for_set_incr (copy, i, t); + } + goto copy_omp_body; + + case GIMPLE_OMP_PARALLEL: + t = unshare_expr (gimple_omp_parallel_clauses (stmt)); + gimple_omp_parallel_set_clauses (copy, t); + t = unshare_expr (gimple_omp_parallel_child_fn (stmt)); + gimple_omp_parallel_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_parallel_data_arg (stmt)); + gimple_omp_parallel_set_data_arg (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_TASK: + t = unshare_expr (gimple_omp_task_clauses (stmt)); + gimple_omp_task_set_clauses (copy, t); + t = unshare_expr (gimple_omp_task_child_fn (stmt)); + gimple_omp_task_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_task_data_arg (stmt)); + gimple_omp_task_set_data_arg (copy, t); + t = unshare_expr (gimple_omp_task_copy_fn (stmt)); + gimple_omp_task_set_copy_fn (copy, t); + t = unshare_expr (gimple_omp_task_arg_size (stmt)); + gimple_omp_task_set_arg_size (copy, t); + t = unshare_expr (gimple_omp_task_arg_align (stmt)); + gimple_omp_task_set_arg_align (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_CRITICAL: + t = unshare_expr (gimple_omp_critical_name (stmt)); + gimple_omp_critical_set_name (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_SECTIONS: + t = unshare_expr (gimple_omp_sections_clauses (stmt)); + gimple_omp_sections_set_clauses (copy, t); + t = unshare_expr (gimple_omp_sections_control (stmt)); + gimple_omp_sections_set_control (copy, t); + /* FALLTHRU */ + + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + copy_omp_body: + new_seq = gimple_seq_copy (gimple_omp_body (stmt)); + gimple_omp_set_body (copy, new_seq); + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt)); + gimple_wce_set_cleanup (copy, new_seq); + break; + + default: + gcc_unreachable (); + } + } + + /* Make copy of operands. */ + if (num_ops > 0) + { + for (i = 0; i < num_ops; i++) + gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i))); + + /* Clear out SSA operand vectors on COPY. */ + if (gimple_has_ops (stmt)) + { + gimple_set_def_ops (copy, NULL); + gimple_set_use_ops (copy, NULL); + } + + if (gimple_has_mem_ops (stmt)) + { + gimple_set_vdef (copy, gimple_vdef (stmt)); + gimple_set_vuse (copy, gimple_vuse (stmt)); + } + + /* SSA operands need to be updated. */ + gimple_set_modified (copy, true); + } + + return copy; +} + + +/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has + a MODIFIED field. */ + +void +gimple_set_modified (gimple s, bool modifiedp) +{ + if (gimple_has_ops (s)) + { + s->gsbase.modified = (unsigned) modifiedp; + + if (modifiedp + && cfun->gimple_df + && is_gimple_call (s) + && gimple_call_noreturn_p (s)) + VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s); + } +} + + +/* Return true if statement S has side-effects. We consider a + statement to have side effects if: + + - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST. + - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */ + +bool +gimple_has_side_effects (const_gimple s) +{ + if (is_gimple_debug (s)) + return false; + + /* We don't have to scan the arguments to check for + volatile arguments, though, at present, we still + do a scan to check for TREE_SIDE_EFFECTS. */ + if (gimple_has_volatile_ops (s)) + return true; + + if (gimple_code (s) == GIMPLE_ASM + && gimple_asm_volatile_p (s)) + return true; + + if (is_gimple_call (s)) + { + int flags = gimple_call_flags (s); + + /* An infinite loop is considered a side effect. */ + if (!(flags & (ECF_CONST | ECF_PURE)) + || (flags & ECF_LOOPING_CONST_OR_PURE)) + return true; + + return false; + } + + return false; +} + +/* Return true if the RHS of statement S has side effects. + We may use it to determine if it is admissable to replace + an assignment or call with a copy of a previously-computed + value. In such cases, side-effects due the the LHS are + preserved. */ + +bool +gimple_rhs_has_side_effects (const_gimple s) +{ + unsigned i; + + if (is_gimple_call (s)) + { + unsigned nargs = gimple_call_num_args (s); + + if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE))) + return true; + + /* We cannot use gimple_has_volatile_ops here, + because we must ignore a volatile LHS. */ + if (TREE_SIDE_EFFECTS (gimple_call_fn (s)) + || TREE_THIS_VOLATILE (gimple_call_fn (s))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + + for (i = 0; i < nargs; i++) + if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)) + || TREE_THIS_VOLATILE (gimple_call_arg (s, i))) + return true; + + return false; + } + else if (is_gimple_assign (s)) + { + /* Skip the first operand, the LHS. */ + for (i = 1; i < gimple_num_ops (s); i++) + if (TREE_SIDE_EFFECTS (gimple_op (s, i)) + || TREE_THIS_VOLATILE (gimple_op (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + } + else if (is_gimple_debug (s)) + return false; + else + { + /* For statements without an LHS, examine all arguments. */ + for (i = 0; i < gimple_num_ops (s); i++) + if (TREE_SIDE_EFFECTS (gimple_op (s, i)) + || TREE_THIS_VOLATILE (gimple_op (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + } + + return false; +} + +/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p. + Return true if S can trap. When INCLUDE_MEM is true, check whether + the memory operations could trap. When INCLUDE_STORES is true and + S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */ + +bool +gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores) +{ + tree t, div = NULL_TREE; + enum tree_code op; + + if (include_mem) + { + unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0; + + for (i = start; i < gimple_num_ops (s); i++) + if (tree_could_trap_p (gimple_op (s, i))) + return true; + } + + switch (gimple_code (s)) + { + case GIMPLE_ASM: + return gimple_asm_volatile_p (s); + + case GIMPLE_CALL: + t = gimple_call_fndecl (s); + /* Assume that calls to weak functions may trap. */ + if (!t || !DECL_P (t) || DECL_WEAK (t)) + return true; + return false; + + case GIMPLE_ASSIGN: + t = gimple_expr_type (s); + op = gimple_assign_rhs_code (s); + if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS) + div = gimple_assign_rhs2 (s); + return (operation_could_trap_p (op, FLOAT_TYPE_P (t), + (INTEGRAL_TYPE_P (t) + && TYPE_OVERFLOW_TRAPS (t)), + div)); + + default: + break; + } + + return false; +} + +/* Return true if statement S can trap. */ + +bool +gimple_could_trap_p (gimple s) +{ + return gimple_could_trap_p_1 (s, true, true); +} + +/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */ + +bool +gimple_assign_rhs_could_trap_p (gimple s) +{ + gcc_assert (is_gimple_assign (s)); + return gimple_could_trap_p_1 (s, true, false); +} + + +/* Print debugging information for gimple stmts generated. */ + +void +dump_gimple_statistics (void) +{ +#ifdef GATHER_STATISTICS + int i, total_tuples = 0, total_bytes = 0; + + fprintf (stderr, "\nGIMPLE statements\n"); + fprintf (stderr, "Kind Stmts Bytes\n"); + fprintf (stderr, "---------------------------------------\n"); + for (i = 0; i < (int) gimple_alloc_kind_all; ++i) + { + fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i], + gimple_alloc_counts[i], gimple_alloc_sizes[i]); + total_tuples += gimple_alloc_counts[i]; + total_bytes += gimple_alloc_sizes[i]; + } + fprintf (stderr, "---------------------------------------\n"); + fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes); + fprintf (stderr, "---------------------------------------\n"); +#else + fprintf (stderr, "No gimple statistics\n"); +#endif +} + + +/* Return the number of operands needed on the RHS of a GIMPLE + assignment for an expression with tree code CODE. */ + +unsigned +get_gimple_rhs_num_ops (enum tree_code code) +{ + enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); + + if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS) + return 1; + else if (rhs_class == GIMPLE_BINARY_RHS) + return 2; + else if (rhs_class == GIMPLE_TERNARY_RHS) + return 3; + else + gcc_unreachable (); +} + +#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \ + (unsigned char) \ + ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \ + : ((TYPE) == tcc_binary \ + || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \ + : ((TYPE) == tcc_constant \ + || (TYPE) == tcc_declaration \ + || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \ + : ((SYM) == TRUTH_AND_EXPR \ + || (SYM) == TRUTH_OR_EXPR \ + || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \ + : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \ + : ((SYM) == WIDEN_MULT_PLUS_EXPR \ + || (SYM) == WIDEN_MULT_MINUS_EXPR \ + || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \ + : ((SYM) == COND_EXPR \ + || (SYM) == CONSTRUCTOR \ + || (SYM) == OBJ_TYPE_REF \ + || (SYM) == ASSERT_EXPR \ + || (SYM) == ADDR_EXPR \ + || (SYM) == WITH_SIZE_EXPR \ + || (SYM) == SSA_NAME \ + || (SYM) == POLYNOMIAL_CHREC \ + || (SYM) == DOT_PROD_EXPR \ + || (SYM) == VEC_COND_EXPR \ + || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \ + : GIMPLE_INVALID_RHS), +#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS, + +const unsigned char gimple_rhs_class_table[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */ + +/* Validation of GIMPLE expressions. */ + +/* Returns true iff T is a valid RHS for an assignment to a renamed + user -- or front-end generated artificial -- variable. */ + +bool +is_gimple_reg_rhs (tree t) +{ + return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS; +} + +/* Returns true iff T is a valid RHS for an assignment to an un-renamed + LHS, or for a call argument. */ + +bool +is_gimple_mem_rhs (tree t) +{ + /* If we're dealing with a renamable type, either source or dest must be + a renamed variable. */ + if (is_gimple_reg_type (TREE_TYPE (t))) + return is_gimple_val (t); + else + return is_gimple_val (t) || is_gimple_lvalue (t); +} + +/* Return true if T is a valid LHS for a GIMPLE assignment expression. */ + +bool +is_gimple_lvalue (tree t) +{ + return (is_gimple_addressable (t) + || TREE_CODE (t) == WITH_SIZE_EXPR + /* These are complex lvalues, but don't have addresses, so they + go here. */ + || TREE_CODE (t) == BIT_FIELD_REF); +} + +/* Return true if T is a GIMPLE condition. */ + +bool +is_gimple_condexpr (tree t) +{ + return (is_gimple_val (t) || (COMPARISON_CLASS_P (t) + && !tree_could_trap_p (t) + && is_gimple_val (TREE_OPERAND (t, 0)) + && is_gimple_val (TREE_OPERAND (t, 1)))); +} + +/* Return true if T is something whose address can be taken. */ + +bool +is_gimple_addressable (tree t) +{ + return (is_gimple_id (t) || handled_component_p (t) + || TREE_CODE (t) == MEM_REF); +} + +/* Return true if T is a valid gimple constant. */ + +bool +is_gimple_constant (const_tree t) +{ + switch (TREE_CODE (t)) + { + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case STRING_CST: + case COMPLEX_CST: + case VECTOR_CST: + return true; + + /* Vector constant constructors are gimple invariant. */ + case CONSTRUCTOR: + if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return TREE_CONSTANT (t); + else + return false; + + default: + return false; + } +} + +/* Return true if T is a gimple address. */ + +bool +is_gimple_address (const_tree t) +{ + tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = TREE_OPERAND (t, 0); + while (handled_component_p (op)) + { + if ((TREE_CODE (op) == ARRAY_REF + || TREE_CODE (op) == ARRAY_RANGE_REF) + && !is_gimple_val (TREE_OPERAND (op, 1))) + return false; + + op = TREE_OPERAND (op, 0); + } + + if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF) + return true; + + switch (TREE_CODE (op)) + { + case PARM_DECL: + case RESULT_DECL: + case LABEL_DECL: + case FUNCTION_DECL: + case VAR_DECL: + case CONST_DECL: + return true; + + default: + return false; + } +} + +/* Strip out all handled components that produce invariant + offsets. */ + +static const_tree +strip_invariant_refs (const_tree op) +{ + while (handled_component_p (op)) + { + switch (TREE_CODE (op)) + { + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (!is_gimple_constant (TREE_OPERAND (op, 1)) + || TREE_OPERAND (op, 2) != NULL_TREE + || TREE_OPERAND (op, 3) != NULL_TREE) + return NULL; + break; + + case COMPONENT_REF: + if (TREE_OPERAND (op, 2) != NULL_TREE) + return NULL; + break; + + default:; + } + op = TREE_OPERAND (op, 0); + } + + return op; +} + +/* Return true if T is a gimple invariant address. */ + +bool +is_gimple_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + if (!op) + return false; + + if (TREE_CODE (op) == MEM_REF) + { + const_tree op0 = TREE_OPERAND (op, 0); + return (TREE_CODE (op0) == ADDR_EXPR + && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)) + || decl_address_invariant_p (TREE_OPERAND (op0, 0)))); + } + + return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); +} + +/* Return true if T is a gimple invariant address at IPA level + (so addresses of variables on stack are not allowed). */ + +bool +is_gimple_ip_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + + return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op)); +} + +/* Return true if T is a GIMPLE minimal invariant. It's a restricted + form of function invariant. */ + +bool +is_gimple_min_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted + form of gimple minimal invariant. */ + +bool +is_gimple_ip_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_ip_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T looks like a valid GIMPLE statement. */ + +bool +is_gimple_stmt (tree t) +{ + const enum tree_code code = TREE_CODE (t); + + switch (code) + { + case NOP_EXPR: + /* The only valid NOP_EXPR is the empty statement. */ + return IS_EMPTY_STMT (t); + + case BIND_EXPR: + case COND_EXPR: + /* These are only valid if they're void. */ + return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t)); + + case SWITCH_EXPR: + case GOTO_EXPR: + case RETURN_EXPR: + case LABEL_EXPR: + case CASE_LABEL_EXPR: + case TRY_CATCH_EXPR: + case TRY_FINALLY_EXPR: + case EH_FILTER_EXPR: + case CATCH_EXPR: + case ASM_EXPR: + case STATEMENT_LIST: + case OMP_PARALLEL: + case OMP_FOR: + case OMP_SECTIONS: + case OMP_SECTION: + case OMP_SINGLE: + case OMP_MASTER: + case OMP_ORDERED: + case OMP_CRITICAL: + case OMP_TASK: + /* These are always void. */ + return true; + + case CALL_EXPR: + case MODIFY_EXPR: + case PREDICT_EXPR: + /* These are valid regardless of their type. */ + return true; + + default: + return false; + } +} + +/* Return true if T is a variable. */ + +bool +is_gimple_variable (tree t) +{ + return (TREE_CODE (t) == VAR_DECL + || TREE_CODE (t) == PARM_DECL + || TREE_CODE (t) == RESULT_DECL + || TREE_CODE (t) == SSA_NAME); +} + +/* Return true if T is a GIMPLE identifier (something with an address). */ + +bool +is_gimple_id (tree t) +{ + return (is_gimple_variable (t) + || TREE_CODE (t) == FUNCTION_DECL + || TREE_CODE (t) == LABEL_DECL + || TREE_CODE (t) == CONST_DECL + /* Allow string constants, since they are addressable. */ + || TREE_CODE (t) == STRING_CST); +} + +/* Return true if TYPE is a suitable type for a scalar register variable. */ + +bool +is_gimple_reg_type (tree type) +{ + return !AGGREGATE_TYPE_P (type); +} + +/* Return true if T is a non-aggregate register variable. */ + +bool +is_gimple_reg (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + t = SSA_NAME_VAR (t); + + if (!is_gimple_variable (t)) + return false; + + if (!is_gimple_reg_type (TREE_TYPE (t))) + return false; + + /* A volatile decl is not acceptable because we can't reuse it as + needed. We need to copy it into a temp first. */ + if (TREE_THIS_VOLATILE (t)) + return false; + + /* We define "registers" as things that can be renamed as needed, + which with our infrastructure does not apply to memory. */ + if (needs_to_live_in_memory (t)) + return false; + + /* Hard register variables are an interesting case. For those that + are call-clobbered, we don't know where all the calls are, since + we don't (want to) take into account which operations will turn + into libcalls at the rtl level. For those that are call-saved, + we don't currently model the fact that calls may in fact change + global hard registers, nor do we examine ASM_CLOBBERS at the tree + level, and so miss variable changes that might imply. All around, + it seems safest to not do too much optimization with these at the + tree level at all. We'll have to rely on the rtl optimizers to + clean this up, as there we've got all the appropriate bits exposed. */ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return false; + + /* Complex and vector values must have been put into SSA-like form. + That is, no assignments to the individual components. */ + if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return DECL_GIMPLE_REG_P (t); + + return true; +} + + +/* Return true if T is a GIMPLE variable whose address is not needed. */ + +bool +is_gimple_non_addressable (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + t = SSA_NAME_VAR (t); + + return (is_gimple_variable (t) && ! needs_to_live_in_memory (t)); +} + +/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */ + +bool +is_gimple_val (tree t) +{ + /* Make loads from volatiles and memory vars explicit. */ + if (is_gimple_variable (t) + && is_gimple_reg_type (TREE_TYPE (t)) + && !is_gimple_reg (t)) + return false; + + return (is_gimple_variable (t) || is_gimple_min_invariant (t)); +} + +/* Similarly, but accept hard registers as inputs to asm statements. */ + +bool +is_gimple_asm_val (tree t) +{ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return true; + + return is_gimple_val (t); +} + +/* Return true if T is a GIMPLE minimal lvalue. */ + +bool +is_gimple_min_lval (tree t) +{ + if (!(t = CONST_CAST_TREE (strip_invariant_refs (t)))) + return false; + return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF); +} + +/* Return true if T is a valid function operand of a CALL_EXPR. */ + +bool +is_gimple_call_addr (tree t) +{ + return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t)); +} + +/* Return true if T is a valid address operand of a MEM_REF. */ + +bool +is_gimple_mem_ref_addr (tree t) +{ + return (is_gimple_reg (t) + || TREE_CODE (t) == INTEGER_CST + || (TREE_CODE (t) == ADDR_EXPR + && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0)) + || decl_address_invariant_p (TREE_OPERAND (t, 0))))); +} + +/* If T makes a function call, return the corresponding CALL_EXPR operand. + Otherwise, return NULL_TREE. */ + +tree +get_call_expr_in (tree t) +{ + if (TREE_CODE (t) == MODIFY_EXPR) + t = TREE_OPERAND (t, 1); + if (TREE_CODE (t) == WITH_SIZE_EXPR) + t = TREE_OPERAND (t, 0); + if (TREE_CODE (t) == CALL_EXPR) + return t; + return NULL_TREE; +} + + +/* Given a memory reference expression T, return its base address. + The base address of a memory reference expression is the main + object being referenced. For instance, the base address for + 'array[i].fld[j]' is 'array'. You can think of this as stripping + away the offset part from a memory address. + + This function calls handled_component_p to strip away all the inner + parts of the memory reference until it reaches the base object. */ + +tree +get_base_address (tree t) +{ + while (handled_component_p (t)) + t = TREE_OPERAND (t, 0); + + if ((TREE_CODE (t) == MEM_REF + || TREE_CODE (t) == TARGET_MEM_REF) + && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR) + t = TREE_OPERAND (TREE_OPERAND (t, 0), 0); + + if (TREE_CODE (t) == SSA_NAME + || DECL_P (t) + || TREE_CODE (t) == STRING_CST + || TREE_CODE (t) == CONSTRUCTOR + || INDIRECT_REF_P (t) + || TREE_CODE (t) == MEM_REF + || TREE_CODE (t) == TARGET_MEM_REF) + return t; + else + return NULL_TREE; +} + +void +recalculate_side_effects (tree t) +{ + enum tree_code code = TREE_CODE (t); + int len = TREE_OPERAND_LENGTH (t); + int i; + + switch (TREE_CODE_CLASS (code)) + { + case tcc_expression: + switch (code) + { + case INIT_EXPR: + case MODIFY_EXPR: + case VA_ARG_EXPR: + case PREDECREMENT_EXPR: + case PREINCREMENT_EXPR: + case POSTDECREMENT_EXPR: + case POSTINCREMENT_EXPR: + /* All of these have side-effects, no matter what their + operands are. */ + return; + + default: + break; + } + /* Fall through. */ + + case tcc_comparison: /* a comparison expression */ + case tcc_unary: /* a unary arithmetic expression */ + case tcc_binary: /* a binary arithmetic expression */ + case tcc_reference: /* a reference */ + case tcc_vl_exp: /* a function call */ + TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t); + for (i = 0; i < len; ++i) + { + tree op = TREE_OPERAND (t, i); + if (op && TREE_SIDE_EFFECTS (op)) + TREE_SIDE_EFFECTS (t) = 1; + } + break; + + case tcc_constant: + /* No side-effects. */ + return; + + default: + gcc_unreachable (); + } +} + +/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns + a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if + we failed to create one. */ + +tree +canonicalize_cond_expr_cond (tree t) +{ + /* Strip conversions around boolean operations. */ + if (CONVERT_EXPR_P (t) + && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))) + t = TREE_OPERAND (t, 0); + + /* For (bool)x use x != 0. */ + if (CONVERT_EXPR_P (t) + && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (NE_EXPR, TREE_TYPE (t), + top0, build_int_cst (TREE_TYPE (top0), 0)); + } + /* For !x use x == 0. */ + else if (TREE_CODE (t) == TRUTH_NOT_EXPR) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (EQ_EXPR, TREE_TYPE (t), + top0, build_int_cst (TREE_TYPE (top0), 0)); + } + /* For cmp ? 