diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/go/gofrontend/expressions.cc | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/go/gofrontend/expressions.cc')
-rw-r--r-- | gcc/go/gofrontend/expressions.cc | 12782 |
1 files changed, 12782 insertions, 0 deletions
diff --git a/gcc/go/gofrontend/expressions.cc b/gcc/go/gofrontend/expressions.cc new file mode 100644 index 000000000..8660c755a --- /dev/null +++ b/gcc/go/gofrontend/expressions.cc @@ -0,0 +1,12782 @@ +// expressions.cc -- Go frontend expression handling. + +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "go-system.h" + +#include <gmp.h> + +#ifndef ENABLE_BUILD_WITH_CXX +extern "C" +{ +#endif + +#include "toplev.h" +#include "intl.h" +#include "tree.h" +#include "gimple.h" +#include "tree-iterator.h" +#include "convert.h" +#include "real.h" +#include "realmpfr.h" + +#ifndef ENABLE_BUILD_WITH_CXX +} +#endif + +#include "go-c.h" +#include "gogo.h" +#include "types.h" +#include "export.h" +#include "import.h" +#include "statements.h" +#include "lex.h" +#include "expressions.h" + +// Class Expression. + +Expression::Expression(Expression_classification classification, + source_location location) + : classification_(classification), location_(location) +{ +} + +Expression::~Expression() +{ +} + +// If this expression has a constant integer value, return it. + +bool +Expression::integer_constant_value(bool iota_is_constant, mpz_t val, + Type** ptype) const +{ + *ptype = NULL; + return this->do_integer_constant_value(iota_is_constant, val, ptype); +} + +// If this expression has a constant floating point value, return it. + +bool +Expression::float_constant_value(mpfr_t val, Type** ptype) const +{ + *ptype = NULL; + if (this->do_float_constant_value(val, ptype)) + return true; + mpz_t ival; + mpz_init(ival); + Type* t; + bool ret; + if (!this->do_integer_constant_value(false, ival, &t)) + ret = false; + else + { + mpfr_set_z(val, ival, GMP_RNDN); + ret = true; + } + mpz_clear(ival); + return ret; +} + +// If this expression has a constant complex value, return it. + +bool +Expression::complex_constant_value(mpfr_t real, mpfr_t imag, + Type** ptype) const +{ + *ptype = NULL; + if (this->do_complex_constant_value(real, imag, ptype)) + return true; + Type *t; + if (this->float_constant_value(real, &t)) + { + mpfr_set_ui(imag, 0, GMP_RNDN); + return true; + } + return false; +} + +// Traverse the expressions. + +int +Expression::traverse(Expression** pexpr, Traverse* traverse) +{ + Expression* expr = *pexpr; + if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0) + { + int t = traverse->expression(pexpr); + if (t == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + else if (t == TRAVERSE_SKIP_COMPONENTS) + return TRAVERSE_CONTINUE; + } + return expr->do_traverse(traverse); +} + +// Traverse subexpressions of this expression. + +int +Expression::traverse_subexpressions(Traverse* traverse) +{ + return this->do_traverse(traverse); +} + +// Default implementation for do_traverse for child classes. + +int +Expression::do_traverse(Traverse*) +{ + return TRAVERSE_CONTINUE; +} + +// This virtual function is called by the parser if the value of this +// expression is being discarded. By default, we warn. Expressions +// with side effects override. + +void +Expression::do_discarding_value() +{ + this->warn_about_unused_value(); +} + +// This virtual function is called to export expressions. This will +// only be used by expressions which may be constant. + +void +Expression::do_export(Export*) const +{ + gcc_unreachable(); +} + +// Warn that the value of the expression is not used. + +void +Expression::warn_about_unused_value() +{ + warning_at(this->location(), OPT_Wunused_value, "value computed is not used"); +} + +// Note that this expression is an error. This is called by children +// when they discover an error. + +void +Expression::set_is_error() +{ + this->classification_ = EXPRESSION_ERROR; +} + +// For children to call to report an error conveniently. + +void +Expression::report_error(const char* msg) +{ + error_at(this->location_, "%s", msg); + this->set_is_error(); +} + +// Set types of variables and constants. This is implemented by the +// child class. + +void +Expression::determine_type(const Type_context* context) +{ + this->do_determine_type(context); +} + +// Set types when there is no context. + +void +Expression::determine_type_no_context() +{ + Type_context context; + this->do_determine_type(&context); +} + +// Return a tree handling any conversions which must be done during +// assignment. + +tree +Expression::convert_for_assignment(Translate_context* context, Type* lhs_type, + Type* rhs_type, tree rhs_tree, + source_location location) +{ + if (lhs_type == rhs_type) + return rhs_tree; + + if (lhs_type->is_error_type() || rhs_type->is_error_type()) + return error_mark_node; + + if (lhs_type->is_undefined() || rhs_type->is_undefined()) + { + // Make sure we report the error. + lhs_type->base(); + rhs_type->base(); + return error_mark_node; + } + + if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node) + return error_mark_node; + + Gogo* gogo = context->gogo(); + + tree lhs_type_tree = lhs_type->get_tree(gogo); + if (lhs_type_tree == error_mark_node) + return error_mark_node; + + if (lhs_type->interface_type() != NULL) + { + if (rhs_type->interface_type() == NULL) + return Expression::convert_type_to_interface(context, lhs_type, + rhs_type, rhs_tree, + location); + else + return Expression::convert_interface_to_interface(context, lhs_type, + rhs_type, rhs_tree, + false, location); + } + else if (rhs_type->interface_type() != NULL) + return Expression::convert_interface_to_type(context, lhs_type, rhs_type, + rhs_tree, location); + else if (lhs_type->is_open_array_type() + && rhs_type->is_nil_type()) + { + // Assigning nil to an open array. + gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE); + + VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3); + + constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); + tree field = TYPE_FIELDS(lhs_type_tree); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), + "__values") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), null_pointer_node); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), + "__count") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), integer_zero_node); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), + "__capacity") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), integer_zero_node); + + tree val = build_constructor(lhs_type_tree, init); + TREE_CONSTANT(val) = 1; + + return val; + } + else if (rhs_type->is_nil_type()) + { + // The left hand side should be a pointer type at the tree + // level. + gcc_assert(POINTER_TYPE_P(lhs_type_tree)); + return fold_convert(lhs_type_tree, null_pointer_node); + } + else if (lhs_type_tree == TREE_TYPE(rhs_tree)) + { + // No conversion is needed. + return rhs_tree; + } + else if (POINTER_TYPE_P(lhs_type_tree) + || INTEGRAL_TYPE_P(lhs_type_tree) + || SCALAR_FLOAT_TYPE_P(lhs_type_tree) + || COMPLEX_FLOAT_TYPE_P(lhs_type_tree)) + return fold_convert_loc(location, lhs_type_tree, rhs_tree); + else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE + && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE) + { + // This conversion must be permitted by Go, or we wouldn't have + // gotten here. + gcc_assert(int_size_in_bytes(lhs_type_tree) + == int_size_in_bytes(TREE_TYPE(rhs_tree))); + return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree, + rhs_tree); + } + else + { + gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree))); + return rhs_tree; + } +} + +// Return a tree for a conversion from a non-interface type to an +// interface type. + +tree +Expression::convert_type_to_interface(Translate_context* context, + Type* lhs_type, Type* rhs_type, + tree rhs_tree, source_location location) +{ + Gogo* gogo = context->gogo(); + Interface_type* lhs_interface_type = lhs_type->interface_type(); + bool lhs_is_empty = lhs_interface_type->is_empty(); + + // Since RHS_TYPE is a static type, we can create the interface + // method table at compile time. + + // When setting an interface to nil, we just set both fields to + // NULL. + if (rhs_type->is_nil_type()) + return lhs_type->get_init_tree(gogo, false); + + // This should have been checked already. + gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL)); + + tree lhs_type_tree = lhs_type->get_tree(gogo); + if (lhs_type_tree == error_mark_node) + return error_mark_node; + + // An interface is a tuple. If LHS_TYPE is an empty interface type, + // then the first field is the type descriptor for RHS_TYPE. + // Otherwise it is the interface method table for RHS_TYPE. + tree first_field_value; + if (lhs_is_empty) + first_field_value = rhs_type->type_descriptor_pointer(gogo); + else + { + // Build the interface method table for this interface and this + // object type: a list of function pointers for each interface + // method. + Named_type* rhs_named_type = rhs_type->named_type(); + bool is_pointer = false; + if (rhs_named_type == NULL) + { + rhs_named_type = rhs_type->deref()->named_type(); + is_pointer = true; + } + tree method_table; + if (rhs_named_type == NULL) + method_table = null_pointer_node; + else + method_table = + rhs_named_type->interface_method_table(gogo, lhs_interface_type, + is_pointer); + first_field_value = fold_convert_loc(location, const_ptr_type_node, + method_table); + } + if (first_field_value == error_mark_node) + return error_mark_node; + + // Start building a constructor for the value we will return. + + VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2); + + constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); + tree field = TYPE_FIELDS(lhs_type_tree); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), + (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0); + elt->index = field; + elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0); + elt->index = field; + + if (rhs_type->points_to() != NULL) + { + // We are assigning a pointer to the interface; the interface + // holds the pointer itself. + elt->value = rhs_tree; + return build_constructor(lhs_type_tree, init); + } + + // We are assigning a non-pointer value to the interface; the + // interface gets a copy of the value in the heap. + + tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree)); + + tree space = gogo->allocate_memory(rhs_type, object_size, location); + space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)), + space); + space = save_expr(space); + + tree ref = build_fold_indirect_ref_loc(location, space); + TREE_THIS_NOTRAP(ref) = 1; + tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node, + ref, rhs_tree); + + elt->value = fold_convert_loc(location, TREE_TYPE(field), space); + + return build2(COMPOUND_EXPR, lhs_type_tree, set, + build_constructor(lhs_type_tree, init)); +} + +// Return a tree for the type descriptor of RHS_TREE, which has +// interface type RHS_TYPE. If RHS_TREE is nil the result will be +// NULL. + +tree +Expression::get_interface_type_descriptor(Translate_context*, + Type* rhs_type, tree rhs_tree, + source_location location) +{ + tree rhs_type_tree = TREE_TYPE(rhs_tree); + gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE); + tree rhs_field = TYPE_FIELDS(rhs_type_tree); + tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field, + NULL_TREE); + if (rhs_type->interface_type()->is_empty()) + { + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), + "__type_descriptor") == 0); + return v; + } + + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods") + == 0); + gcc_assert(POINTER_TYPE_P(TREE_TYPE(v))); + v = save_expr(v); + tree v1 = build_fold_indirect_ref_loc(location, v); + gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE); + tree f = TYPE_FIELDS(TREE_TYPE(v1)); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor") + == 0); + v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE); + + tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v, + fold_convert_loc(location, TREE_TYPE(v), + null_pointer_node)); + tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node); + return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1), + eq, n, v1); +} + +// Return a tree for the conversion of an interface type to an +// interface type. + +tree +Expression::convert_interface_to_interface(Translate_context* context, + Type *lhs_type, Type *rhs_type, + tree rhs_tree, bool for_type_guard, + source_location location) +{ + Gogo* gogo = context->gogo(); + Interface_type* lhs_interface_type = lhs_type->interface_type(); + bool lhs_is_empty = lhs_interface_type->is_empty(); + + tree lhs_type_tree = lhs_type->get_tree(gogo); + if (lhs_type_tree == error_mark_node) + return error_mark_node; + + // In the general case this requires runtime examination of the type + // method table to match it up with the interface methods. + + // FIXME: If all of the methods in the right hand side interface + // also appear in the left hand side interface, then we don't need + // to do a runtime check, although we still need to build a new + // method table. + + // Get the type descriptor for the right hand side. This will be + // NULL for a nil interface. + + if (!DECL_P(rhs_tree)) + rhs_tree = save_expr(rhs_tree); + + tree rhs_type_descriptor = + Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree, + location); + + // The result is going to be a two element constructor. + + VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2); + + constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); + tree field = TYPE_FIELDS(lhs_type_tree); + elt->index = field; + + if (for_type_guard) + { + // A type assertion fails when converting a nil interface. + tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo); + static tree assert_interface_decl; + tree call = Gogo::call_builtin(&assert_interface_decl, + location, + "__go_assert_interface", + 2, + ptr_type_node, + TREE_TYPE(lhs_type_descriptor), + lhs_type_descriptor, + TREE_TYPE(rhs_type_descriptor), + rhs_type_descriptor); + if (call == error_mark_node) + return error_mark_node; + // This will panic if the interface conversion fails. + TREE_NOTHROW(assert_interface_decl) = 0; + elt->value = fold_convert_loc(location, TREE_TYPE(field), call); + } + else if (lhs_is_empty) + { + // A convertion to an empty interface always succeeds, and the + // first field is just the type descriptor of the object. + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), + "__type_descriptor") == 0); + gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor)); + elt->value = rhs_type_descriptor; + } + else + { + // A conversion to a non-empty interface may fail, but unlike a + // type assertion converting nil will always succeed. + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") + == 0); + tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo); + static tree convert_interface_decl; + tree call = Gogo::call_builtin(&convert_interface_decl, + location, + "__go_convert_interface", + 2, + ptr_type_node, + TREE_TYPE(lhs_type_descriptor), + lhs_type_descriptor, + TREE_TYPE(rhs_type_descriptor), + rhs_type_descriptor); + if (call == error_mark_node) + return error_mark_node; + // This will panic if the interface conversion fails. + TREE_NOTHROW(convert_interface_decl) = 0; + elt->value = fold_convert_loc(location, TREE_TYPE(field), call); + } + + // The second field is simply the object pointer. + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0); + elt->index = field; + + tree rhs_type_tree = TREE_TYPE(rhs_tree); + gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE); + tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree)); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0); + elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field, + NULL_TREE); + + return build_constructor(lhs_type_tree, init); +} + +// Return a tree for the conversion of an interface type to a +// non-interface type. + +tree +Expression::convert_interface_to_type(Translate_context* context, + Type *lhs_type, Type* rhs_type, + tree rhs_tree, source_location location) +{ + Gogo* gogo = context->gogo(); + tree rhs_type_tree = TREE_TYPE(rhs_tree); + + tree lhs_type_tree = lhs_type->get_tree(gogo); + if (lhs_type_tree == error_mark_node) + return error_mark_node; + + // Call a function to check that the type is valid. The function + // will panic with an appropriate runtime type error if the type is + // not valid. + + tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo); + + if (!DECL_P(rhs_tree)) + rhs_tree = save_expr(rhs_tree); + + tree rhs_type_descriptor = + Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree, + location); + + tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo); + + static tree check_interface_type_decl; + tree call = Gogo::call_builtin(&check_interface_type_decl, + location, + "__go_check_interface_type", + 3, + void_type_node, + TREE_TYPE(lhs_type_descriptor), + lhs_type_descriptor, + TREE_TYPE(rhs_type_descriptor), + rhs_type_descriptor, + TREE_TYPE(rhs_inter_descriptor), + rhs_inter_descriptor); + if (call == error_mark_node) + return error_mark_node; + // This call will panic if the conversion is invalid. + TREE_NOTHROW(check_interface_type_decl) = 0; + + // If the call succeeds, pull out the value. + gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE); + tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree)); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0); + tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field, + NULL_TREE); + + // If the value is a pointer, then it is the value we want. + // Otherwise it points to the value. + if (lhs_type->points_to() == NULL) + { + val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val); + val = build_fold_indirect_ref_loc(location, val); + } + + return build2(COMPOUND_EXPR, lhs_type_tree, call, + fold_convert_loc(location, lhs_type_tree, val)); +} + +// Convert an expression to a tree. This is implemented by the child +// class. Not that it is not in general safe to call this multiple +// times for a single expression, but that we don't catch such errors. + +tree +Expression::get_tree(Translate_context* context) +{ + // The child may have marked this expression as having an error. + if (this->classification_ == EXPRESSION_ERROR) + return error_mark_node; + + return this->do_get_tree(context); +} + +// Return a tree for VAL in TYPE. + +tree +Expression::integer_constant_tree(mpz_t val, tree type) +{ + if (type == error_mark_node) + return error_mark_node; + else if (TREE_CODE(type) == INTEGER_TYPE) + return double_int_to_tree(type, + mpz_get_double_int(type, val, true)); + else if (TREE_CODE(type) == REAL_TYPE) + { + mpfr_t fval; + mpfr_init_set_z(fval, val, GMP_RNDN); + tree ret = Expression::float_constant_tree(fval, type); + mpfr_clear(fval); + return ret; + } + else if (TREE_CODE(type) == COMPLEX_TYPE) + { + mpfr_t fval; + mpfr_init_set_z(fval, val, GMP_RNDN); + tree real = Expression::float_constant_tree(fval, TREE_TYPE(type)); + mpfr_clear(fval); + tree imag = build_real_from_int_cst(TREE_TYPE(type), + integer_zero_node); + return build_complex(type, real, imag); + } + else + gcc_unreachable(); +} + +// Return a tree for VAL in TYPE. + +tree +Expression::float_constant_tree(mpfr_t val, tree type) +{ + if (type == error_mark_node) + return error_mark_node; + else if (TREE_CODE(type) == INTEGER_TYPE) + { + mpz_t ival; + mpz_init(ival); + mpfr_get_z(ival, val, GMP_RNDN); + tree ret = Expression::integer_constant_tree(ival, type); + mpz_clear(ival); + return ret; + } + else if (TREE_CODE(type) == REAL_TYPE) + { + REAL_VALUE_TYPE r1; + real_from_mpfr(&r1, val, type, GMP_RNDN); + REAL_VALUE_TYPE r2; + real_convert(&r2, TYPE_MODE(type), &r1); + return build_real(type, r2); + } + else if (TREE_CODE(type) == COMPLEX_TYPE) + { + REAL_VALUE_TYPE r1; + real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN); + REAL_VALUE_TYPE r2; + real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1); + tree imag = build_real_from_int_cst(TREE_TYPE(type), + integer_zero_node); + return build_complex(type, build_real(TREE_TYPE(type), r2), imag); + } + else + gcc_unreachable(); +} + +// Return a tree for REAL/IMAG in TYPE. + +tree +Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type) +{ + if (type == error_mark_node) + return error_mark_node; + else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE) + return Expression::float_constant_tree(real, type); + else if (TREE_CODE(type) == COMPLEX_TYPE) + { + REAL_VALUE_TYPE r1; + real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN); + REAL_VALUE_TYPE r2; + real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1); + + REAL_VALUE_TYPE r3; + real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN); + REAL_VALUE_TYPE r4; + real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3); + + return build_complex(type, build_real(TREE_TYPE(type), r2), + build_real(TREE_TYPE(type), r4)); + } + else + gcc_unreachable(); +} + +// Return a tree which evaluates to true if VAL, of arbitrary integer +// type, is negative or is more than the maximum value of BOUND_TYPE. +// If SOFAR is not NULL, it is or'red into the result. The return +// value may be NULL if SOFAR is NULL. + +tree +Expression::check_bounds(tree val, tree bound_type, tree sofar, + source_location loc) +{ + tree val_type = TREE_TYPE(val); + tree ret = NULL_TREE; + + if (!TYPE_UNSIGNED(val_type)) + { + ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val, + build_int_cst(val_type, 0)); + if (ret == boolean_false_node) + ret = NULL_TREE; + } + + if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type)) + || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type)) + { + tree max = TYPE_MAX_VALUE(bound_type); + tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val, + fold_convert_loc(loc, val_type, max)); + if (big == boolean_false_node) + ; + else if (ret == NULL_TREE) + ret = big; + else + ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, + ret, big); + } + + if (ret == NULL_TREE) + return sofar; + else if (sofar == NULL_TREE) + return ret; + else + return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, + sofar, ret); +} + +// Error expressions. This are used to avoid cascading errors. + +class Error_expression : public Expression +{ + public: + Error_expression(source_location location) + : Expression(EXPRESSION_ERROR, location) + { } + + protected: + bool + do_is_constant() const + { return true; } + + bool + do_integer_constant_value(bool, mpz_t val, Type**) const + { + mpz_set_ui(val, 0); + return true; + } + + bool + do_float_constant_value(mpfr_t val, Type**) const + { + mpfr_set_ui(val, 0, GMP_RNDN); + return true; + } + + bool + do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const + { + mpfr_set_ui(real, 0, GMP_RNDN); + mpfr_set_ui(imag, 0, GMP_RNDN); + return true; + } + + void + do_discarding_value() + { } + + Type* + do_type() + { return Type::make_error_type(); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return this; } + + bool + do_is_addressable() const + { return true; } + + tree + do_get_tree(Translate_context*) + { return error_mark_node; } +}; + +Expression* +Expression::make_error(source_location location) +{ + return new Error_expression(location); +} + +// An expression which is really a type. This is used during parsing. +// It is an error if these survive after lowering. + +class +Type_expression : public Expression +{ + public: + Type_expression(Type* type, source_location location) + : Expression(EXPRESSION_TYPE, location), + type_(type) + { } + + protected: + int + do_traverse(Traverse* traverse) + { return Type::traverse(this->type_, traverse); } + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*) + { } + + void + do_check_types(Gogo*) + { this->report_error(_("invalid use of type")); } + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context*) + { gcc_unreachable(); } + + private: + // The type which we are representing as an expression. + Type* type_; +}; + +Expression* +Expression::make_type(Type* type, source_location location) +{ + return new Type_expression(type, location); +} + +// Class Parser_expression. + +Type* +Parser_expression::do_type() +{ + // We should never really ask for the type of a Parser_expression. + // However, it can happen, at least when we have an invalid const + // whose initializer refers to the const itself. In that case we + // may ask for the type when lowering the const itself. + gcc_assert(saw_errors()); + return Type::make_error_type(); +} + +// Class Var_expression. + +// Lower a variable expression. Here we just make sure that the +// initialization expression of the variable has been lowered. This +// ensures that we will be able to determine the type of the variable +// if necessary. + +Expression* +Var_expression::do_lower(Gogo* gogo, Named_object* function, int) +{ + if (this->variable_->is_variable()) + { + Variable* var = this->variable_->var_value(); + // This is either a local variable or a global variable. A + // reference to a variable which is local to an enclosing + // function will be a reference to a field in a closure. + if (var->is_global()) + function = NULL; + var->lower_init_expression(gogo, function); + } + return this; +} + +// Return the type of a reference to a variable. + +Type* +Var_expression::do_type() +{ + if (this->variable_->is_variable()) + return this->variable_->var_value()->type(); + else if (this->variable_->is_result_variable()) + return this->variable_->result_var_value()->type(); + else + gcc_unreachable(); +} + +// Determine the type of a reference to a variable. + +void +Var_expression::do_determine_type(const Type_context*) +{ + if (this->variable_->is_variable()) + this->variable_->var_value()->determine_type(); +} + +// Something takes the address of this variable. This means that we +// may want to move the variable onto the heap. + +void +Var_expression::do_address_taken(bool escapes) +{ + if (!escapes) + ; + else if (this->variable_->is_variable()) + this->variable_->var_value()->set_address_taken(); + else if (this->variable_->is_result_variable()) + this->variable_->result_var_value()->set_address_taken(); + else + gcc_unreachable(); +} + +// Get the tree for a reference to a variable. + +tree +Var_expression::do_get_tree(Translate_context* context) +{ + return this->variable_->get_tree(context->gogo(), context->function()); +} + +// Make a reference to a variable in an expression. + +Expression* +Expression::make_var_reference(Named_object* var, source_location location) +{ + if (var->is_sink()) + return Expression::make_sink(location); + + // FIXME: Creating a new object for each reference to a variable is + // wasteful. + return new Var_expression(var, location); +} + +// Class Temporary_reference_expression. + +// The type. + +Type* +Temporary_reference_expression::do_type() +{ + return this->statement_->type(); +} + +// Called if something takes the address of this temporary variable. +// We never have to move temporary variables to the heap, but we do +// need to know that they must live in the stack rather than in a +// register. + +void +Temporary_reference_expression::do_address_taken(bool) +{ + this->statement_->set_is_address_taken(); +} + +// Get a tree referring to the variable. + +tree +Temporary_reference_expression::do_get_tree(Translate_context*) +{ + return this->statement_->get_decl(); +} + +// Make a reference to a temporary variable. + +Expression* +Expression::make_temporary_reference(Temporary_statement* statement, + source_location location) +{ + return new Temporary_reference_expression(statement, location); +} + +// A sink expression--a use of the blank identifier _. + +class Sink_expression : public Expression +{ + public: + Sink_expression(source_location location) + : Expression(EXPRESSION_SINK, location), + type_(NULL), var_(NULL_TREE) + { } + + protected: + void + do_discarding_value() + { } + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + Expression* + do_copy() + { return new Sink_expression(this->location()); } + + tree + do_get_tree(Translate_context*); + + private: + // The type of this sink variable. + Type* type_; + // The temporary variable we generate. + tree var_; +}; + +// Return the type of a sink expression. + +Type* +Sink_expression::do_type() +{ + if (this->type_ == NULL) + return Type::make_sink_type(); + return this->type_; +} + +// Determine the type of a sink expression. + +void +Sink_expression::do_determine_type(const Type_context* context) +{ + if (context->type != NULL) + this->type_ = context->type; +} + +// Return a temporary variable for a sink expression. This will +// presumably be a write-only variable which the middle-end will drop. + +tree +Sink_expression::do_get_tree(Translate_context* context) +{ + if (this->var_ == NULL_TREE) + { + gcc_assert(this->type_ != NULL && !this->type_->is_sink_type()); + this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()), + "blank"); + } + return this->var_; +} + +// Make a sink expression. + +Expression* +Expression::make_sink(source_location location) +{ + return new Sink_expression(location); +} + +// Class Func_expression. + +// FIXME: Can a function expression appear in a constant expression? +// The value is unchanging. Initializing a constant to the address of +// a function seems like it could work, though there might be little +// point to it. + +// Traversal. + +int +Func_expression::do_traverse(Traverse* traverse) +{ + return (this->closure_ == NULL + ? TRAVERSE_CONTINUE + : Expression::traverse(&this->closure_, traverse)); +} + +// Return the type of a function expression. + +Type* +Func_expression::do_type() +{ + if (this->function_->is_function()) + return this->function_->func_value()->type(); + else if (this->function_->is_function_declaration()) + return this->function_->func_declaration_value()->type(); + else + gcc_unreachable(); +} + +// Get the tree for a function expression without evaluating the +// closure. + +tree +Func_expression::get_tree_without_closure(Gogo* gogo) +{ + Function_type* fntype; + if (this->function_->is_function()) + fntype = this->function_->func_value()->type(); + else if (this->function_->is_function_declaration()) + fntype = this->function_->func_declaration_value()->type(); + else + gcc_unreachable(); + + // Builtin functions are handled specially by Call_expression. We + // can't take their address. + if (fntype->is_builtin()) + { + error_at(this->location(), "invalid use of special builtin function %qs", + this->function_->name().c_str()); + return error_mark_node; + } + + Named_object* no = this->function_; + + tree id = no->get_id(gogo); + if (id == error_mark_node) + return error_mark_node; + + tree fndecl; + if (no->is_function()) + fndecl = no->func_value()->get_or_make_decl(gogo, no, id); + else if (no->is_function_declaration()) + fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id); + else + gcc_unreachable(); + + if (fndecl == error_mark_node) + return error_mark_node; + + return build_fold_addr_expr_loc(this->location(), fndecl); +} + +// Get the tree for a function expression. This is used when we take +// the address of a function rather than simply calling it. If the +// function has a closure, we must use a trampoline. + +tree +Func_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + + tree fnaddr = this->get_tree_without_closure(gogo); + if (fnaddr == error_mark_node) + return error_mark_node; + + gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR + && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL); + TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1; + + // For a normal non-nested function call, that is all we have to do. + if (!this->function_->is_function() + || this->function_->func_value()->enclosing() == NULL) + { + gcc_assert(this->closure_ == NULL); + return fnaddr; + } + + // For a nested function call, we have to always allocate a + // trampoline. If we don't always allocate, then closures will not + // be reliably distinct. + Expression* closure = this->closure_; + tree closure_tree; + if (closure == NULL) + closure_tree = null_pointer_node; + else + { + // Get the value of the closure. This will be a pointer to + // space allocated on the heap. + closure_tree = closure->get_tree(context); + if (closure_tree == error_mark_node) + return error_mark_node; + gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree))); + } + + // Now we need to build some code on the heap. This code will load + // the static chain pointer with the closure and then jump to the + // body of the function. The normal gcc approach is to build the + // code on the stack. Unfortunately we can not do that, as Go + // permits us to return the function pointer. + + return gogo->make_trampoline(fnaddr, closure_tree, this->location()); +} + +// Make a reference to a function in an expression. + +Expression* +Expression::make_func_reference(Named_object* function, Expression* closure, + source_location location) +{ + return new Func_expression(function, closure, location); +} + +// Class Unknown_expression. + +// Return the name of an unknown expression. + +const std::string& +Unknown_expression::name() const +{ + return this->named_object_->name(); +} + +// Lower a reference to an unknown name. + +Expression* +Unknown_expression::do_lower(Gogo*, Named_object*, int) +{ + source_location location = this->location(); + Named_object* no = this->named_object_; + Named_object* real; + if (!no->is_unknown()) + real = no; + else + { + real = no->unknown_value()->real_named_object(); + if (real == NULL) + { + if (this->is_composite_literal_key_) + return this; + error_at(location, "reference to undefined name %qs", + this->named_object_->message_name().c_str()); + return Expression::make_error(location); + } + } + switch (real->classification()) + { + case Named_object::NAMED_OBJECT_CONST: + return Expression::make_const_reference(real, location); + case Named_object::NAMED_OBJECT_TYPE: + return Expression::make_type(real->type_value(), location); + case Named_object::NAMED_OBJECT_TYPE_DECLARATION: + if (this->is_composite_literal_key_) + return this; + error_at(location, "reference to undefined type %qs", + real->message_name().c_str()); + return Expression::make_error(location); + case Named_object::NAMED_OBJECT_VAR: + return Expression::make_var_reference(real, location); + case Named_object::NAMED_OBJECT_FUNC: + case Named_object::NAMED_OBJECT_FUNC_DECLARATION: + return Expression::make_func_reference(real, NULL, location); + case Named_object::NAMED_OBJECT_PACKAGE: + if (this->is_composite_literal_key_) + return this; + error_at(location, "unexpected reference to package"); + return Expression::make_error(location); + default: + gcc_unreachable(); + } +} + +// Make a reference to an unknown name. + +Expression* +Expression::make_unknown_reference(Named_object* no, source_location location) +{ + gcc_assert(no->resolve()->is_unknown()); + return new Unknown_expression(no, location); +} + +// A boolean expression. + +class Boolean_expression : public Expression +{ + public: + Boolean_expression(bool val, source_location location) + : Expression(EXPRESSION_BOOLEAN, location), + val_(val), type_(NULL) + { } + + static Expression* + do_import(Import*); + + protected: + bool + do_is_constant() const + { return true; } + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context*) + { return this->val_ ? boolean_true_node : boolean_false_node; } + + void + do_export(Export* exp) const + { exp->write_c_string(this->val_ ? "true" : "false"); } + + private: + // The constant. + bool val_; + // The type as determined by context. + Type* type_; +}; + +// Get the type. + +Type* +Boolean_expression::do_type() +{ + if (this->type_ == NULL) + this->type_ = Type::make_boolean_type(); + return this->type_; +} + +// Set the type from the context. + +void +Boolean_expression::do_determine_type(const Type_context* context) +{ + if (this->type_ != NULL && !this->type_->is_abstract()) + ; + else if (context->type != NULL && context->type->is_boolean_type()) + this->type_ = context->type; + else if (!context->may_be_abstract) + this->type_ = Type::lookup_bool_type(); +} + +// Import a boolean constant. + +Expression* +Boolean_expression::do_import(Import* imp) +{ + if (imp->peek_char() == 't') + { + imp->require_c_string("true"); + return Expression::make_boolean(true, imp->location()); + } + else + { + imp->require_c_string("false"); + return Expression::make_boolean(false, imp->location()); + } +} + +// Make a boolean expression. + +Expression* +Expression::make_boolean(bool val, source_location location) +{ + return new Boolean_expression(val, location); +} + +// Class String_expression. + +// Get the type. + +Type* +String_expression::do_type() +{ + if (this->type_ == NULL) + this->type_ = Type::make_string_type(); + return this->type_; +} + +// Set the type from the context. + +void +String_expression::do_determine_type(const Type_context* context) +{ + if (this->type_ != NULL && !this->type_->is_abstract()) + ; + else if (context->type != NULL && context->type->is_string_type()) + this->type_ = context->type; + else if (!context->may_be_abstract) + this->type_ = Type::lookup_string_type(); +} + +// Build a string constant. + +tree +String_expression::do_get_tree(Translate_context* context) +{ + return context->gogo()->go_string_constant_tree(this->val_); +} + +// Export a string expression. + +void +String_expression::do_export(Export* exp) const +{ + std::string s; + s.reserve(this->val_.length() * 4 + 2); + s += '"'; + for (std::string::const_iterator p = this->val_.begin(); + p != this->val_.end(); + ++p) + { + if (*p == '\\' || *p == '"') + { + s += '\\'; + s += *p; + } + else if (*p >= 0x20 && *p < 0x7f) + s += *p; + else if (*p == '\n') + s += "\\n"; + else if (*p == '\t') + s += "\\t"; + else + { + s += "\\x"; + unsigned char c = *p; + unsigned int dig = c >> 4; + s += dig < 10 ? '0' + dig : 'A' + dig - 10; + dig = c & 0xf; + s += dig < 10 ? '0' + dig : 'A' + dig - 10; + } + } + s += '"'; + exp->write_string(s); +} + +// Import a string expression. + +Expression* +String_expression::do_import(Import* imp) +{ + imp->require_c_string("\""); + std::string val; + while (true) + { + int c = imp->get_char(); + if (c == '"' || c == -1) + break; + if (c != '\\') + val += static_cast<char>(c); + else + { + c = imp->get_char(); + if (c == '\\' || c == '"') + val += static_cast<char>(c); + else if (c == 'n') + val += '\n'; + else if (c == 't') + val += '\t'; + else if (c == 'x') + { + c = imp->get_char(); + unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10; + c = imp->get_char(); + unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10; + char v = (vh << 4) | vl; + val += v; + } + else + { + error_at(imp->location(), "bad string constant"); + return Expression::make_error(imp->location()); + } + } + } + return Expression::make_string(val, imp->location()); +} + +// Make a string expression. + +Expression* +Expression::make_string(const std::string& val, source_location location) +{ + return new String_expression(val, location); +} + +// Make an integer expression. + +class Integer_expression : public Expression +{ + public: + Integer_expression(const mpz_t* val, Type* type, source_location location) + : Expression(EXPRESSION_INTEGER, location), + type_(type) + { mpz_init_set(this->val_, *val); } + + static Expression* + do_import(Import*); + + // Return whether VAL fits in the type. + static bool + check_constant(mpz_t val, Type*, source_location); + + // Write VAL to export data. + static void + export_integer(Export* exp, const mpz_t val); + + protected: + bool + do_is_constant() const + { return true; } + + bool + do_integer_constant_value(bool, mpz_t val, Type** ptype) const; + + Type* + do_type(); + + void + do_determine_type(const Type_context* context); + + void + do_check_types(Gogo*); + + tree + do_get_tree(Translate_context*); + + Expression* + do_copy() + { return Expression::make_integer(&this->val_, this->type_, + this->location()); } + + void + do_export(Export*) const; + + private: + // The integer value. + mpz_t val_; + // The type so far. + Type* type_; +}; + +// Return an integer constant value. + +bool +Integer_expression::do_integer_constant_value(bool, mpz_t val, + Type** ptype) const +{ + if (this->type_ != NULL) + *ptype = this->type_; + mpz_set(val, this->val_); + return true; +} + +// Return the current type. If we haven't set the type yet, we return +// an abstract integer type. + +Type* +Integer_expression::do_type() +{ + if (this->type_ == NULL) + this->type_ = Type::make_abstract_integer_type(); + return this->type_; +} + +// Set the type of the integer value. Here we may switch from an +// abstract type to a real type. + +void +Integer_expression::do_determine_type(const Type_context* context) +{ + if (this->type_ != NULL && !this->type_->is_abstract()) + ; + else if (context->type != NULL + && (context->type->integer_type() != NULL + || context->type->float_type() != NULL + || context->type->complex_type() != NULL)) + this->type_ = context->type; + else if (!context->may_be_abstract) + this->type_ = Type::lookup_integer_type("int"); +} + +// Return true if the integer VAL fits in the range of the type TYPE. +// Otherwise give an error and return false. TYPE may be NULL. + +bool +Integer_expression::check_constant(mpz_t val, Type* type, + source_location location) +{ + if (type == NULL) + return true; + Integer_type* itype = type->integer_type(); + if (itype == NULL || itype->is_abstract()) + return true; + + int bits = mpz_sizeinbase(val, 2); + + if (itype->is_unsigned()) + { + // For an unsigned type we can only accept a nonnegative number, + // and we must be able to represent at least BITS. + if (mpz_sgn(val) >= 0 + && bits <= itype->bits()) + return true; + } + else + { + // For a signed type we need an extra bit to indicate the sign. + // We have to handle the most negative integer specially. + if (bits + 1 <= itype->bits() + || (bits <= itype->bits() + && mpz_sgn(val) < 0 + && (mpz_scan1(val, 0) + == static_cast<unsigned long>(itype->bits() - 1)) + && mpz_scan0(val, itype->bits()) == ULONG_MAX)) + return true; + } + + error_at(location, "integer constant overflow"); + return false; +} + +// Check the type of an integer constant. + +void +Integer_expression::do_check_types(Gogo*) +{ + if (this->type_ == NULL) + return; + if (!Integer_expression::check_constant(this->val_, this->type_, + this->location())) + this->set_is_error(); +} + +// Get a tree for an integer constant. + +tree +Integer_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree type; + if (this->type_ != NULL && !this->type_->is_abstract()) + type = this->type_->get_tree(gogo); + else if (this->type_ != NULL && this->type_->float_type() != NULL) + { + // We are converting to an abstract floating point type. + type = Type::lookup_float_type("float64")->get_tree(gogo); + } + else if (this->type_ != NULL && this->type_->complex_type() != NULL) + { + // We are converting to an abstract complex type. + type = Type::lookup_complex_type("complex128")->get_tree(gogo); + } + else + { + // If we still have an abstract type here, then this is being + // used in a constant expression which didn't get reduced for + // some reason. Use a type which will fit the value. We use <, + // not <=, because we need an extra bit for the sign bit. + int bits = mpz_sizeinbase(this->val_, 2); + if (bits < INT_TYPE_SIZE) + type = Type::lookup_integer_type("int")->get_tree(gogo); + else if (bits < 64) + type = Type::lookup_integer_type("int64")->get_tree(gogo); + else + type = long_long_integer_type_node; + } + return Expression::integer_constant_tree(this->val_, type); +} + +// Write VAL to export data. + +void +Integer_expression::export_integer(Export* exp, const mpz_t val) +{ + char* s = mpz_get_str(NULL, 10, val); + exp->write_c_string(s); + free(s); +} + +// Export an integer in a constant expression. + +void +Integer_expression::do_export(Export* exp) const +{ + Integer_expression::export_integer(exp, this->val_); + // A trailing space lets us reliably identify the end of the number. + exp->write_c_string(" "); +} + +// Import an integer, floating point, or complex value. This handles +// all these types because they all start with digits. + +Expression* +Integer_expression::do_import(Import* imp) +{ + std::string num = imp->read_identifier(); + imp->require_c_string(" "); + if (!num.empty() && num[num.length() - 1] == 'i') + { + mpfr_t real; + size_t plus_pos = num.find('+', 1); + size_t minus_pos = num.find('-', 1); + size_t pos; + if (plus_pos == std::string::npos) + pos = minus_pos; + else if (minus_pos == std::string::npos) + pos = plus_pos; + else + { + error_at(imp->location(), "bad number in import data: %qs", + num.c_str()); + return Expression::make_error(imp->location()); + } + if (pos == std::string::npos) + mpfr_set_ui(real, 0, GMP_RNDN); + else + { + std::string real_str = num.substr(0, pos); + if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0) + { + error_at(imp->location(), "bad number in import data: %qs", + real_str.c_str()); + return Expression::make_error(imp->location()); + } + } + + std::string imag_str; + if (pos == std::string::npos) + imag_str = num; + else + imag_str = num.substr(pos); + imag_str = imag_str.substr(0, imag_str.size() - 1); + mpfr_t imag; + if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0) + { + error_at(imp->location(), "bad number in import data: %qs", + imag_str.c_str()); + return Expression::make_error(imp->location()); + } + Expression* ret = Expression::make_complex(&real, &imag, NULL, + imp->location()); + mpfr_clear(real); + mpfr_clear(imag); + return ret; + } + else if (num.find('.') == std::string::npos + && num.find('E') == std::string::npos) + { + mpz_t val; + if (mpz_init_set_str(val, num.c_str(), 10) != 0) + { + error_at(imp->location(), "bad number in import data: %qs", + num.c_str()); + return Expression::make_error(imp->location()); + } + Expression* ret = Expression::make_integer(&val, NULL, imp->location()); + mpz_clear(val); + return ret; + } + else + { + mpfr_t val; + if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0) + { + error_at(imp->location(), "bad number in import data: %qs", + num.c_str()); + return Expression::make_error(imp->location()); + } + Expression* ret = Expression::make_float(&val, NULL, imp->location()); + mpfr_clear(val); + return ret; + } +} + +// Build a new integer value. + +Expression* +Expression::make_integer(const mpz_t* val, Type* type, + source_location location) +{ + return new Integer_expression(val, type, location); +} + +// Floats. + +class Float_expression : public Expression +{ + public: + Float_expression(const mpfr_t* val, Type* type, source_location location) + : Expression(EXPRESSION_FLOAT, location), + type_(type) + { + mpfr_init_set(this->val_, *val, GMP_RNDN); + } + + // Constrain VAL to fit into TYPE. + static void + constrain_float(mpfr_t val, Type* type); + + // Return whether VAL fits in the type. + static bool + check_constant(mpfr_t val, Type*, source_location); + + // Write VAL to export data. + static void + export_float(Export* exp, const mpfr_t val); + + protected: + bool + do_is_constant() const + { return true; } + + bool + do_float_constant_value(mpfr_t val, Type**) const; + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { return Expression::make_float(&this->val_, this->type_, + this->location()); } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + private: + // The floating point value. + mpfr_t val_; + // The type so far. + Type* type_; +}; + +// Constrain VAL to fit into TYPE. + +void +Float_expression::constrain_float(mpfr_t val, Type* type) +{ + Float_type* ftype = type->float_type(); + if (ftype != NULL && !ftype->is_abstract()) + { + tree type_tree = ftype->type_tree(); + REAL_VALUE_TYPE rvt; + real_from_mpfr(&rvt, val, type_tree, GMP_RNDN); + real_convert(&rvt, TYPE_MODE(type_tree), &rvt); + mpfr_from_real(val, &rvt, GMP_RNDN); + } +} + +// Return a floating point constant value. + +bool +Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const +{ + if (this->type_ != NULL) + *ptype = this->type_; + mpfr_set(val, this->val_, GMP_RNDN); + return true; +} + +// Return the current type. If we haven't set the type yet, we return +// an abstract float type. + +Type* +Float_expression::do_type() +{ + if (this->type_ == NULL) + this->type_ = Type::make_abstract_float_type(); + return this->type_; +} + +// Set the type of the float value. Here we may switch from an +// abstract type to a real type. + +void +Float_expression::do_determine_type(const Type_context* context) +{ + if (this->type_ != NULL && !this->type_->is_abstract()) + ; + else if (context->type != NULL + && (context->type->integer_type() != NULL + || context->type->float_type() != NULL + || context->type->complex_type() != NULL)) + this->type_ = context->type; + else if (!context->may_be_abstract) + this->type_ = Type::lookup_float_type("float64"); +} + +// Return true if the floating point value VAL fits in the range of +// the type TYPE. Otherwise give an error and return false. TYPE may +// be NULL. + +bool +Float_expression::check_constant(mpfr_t val, Type* type, + source_location location) +{ + if (type == NULL) + return true; + Float_type* ftype = type->float_type(); + if (ftype == NULL || ftype->is_abstract()) + return true; + + // A NaN or Infinity always fits in the range of the type. + if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val)) + return true; + + mp_exp_t exp = mpfr_get_exp(val); + mp_exp_t max_exp; + switch (ftype->bits()) + { + case 32: + max_exp = 128; + break; + case 64: + max_exp = 1024; + break; + default: + gcc_unreachable(); + } + if (exp > max_exp) + { + error_at(location, "floating point constant overflow"); + return false; + } + return true; +} + +// Check the type of a float value. + +void +Float_expression::do_check_types(Gogo*) +{ + if (this->type_ == NULL) + return; + + if (!Float_expression::check_constant(this->val_, this->type_, + this->location())) + this->set_is_error(); + + Integer_type* integer_type = this->type_->integer_type(); + if (integer_type != NULL) + { + if (!mpfr_integer_p(this->val_)) + this->report_error(_("floating point constant truncated to integer")); + else + { + gcc_assert(!integer_type->is_abstract()); + mpz_t ival; + mpz_init(ival); + mpfr_get_z(ival, this->val_, GMP_RNDN); + Integer_expression::check_constant(ival, integer_type, + this->location()); + mpz_clear(ival); + } + } +} + +// Get a tree for a float constant. + +tree +Float_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree type; + if (this->type_ != NULL && !this->type_->is_abstract()) + type = this->type_->get_tree(gogo); + else if (this->type_ != NULL && this->type_->integer_type() != NULL) + { + // We have an abstract integer type. We just hope for the best. + type = Type::lookup_integer_type("int")->get_tree(gogo); + } + else + { + // If we still have an abstract type here, then this is being + // used in a constant expression which didn't get reduced. We + // just use float64 and hope for the best. + type = Type::lookup_float_type("float64")->get_tree(gogo); + } + return Expression::float_constant_tree(this->val_, type); +} + +// Write a floating point number to export data. + +void +Float_expression::export_float(Export *exp, const mpfr_t val) +{ + mp_exp_t exponent; + char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN); + if (*s == '-') + exp->write_c_string("-"); + exp->write_c_string("0."); + exp->write_c_string(*s == '-' ? s + 1 : s); + mpfr_free_str(s); + char buf[30]; + snprintf(buf, sizeof buf, "E%ld", exponent); + exp->write_c_string(buf); +} + +// Export a floating point number in a constant expression. + +void +Float_expression::do_export(Export* exp) const +{ + Float_expression::export_float(exp, this->val_); + // A trailing space lets us reliably identify the end of the number. + exp->write_c_string(" "); +} + +// Make a float expression. + +Expression* +Expression::make_float(const mpfr_t* val, Type* type, source_location location) +{ + return new Float_expression(val, type, location); +} + +// Complex numbers. + +class Complex_expression : public Expression +{ + public: + Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type, + source_location location) + : Expression(EXPRESSION_COMPLEX, location), + type_(type) + { + mpfr_init_set(this->real_, *real, GMP_RNDN); + mpfr_init_set(this->imag_, *imag, GMP_RNDN); + } + + // Constrain REAL/IMAG to fit into TYPE. + static void + constrain_complex(mpfr_t real, mpfr_t imag, Type* type); + + // Return whether REAL/IMAG fits in the type. + static bool + check_constant(mpfr_t real, mpfr_t imag, Type*, source_location); + + // Write REAL/IMAG to export data. + static void + export_complex(Export* exp, const mpfr_t real, const mpfr_t val); + + protected: + bool + do_is_constant() const + { return true; } + + bool + do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const; + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return Expression::make_complex(&this->real_, &this->imag_, this->type_, + this->location()); + } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + private: + // The real part. + mpfr_t real_; + // The imaginary part; + mpfr_t imag_; + // The type if known. + Type* type_; +}; + +// Constrain REAL/IMAG to fit into TYPE. + +void +Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type) +{ + Complex_type* ctype = type->complex_type(); + if (ctype != NULL && !ctype->is_abstract()) + { + tree type_tree = ctype->type_tree(); + + REAL_VALUE_TYPE rvt; + real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN); + real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt); + mpfr_from_real(real, &rvt, GMP_RNDN); + + real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN); + real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt); + mpfr_from_real(imag, &rvt, GMP_RNDN); + } +} + +// Return a complex constant value. + +bool +Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag, + Type** ptype) const +{ + if (this->type_ != NULL) + *ptype = this->type_; + mpfr_set(real, this->real_, GMP_RNDN); + mpfr_set(imag, this->imag_, GMP_RNDN); + return true; +} + +// Return the current type. If we haven't set the type yet, we return +// an abstract complex type. + +Type* +Complex_expression::do_type() +{ + if (this->type_ == NULL) + this->type_ = Type::make_abstract_complex_type(); + return this->type_; +} + +// Set the type of the complex value. Here we may switch from an +// abstract type to a real type. + +void +Complex_expression::do_determine_type(const Type_context* context) +{ + if (this->type_ != NULL && !this->type_->is_abstract()) + ; + else if (context->type != NULL + && context->type->complex_type() != NULL) + this->type_ = context->type; + else if (!context->may_be_abstract) + this->type_ = Type::lookup_complex_type("complex128"); +} + +// Return true if the complex value REAL/IMAG fits in the range of the +// type TYPE. Otherwise give an error and return false. TYPE may be +// NULL. + +bool +Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type, + source_location location) +{ + if (type == NULL) + return true; + Complex_type* ctype = type->complex_type(); + if (ctype == NULL || ctype->is_abstract()) + return true; + + mp_exp_t max_exp; + switch (ctype->bits()) + { + case 64: + max_exp = 128; + break; + case 128: + max_exp = 1024; + break; + default: + gcc_unreachable(); + } + + // A NaN or Infinity always fits in the range of the type. + if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real)) + { + if (mpfr_get_exp(real) > max_exp) + { + error_at(location, "complex real part constant overflow"); + return