1 : 0 use cmp. */ + else if (TREE_CODE (t) == COND_EXPR + && COMPARISON_CLASS_P (TREE_OPERAND (t, 0)) + && integer_onep (TREE_OPERAND (t, 1)) + && integer_zerop (TREE_OPERAND (t, 2))) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (TREE_CODE (top0), TREE_TYPE (t), + TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1)); + } + + if (is_gimple_condexpr (t)) + return t; + + return NULL_TREE; +} + +/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in + the positions marked by the set ARGS_TO_SKIP. */ + +gimple +gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) +{ + int i; + tree fn = gimple_call_fn (stmt); + int nargs = gimple_call_num_args (stmt); + VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs); + gimple new_stmt; + + for (i = 0; i < nargs; i++) + if (!bitmap_bit_p (args_to_skip, i)) + VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i)); + + new_stmt = gimple_build_call_vec (fn, vargs); + VEC_free (tree, heap, vargs); + if (gimple_call_lhs (stmt)) + gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); + + gimple_set_vuse (new_stmt, gimple_vuse (stmt)); + gimple_set_vdef (new_stmt, gimple_vdef (stmt)); + + gimple_set_block (new_stmt, gimple_block (stmt)); + if (gimple_has_location (stmt)) + gimple_set_location (new_stmt, gimple_location (stmt)); + gimple_call_copy_flags (new_stmt, stmt); + gimple_call_set_chain (new_stmt, gimple_call_chain (stmt)); + + gimple_set_modified (new_stmt, true); + + return new_stmt; +} + + +static hashval_t gimple_type_hash_1 (const void *, enum gtc_mode); + +/* Structure used to maintain a cache of some type pairs compared by + gimple_types_compatible_p when comparing aggregate types. There are + three possible values for SAME_P: + + -2: The pair (T1, T2) has just been inserted in the table. + 0: T1 and T2 are different types. + 1: T1 and T2 are the same type. + + The two elements in the SAME_P array are indexed by the comparison + mode gtc_mode. */ + +struct type_pair_d +{ + unsigned int uid1; + unsigned int uid2; + signed char same_p[2]; +}; +typedef struct type_pair_d *type_pair_t; + +DEF_VEC_P(type_pair_t); +DEF_VEC_ALLOC_P(type_pair_t,heap); + +/* Return a hash value for the type pair pointed-to by P. */ + +static hashval_t +type_pair_hash (const void *p) +{ + const struct type_pair_d *pair = (const struct type_pair_d *) p; + hashval_t val1 = pair->uid1; + hashval_t val2 = pair->uid2; + return (iterative_hash_hashval_t (val2, val1) + ^ iterative_hash_hashval_t (val1, val2)); +} + +/* Compare two type pairs pointed-to by P1 and P2. */ + +static int +type_pair_eq (const void *p1, const void *p2) +{ + const struct type_pair_d *pair1 = (const struct type_pair_d *) p1; + const struct type_pair_d *pair2 = (const struct type_pair_d *) p2; + return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2) + || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1)); +} + +/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new + entry if none existed. */ + +static type_pair_t +lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p) +{ + struct type_pair_d pair; + type_pair_t p; + void **slot; + + if (*visited_p == NULL) + { + *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL); + gcc_obstack_init (ob_p); + } + + pair.uid1 = TYPE_UID (t1); + pair.uid2 = TYPE_UID (t2); + slot = htab_find_slot (*visited_p, &pair, INSERT); + + if (*slot) + p = *((type_pair_t *) slot); + else + { + p = XOBNEW (ob_p, struct type_pair_d); + p->uid1 = TYPE_UID (t1); + p->uid2 = TYPE_UID (t2); + p->same_p[0] = -2; + p->same_p[1] = -2; + *slot = (void *) p; + } + + return p; +} + +/* Per pointer state for the SCC finding. The on_sccstack flag + is not strictly required, it is true when there is no hash value + recorded for the type and false otherwise. But querying that + is slower. */ + +struct sccs +{ + unsigned int dfsnum; + unsigned int low; + bool on_sccstack; + union { + hashval_t hash; + signed char same_p; + } u; +}; + +static unsigned int next_dfs_num; +static unsigned int gtc_next_dfs_num; + + +/* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */ + +typedef struct GTY(()) gimple_type_leader_entry_s { + tree type; + tree leader; +} gimple_type_leader_entry; + +#define GIMPLE_TYPE_LEADER_SIZE 16381 +static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry + *gimple_type_leader; + +/* Lookup an existing leader for T and return it or NULL_TREE, if + there is none in the cache. */ + +static tree +gimple_lookup_type_leader (tree t) +{ + gimple_type_leader_entry *leader; + + if (!gimple_type_leader) + return NULL_TREE; + + leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE]; + if (leader->type != t) + return NULL_TREE; + + return leader->leader; +} + +/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is + true then if any type has no name return false, otherwise return + true if both types have no names. */ + +static bool +compare_type_names_p (tree t1, tree t2, bool for_completion_p) +{ + tree name1 = TYPE_NAME (t1); + tree name2 = TYPE_NAME (t2); + + /* Consider anonymous types all unique for completion. */ + if (for_completion_p + && (!name1 || !name2)) + return false; + + if (name1 && TREE_CODE (name1) == TYPE_DECL) + { + name1 = DECL_NAME (name1); + if (for_completion_p + && !name1) + return false; + } + gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE); + + if (name2 && TREE_CODE (name2) == TYPE_DECL) + { + name2 = DECL_NAME (name2); + if (for_completion_p + && !name2) + return false; + } + gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE); + + /* Identifiers can be compared with pointer equality rather + than a string comparison. */ + if (name1 == name2) + return true; + + return false; +} + +/* Return true if the field decls F1 and F2 are at the same offset. + + This is intended to be used on GIMPLE types only. In order to + compare GENERIC types, use fields_compatible_p instead. */ + +bool +gimple_compare_field_offset (tree f1, tree f2) +{ + if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2)) + { + tree offset1 = DECL_FIELD_OFFSET (f1); + tree offset2 = DECL_FIELD_OFFSET (f2); + return ((offset1 == offset2 + /* Once gimplification is done, self-referential offsets are + instantiated as operand #2 of the COMPONENT_REF built for + each access and reset. Therefore, they are not relevant + anymore and fields are interchangeable provided that they + represent the same access. */ + || (TREE_CODE (offset1) == PLACEHOLDER_EXPR + && TREE_CODE (offset2) == PLACEHOLDER_EXPR + && (DECL_SIZE (f1) == DECL_SIZE (f2) + || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR + && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR) + || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0)) + && DECL_ALIGN (f1) == DECL_ALIGN (f2)) + || operand_equal_p (offset1, offset2, 0)) + && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1), + DECL_FIELD_BIT_OFFSET (f2))); + } + + /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN + should be, so handle differing ones specially by decomposing + the offset into a byte and bit offset manually. */ + if (host_integerp (DECL_FIELD_OFFSET (f1), 0) + && host_integerp (DECL_FIELD_OFFSET (f2), 0)) + { + unsigned HOST_WIDE_INT byte_offset1, byte_offset2; + unsigned HOST_WIDE_INT bit_offset1, bit_offset2; + bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1)); + byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1)) + + bit_offset1 / BITS_PER_UNIT); + bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2)); + byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2)) + + bit_offset2 / BITS_PER_UNIT); + if (byte_offset1 != byte_offset2) + return false; + return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT; + } + + return false; +} + +/* If the type T1 and the type T2 are a complete and an incomplete + variant of the same type return true. */ + +static bool +gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2) +{ + /* If one pointer points to an incomplete type variant of + the other pointed-to type they are the same. */ + if (TREE_CODE (t1) == TREE_CODE (t2) + && RECORD_OR_UNION_TYPE_P (t1) + && (!COMPLETE_TYPE_P (t1) + || !COMPLETE_TYPE_P (t2)) + && TYPE_QUALS (t1) == TYPE_QUALS (t2) + && compare_type_names_p (TYPE_MAIN_VARIANT (t1), + TYPE_MAIN_VARIANT (t2), true)) + return true; + return false; +} + +static bool +gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t, + VEC(type_pair_t, heap) **, + struct pointer_map_t *, struct obstack *); + +/* DFS visit the edge from the callers type pair with state *STATE to + the pair T1, T2 while operating in FOR_MERGING_P mode. + Update the merging status if it is not part of the SCC containing the + callers pair and return it. + SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */ + +static bool +gtc_visit (tree t1, tree t2, enum gtc_mode mode, + struct sccs *state, + VEC(type_pair_t, heap) **sccstack, + struct pointer_map_t *sccstate, + struct obstack *sccstate_obstack) +{ + struct sccs *cstate = NULL; + type_pair_t p; + void **slot; + + /* Check first for the obvious case of pointer identity. */ + if (t1 == t2) + return true; + + /* Check that we have two types to compare. */ + if (t1 == NULL_TREE || t2 == NULL_TREE) + return false; + + /* If the types have been previously registered and found equal + they still are. */ + if (mode == GTC_MERGE) + { + tree leader1 = gimple_lookup_type_leader (t1); + tree leader2 = gimple_lookup_type_leader (t2); + if (leader1 == t2 + || t1 == leader2 + || (leader1 && leader1 == leader2)) + return true; + } + else if (mode == GTC_DIAG) + { + if (TYPE_CANONICAL (t1) + && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)) + return true; + } + + /* Can't be the same type if the types don't have the same code. */ + if (TREE_CODE (t1) != TREE_CODE (t2)) + return false; + + /* Can't be the same type if they have different CV qualifiers. */ + if (TYPE_QUALS (t1) != TYPE_QUALS (t2)) + return false; + + /* Void types are always the same. */ + if (TREE_CODE (t1) == VOID_TYPE) + return true; + + /* Do some simple checks before doing three hashtable queries. */ + if (INTEGRAL_TYPE_P (t1) + || SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1) + || TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE + || TREE_CODE (t1) == OFFSET_TYPE) + { + /* Can't be the same type if they have different alignment, + sign, precision or mode. */ + if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) + || TYPE_PRECISION (t1) != TYPE_PRECISION (t2) + || TYPE_MODE (t1) != TYPE_MODE (t2) + || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)) + return false; + + if (TREE_CODE (t1) == INTEGER_TYPE + && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2) + || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))) + return false; + + /* That's all we need to check for float and fixed-point types. */ + if (SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1)) + return true; + + /* For integral types fall thru to more complex checks. */ + } + + else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1)) + { + /* Can't be the same type if they have different alignment or mode. */ + if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) + || TYPE_MODE (t1) != TYPE_MODE (t2)) + return false; + } + + /* If the hash values of t1 and t2 are different the types can't + possibly be the same. This helps keeping the type-pair hashtable + small, only tracking comparisons for hash collisions. */ + if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode)) + return false; + + /* Allocate a new cache entry for this comparison. */ + p = lookup_type_pair (t1, t2, >c_visited, >c_ob); + if (p->same_p[mode] == 0 || p->same_p[mode] == 1) + { + /* We have already decided whether T1 and T2 are the + same, return the cached result. */ + return p->same_p[mode] == 1; + } + + if ((slot = pointer_map_contains (sccstate, p)) != NULL) + cstate = (struct sccs *)*slot; + /* Not yet visited. DFS recurse. */ + if (!cstate) + { + gimple_types_compatible_p_1 (t1, t2, mode, p, + sccstack, sccstate, sccstate_obstack); + cstate = (struct sccs *)* pointer_map_contains (sccstate, p); + state->low = MIN (state->low, cstate->low); + } + /* If the type is still on the SCC stack adjust the parents low. */ + if (cstate->dfsnum < state->dfsnum + && cstate->on_sccstack) + state->low = MIN (cstate->dfsnum, state->low); + + /* Return the current lattice value. We start with an equality + assumption so types part of a SCC will be optimistically + treated equal unless proven otherwise. */ + return cstate->u.same_p; +} + +/* Worker for gimple_types_compatible. + SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */ + +static bool +gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode, + type_pair_t p, + VEC(type_pair_t, heap) **sccstack, + struct pointer_map_t *sccstate, + struct obstack *sccstate_obstack) +{ + struct sccs *state; + + gcc_assert (p->same_p[mode] == -2); + + state = XOBNEW (sccstate_obstack, struct sccs); + *pointer_map_insert (sccstate, p) = state; + + VEC_safe_push (type_pair_t, heap, *sccstack, p); + state->dfsnum = gtc_next_dfs_num++; + state->low = state->dfsnum; + state->on_sccstack = true; + /* Start with an equality assumption. As we DFS recurse into child + SCCs this assumption may get revisited. */ + state->u.same_p = 1; + + /* If their attributes are not the same they can't be the same type. */ + if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2))) + goto different_types; + + /* Do type-specific comparisons. */ + switch (TREE_CODE (t1)) + { + case VECTOR_TYPE: + case COMPLEX_TYPE: + if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + goto same_types; + + case ARRAY_TYPE: + /* Array types are the same if the element types are the same and + the number of elements are the same. */ + if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack) + || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2) + || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2)) + goto different_types; + else + { + tree i1 = TYPE_DOMAIN (t1); + tree i2 = TYPE_DOMAIN (t2); + + /* For an incomplete external array, the type domain can be + NULL_TREE. Check this condition also. */ + if (i1 == NULL_TREE && i2 == NULL_TREE) + goto same_types; + else if (i1 == NULL_TREE || i2 == NULL_TREE) + goto different_types; + /* If for a complete array type the possibly gimplified sizes + are different the types are different. */ + else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL)) + || (TYPE_SIZE (i1) + && TYPE_SIZE (i2) + && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0))) + goto different_types; + else + { + tree min1 = TYPE_MIN_VALUE (i1); + tree min2 = TYPE_MIN_VALUE (i2); + tree max1 = TYPE_MAX_VALUE (i1); + tree max2 = TYPE_MAX_VALUE (i2); + + /* The minimum/maximum values have to be the same. */ + if ((min1 == min2 + || (min1 && min2 + && ((TREE_CODE (min1) == PLACEHOLDER_EXPR + && TREE_CODE (min2) == PLACEHOLDER_EXPR) + || operand_equal_p (min1, min2, 0)))) + && (max1 == max2 + || (max1 && max2 + && ((TREE_CODE (max1) == PLACEHOLDER_EXPR + && TREE_CODE (max2) == PLACEHOLDER_EXPR) + || operand_equal_p (max1, max2, 0))))) + goto same_types; + else + goto different_types; + } + } + + case METHOD_TYPE: + /* Method types should belong to the same class. */ + if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2), + mode, state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + + /* Fallthru */ + + case FUNCTION_TYPE: + /* Function types are the same if the return type and arguments types + are the same. */ + if ((mode != GTC_DIAG + || !gimple_compatible_complete_and_incomplete_subtype_p + (TREE_TYPE (t1), TREE_TYPE (t2))) + && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + + if (!targetm.comp_type_attributes (t1, t2)) + goto different_types; + + if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)) + goto same_types; + else + { + tree parms1, parms2; + + for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); + parms1 && parms2; + parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) + { + if ((mode == GTC_MERGE + || !gimple_compatible_complete_and_incomplete_subtype_p + (TREE_VALUE (parms1), TREE_VALUE (parms2))) + && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + } + + if (parms1 || parms2) + goto different_types; + + goto same_types; + } + + case OFFSET_TYPE: + { + if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack) + || !gtc_visit (TYPE_OFFSET_BASETYPE (t1), + TYPE_OFFSET_BASETYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + + goto same_types; + } + + case POINTER_TYPE: + case REFERENCE_TYPE: + { + /* If the two pointers have different ref-all attributes, + they can't be the same type. */ + if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2)) + goto different_types; + + /* If one pointer points to an incomplete type variant of + the other pointed-to type they are the same. */ + if (mode == GTC_DIAG + && gimple_compatible_complete_and_incomplete_subtype_p + (TREE_TYPE (t1), TREE_TYPE (t2))) + goto same_types; + + /* Otherwise, pointer and reference types are the same if the + pointed-to types are the same. */ + if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto same_types; + + goto different_types; + } + + case NULLPTR_TYPE: + /* There is only one decltype(nullptr). */ + goto same_types; + + case INTEGER_TYPE: + case BOOLEAN_TYPE: + { + tree min1 = TYPE_MIN_VALUE (t1); + tree max1 = TYPE_MAX_VALUE (t1); + tree min2 = TYPE_MIN_VALUE (t2); + tree max2 = TYPE_MAX_VALUE (t2); + bool min_equal_p = false; + bool max_equal_p = false; + + /* If either type has a minimum value, the other type must + have the same. */ + if (min1 == NULL_TREE && min2 == NULL_TREE) + min_equal_p = true; + else if (min1 && min2 && operand_equal_p (min1, min2, 0)) + min_equal_p = true; + + /* Likewise, if either type has a maximum value, the other + type must have the same. */ + if (max1 == NULL_TREE && max2 == NULL_TREE) + max_equal_p = true; + else if (max1 && max2 && operand_equal_p (max1, max2, 0)) + max_equal_p = true; + + if (!min_equal_p || !max_equal_p) + goto different_types; + + goto same_types; + } + + case ENUMERAL_TYPE: + { + /* FIXME lto, we cannot check bounds on enumeral types because + different front ends will produce different values. + In C, enumeral types are integers, while in C++ each element + will have its own symbolic value. We should decide how enums + are to be represented in GIMPLE and have each front end lower + to that. */ + tree v1, v2; + + /* For enumeral types, all the values must be the same. */ + if (TYPE_VALUES (t1) == TYPE_VALUES (t2)) + goto same_types; + + for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2); + v1 && v2; + v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2)) + { + tree c1 = TREE_VALUE (v1); + tree c2 = TREE_VALUE (v2); + + if (TREE_CODE (c1) == CONST_DECL) + c1 = DECL_INITIAL (c1); + + if (TREE_CODE (c2) == CONST_DECL) + c2 = DECL_INITIAL (c2); + + if (tree_int_cst_equal (c1, c2) != 1) + goto different_types; + + if (mode == GTC_MERGE && TREE_PURPOSE (v1) != TREE_PURPOSE (v2)) + goto different_types; + } + + /* If one enumeration has more values than the other, they + are not the same. */ + if (v1 || v2) + goto different_types; + + goto same_types; + } + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree f1, f2; + + /* The struct tags shall compare equal. */ + if (mode == GTC_MERGE + && !compare_type_names_p (TYPE_MAIN_VARIANT (t1), + TYPE_MAIN_VARIANT (t2), false)) + goto different_types; + + /* For aggregate types, all the fields must be the same. */ + for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); + f1 && f2; + f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) + { + /* The fields must have the same name, offset and type. */ + if ((mode == GTC_MERGE + && DECL_NAME (f1) != DECL_NAME (f2)) + || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2) + || !gimple_compare_field_offset (f1, f2) + || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode, + state, sccstack, sccstate, sccstate_obstack)) + goto different_types; + } + + /* If one aggregate has