false; + } + } + + if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag)) + { + if (mpfr_get_exp(imag) > max_exp) + { + error_at(location, "complex imaginary part constant overflow"); + return false; + } + } + + return true; +} + +// Check the type of a complex value. + +void +Complex_expression::do_check_types(Gogo*) +{ + if (this->type_ == NULL) + return; + + if (!Complex_expression::check_constant(this->real_, this->imag_, + this->type_, this->location())) + this->set_is_error(); +} + +// Get a tree for a complex constant. + +tree +Complex_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree type; + if (this->type_ != NULL && !this->type_->is_abstract()) + type = this->type_->get_tree(gogo); + else + { + // If we still have an abstract type here, this this is being + // used in a constant expression which didn't get reduced. We + // just use complex128 and hope for the best. + type = Type::lookup_complex_type("complex128")->get_tree(gogo); + } + return Expression::complex_constant_tree(this->real_, this->imag_, type); +} + +// Write REAL/IMAG to export data. + +void +Complex_expression::export_complex(Export* exp, const mpfr_t real, + const mpfr_t imag) +{ + if (!mpfr_zero_p(real)) + { + Float_expression::export_float(exp, real); + if (mpfr_sgn(imag) > 0) + exp->write_c_string("+"); + } + Float_expression::export_float(exp, imag); + exp->write_c_string("i"); +} + +// Export a complex number in a constant expression. + +void +Complex_expression::do_export(Export* exp) const +{ + Complex_expression::export_complex(exp, this->real_, this->imag_); + // A trailing space lets us reliably identify the end of the number. + exp->write_c_string(" "); +} + +// Make a complex expression. + +Expression* +Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type, + source_location location) +{ + return new Complex_expression(real, imag, type, location); +} + +// Find a named object in an expression. + +class Find_named_object : public Traverse +{ + public: + Find_named_object(Named_object* no) + : Traverse(traverse_expressions), + no_(no), found_(false) + { } + + // Whether we found the object. + bool + found() const + { return this->found_; } + + protected: + int + expression(Expression**); + + private: + // The object we are looking for. + Named_object* no_; + // Whether we found it. + bool found_; +}; + +// A reference to a const in an expression. + +class Const_expression : public Expression +{ + public: + Const_expression(Named_object* constant, source_location location) + : Expression(EXPRESSION_CONST_REFERENCE, location), + constant_(constant), type_(NULL), seen_(false) + { } + + Named_object* + named_object() + { return this->constant_; } + + // Check that the initializer does not refer to the constant itself. + void + check_for_init_loop(); + + protected: + int + do_traverse(Traverse*); + + Expression* + do_lower(Gogo*, Named_object*, int); + + bool + do_is_constant() const + { return true; } + + bool + do_integer_constant_value(bool, mpz_t val, Type**) const; + + bool + do_float_constant_value(mpfr_t val, Type**) const; + + bool + do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const; + + bool + do_string_constant_value(std::string* val) const + { return this->constant_->const_value()->expr()->string_constant_value(val); } + + Type* + do_type(); + + // The type of a const is set by the declaration, not the use. + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context* context); + + // When exporting a reference to a const as part of a const + // expression, we export the value. We ignore the fact that it has + // a name. + void + do_export(Export* exp) const + { this->constant_->const_value()->expr()->export_expression(exp); } + + private: + // The constant. + Named_object* constant_; + // The type of this reference. This is used if the constant has an + // abstract type. + Type* type_; + // Used to prevent infinite recursion when a constant incorrectly + // refers to itself. + mutable bool seen_; +}; + +// Traversal. + +int +Const_expression::do_traverse(Traverse* traverse) +{ + if (this->type_ != NULL) + return Type::traverse(this->type_, traverse); + return TRAVERSE_CONTINUE; +} + +// Lower a constant expression. This is where we convert the +// predeclared constant iota into an integer value. + +Expression* +Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value) +{ + if (this->constant_->const_value()->expr()->classification() + == EXPRESSION_IOTA) + { + if (iota_value == -1) + { + error_at(this->location(), + "iota is only defined in const declarations"); + iota_value = 0; + } + mpz_t val; + mpz_init_set_ui(val, static_cast<unsigned long>(iota_value)); + Expression* ret = Expression::make_integer(&val, NULL, + this->location()); + mpz_clear(val); + return ret; + } + + // Make sure that the constant itself has been lowered. + gogo->lower_constant(this->constant_); + + return this; +} + +// Return an integer constant value. + +bool +Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val, + Type** ptype) const +{ + if (this->seen_) + return false; + + Type* ctype; + if (this->type_ != NULL) + ctype = this->type_; + else + ctype = this->constant_->const_value()->type(); + if (ctype != NULL && ctype->integer_type() == NULL) + return false; + + Expression* e = this->constant_->const_value()->expr(); + + this->seen_ = true; + + Type* t; + bool r = e->integer_constant_value(iota_is_constant, val, &t); + + this->seen_ = false; + + if (r + && ctype != NULL + && !Integer_expression::check_constant(val, ctype, this->location())) + return false; + + *ptype = ctype != NULL ? ctype : t; + return r; +} + +// Return a floating point constant value. + +bool +Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const +{ + if (this->seen_) + return false; + + Type* ctype; + if (this->type_ != NULL) + ctype = this->type_; + else + ctype = this->constant_->const_value()->type(); + if (ctype != NULL && ctype->float_type() == NULL) + return false; + + this->seen_ = true; + + Type* t; + bool r = this->constant_->const_value()->expr()->float_constant_value(val, + &t); + + this->seen_ = false; + + if (r && ctype != NULL) + { + if (!Float_expression::check_constant(val, ctype, this->location())) + return false; + Float_expression::constrain_float(val, ctype); + } + *ptype = ctype != NULL ? ctype : t; + return r; +} + +// Return a complex constant value. + +bool +Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag, + Type **ptype) const +{ + if (this->seen_) + return false; + + Type* ctype; + if (this->type_ != NULL) + ctype = this->type_; + else + ctype = this->constant_->const_value()->type(); + if (ctype != NULL && ctype->complex_type() == NULL) + return false; + + this->seen_ = true; + + Type *t; + bool r = this->constant_->const_value()->expr()->complex_constant_value(real, + imag, + &t); + + this->seen_ = false; + + if (r && ctype != NULL) + { + if (!Complex_expression::check_constant(real, imag, ctype, + this->location())) + return false; + Complex_expression::constrain_complex(real, imag, ctype); + } + *ptype = ctype != NULL ? ctype : t; + return r; +} + +// Return the type of the const reference. + +Type* +Const_expression::do_type() +{ + if (this->type_ != NULL) + return this->type_; + + Named_constant* nc = this->constant_->const_value(); + + if (this->seen_ || nc->lowering()) + { + this->report_error(_("constant refers to itself")); + this->type_ = Type::make_error_type(); + return this->type_; + } + + this->seen_ = true; + + Type* ret = nc->type(); + + if (ret != NULL) + { + this->seen_ = false; + return ret; + } + + // During parsing, a named constant may have a NULL type, but we + // must not return a NULL type here. + ret = nc->expr()->type(); + + this->seen_ = false; + + return ret; +} + +// Set the type of the const reference. + +void +Const_expression::do_determine_type(const Type_context* context) +{ + Type* ctype = this->constant_->const_value()->type(); + Type* cetype = (ctype != NULL + ? ctype + : this->constant_->const_value()->expr()->type()); + if (ctype != NULL && !ctype->is_abstract()) + ; + else if (context->type != NULL + && (context->type->integer_type() != NULL + || context->type->float_type() != NULL + || context->type->complex_type() != NULL) + && (cetype->integer_type() != NULL + || cetype->float_type() != NULL + || cetype->complex_type() != NULL)) + this->type_ = context->type; + else if (context->type != NULL + && context->type->is_string_type() + && cetype->is_string_type()) + this->type_ = context->type; + else if (context->type != NULL + && context->type->is_boolean_type() + && cetype->is_boolean_type()) + this->type_ = context->type; + else if (!context->may_be_abstract) + { + if (cetype->is_abstract()) + cetype = cetype->make_non_abstract_type(); + this->type_ = cetype; + } +} + +// Check for a loop in which the initializer of a constant refers to +// the constant itself. + +void +Const_expression::check_for_init_loop() +{ + if (this->type_ != NULL && this->type_->is_error_type()) + return; + + if (this->seen_) + { + this->report_error(_("constant refers to itself")); + this->type_ = Type::make_error_type(); + return; + } + + Expression* init = this->constant_->const_value()->expr(); + Find_named_object find_named_object(this->constant_); + + this->seen_ = true; + Expression::traverse(&init, &find_named_object); + this->seen_ = false; + + if (find_named_object.found()) + { + if (this->type_ == NULL || !this->type_->is_error_type()) + { + this->report_error(_("constant refers to itself")); + this->type_ = Type::make_error_type(); + } + return; + } +} + +// Check types of a const reference. + +void +Const_expression::do_check_types(Gogo*) +{ + if (this->type_ != NULL && this->type_->is_error_type()) + return; + + this->check_for_init_loop(); + + if (this->type_ == NULL || this->type_->is_abstract()) + return; + + // Check for integer overflow. + if (this->type_->integer_type() != NULL) + { + mpz_t ival; + mpz_init(ival); + Type* dummy; + if (!this->integer_constant_value(true, ival, &dummy)) + { + mpfr_t fval; + mpfr_init(fval); + Expression* cexpr = this->constant_->const_value()->expr(); + if (cexpr->float_constant_value(fval, &dummy)) + { + if (!mpfr_integer_p(fval)) + this->report_error(_("floating point constant " + "truncated to integer")); + else + { + mpfr_get_z(ival, fval, GMP_RNDN); + Integer_expression::check_constant(ival, this->type_, + this->location()); + } + } + mpfr_clear(fval); + } + mpz_clear(ival); + } +} + +// Return a tree for the const reference. + +tree +Const_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree type_tree; + if (this->type_ == NULL) + type_tree = NULL_TREE; + else + { + type_tree = this->type_->get_tree(gogo); + if (type_tree == error_mark_node) + return error_mark_node; + } + + // If the type has been set for this expression, but the underlying + // object is an abstract int or float, we try to get the abstract + // value. Otherwise we may lose something in the conversion. + if (this->type_ != NULL + && (this->constant_->const_value()->type() == NULL + || this->constant_->const_value()->type()->is_abstract())) + { + Expression* expr = this->constant_->const_value()->expr(); + mpz_t ival; + mpz_init(ival); + Type* t; + if (expr->integer_constant_value(true, ival, &t)) + { + tree ret = Expression::integer_constant_tree(ival, type_tree); + mpz_clear(ival); + return ret; + } + mpz_clear(ival); + + mpfr_t fval; + mpfr_init(fval); + if (expr->float_constant_value(fval, &t)) + { + tree ret = Expression::float_constant_tree(fval, type_tree); + mpfr_clear(fval); + return ret; + } + + mpfr_t imag; + mpfr_init(imag); + if (expr->complex_constant_value(fval, imag, &t)) + { + tree ret = Expression::complex_constant_tree(fval, imag, type_tree); + mpfr_clear(fval); + mpfr_clear(imag); + return ret; + } + mpfr_clear(imag); + mpfr_clear(fval); + } + + tree const_tree = this->constant_->get_tree(gogo, context->function()); + if (this->type_ == NULL + || const_tree == error_mark_node + || TREE_TYPE(const_tree) == error_mark_node) + return const_tree; + + tree ret; + if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree))) + ret = fold_convert(type_tree, const_tree); + else if (TREE_CODE(type_tree) == INTEGER_TYPE) + ret = fold(convert_to_integer(type_tree, const_tree)); + else if (TREE_CODE(type_tree) == REAL_TYPE) + ret = fold(convert_to_real(type_tree, const_tree)); + else if (TREE_CODE(type_tree) == COMPLEX_TYPE) + ret = fold(convert_to_complex(type_tree, const_tree)); + else + gcc_unreachable(); + return ret; +} + +// Make a reference to a constant in an expression. + +Expression* +Expression::make_const_reference(Named_object* constant, + source_location location) +{ + return new Const_expression(constant, location); +} + +// Find a named object in an expression. + +int +Find_named_object::expression(Expression** pexpr) +{ + switch ((*pexpr)->classification()) + { + case Expression::EXPRESSION_CONST_REFERENCE: + { + Const_expression* ce = static_cast<Const_expression*>(*pexpr); + if (ce->named_object() == this->no_) + break; + + // We need to check a constant initializer explicitly, as + // loops here will not be caught by the loop checking for + // variable initializers. + ce->check_for_init_loop(); + + return TRAVERSE_CONTINUE; + } + + case Expression::EXPRESSION_VAR_REFERENCE: + if ((*pexpr)->var_expression()->named_object() == this->no_) + break; + return TRAVERSE_CONTINUE; + case Expression::EXPRESSION_FUNC_REFERENCE: + if ((*pexpr)->func_expression()->named_object() == this->no_) + break; + return TRAVERSE_CONTINUE; + default: + return TRAVERSE_CONTINUE; + } + this->found_ = true; + return TRAVERSE_EXIT; +} + +// The nil value. + +class Nil_expression : public Expression +{ + public: + Nil_expression(source_location location) + : Expression(EXPRESSION_NIL, location) + { } + + static Expression* + do_import(Import*); + + protected: + bool + do_is_constant() const + { return