more fields than the other, they + are not the same. */ + if (f1 || f2) + goto different_types; + + goto same_types; + } + + default: + gcc_unreachable (); + } + + /* Common exit path for types that are not compatible. */ +different_types: + state->u.same_p = 0; + goto pop; + + /* Common exit path for types that are compatible. */ +same_types: + gcc_assert (state->u.same_p == 1); + +pop: + if (state->low == state->dfsnum) + { + type_pair_t x; + + /* Pop off the SCC and set its cache values to the final + comparison result. */ + do + { + struct sccs *cstate; + x = VEC_pop (type_pair_t, *sccstack); + cstate = (struct sccs *)*pointer_map_contains (sccstate, x); + cstate->on_sccstack = false; + x->same_p[mode] = state->u.same_p; + } + while (x != p); + } + + return state->u.same_p; +} + +/* Return true iff T1 and T2 are structurally identical. When + FOR_MERGING_P is true the an incomplete type and a complete type + are considered different, otherwise they are considered compatible. */ + +bool +gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode) +{ + VEC(type_pair_t, heap) *sccstack = NULL; + struct pointer_map_t *sccstate; + struct obstack sccstate_obstack; + type_pair_t p = NULL; + bool res; + + /* Before starting to set up the SCC machinery handle simple cases. */ + + /* Check first for the obvious case of pointer identity. */ + if (t1 == t2) + return true; + + /* Check that we have two types to compare. */ + if (t1 == NULL_TREE || t2 == NULL_TREE) + return false; + + /* If the types have been previously registered and found equal + they still are. */ + if (mode == GTC_MERGE) + { + tree leader1 = gimple_lookup_type_leader (t1); + tree leader2 = gimple_lookup_type_leader (t2); + if (leader1 == t2 + || t1 == leader2 + || (leader1 && leader1 == leader2)) + return true; + } + else if (mode == GTC_DIAG) + { + if (TYPE_CANONICAL (t1) + && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)) + return true; + } + + /* Can't be the same type if the types don't have the same code. */ + if (TREE_CODE (t1) != TREE_CODE (t2)) + return false; + + /* Can't be the same type if they have different CV qualifiers. */ + if (TYPE_QUALS (t1) != TYPE_QUALS (t2)) + return false; + + /* Void types are always the same. */ + if (TREE_CODE (t1) == VOID_TYPE) + return true; + + /* Do some simple checks before doing three hashtable queries. */ + if (INTEGRAL_TYPE_P (t1) + || SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1) + || TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE + || TREE_CODE (t1) == OFFSET_TYPE) + { + /* Can't be the same type if they have different alignment, + sign, precision or mode. */ + if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) + || TYPE_PRECISION (t1) != TYPE_PRECISION (t2) + || TYPE_MODE (t1) != TYPE_MODE (t2) + || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)) + return false; + + if (TREE_CODE (t1) == INTEGER_TYPE + && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2) + || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))) + return false; + + /* That's all we need to check for float and fixed-point types. */ + if (SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1)) + return true; + + /* For integral types fall thru to more complex checks. */ + } + + else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1)) + { + /* Can't be the same type if they have different alignment or mode. */ + if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) + || TYPE_MODE (t1) != TYPE_MODE (t2)) + return false; + } + + /* If the hash values of t1 and t2 are different the types can't + possibly be the same. This helps keeping the type-pair hashtable + small, only tracking comparisons for hash collisions. */ + if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode)) + return false; + + /* If we've visited this type pair before (in the case of aggregates + with self-referential types), and we made a decision, return it. */ + p = lookup_type_pair (t1, t2, >c_visited, >c_ob); + if (p->same_p[mode] == 0 || p->same_p[mode] == 1) + { + /* We have already decided whether T1 and T2 are the + same, return the cached result. */ + return p->same_p[mode] == 1; + } + + /* Now set up the SCC machinery for the comparison. */ + gtc_next_dfs_num = 1; + sccstate = pointer_map_create (); + gcc_obstack_init (&sccstate_obstack); + res = gimple_types_compatible_p_1 (t1, t2, mode, p, + &sccstack, sccstate, &sccstate_obstack); + VEC_free (type_pair_t, heap, sccstack); + pointer_map_destroy (sccstate); + obstack_free (&sccstate_obstack, NULL); + + return res; +} + + +static hashval_t +iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **, + struct pointer_map_t *, struct obstack *, + enum gtc_mode); + +/* DFS visit the edge from the callers type with state *STATE to T. + Update the callers type hash V with the hash for T if it is not part + of the SCC containing the callers type and return it. + SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */ + +static hashval_t +visit (tree t, struct sccs *state, hashval_t v, + VEC (tree, heap) **sccstack, + struct pointer_map_t *sccstate, + struct obstack *sccstate_obstack, enum gtc_mode mode) +{ + struct sccs *cstate = NULL; + struct tree_int_map m; + void **slot; + + /* If there is a hash value recorded for this type then it can't + possibly be part of our parent SCC. Simply mix in its hash. */ + m.base.from = t; + if ((slot = htab_find_slot (mode == GTC_MERGE + ? type_hash_cache : canonical_type_hash_cache, + &m, NO_INSERT)) + && *slot) + return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v); + + if ((slot = pointer_map_contains (sccstate, t)) != NULL) + cstate = (struct sccs *)*slot; + if (!cstate) + { + hashval_t tem; + /* Not yet visited. DFS recurse. */ + tem = iterative_hash_gimple_type (t, v, + sccstack, sccstate, sccstate_obstack, + mode); + if (!cstate) + cstate = (struct sccs *)* pointer_map_contains (sccstate, t); + state->low = MIN (state->low, cstate->low); + /* If the type is no longer on the SCC stack and thus is not part + of the parents SCC mix in its hash value. Otherwise we will + ignore the type for hashing purposes and return the unaltered + hash value. */ + if (!cstate->on_sccstack) + return tem; + } + if (cstate->dfsnum < state->dfsnum + && cstate->on_sccstack) + state->low = MIN (cstate->dfsnum, state->low); + + /* We are part of our parents SCC, skip this type during hashing + and return the unaltered hash value. */ + return v; +} + +/* Hash NAME with the previous hash value V and return it. */ + +static hashval_t +iterative_hash_name (tree name, hashval_t v) +{ + if (!name) + return v; + if (TREE_CODE (name) == TYPE_DECL) + name = DECL_NAME (name); + if (!name) + return v; + gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); + return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v); +} + +/* Returning a hash value for gimple type TYPE combined with VAL. + SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. + + To hash a type we end up hashing in types that are reachable. + Through pointers we can end up with cycles which messes up the + required property that we need to compute the same hash value + for structurally equivalent types. To avoid this we have to + hash all types in a cycle (the SCC) in a commutative way. The + easiest way is to not mix in the hashes of the SCC members at + all. To make this work we have to delay setting the hash + values of the SCC until it is complete. */ + +static hashval_t +iterative_hash_gimple_type (tree type, hashval_t val, + VEC(tree, heap) **sccstack, + struct pointer_map_t *sccstate, + struct obstack *sccstate_obstack, + enum gtc_mode mode) +{ + hashval_t v; + void **slot; + struct sccs *state; + + /* Not visited during this DFS walk. */ + gcc_checking_assert (!pointer_map_contains (sccstate, type)); + state = XOBNEW (sccstate_obstack, struct sccs); + *pointer_map_insert (sccstate, type) = state; + + VEC_safe_push (tree, heap, *sccstack, type); + state->dfsnum = next_dfs_num++; + state->low = state->dfsnum; + state->on_sccstack = true; + + /* Combine a few common features of types so that types are grouped into + smaller sets; when searching for existing matching types to merge, + only existing types having the same features as the new type will be + checked. */ + v = iterative_hash_hashval_t (TREE_CODE (type), 0); + v = iterative_hash_hashval_t (TYPE_QUALS (type), v); + v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v); + + /* Do not hash the types size as this will cause differences in + hash values for the complete vs. the incomplete type variant. */ + + /* Incorporate common features of numerical types. */ + if (INTEGRAL_TYPE_P (type) + || SCALAR_FLOAT_TYPE_P (type) + || FIXED_POINT_TYPE_P (type)) + { + v = iterative_hash_hashval_t (TYPE_PRECISION (type), v); + v = iterative_hash_hashval_t (TYPE_MODE (type), v); + v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v); + } + + /* For pointer and reference types, fold in information about the type + pointed to but do not recurse into possibly incomplete types to + avoid hash differences for complete vs. incomplete types. */ + if (POINTER_TYPE_P (type)) + { + if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type))) + { + v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v); + v = iterative_hash_name + (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v); + } + else + v = visit (TREE_TYPE (type), state, v, + sccstack, sccstate, sccstate_obstack, mode); + } + + /* For integer types hash the types min/max values and the string flag. */ + if (TREE_CODE (type) == INTEGER_TYPE) + { + /* OMP lowering can introduce error_mark_node in place of + random local decls in types. */ + if (TYPE_MIN_VALUE (type) != error_mark_node) + v = iterative_hash_expr (TYPE_MIN_VALUE (type), v); + if (TYPE_MAX_VALUE (type) != error_mark_node) + v = iterative_hash_expr (TYPE_MAX_VALUE (type), v); + v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); + } + + /* For array types hash their domain and the string flag. */ + if (TREE_CODE (type) == ARRAY_TYPE + && TYPE_DOMAIN (type)) + { + v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); + v = visit (TYPE_DOMAIN (type), state, v, + sccstack, sccstate, sccstate_obstack, mode); + } + + /* Recurse for aggregates with a single element type. */ + if (TREE_CODE (type) == ARRAY_TYPE + || TREE_CODE (type) == COMPLEX_TYPE + || TREE_CODE (type) == VECTOR_TYPE) + v = visit (TREE_TYPE (type), state, v, + sccstack, sccstate, sccstate_obstack, mode); + + /* Incorporate function return and argument types. */ + if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) + { + unsigned na; + tree p; + + /* For method types also incorporate their parent class. */ + if (TREE_CODE (type) == METHOD_TYPE) + v = visit (TYPE_METHOD_BASETYPE (type), state, v, + sccstack, sccstate, sccstate_obstack, mode); + + /* For result types allow mismatch in completeness. */ + if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type))) + { + v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v); + v = iterative_hash_name + (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v); + } + else + v = visit (TREE_TYPE (type), state, v, + sccstack, sccstate, sccstate_obstack, mode); + + for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p)) + { + /* For argument types allow mismatch in completeness. */ + if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p))) + { + v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v); + v = iterative_hash_name + (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v); + } + else + v = visit (TREE_VALUE (p), state, v, + sccstack, sccstate, sccstate_obstack, mode); + na++; + } + + v = iterative_hash_hashval_t (na, v); + } + + if (TREE_CODE (type) == RECORD_TYPE + || TREE_CODE (type) == UNION_TYPE + || TREE_CODE (type) == QUAL_UNION_TYPE) + { + unsigned nf; + tree f; + + if (mode == GTC_MERGE) + v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v); + + for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f)) + { + if (mode == GTC_MERGE) + v = iterative_hash_name (DECL_NAME (f), v); + v = visit (TREE_TYPE (f), state, v, + sccstack, sccstate, sccstate_obstack, mode); + nf++; + } + + v = iterative_hash_hashval_t (nf, v); + } + + /* Record hash for us. */ + state->u.hash = v; + + /* See if we found an SCC. */ + if (state->low == state->dfsnum) + { + tree x; + + /* Pop off the SCC and set its hash values. */ + do + { + struct sccs *cstate; + struct tree_int_map *m = ggc_alloc_cleared_tree_int_map (); + x = VEC_pop (tree, *sccstack); + cstate = (struct sccs *)*pointer_map_contains (sccstate, x); + cstate->on_sccstack = false; + m->base.from = x; + m->to = cstate->u.hash; + slot = htab_find_slot (mode == GTC_MERGE + ? type_hash_cache : canonical_type_hash_cache, + m, INSERT); + gcc_assert (!*slot); + *slot = (void *) m; + } + while (x != type); + } + + return iterative_hash_hashval_t (v, val); +} + + +/* Returns a hash value for P (assumed to be a type). The hash value + is computed using some distinguishing features of the type. Note + that we cannot use pointer hashing here as we may be dealing with + two distinct instances of the same type. + + This function should produce the same hash value for two compatible + types according to gimple_types_compatible_p. */ + +static hashval_t +gimple_type_hash_1 (const void *p, enum gtc_mode mode) +{ + const_tree t = (const_tree) p; + VEC(tree, heap) *sccstack = NULL; + struct pointer_map_t *sccstate; + struct obstack sccstate_obstack; + hashval_t val; + void **slot; + struct tree_int_map m; + + if (mode == GTC_MERGE + && type_hash_cache == NULL) + type_hash_cache = htab_create_ggc (512, tree_int_map_hash, + tree_int_map_eq, NULL); + else if (mode == GTC_DIAG + && canonical_type_hash_cache == NULL) + canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash, + tree_int_map_eq, NULL); + + m.base.from = CONST_CAST_TREE (t); + if ((slot = htab_find_slot (mode == GTC_MERGE + ? type_hash_cache : canonical_type_hash_cache, + &m, NO_INSERT)) + && *slot) + return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0); + + /* Perform a DFS walk and pre-hash all reachable types. */ + next_dfs_num = 1; + sccstate = pointer_map_create (); + gcc_obstack_init (&sccstate_obstack); + val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0, + &sccstack, sccstate, &sccstate_obstack, + mode); + VEC_free (tree, heap, sccstack); + pointer_map_destroy (sccstate); + obstack_free (&sccstate_obstack, NULL); + + return val; +} + +static hashval_t +gimple_type_hash (const void *p) +{ + return gimple_type_hash_1 (p, GTC_MERGE); +} + +static hashval_t +gimple_canonical_type_hash (const void *p) +{ + return gimple_type_hash_1 (p, GTC_DIAG); +} + + +/* Returns nonzero if P1 and P2 are equal. */ + +static int +gimple_type_eq (const void *p1, const void *p2) +{ + const_tree t1 = (const_tree) p1; + const_tree t2 = (const_tree) p2; + return gimple_types_compatible_p (CONST_CAST_TREE (t1), + CONST_CAST_TREE (t2), GTC_MERGE); +} + + +/* Register type T in the global type table gimple_types. + If another type T', compatible with T, already existed in + gimple_types then return T', otherwise return T. This is used by + LTO to merge identical types read from different TUs. */ + +tree +gimple_register_type (tree t) +{ + void **slot; + gimple_type_leader_entry *leader; + tree mv_leader = NULL_TREE; + + gcc_assert (TYPE_P (t)); + + if (!gimple_type_leader) + gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s + (GIMPLE_TYPE_LEADER_SIZE); + /* If we registered this type before return the cached result. */ + leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE]; + if (leader->type == t) + return leader->leader; + + /* Always register the main variant first. This is important so we + pick up the non-typedef variants as canonical, otherwise we'll end + up taking typedef ids for structure tags during comparison. */ + if (TYPE_MAIN_VARIANT (t) != t) + mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t)); + + if (gimple_types == NULL) + gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0); + + slot = htab_find_slot (gimple_types, t, INSERT); + if (*slot + && *(tree *)slot != t) + { + tree new_type = (tree) *((tree *) slot); + + /* Do not merge types with different addressability. */ + gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type)); + + /* If t is not its main variant then make t unreachable from its + main variant list. Otherwise we'd queue up a lot of duplicates + there. */ + if (t != TYPE_MAIN_VARIANT (t)) + { + tree tem = TYPE_MAIN_VARIANT (t); + while (tem && TYPE_NEXT_VARIANT (tem) != t) + tem = TYPE_NEXT_VARIANT (tem); + if (tem) + TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t); + TYPE_NEXT_VARIANT (t) = NULL_TREE; + } + + /* If we are a pointer then remove us from the pointer-to or + reference-to chain. Otherwise we'd queue up a lot of duplicates + there. */ + if (TREE_CODE (t) == POINTER_TYPE) + { + if (TYPE_POINTER_TO (TREE_TYPE (t)) == t) + TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t); + else + { + tree tem = TYPE_POINTER_TO (TREE_TYPE (t)); + while (tem && TYPE_NEXT_PTR_TO (tem) != t) + tem = TYPE_NEXT_PTR_TO (tem); + if (tem) + TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t); + } + TYPE_NEXT_PTR_TO (t) = NULL_TREE; + } + else if (TREE_CODE (t) == REFERENCE_TYPE) + { + if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t) + TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t); + else + { + tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t)); + while (tem && TYPE_NEXT_REF_TO (tem) != t) + tem = TYPE_NEXT_REF_TO (tem); + if (tem) + TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t); + } + TYPE_NEXT_REF_TO (t) = NULL_TREE; + } + + leader->type = t; + leader->leader = new_type; + t = new_type; + } + else + { + leader->type = t; + leader->leader = t; + /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */ + if (TYPE_MAIN_VARIANT (t) != t + && TYPE_MAIN_VARIANT (t) != mv_leader) + { + /* Remove us from our main variant list as we are not the variant + leader and the variant leader will change. */ + tree tem = TYPE_MAIN_VARIANT (t); + while (tem && TYPE_NEXT_VARIANT (tem) != t) + tem = TYPE_NEXT_VARIANT (tem); + if (tem) + TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t); + TYPE_NEXT_VARIANT (t) = NULL_TREE; + /* Adjust our main variant. Linking us into its variant list + will happen at fixup time. */ + TYPE_MAIN_VARIANT (t) = mv_leader; + } + *slot = (void *) t; + } + + return t; +} + + +/* Returns nonzero if P1 and P2 are equal. */ + +static int +gimple_canonical_type_eq (const void *p1, const void *p2) +{ + const_tree t1 = (const_tree) p1; + const_tree t2 = (const_tree) p2; + return gimple_types_compatible_p (CONST_CAST_TREE (t1), + CONST_CAST_TREE (t2), GTC_DIAG); +} + +/* Register type T in the global type table gimple_types. + If another type T', compatible with T, already existed in + gimple_types then return T', otherwise return T. This is used by + LTO to merge identical types read from different TUs. */ + +tree +gimple_register_canonical_type (tree t) +{ + void **slot; + tree orig_t = t; + + gcc_assert (TYPE_P (t)); + + if (TYPE_CANONICAL (t)) + return TYPE_CANONICAL (t); + + /* Always register the type itself first so that if it turns out + to be the canonical type it will be the one we merge to as well. */ + t = gimple_register_type (t); + + /* Always register the main variant first. This is important so we + pick up the non-typedef variants as canonical, otherwise we'll end + up taking typedef ids for structure tags during comparison. */ + if (TYPE_MAIN_VARIANT (t) != t) + gimple_register_canonical_type (TYPE_MAIN_VARIANT (t)); + + if (gimple_canonical_types == NULL) + gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash, + gimple_canonical_type_eq, 0); + + slot = htab_find_slot (gimple_canonical_types, t, INSERT); + if (*slot + && *(tree *)slot != t) + { + tree new_type = (tree) *((tree *) slot); + + TYPE_CANONICAL (t) = new_type; + t = new_type; + } + else + { + TYPE_CANONICAL (t) = t; + *slot = (void *) t; + } + + /* Also cache the canonical type in the non-leaders. */ + TYPE_CANONICAL (orig_t) = t; + + return t; +} + + +/* Show statistics on references to the global type table gimple_types. */ + +void +print_gimple_types_stats (void) +{ + if (gimple_types) + fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, " + "%ld searches, %ld collisions (ratio: %f)\n", + (long) htab_size (gimple_types), + (long) htab_elements (gimple_types), + (long) gimple_types->searches, + (long) gimple_types->collisions, + htab_collisions (gimple_types)); + else + fprintf (stderr, "GIMPLE type table is empty\n"); + if (type_hash_cache) + fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, " + "%ld searches, %ld collisions (ratio: %f)\n", + (long) htab_size (type_hash_cache), + (long) htab_elements (type_hash_cache), + (long) type_hash_cache->searches, + (long) type_hash_cache->collisions, + htab_collisions (type_hash_cache)); + else + fprintf (stderr, "GIMPLE type hash table is empty\n"); + if (gimple_canonical_types) + fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, " + "%ld searches, %ld collisions (ratio: %f)\n", + (long) htab_size (gimple_canonical_types), + (long) htab_elements (gimple_canonical_types), + (long) gimple_canonical_types->searches, + (long) gimple_canonical_types->collisions, + htab_collisions (gimple_canonical_types)); + else + fprintf (stderr, "GIMPLE canonical type table is empty\n"); + if (canonical_type_hash_cache) + fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, " + "%ld searches, %ld collisions (ratio: %f)\n", + (long) htab_size (canonical_type_hash_cache), + (long) htab_elements (canonical_type_hash_cache), + (long) canonical_type_hash_cache->searches, + (long) canonical_type_hash_cache->collisions, + htab_collisions (canonical_type_hash_cache)); + else + fprintf (stderr, "GIMPLE canonical type hash table is empty\n"); + if (gtc_visited) + fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld " + "elements, %ld searches, %ld collisions (ratio: %f)\n", + (long) htab_size (gtc_visited), + (long) htab_elements (gtc_visited), + (long) gtc_visited->searches, + (long) gtc_visited->collisions, + htab_collisions (gtc_visited)); + else + fprintf (stderr, "GIMPLE type comparison table is empty\n"); +} + +/* Free the gimple type hashtables used for LTO type merging. */ + +void +free_gimple_type_tables (void) +{ + /* Last chance to print stats for the tables. */ + if (flag_lto_report) + print_gimple_types_stats (); + + if (gimple_types) + { + htab_delete (gimple_types); + gimple_types = NULL; + } + if (gimple_canonical_types) + { + htab_delete (gimple_canonical_types); + gimple_canonical_types = NULL; + } + if (type_hash_cache) + { + htab_delete (type_hash_cache); + type_hash_cache = NULL; + } + if (canonical_type_hash_cache) + { + htab_delete (canonical_type_hash_cache); + canonical_type_hash_cache = NULL; + } + if (gtc_visited) + { + htab_delete (gtc_visited); + obstack_free (>c_ob, NULL); + gtc_visited = NULL; + } + gimple_type_leader = NULL; +} + + +/* Return a type the same as TYPE except unsigned or + signed according to UNSIGNEDP. */ + +static tree +gimple_signed_or_unsigned_type (bool unsignedp, tree type) +{ + tree type1; + + type1 = TYPE_MAIN_VARIANT (type); + if (type1 == signed_char_type_node + || type1 == char_type_node + || type1 == unsigned_char_type_node) + return unsignedp ? unsigned_char_type_node : signed_char_type_node; + if (type1 == integer_type_node || type1 == unsigned_type_node) + return unsignedp ? unsigned_type_node : integer_type_node; + if (type1 == short_integer_type_node || type1 == short_unsigned_type_node) + return unsignedp ? short_unsigned_type_node : short_integer_type_node; + if (type1 == long_integer_type_node || type1 == long_unsigned_type_node) + return unsignedp ? long_unsigned_type_node : long_integer_type_node; + if (type1 == long_long_integer_type_node + || type1 == long_long_unsigned_type_node) + return unsignedp + ? long_long_unsigned_type_node + : long_long_integer_type_node; + if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node)) + return unsignedp + ? int128_unsigned_type_node + : int128_integer_type_node; +#if HOST_BITS_PER_WIDE_INT >= 64 + if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node) + return unsignedp ? unsigned_intTI_type_node : intTI_type_node; +#endif + if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node) + return unsignedp ? unsigned_intDI_type_node : intDI_type_node; + if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node) + return unsignedp ? unsigned_intSI_type_node : intSI_type_node; + if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node) + return unsignedp ? unsigned_intHI_type_node : intHI_type_node; + if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node) + return unsignedp ? unsigned_intQI_type_node : intQI_type_node; + +#define GIMPLE_FIXED_TYPES(NAME) \ + if (type1 == short_ ## NAME ## _type_node \ + || type1 == unsigned_short_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_short_ ## NAME ## _type_node \ + : short_ ## NAME ## _type_node; \ + if (type1 == NAME ## _type_node \ + || type1 == unsigned_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_ ## NAME ## _type_node \ + : NAME ## _type_node; \ + if (type1 == long_ ## NAME ## _type_node \ + || type1 == unsigned_long_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_long_ ## NAME ## _type_node \ + : long_ ## NAME ## _type_node; \ + if (type1 == long_long_ ## NAME ## _type_node \ + || type1 == unsigned_long_long_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \ + : long_long_ ## NAME ## _type_node; + +#define GIMPLE_FIXED_MODE_TYPES(NAME) \ + if (type1 == NAME ## _type_node \ + || type1 == u ## NAME ## _type_node) \ + return unsignedp ? u ## NAME ## _type_node \ + : NAME ## _type_node; + +#define GIMPLE_FIXED_TYPES_SAT(NAME) \ + if (type1 == sat_ ## short_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \ + : sat_ ## short_ ## NAME ## _type_node; \ + if (type1 == sat_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \ + : sat_ ## NAME ## _type_node; \ + if (type1 == sat_ ## long_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \ + : sat_ ## long_ ## NAME ## _type_node; \ + if (type1 == sat_ ## long_long_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \ + : sat_ ## long_long_ ## NAME ## _type_node; + +#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \ + if (type1 == sat_ ## NAME ## _type_node \ + || type1 == sat_ ## u ## NAME ## _type_node) \ + return unsignedp ? sat_ ## u ## NAME ## _type_node \ + : sat_ ## NAME ## _type_node; + + GIMPLE_FIXED_TYPES (fract); + GIMPLE_FIXED_TYPES_SAT (fract); + GIMPLE_FIXED_TYPES (accum); + GIMPLE_FIXED_TYPES_SAT (accum); + + GIMPLE_FIXED_MODE_TYPES (qq); + GIMPLE_FIXED_MODE_TYPES (hq); + GIMPLE_FIXED_MODE_TYPES (sq); + GIMPLE_FIXED_MODE_TYPES (dq); + GIMPLE_FIXED_MODE_TYPES (tq); + GIMPLE_FIXED_MODE_TYPES_SAT (qq); + GIMPLE_FIXED_MODE_TYPES_SAT (hq); + GIMPLE_FIXED_MODE_TYPES_SAT (sq); + GIMPLE_FIXED_MODE_TYPES_SAT (dq); + GIMPLE_FIXED_MODE_TYPES_SAT (tq); + GIMPLE_FIXED_MODE_TYPES (ha); + GIMPLE_FIXED_MODE_TYPES (sa); + GIMPLE_FIXED_MODE_TYPES (da); + GIMPLE_FIXED_MODE_TYPES (ta); + GIMPLE_FIXED_MODE_TYPES_SAT (ha); + GIMPLE_FIXED_MODE_TYPES_SAT (sa); + GIMPLE_FIXED_MODE_TYPES_SAT (da); + GIMPLE_FIXED_MODE_TYPES_SAT (ta); + + /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not + the precision; they have precision set to match their range, but + may use a wider mode to match an ABI. If we change modes, we may + wind up with bad conversions. For INTEGER_TYPEs in C, must check + the precision as well, so as to yield correct results for + bit-field types. C++ does not have these separate bit-field + types, and producing a signed or unsigned variant of an + ENUMERAL_TYPE may cause other problems as well. */ + if (!INTEGRAL_TYPE_P (type) + || TYPE_UNSIGNED (type) == unsignedp) + return type; + +#define TYPE_OK(node) \ + (TYPE_MODE (type) == TYPE_MODE (node) \ + && TYPE_PRECISION (type) == TYPE_PRECISION (node)) + if (TYPE_OK (signed_char_type_node)) + return unsignedp ? unsigned_char_type_node : signed_char_type_node; + if (TYPE_OK (integer_type_node)) + return unsignedp ? unsigned_type_node : integer_type_node; + if (TYPE_OK (short_integer_type_node)) + return unsignedp ? short_unsigned_type_node : short_integer_type_node; + if (TYPE_OK (long_integer_type_node)) + return unsignedp ? long_unsigned_type_node : long_integer_type_node; + if (TYPE_OK (long_long_integer_type_node)) + return (unsignedp + ? long_long_unsigned_type_node + : long_long_integer_type_node); + if (int128_integer_type_node && TYPE_OK (int128_integer_type_node)) + return (unsignedp + ? int128_unsigned_type_node + : int128_integer_type_node); + +#if HOST_BITS_PER_WIDE_INT >= 64 + if (TYPE_OK (intTI_type_node)) + return unsignedp ? unsigned_intTI_type_node : intTI_type_node; +#endif + if (TYPE_OK (intDI_type_node)) + return unsignedp ? unsigned_intDI_type_node : intDI_type_node; + if (TYPE_OK (intSI_type_node)) + return unsignedp ? unsigned_intSI_type_node : intSI_type_node; + if (TYPE_OK (intHI_type_node)) + return unsignedp ? unsigned_intHI_type_node : intHI_type_node; + if (TYPE_OK (intQI_type_node)) + return unsignedp ? unsigned_intQI_type_node : intQI_type_node; + +#undef GIMPLE_FIXED_TYPES +#undef GIMPLE_FIXED_MODE_TYPES +#undef GIMPLE_FIXED_TYPES_SAT +#undef GIMPLE_FIXED_MODE_TYPES_SAT +#undef TYPE_OK + + return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp); +} + + +/* Return an unsigned type the same as TYPE in other respects. */ + +tree +gimple_unsigned_type (tree type) +{ + return gimple_signed_or_unsigned_type (true, type); +} + + +/* Return a signed type the same as TYPE in other respects. */ + +tree +gimple_signed_type (tree type) +{ + return gimple_signed_or_unsigned_type (false, type); +} + + +/* Return the typed-based alias set for T, which may be an expression + or a type. Return -1 if we don't do anything special. */ + +alias_set_type +gimple_get_alias_set (tree t) +{ + tree u; + + /* Permit type-punning when accessing a union, provided the access + is directly through the union. For example, this code does not + permit taking the address of a union member and then storing + through it. Even the type-punning allowed here is a GCC + extension, albeit a common and useful one; the C standard says + that such accesses have implementation-defined behavior. */ + for (u = t; + TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF; + u = TREE_OPERAND (u, 0)) + if (TREE_CODE (u) == COMPONENT_REF + && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE) + return 0; + + /* That's all the expressions we handle specially. */ + if (!TYPE_P (t)) + return -1; + + /* For convenience, follow the C standard when dealing with + character types. Any object may be accessed via an lvalue that + has character type. */ + if (t == char_type_node + || t == signed_char_type_node + || t == unsigned_char_type_node) + return 0; + + /* Allow aliasing between signed and unsigned variants of the same + type. We treat the signed variant as canonical. */ + if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t)) + { + tree t1 = gimple_signed_type (t); + + /* t1 == t can happen for boolean nodes which are always unsigned. */ + if (t1 != t) + return get_alias_set (t1); + } + + return -1; +} + + +/* Data structure used to count the number of dereferences to PTR + inside an expression. */ +struct count_ptr_d +{ + tree ptr; + unsigned num_stores; + unsigned num_loads; +}; + +/* Helper for count_uses_and_derefs. Called by walk_tree to look for + (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */ + +static tree +count_ptr_derefs (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data; + struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info; + + /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld, + pointer 'ptr' is *not* dereferenced, it is simply used to compute + the address of 'fld' as 'ptr + offsetof(fld)'. */ + if (TREE_CODE (*tp) == ADDR_EXPR) + { + *walk_subtrees = 0; + return NULL_TREE; + } + + if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr) + { + if (wi_p->is_lhs) + count_p->num_stores++; + else + count_p->num_loads++; + } + + return NULL_TREE; +} + +/* Count the number of direct and indirect uses for pointer PTR in + statement STMT. The number of direct uses is stored in + *NUM_USES_P. Indirect references are counted separately depending + on whether they are store or load operations. The counts are + stored in *NUM_STORES_P and *NUM_LOADS_P. */ + +void +count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p, + unsigned *num_loads_p, unsigned *num_stores_p) +{ + ssa_op_iter i; + tree use; + + *num_uses_p = 0; + *num_loads_p = 0; + *num_stores_p = 0; + + /* Find out the total number of uses of PTR in STMT. */ + FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) + if (use == ptr) + (*num_uses_p)++; + + /* Now count the number of indirect references to PTR. This is + truly awful, but we don't have much choice. There are no parent + pointers inside INDIRECT_REFs, so an expression like + '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to + find all the indirect and direct uses of x_1 inside. The only + shortcut we can take is the fact that GIMPLE only allows + INDIRECT_REFs inside the expressions below. */ + if (is_gimple_assign (stmt) + || gimple_code (stmt) == GIMPLE_RETURN + || gimple_code (stmt) == GIMPLE_ASM + || is_gimple_call (stmt)) + { + struct walk_stmt_info wi; + struct count_ptr_d count; + + count.ptr = ptr; + count.num_stores = 0; + count.num_loads = 0; + + memset (&wi, 0, sizeof (wi)); + wi.info = &count; + walk_gimple_op (stmt, count_ptr_derefs, &wi); + + *num_stores_p = count.num_stores; + *num_loads_p = count.num_loads; + } + + gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p); +} + +/* From a tree operand OP return the base of a load or store operation + or NULL_TREE if OP is not a load or a store. */ + +static tree +get_base_loadstore (tree op) +{ + while (handled_component_p (op)) + op = TREE_OPERAND (op, 0); + if (DECL_P (op) + || INDIRECT_REF_P (op) + || TREE_CODE (op) == MEM_REF + || TREE_CODE (op) == TARGET_MEM_REF) + return op; + return NULL_TREE; +} + +/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and + VISIT_ADDR if non-NULL on loads, store and address-taken operands + passing the STMT, the base of the operand and DATA to it. The base + will be either a decl, an indirect reference (including TARGET_MEM_REF) + or the argument of an address expression. + Returns the results of these callbacks or'ed. */ + +bool +walk_stmt_load_store_addr_ops (gimple stmt, void *data, + bool (*visit_load)(gimple, tree, void *), + bool (*visit_store)(gimple, tree, void *), + bool (*visit_addr)(gimple, tree, void *)) +{ + bool ret = false; + unsigned i; + if (gimple_assign_single_p (stmt)) + { + tree lhs, rhs; + if (visit_store) + { + lhs = get_base_loadstore (gimple_assign_lhs (stmt)); + if (lhs) + ret |= visit_store (stmt, lhs, data); + } + rhs = gimple_assign_rhs1 (stmt); + while (handled_component_p (rhs)) + rhs = TREE_OPERAND (rhs, 0); + if (visit_addr) + { + if (TREE_CODE (rhs) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data); + else if (TREE_CODE (rhs) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data); + else if (TREE_CODE (rhs) == OBJ_TYPE_REF + && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs), + 0), data); + else if (TREE_CODE (rhs) == CONSTRUCTOR) + { + unsigned int ix; + tree val; + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val) + if (TREE_CODE (val) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data); + else if (TREE_CODE (val) == OBJ_TYPE_REF + && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR) + ret |= visit_addr (stmt, + TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val), + 0), data); + } + lhs = gimple_assign_lhs (stmt); + if (TREE_CODE (lhs) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data); + } + if (visit_load) + { + rhs = get_base_loadstore (rhs); + if (rhs) + ret |= visit_load (stmt, rhs, data); + } + } + else if (visit_addr + && (is_gimple_assign (stmt) + || gimple_code (stmt) == GIMPLE_COND)) + { + for (i = 0; i < gimple_num_ops (stmt); ++i) + if (gimple_op (stmt, i) + && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data); + } + else if (is_gimple_call (stmt)) + { + if (visit_store) + { + tree lhs = gimple_call_lhs (stmt); + if (lhs) + { + lhs = get_base_loadstore (lhs); + if (lhs) + ret |= visit_store (stmt, lhs, data); + } + } + if (visit_load || visit_addr) + for (i = 0; i < gimple_call_num_args (stmt); ++i) + { + tree rhs = gimple_call_arg (stmt, i); + if (visit_addr + && TREE_CODE (rhs) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data); + else if (visit_load) + { + rhs = get_base_loadstore (rhs); + if (rhs) + ret |= visit_load (stmt, rhs, data); + } + } + if (visit_addr + && gimple_call_chain (stmt) + && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0), + data); + if (visit_addr + && gimple_call_return_slot_opt_p (stmt) + && gimple_call_lhs (stmt) != NULL_TREE + && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) + ret |= visit_addr (stmt, gimple_call_lhs (stmt), data); + } + else if (gimple_code (stmt) == GIMPLE_ASM) + { + unsigned noutputs; + const char *constraint; + const char **oconstraints; + bool allows_mem, allows_reg, is_inout; + noutputs = gimple_asm_noutputs (stmt); + oconstraints = XALLOCAVEC (const char *, noutputs); + if (visit_store || visit_addr) + for (i = 0; i < gimple_asm_noutputs (stmt); ++i) + { + tree link = gimple_asm_output_op (stmt, i); + tree op = get_base_loadstore (TREE_VALUE (link)); + if (op && visit_store) + ret |= visit_store (stmt, op, data); + if (visit_addr) + { + constraint = TREE_STRING_POINTER + (TREE_VALUE (TREE_PURPOSE (link))); + oconstraints[i] = constraint; + parse_output_constraint (&constraint, i, 0, 0, &allows_mem, + &allows_reg, &is_inout); + if (op && !allows_reg && allows_mem) + ret |= visit_addr (stmt, op, data); + } + } + if (visit_load || visit_addr) + for (i = 0; i < gimple_asm_ninputs (stmt); ++i) + { + tree link = gimple_asm_input_op (stmt, i); + tree op = TREE_VALUE (link); + if (visit_addr + && TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data); + else if (visit_load || visit_addr) + { + op = get_base_loadstore (op); + if (op) + { + if (visit_load) + ret |= visit_load (stmt, op, data); + if (visit_addr) + { + constraint = TREE_STRING_POINTER + (TREE_VALUE (TREE_PURPOSE (link))); + parse_input_constraint (&constraint, 0, 0, noutputs, + 0, oconstraints, + &allows_mem, &allows_reg); + if (!allows_reg && allows_mem) + ret |= visit_addr (stmt, op, data); + } + } + } + } + } + else if (gimple_code (stmt) == GIMPLE_RETURN) + { + tree op = gimple_return_retval (stmt); + if (op) + { + if (visit_addr + && TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data); + else if (visit_load) + { + op = get_base_loadstore (op); + if (op) + ret |= visit_load (stmt, op, data); + } + } + } + else if (visit_addr + && gimple_code (stmt) == GIMPLE_PHI) + { + for (i = 0; i < gimple_phi_num_args (stmt); ++i) + { + tree op = PHI_ARG_DEF (stmt, i); + if (TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data); + } + } + + return ret; +} + +/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP + should make a faster clone for this case. */ + +bool +walk_stmt_load_store_ops (gimple stmt, void *data, + bool (*visit_load)(gimple, tree, void *), + bool (*visit_store)(gimple, tree, void *)) +{ + return walk_stmt_load_store_addr_ops (stmt, data, + visit_load, visit_store, NULL); +} + +/* Helper for gimple_ior_addresses_taken_1. */ + +static bool +gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED, + tree addr, void *data) +{ + bitmap addresses_taken = (bitmap)data; + addr = get_base_address (addr); + if (addr + && DECL_P (addr)) + { + bitmap_set_bit (addresses_taken, DECL_UID (addr)); + return true; + } + return false; +} + +/* Set the bit for the uid of all decls that have their address taken + in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there + were any in this stmt. */ + +bool +gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt) +{ + return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL, + gimple_ior_addresses_taken_1); +} + + +/* Return a printable name for symbol DECL. */ + +const char * +gimple_decl_printable_name (tree decl, int verbosity) +{ + if (!DECL_NAME (decl)) + return NULL; + + if (DECL_ASSEMBLER_NAME_SET_P (decl)) + { + const char *str, *mangled_str; + int dmgl_opts = DMGL_NO_OPTS; + + if (verbosity >= 2) + { + dmgl_opts = DMGL_VERBOSE + | DMGL_ANSI + | DMGL_GNU_V3 + | DMGL_RET_POSTFIX; + if (TREE_CODE (decl) == FUNCTION_DECL) + dmgl_opts |= DMGL_PARAMS; + } + + mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); + str = cplus_demangle_v3 (mangled_str, dmgl_opts); + return (str) ? str : mangled_str; + } + + return IDENTIFIER_POINTER (DECL_NAME (decl)); +} + +/* Return true when STMT is builtins call to CODE. */ + +bool +gimple_call_builtin_p (gimple stmt, enum built_in_function code) +{ + tree fndecl; + return (is_gimple_call (stmt) + && (fndecl = gimple_call_fndecl (stmt)) != NULL + && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL + && DECL_FUNCTION_CODE (fndecl) == code); +} + +#include "gt-gimple.h" |