true; } + + Type* + do_type() + { return Type::make_nil_type(); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context*) + { return null_pointer_node; } + + void + do_export(Export* exp) const + { exp->write_c_string("nil"); } +}; + +// Import a nil expression. + +Expression* +Nil_expression::do_import(Import* imp) +{ + imp->require_c_string("nil"); + return Expression::make_nil(imp->location()); +} + +// Make a nil expression. + +Expression* +Expression::make_nil(source_location location) +{ + return new Nil_expression(location); +} + +// The value of the predeclared constant iota. This is little more +// than a marker. This will be lowered to an integer in +// Const_expression::do_lower, which is where we know the value that +// it should have. + +class Iota_expression : public Parser_expression +{ + public: + Iota_expression(source_location location) + : Parser_expression(EXPRESSION_IOTA, location) + { } + + protected: + Expression* + do_lower(Gogo*, Named_object*, int) + { gcc_unreachable(); } + + // There should only ever be one of these. + Expression* + do_copy() + { gcc_unreachable(); } +}; + +// Make an iota expression. This is only called for one case: the +// value of the predeclared constant iota. + +Expression* +Expression::make_iota() +{ + static Iota_expression iota_expression(UNKNOWN_LOCATION); + return &iota_expression; +} + +// A type conversion expression. + +class Type_conversion_expression : public Expression +{ + public: + Type_conversion_expression(Type* type, Expression* expr, + source_location location) + : Expression(EXPRESSION_CONVERSION, location), + type_(type), expr_(expr), may_convert_function_types_(false) + { } + + // Return the type to which we are converting. + Type* + type() const + { return this->type_; } + + // Return the expression which we are converting. + Expression* + expr() const + { return this->expr_; } + + // Permit converting from one function type to another. This is + // used internally for method expressions. + void + set_may_convert_function_types() + { + this->may_convert_function_types_ = true; + } + + // Import a type conversion expression. + static Expression* + do_import(Import*); + + protected: + int + do_traverse(Traverse* traverse); + + Expression* + do_lower(Gogo*, Named_object*, int); + + bool + do_is_constant() const + { return this->expr_->is_constant(); } + + bool + do_integer_constant_value(bool, mpz_t, Type**) const; + + bool + do_float_constant_value(mpfr_t, Type**) const; + + bool + do_complex_constant_value(mpfr_t, mpfr_t, Type**) const; + + bool + do_string_constant_value(std::string*) const; + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*) + { + Type_context subcontext(this->type_, false); + this->expr_->determine_type(&subcontext); + } + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Type_conversion_expression(this->type_, this->expr_->copy(), + this->location()); + } + + tree + do_get_tree(Translate_context* context); + + void + do_export(Export*) const; + + private: + // The type to convert to. + Type* type_; + // The expression to convert. + Expression* expr_; + // True if this is permitted to convert function types. This is + // used internally for method expressions. + bool may_convert_function_types_; +}; + +// Traversal. + +int +Type_conversion_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT + || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Convert to a constant at lowering time. + +Expression* +Type_conversion_expression::do_lower(Gogo*, Named_object*, int) +{ + Type* type = this->type_; + Expression* val = this->expr_; + source_location location = this->location(); + + if (type->integer_type() != NULL) + { + mpz_t ival; + mpz_init(ival); + Type* dummy; + if (val->integer_constant_value(false, ival, &dummy)) + { + if (!Integer_expression::check_constant(ival, type, location)) + mpz_set_ui(ival, 0); + Expression* ret = Expression::make_integer(&ival, type, location); + mpz_clear(ival); + return ret; + } + + mpfr_t fval; + mpfr_init(fval); + if (val->float_constant_value(fval, &dummy)) + { + if (!mpfr_integer_p(fval)) + { + error_at(location, + "floating point constant truncated to integer"); + return Expression::make_error(location); + } + mpfr_get_z(ival, fval, GMP_RNDN); + if (!Integer_expression::check_constant(ival, type, location)) + mpz_set_ui(ival, 0); + Expression* ret = Expression::make_integer(&ival, type, location); + mpfr_clear(fval); + mpz_clear(ival); + return ret; + } + mpfr_clear(fval); + mpz_clear(ival); + } + + if (type->float_type() != NULL) + { + mpfr_t fval; + mpfr_init(fval); + Type* dummy; + if (val->float_constant_value(fval, &dummy)) + { + if (!Float_expression::check_constant(fval, type, location)) + mpfr_set_ui(fval, 0, GMP_RNDN); + Float_expression::constrain_float(fval, type); + Expression *ret = Expression::make_float(&fval, type, location); + mpfr_clear(fval); + return ret; + } + mpfr_clear(fval); + } + + if (type->complex_type() != NULL) + { + mpfr_t real; + mpfr_t imag; + mpfr_init(real); + mpfr_init(imag); + Type* dummy; + if (val->complex_constant_value(real, imag, &dummy)) + { + if (!Complex_expression::check_constant(real, imag, type, location)) + { + mpfr_set_ui(real, 0, GMP_RNDN); + mpfr_set_ui(imag, 0, GMP_RNDN); + } + Complex_expression::constrain_complex(real, imag, type); + Expression* ret = Expression::make_complex(&real, &imag, type, + location); + mpfr_clear(real); + mpfr_clear(imag); + return ret; + } + mpfr_clear(real); + mpfr_clear(imag); + } + + if (type->is_open_array_type() && type->named_type() == NULL) + { + Type* element_type = type->array_type()->element_type()->forwarded(); + bool is_byte = element_type == Type::lookup_integer_type("uint8"); + bool is_int = element_type == Type::lookup_integer_type("int"); + if (is_byte || is_int) + { + std::string s; + if (val->string_constant_value(&s)) + { + Expression_list* vals = new Expression_list(); + if (is_byte) + { + for (std::string::const_iterator p = s.begin(); + p != s.end(); + p++) + { + mpz_t val; + mpz_init_set_ui(val, static_cast<unsigned char>(*p)); + Expression* v = Expression::make_integer(&val, + element_type, + location); + vals->push_back(v); + mpz_clear(val); + } + } + else + { + const char *p = s.data(); + const char *pend = s.data() + s.length(); + while (p < pend) + { + unsigned int c; + int adv = Lex::fetch_char(p, &c); + if (adv == 0) + { + warning_at(this->location(), 0, + "invalid UTF-8 encoding"); + adv = 1; + } + p += adv; + mpz_t val; + mpz_init_set_ui(val, c); + Expression* v = Expression::make_integer(&val, + element_type, + location); + vals->push_back(v); + mpz_clear(val); + } + } + + return Expression::make_slice_composite_literal(type, vals, + location); + } + } + } + + return this; +} + +// Return the constant integer value if there is one. + +bool +Type_conversion_expression::do_integer_constant_value(bool iota_is_constant, + mpz_t val, + Type** ptype) const +{ + if (this->type_->integer_type() == NULL) + return false; + + mpz_t ival; + mpz_init(ival); + Type* dummy; + if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy)) + { + if (!Integer_expression::check_constant(ival, this->type_, + this->location())) + { + mpz_clear(ival); + return false; + } + mpz_set(val, ival); + mpz_clear(ival); + *ptype = this->type_; + return true; + } + mpz_clear(ival); + + mpfr_t fval; + mpfr_init(fval); + if (this->expr_->float_constant_value(fval, &dummy)) + { + mpfr_get_z(val, fval, GMP_RNDN); + mpfr_clear(fval); + if (!Integer_expression::check_constant(val, this->type_, + this->location())) + return false; + *ptype = this->type_; + return true; + } + mpfr_clear(fval); + + return false; +} + +// Return the constant floating point value if there is one. + +bool +Type_conversion_expression::do_float_constant_value(mpfr_t val, + Type** ptype) const +{ + if (this->type_->float_type() == NULL) + return false; + + mpfr_t fval; + mpfr_init(fval); + Type* dummy; + if (this->expr_->float_constant_value(fval, &dummy)) + { + if (!Float_expression::check_constant(fval, this->type_, + this->location())) + { + mpfr_clear(fval); + return false; + } + mpfr_set(val, fval, GMP_RNDN); + mpfr_clear(fval); + Float_expression::constrain_float(val, this->type_); + *ptype = this->type_; + return true; + } + mpfr_clear(fval); + + return false; +} + +// Return the constant complex value if there is one. + +bool +Type_conversion_expression::do_complex_constant_value(mpfr_t real, + mpfr_t imag, + Type **ptype) const +{ + if (this->type_->complex_type() == NULL) + return false; + + mpfr_t rval; + mpfr_t ival; + mpfr_init(rval); + mpfr_init(ival); + Type* dummy; + if (this->expr_->complex_constant_value(rval, ival, &dummy)) + { + if (!Complex_expression::check_constant(rval, ival, this->type_, + this->location())) + { + mpfr_clear(rval); + mpfr_clear(ival); + return false; + } + mpfr_set(real, rval, GMP_RNDN); + mpfr_set(imag, ival, GMP_RNDN); + mpfr_clear(rval); + mpfr_clear(ival); + Complex_expression::constrain_complex(real, imag, this->type_); + *ptype = this->type_; + return true; + } + mpfr_clear(rval); + mpfr_clear(ival); + + return false; +} + +// Return the constant string value if there is one. + +bool +Type_conversion_expression::do_string_constant_value(std::string* val) const +{ + if (this->type_->is_string_type() + && this->expr_->type()->integer_type() != NULL) + { + mpz_t ival; + mpz_init(ival); + Type* dummy; + if (this->expr_->integer_constant_value(false, ival, &dummy)) + { + unsigned long ulval = mpz_get_ui(ival); + if (mpz_cmp_ui(ival, ulval) == 0) + { + Lex::append_char(ulval, true, val, this->location()); + mpz_clear(ival); + return true; + } + } + mpz_clear(ival); + } + + // FIXME: Could handle conversion from const []int here. + + return false; +} + +// Check that types are convertible. + +void +Type_conversion_expression::do_check_types(Gogo*) +{ + Type* type = this->type_; + Type* expr_type = this->expr_->type(); + std::string reason; + + if (type->is_error_type() + || type->is_undefined() + || expr_type->is_error_type() + || expr_type->is_undefined()) + { + // Make sure we emit an error for an undefined type. + type->base(); + expr_type->base(); + this->set_is_error(); + return; + } + + if (this->may_convert_function_types_ + && type->function_type() != NULL + && expr_type->function_type() != NULL) + return; + + if (Type::are_convertible(type, expr_type, &reason)) + return; + + error_at(this->location(), "%s", reason.c_str()); + this->set_is_error(); +} + +// Get a tree for a type conversion. + +tree +Type_conversion_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree type_tree = this->type_->get_tree(gogo); + tree expr_tree = this->expr_->get_tree(context); + + if (type_tree == error_mark_node + || expr_tree == error_mark_node + || TREE_TYPE(expr_tree) == error_mark_node) + return error_mark_node; + + if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree))) + return fold_convert(type_tree, expr_tree); + + Type* type = this->type_; + Type* expr_type = this->expr_->type(); + tree ret; + if (type->interface_type() != NULL || expr_type->interface_type() != NULL) + ret = Expression::convert_for_assignment(context, type, expr_type, + expr_tree, this->location()); + else if (type->integer_type() != NULL) + { + if (expr_type->integer_type() != NULL + || expr_type->float_type() != NULL + || expr_type->is_unsafe_pointer_type()) + ret = fold(convert_to_integer(type_tree, expr_tree)); + else + gcc_unreachable(); + } + else if (type->float_type() != NULL) + { + if (expr_type->integer_type() != NULL + || expr_type->float_type() != NULL) + ret = fold(convert_to_real(type_tree, expr_tree)); + else + gcc_unreachable(); + } + else if (type->complex_type() != NULL) + { + if (expr_type->complex_type() != NULL) + ret = fold(convert_to_complex(type_tree, expr_tree)); + else + gcc_unreachable(); + } + else if (type->is_string_type() + && expr_type->integer_type() != NULL) + { + expr_tree = fold_convert(integer_type_node, expr_tree); + if (host_integerp(expr_tree, 0)) + { + HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0); + std::string s; + Lex::append_char(intval, true, &s, this->location()); + Expression* se = Expression::make_string(s, this->location()); + return se->get_tree(context); + } + + static tree int_to_string_fndecl; + ret = Gogo::call_builtin(&int_to_string_fndecl, + this->location(), + "__go_int_to_string", + 1, + type_tree, + integer_type_node, + fold_convert(integer_type_node, expr_tree)); + } + else if (type->is_string_type() + && (expr_type->array_type() != NULL + || (expr_type->points_to() != NULL + && expr_type->points_to()->array_type() != NULL))) + { + Type* t = expr_type; + if (t->points_to() != NULL) + { + t = t->points_to(); + expr_tree = build_fold_indirect_ref(expr_tree); + } + if (!DECL_P(expr_tree)) + expr_tree = save_expr(expr_tree); + Array_type* a = t->array_type(); + Type* e = a->element_type()->forwarded(); + gcc_assert(e->integer_type() != NULL); + tree valptr = fold_convert(const_ptr_type_node, + a->value_pointer_tree(gogo, expr_tree)); + tree len = a->length_tree(gogo, expr_tree); + len = fold_convert_loc(this->location(), size_type_node, len); + if (e->integer_type()->is_unsigned() + && e->integer_type()->bits() == 8) + { + static tree byte_array_to_string_fndecl; + ret = Gogo::call_builtin(&byte_array_to_string_fndecl, + this->location(), + "__go_byte_array_to_string", + 2, + type_tree, + const_ptr_type_node, + valptr, + size_type_node, + len); + } + else + { + gcc_assert(e == Type::lookup_integer_type("int")); + static tree int_array_to_string_fndecl; + ret = Gogo::call_builtin(&int_array_to_string_fndecl, + this->location(), + "__go_int_array_to_string", + 2, + type_tree, + const_ptr_type_node, + valptr, + size_type_node, + len); + } + } + else if (type->is_open_array_type() && expr_type->is_string_type()) + { + Type* e = type->array_type()->element_type()->forwarded(); + gcc_assert(e->integer_type() != NULL); + if (e->integer_type()->is_unsigned() + && e->integer_type()->bits() == 8) + { + static tree string_to_byte_array_fndecl; + ret = Gogo::call_builtin(&string_to_byte_array_fndecl, + this->location(), + "__go_string_to_byte_array", + 1, + type_tree, + TREE_TYPE(expr_tree), + expr_tree); + } + else + { + gcc_assert(e == Type::lookup_integer_type("int")); + static tree string_to_int_array_fndecl; + ret = Gogo::call_builtin(&string_to_int_array_fndecl, + this->location(), + "__go_string_to_int_array", + 1, + type_tree, + TREE_TYPE(expr_tree), + expr_tree); + } + } + else if ((type->is_unsafe_pointer_type() + && expr_type->points_to() != NULL) + || (expr_type->is_unsafe_pointer_type() + && type->points_to() != NULL)) + ret = fold_convert(type_tree, expr_tree); + else if (type->is_unsafe_pointer_type() + && expr_type->integer_type() != NULL) + ret = convert_to_pointer(type_tree, expr_tree); + else if (this->may_convert_function_types_ + && type->function_type() != NULL + && expr_type->function_type() != NULL) + ret = fold_convert_loc(this->location(), type_tree, expr_tree); + else + ret = Expression::convert_for_assignment(context, type, expr_type, + expr_tree, this->location()); + + return ret; +} + +// Output a type conversion in a constant expression. + +void +Type_conversion_expression::do_export(Export* exp) const +{ + exp->write_c_string("convert("); + exp->write_type(this->type_); + exp->write_c_string(", "); + this->expr_->export_expression(exp); + exp->write_c_string(")"); +} + +// Import a type conversion or a struct construction. + +Expression* +Type_conversion_expression::do_import(Import* imp) +{ + imp->require_c_string("convert("); + Type* type = imp->read_type(); + imp->require_c_string(", "); + Expression* val = Expression::import_expression(imp); + imp->require_c_string(")"); + return Expression::make_cast(type, val, imp->location()); +} + +// Make a type cast expression. + +Expression* +Expression::make_cast(Type* type, Expression* val, source_location location) +{ + if (type->is_error_type() || val->is_error_expression()) + return Expression::make_error(location); + return new Type_conversion_expression(type, val, location); +} + +// Unary expressions. + +class Unary_expression : public Expression +{ + public: + Unary_expression(Operator op, Expression* expr, source_location location) + : Expression(EXPRESSION_UNARY, location), + op_(op), escapes_(true), expr_(expr) + { } + + // Return the operator. + Operator + op() const + { return this->op_; } + + // Return the operand. + Expression* + operand() const + { return this->expr_; } + + // Record that an address expression does not escape. + void + set_does_not_escape() + { + gcc_assert(this->op_ == OPERATOR_AND); + this->escapes_ = false; + } + + // Apply unary opcode OP to UVAL, setting VAL. Return true if this + // could be done, false if not. + static bool + eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val, + source_location); + + // Apply unary opcode OP to UVAL, setting VAL. Return true if this + // could be done, false if not. + static bool + eval_float(Operator op, mpfr_t uval, mpfr_t val); + + // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return + // true if this could be done, false if not. + static bool + eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real, + mpfr_t imag); + + static Expression* + do_import(Import*); + + protected: + int + do_traverse(Traverse* traverse) + { return Expression::traverse(&this->expr_, traverse); } + + Expression* + do_lower(Gogo*, Named_object*, int); + + bool + do_is_constant() const; + + bool + do_integer_constant_value(bool, mpz_t, Type**) const; + + bool + do_float_constant_value(mpfr_t, Type**) const; + + bool + do_complex_constant_value(mpfr_t, mpfr_t, Type**) const; + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return Expression::make_unary(this->op_, this->expr_->copy(), + this->location()); + } + + bool + do_is_addressable() const + { return this->op_ == OPERATOR_MULT; } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + private: + // The unary operator to apply. + Operator op_; + // Normally true. False if this is an address expression which does + // not escape the current function. + bool escapes_; + // The operand. + Expression* expr_; +}; + +// If we are taking the address of a composite literal, and the +// contents are not constant, then we want to make a heap composite +// instead. + +Expression* +Unary_expression::do_lower(Gogo*, Named_object*, int) +{ + source_location loc = this->location(); + Operator op = this->op_; + Expression* expr = this->expr_; + + if (op == OPERATOR_MULT && expr->is_type_expression()) + return Expression::make_type(Type::make_pointer_type(expr->type()), loc); + + // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require + // moving x to the heap. FIXME: Is it worth doing a real escape + // analysis here? This case is found in math/unsafe.go and is + // therefore worth special casing. + if (op == OPERATOR_MULT) + { + Expression* e = expr; + while (e->classification() == EXPRESSION_CONVERSION) + { + Type_conversion_expression* te + = static_cast<Type_conversion_expression*>(e); + e = te->expr(); + } + + if (e->classification() == EXPRESSION_UNARY) + { + Unary_expression* ue = static_cast<Unary_expression*>(e); + if (ue->op_ == OPERATOR_AND) + { + if (e == expr) + { + // *&x == x. + return ue->expr_; + } + ue->set_does_not_escape(); + } + } + } + + if (op == OPERATOR_PLUS || op == OPERATOR_MINUS + || op == OPERATOR_NOT || op == OPERATOR_XOR) + { + Expression* ret = NULL; + + mpz_t eval; + mpz_init(eval); + Type* etype; + if (expr->integer_constant_value(false, eval, &etype)) + { + mpz_t val; + mpz_init(val); + if (Unary_expression::eval_integer(op, etype, eval, val, loc)) + ret = Expression::make_integer(&val, etype, loc); + mpz_clear(val); + } + mpz_clear(eval); + if (ret != NULL) + return ret; + + if (op == OPERATOR_PLUS || op == OPERATOR_MINUS) + { + mpfr_t fval; + mpfr_init(fval); + Type* ftype; + if (expr->float_constant_value(fval, &ftype)) + { + mpfr_t val; + mpfr_init(val); + if (Unary_expression::eval_float(op, fval, val)) + ret = Expression::make_float(&val, ftype, loc); + mpfr_clear(val); + } + if (ret != NULL) + { + mpfr_clear(fval); + return ret; + } + + mpfr_t ival; + mpfr_init(ival); + if (expr->complex_constant_value(fval, ival, &ftype)) + { + mpfr_t real; + mpfr_t imag; + mpfr_init(real); + mpfr_init(imag); + if (Unary_expression::eval_complex(op, fval, ival, real, imag)) + ret = Expression::make_complex(&real, &imag, ftype, loc); + mpfr_clear(real); + mpfr_clear(imag); + } + mpfr_clear(ival); + mpfr_clear(fval); + if (ret != NULL) + return ret; + } + } + + return this; +} + +// Return whether a unary expression is a constant. + +bool +Unary_expression::do_is_constant() const +{ + if (this->op_ == OPERATOR_MULT) + { + // Indirecting through a pointer is only constant if the object + // to which the expression points is constant, but we currently + // have no way to determine that. + return false; + } + else if (this->op_ == OPERATOR_AND) + { + // Taking the address of a variable is constant if it is a + // global variable, not constant otherwise. In other cases + // taking the address is probably not a constant. + Var_expression* ve = this->expr_->var_expression(); + if (ve != NULL) + { + Named_object* no = ve->named_object(); + return no->is_variable() && no->var_value()->is_global(); + } + return false; + } + else + return this->expr_->is_constant(); +} + +// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of +// UVAL, if known; it may be NULL. Return true if this could be done, +// false if not. + +bool +Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val, + source_location location) +{ + switch (op) + { + case OPERATOR_PLUS: + mpz_set(val, uval); + return true; + case OPERATOR_MINUS: + mpz_neg(val, uval); + return Integer_expression::check_constant(val, utype, location); + case OPERATOR_NOT: + mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0); + return true; + case OPERATOR_XOR: + if (utype == NULL + || utype->integer_type() == NULL + || utype->integer_type()->is_abstract()) + mpz_com(val, uval); + else + { + // The number of HOST_WIDE_INTs that it takes to represent + // UVAL. + size_t count = ((mpz_sizeinbase(uval, 2) + + HOST_BITS_PER_WIDE_INT + - 1) + / HOST_BITS_PER_WIDE_INT); + + unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count]; + memset(phwi, 0, count * sizeof(HOST_WIDE_INT)); + + size_t ecount; + mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval); + gcc_assert(ecount <= count); + + // Trim down to the number of words required by the type. + size_t obits = utype->integer_type()->bits(); + if (!utype->integer_type()->is_unsigned()) + ++obits; + size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1) + / HOST_BITS_PER_WIDE_INT); + gcc_assert(ocount <= ocount); + + for (size_t i = 0; i < ocount; ++i) + phwi[i] = ~phwi[i]; + + size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits; + if (clearbits != 0) + phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1) + >> clearbits); + + mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi); + + delete[] phwi; + } + return Integer_expression::check_constant(val, utype, location); + case OPERATOR_AND: + case OPERATOR_MULT: + return false; + default: + gcc_unreachable(); + } +} + +// Apply unary opcode OP to UVAL, setting VAL. Return true if this +// could be done, false if not. + +bool +Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val) +{ + switch (op) + { + case OPERATOR_PLUS: + mpfr_set(val, uval, GMP_RNDN); + return true; + case OPERATOR_MINUS: + mpfr_neg(val, uval, GMP_RNDN); + return true; + case OPERATOR_NOT: + case OPERATOR_XOR: + case OPERATOR_AND: + case OPERATOR_MULT: + return false; + default: + gcc_unreachable(); + } +} + +// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true +// if this could be done, false if not. + +bool +Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival, + mpfr_t real, mpfr_t imag) +{ + switch (op) + { + case OPERATOR_PLUS: + mpfr_set(real, rval, GMP_RNDN); + mpfr_set(imag, ival, GMP_RNDN); + return true; + case OPERATOR_MINUS: + mpfr_neg(real, rval, GMP_RNDN); + mpfr_neg(imag, ival, GMP_RNDN); + return true; + case OPERATOR_NOT: + case OPERATOR_XOR: + case OPERATOR_AND: + case OPERATOR_MULT: + return false; + default: + gcc_unreachable(); + } +} + +// Return the integral constant value of a unary expression, if it has one. + +bool +Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val, + Type** ptype) const +{ + mpz_t uval; + mpz_init(uval); + bool ret; + if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype)) + ret = false; + else + ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val, + this->location()); + mpz_clear(uval); + return ret; +} + +// Return the floating point constant value of a unary expression, if +// it has one. + +bool +Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const +{ + mpfr_t uval; + mpfr_init(uval); + bool ret; + if (!this->expr_->float_constant_value(uval, ptype)) + ret = false; + else + ret = Unary_expression::eval_float(this->op_, uval, val); + mpfr_clear(uval); + return ret; +} + +// Return the complex constant value of a unary expression, if it has +// one. + +bool +Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag, + Type** ptype) const +{ + mpfr_t rval; + mpfr_t ival; + mpfr_init(rval); + mpfr_init(ival); + bool ret; + if (!this->expr_->complex_constant_value(rval, ival, ptype)) + ret = false; + else + ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag); + mpfr_clear(rval); + mpfr_clear(ival); + return ret; +} + +// Return the type of a unary expression. + +Type* +Unary_expression::do_type() +{ + switch (this->op_) + { + case OPERATOR_PLUS: + case OPERATOR_MINUS: + case OPERATOR_NOT: + case OPERATOR_XOR: + return this->expr_->type(); + + case OPERATOR_AND: + return Type::make_pointer_type(this->expr_->type()); + + case OPERATOR_MULT: + { + Type* subtype = this->expr_->type(); + Type* points_to = subtype->points_to(); + if (points_to == NULL) + return Type::make_error_type(); + return points_to; + } + + default: + gcc_unreachable(); + } +} + +// Determine abstract types for a unary expression. + +void +Unary_expression::do_determine_type(const Type_context* context) +{ + switch (this->op_) + { + case OPERATOR_PLUS: + case OPERATOR_MINUS: + case OPERATOR_NOT: + case OPERATOR_XOR: + this->expr_->determine_type(context); + break; + + case OPERATOR_AND: + // Taking the address of something. + { + Type* subtype = (context->type == NULL + ? NULL + : context->type->points_to()); + Type_context subcontext(subtype, false); + this->expr_->determine_type(&subcontext); + } + break; + + case OPERATOR_MULT: + // Indirecting through a pointer. + { + Type* subtype = (context->type == NULL + ? NULL + : Type::make_pointer_type(context->type)); + Type_context subcontext(subtype, false); + this->expr_->determine_type(&subcontext); + } + break; + + default: + gcc_unreachable(); + } +} + +// Check types for a unary expression. + +void +Unary_expression::do_check_types(Gogo*) +{ + Type* type = this->expr_->type(); + if (type->is_error_type()) + { + this->set_is_error(); + return; + } + + switch (this->op_) + { + case OPERATOR_PLUS: + case OPERATOR_MINUS: + if (type->integer_type() == NULL + && type->float_type() == NULL + && type->complex_type() == NULL) + this->report_error(_("expected numeric type")); + break; + + case OPERATOR_NOT: + case OPERATOR_XOR: + if (type->integer_type() == NULL + && !type->is_boolean_type()) + this->report_error(_("expected integer or boolean type")); + break; + + case OPERATOR_AND: + if (!this->expr_->is_addressable()) + this->report_error(_("invalid operand for unary %<&%>")); + else + this->expr_->address_taken(this->escapes_); + break; + + case OPERATOR_MULT: + // Indirecting through a pointer. + if (type->points_to() == NULL) + this->report_error(_("expected pointer")); + break; + + default: + gcc_unreachable(); + } +} + +// Get a tree for a unary expression. + +tree +Unary_expression::do_get_tree(Translate_context* context) +{ + tree expr = this->expr_->get_tree(context); + if (expr == error_mark_node) + return error_mark_node; + + source_location loc = this->location(); + switch (this->op_) + { + case OPERATOR_PLUS: + return expr; + + case OPERATOR_MINUS: + { + tree type = TREE_TYPE(expr); + tree compute_type = excess_precision_type(type); + if (compute_type != NULL_TREE) + expr = ::convert(compute_type, expr); + tree ret = fold_build1_loc(loc, NEGATE_EXPR, + (compute_type != NULL_TREE + ? compute_type + : type), + expr); + if (compute_type != NULL_TREE) + ret = ::convert(type, ret); + return ret; + } + + case OPERATOR_NOT: + if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE) + return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr); + else + return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr, + build_int_cst(TREE_TYPE(expr), 0)); + + case OPERATOR_XOR: + return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr); + + case OPERATOR_AND: + // We should not see a non-constant constructor here; cases + // where we would see one should have been moved onto the heap + // at parse time. Taking the address of a nonconstant + // constructor will not do what the programmer expects. + gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr)); + gcc_assert(TREE_CODE(expr) != ADDR_EXPR); + + // Build a decl for a constant constructor. + if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr)) + { + tree decl = build_decl(this->location(), VAR_DECL, + create_tmp_var_name("C"), TREE_TYPE(expr)); + DECL_EXTERNAL(decl) = 0; + TREE_PUBLIC(decl) = 0; + TREE_READONLY(decl) = 1; + TREE_CONSTANT(decl) = 1; + TREE_STATIC(decl) = 1; + TREE_ADDRESSABLE(decl) = 1; + DECL_ARTIFICIAL(decl) = 1; + DECL_INITIAL(decl) = expr; + rest_of_decl_compilation(decl, 1, 0); + expr = decl; + } + + return build_fold_addr_expr_loc(loc, expr); + + case OPERATOR_MULT: + { + gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr))); + + // If we are dereferencing the pointer to a large struct, we + // need to check for nil. We don't bother to check for small + // structs because we expect the system to crash on a nil + // pointer dereference. + HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr))); + if (s == -1 || s >= 4096) + { + if (!DECL_P(expr)) + expr = save_expr(expr); + tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node, + expr, + fold_convert(TREE_TYPE(expr), + null_pointer_node)); + tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE, + loc); + expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr), + build3(COND_EXPR, void_type_node, + compare, crash, NULL_TREE), + expr); + } + + // If the type of EXPR is a recursive pointer type, then we + // need to insert a cast before indirecting. + if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node) + { + Type* pt = this->expr_->type()->points_to(); + tree ind = pt->get_tree(context->gogo()); + expr = fold_convert_loc(loc, build_pointer_type(ind), expr); + } + + return build_fold_indirect_ref_loc(loc, expr); + } + + default: + gcc_unreachable(); + } +} + +// Export a unary expression. + +void +Unary_expression::do_export(Export* exp) const +{ + switch (this->op_) + { + case OPERATOR_PLUS: + exp->write_c_string("+ "); + break; + case OPERATOR_MINUS: + exp->write_c_string("- "); + break; + case OPERATOR_NOT: + exp->write_c_string("! "); + break; + case OPERATOR_XOR: + exp->write_c_string("^ "); + break; + case OPERATOR_AND: + case OPERATOR_MULT: + default: + gcc_unreachable(); + } + this->expr_->export_expression(exp); +} + +// Import a unary expression. + +Expression* +Unary_expression::do_import(Import* imp) +{ + Operator op; + switch (imp->get_char()) + { + case '+': + op = OPERATOR_PLUS; + break; + case '-': + op = OPERATOR_MINUS; + break; + case '!': + op = OPERATOR_NOT; + break; + case '^': + op = OPERATOR_XOR; + break; + default: + gcc_unreachable(); + } + imp->require_c_string(" "); + Expression* expr = Expression::import_expression(imp); + return Expression::make_unary(op, expr, imp->location()); +} + +// Make a unary expression. + +Expression* +Expression::make_unary(Operator op, Expression* expr, source_location location) +{ + return new Unary_expression(op, expr, location); +} + +// If this is an indirection through a pointer, return the expression +// being pointed through. Otherwise return this. + +Expression* +Expression::deref() +{ + if (this->classification_ == EXPRESSION_UNARY) + { + Unary_expression* ue = static_cast<Unary_expression*>(this); + if (ue->op() == OPERATOR_MULT) + return ue->operand(); + } + return this; +} + +// Class Binary_expression. + +// Traversal. + +int +Binary_expression::do_traverse(Traverse* traverse) +{ + int t = Expression::traverse(&this->left_, traverse); + if (t == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return Expression::traverse(&this->right_, traverse); +} + +// Compare integer constants according to OP. + +bool +Binary_expression::compare_integer(Operator op, mpz_t left_val, + mpz_t right_val) +{ + int i = mpz_cmp(left_val, right_val); + switch (op) + { + case OPERATOR_EQEQ: + return i == 0; + case OPERATOR_NOTEQ: + return i != 0; + case OPERATOR_LT: + return i < 0; + case OPERATOR_LE: + return i <= 0; + case OPERATOR_GT: + return i > 0; + case OPERATOR_GE: + return i >= 0; + default: + gcc_unreachable(); + } +} + +// Compare floating point constants according to OP. + +bool +Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val, + mpfr_t right_val) +{ + int i; + if (type == NULL) + i = mpfr_cmp(left_val, right_val); + else + { + mpfr_t lv; + mpfr_init_set(lv, left_val, GMP_RNDN); + mpfr_t rv; + mpfr_init_set(rv, right_val, GMP_RNDN); + Float_expression::constrain_float(lv, type); + Float_expression::constrain_float(rv, type); + i = mpfr_cmp(lv, rv); + mpfr_clear(lv); + mpfr_clear(rv); + } + switch (op) + { + case OPERATOR_EQEQ: + return i == 0; + case OPERATOR_NOTEQ: + return i != 0; + case OPERATOR_LT: + return i < 0; + case OPERATOR_LE: + return i <= 0; + case OPERATOR_GT: + return i > 0; + case OPERATOR_GE: + return i >= 0; + default: + gcc_unreachable(); + } +} + +// Compare complex constants according to OP. Complex numbers may +// only be compared for equality. + +bool +Binary_expression::compare_complex(Operator op, Type* type, + mpfr_t left_real, mpfr_t left_imag, + mpfr_t right_real, mpfr_t right_imag) +{ + bool is_equal; + if (type == NULL) + is_equal = (mpfr_cmp(left_real, right_real) == 0 + && mpfr_cmp(left_imag, right_imag) == 0); + else + { + mpfr_t lr; + mpfr_t li; + mpfr_init_set(lr, left_real, GMP_RNDN); + mpfr_init_set(li, left_imag, GMP_RNDN); + mpfr_t rr; + mpfr_t ri; + mpfr_init_set(rr, right_real, GMP_RNDN); + mpfr_init_set(ri, right_imag, GMP_RNDN); + Complex_expression::constrain_complex(lr, li, type); + Complex_expression::constrain_complex(rr, ri, type); + is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0; + mpfr_clear(lr); + mpfr_clear(li); + mpfr_clear(rr); + mpfr_clear(ri); + } + switch (op) + { + case OPERATOR_EQEQ: + return is_equal; + case OPERATOR_NOTEQ: + return !is_equal; + default: + gcc_unreachable(); + } +} + +// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL. +// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of +// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if +// this could be done, false if not. + +bool +Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val, + Type* right_type, mpz_t right_val, + source_location location, mpz_t val) +{ + bool is_shift_op = false; + switch (op) + { + case OPERATOR_OROR: + case OPERATOR_ANDAND: + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + // These return boolean values. We should probably handle them + // anyhow in case a type conversion is used on the result. + return false; + case OPERATOR_PLUS: + mpz_add(val, left_val, right_val); + break; + case OPERATOR_MINUS: + mpz_sub(val, left_val, right_val); + break; + case OPERATOR_OR: + mpz_ior(val, left_val, right_val); + break; + case OPERATOR_XOR: + mpz_xor(val, left_val, right_val); + break; + case OPERATOR_MULT: + mpz_mul(val, left_val, right_val); + break; + case OPERATOR_DIV: + if (mpz_sgn(right_val) != 0) + mpz_tdiv_q(val, left_val, right_val); + else + { + error_at(location, "division by zero"); + mpz_set_ui(val, 0); + return true; + } + break; + case OPERATOR_MOD: + if (mpz_sgn(right_val) != 0) + mpz_tdiv_r(val, left_val, right_val); + else + { + error_at(location, "division by zero"); + mpz_set_ui(val, 0); + return true; + } + break; + case OPERATOR_LSHIFT: + { + unsigned long shift = mpz_get_ui(right_val); + if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000) + { + error_at(location, "shift count overflow"); + mpz_set_ui(val, 0); + return true; + } + mpz_mul_2exp(val, left_val, shift); + is_shift_op = true; + break; + } + break; + case OPERATOR_RSHIFT: + { + unsigned long shift = mpz_get_ui(right_val); + if (mpz_cmp_ui(right_val, shift) != 0) + { + error_at(location, "shift count overflow"); + mpz_set_ui(val, 0); + return true; + } + if (mpz_cmp_ui(left_val, 0) >= 0) + mpz_tdiv_q_2exp(val, left_val, shift); + else + mpz_fdiv_q_2exp(val, left_val, shift); + is_shift_op = true; + break; + } + break; + case OPERATOR_AND: + mpz_and(val, left_val, right_val); + break; + case OPERATOR_BITCLEAR: + { + mpz_t tval; + mpz_init(tval); + mpz_com(tval, right_val); + mpz_and(val, left_val, tval); + mpz_clear(tval); + } + break; + default: + gcc_unreachable(); + } + + Type* type = left_type; + if (!is_shift_op) + { + if (type == NULL) + type = right_type; + else if (type != right_type && right_type != NULL) + { + if (type->is_abstract()) + type = right_type; + else if (!right_type->is_abstract()) + { + // This look like a type error which should be diagnosed + // elsewhere. Don't do anything here, to avoid an + // unhelpful chain of error messages. + return true; + } + } + } + + if (type != NULL && !type->is_abstract()) + { + // We have to check the operands too, as we have implicitly + // coerced them to TYPE. + if ((type != left_type + && !Integer_expression::check_constant(left_val, type, location)) + || (!is_shift_op + && type != right_type + && !Integer_expression::check_constant(right_val, type, + location)) + || !Integer_expression::check_constant(val, type, location)) + mpz_set_ui(val, 0); + } + + return true; +} + +// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL. +// Return true if this could be done, false if not. + +bool +Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val, + Type* right_type, mpfr_t right_val, + mpfr_t val, source_location location) +{ + switch (op) + { + case OPERATOR_OROR: + case OPERATOR_ANDAND: + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + // These return boolean values. We should probably handle them + // anyhow in case a type conversion is used on the result. + return false; + case OPERATOR_PLUS: + mpfr_add(val, left_val, right_val, GMP_RNDN); + break; + case OPERATOR_MINUS: + mpfr_sub(val, left_val, right_val, GMP_RNDN); + break; + case OPERATOR_OR: + case OPERATOR_XOR: + case OPERATOR_AND: + case OPERATOR_BITCLEAR: + return false; + case OPERATOR_MULT: + mpfr_mul(val, left_val, right_val, GMP_RNDN); + break; + case OPERATOR_DIV: + if (mpfr_zero_p(right_val)) + error_at(location, "division by zero"); + mpfr_div(val, left_val, right_val, GMP_RNDN); + break; + case OPERATOR_MOD: + return false; + case OPERATOR_LSHIFT: + case OPERATOR_RSHIFT: + return false; + default: + gcc_unreachable(); + } + + Type* type = left_type; + if (type == NULL) + type = right_type; + else if (type != right_type && right_type != NULL) + { + if (type->is_abstract()) + type = right_type; + else if (!right_type->is_abstract()) + { + // This looks like a type error which should be diagnosed + // elsewhere. Don't do anything here, to avoid an unhelpful + // chain of error messages. + return true; + } + } + + if (type != NULL && !type->is_abstract()) + { + if ((type != left_type + && !Float_expression::check_constant(left_val, type, location)) + || (type != right_type + && !Float_expression::check_constant(right_val, type, + location)) + || !Float_expression::check_constant(val, type, location)) + mpfr_set_ui(val, 0, GMP_RNDN); + } + + return true; +} + +// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and +// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this +// could be done, false if not. + +bool +Binary_expression::eval_complex(Operator op, Type* left_type, + mpfr_t left_real, mpfr_t left_imag, + Type *right_type, + mpfr_t right_real, mpfr_t right_imag, + mpfr_t real, mpfr_t imag, + source_location location) +{ + switch (op) + { + case OPERATOR_OROR: + case OPERATOR_ANDAND: + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + // These return boolean values and must be handled differently. + return false; + case OPERATOR_PLUS: + mpfr_add(real, left_real, right_real, GMP_RNDN); + mpfr_add(imag, left_imag, right_imag, GMP_RNDN); + break; + case OPERATOR_MINUS: + mpfr_sub(real, left_real, right_real, GMP_RNDN); + mpfr_sub(imag, left_imag, right_imag, GMP_RNDN); + break; + case OPERATOR_OR: + case OPERATOR_XOR: + case OPERATOR_AND: + case OPERATOR_BITCLEAR: + return false; + case OPERATOR_MULT: + { + // You might think that multiplying two complex numbers would + // be simple, and you would be right, until you start to think + // about getting the right answer for infinity. If one + // operand here is infinity and the other is anything other + // than zero or NaN, then we are going to wind up subtracting + // two infinity values. That will give us a NaN, but the + // correct answer is infinity. + + mpfr_t lrrr; + mpfr_init(lrrr); + mpfr_mul(lrrr, left_real, right_real, GMP_RNDN); + + mpfr_t lrri; + mpfr_init(lrri); + mpfr_mul(lrri, left_real, right_imag, GMP_RNDN); + + mpfr_t lirr; + mpfr_init(lirr); + mpfr_mul(lirr, left_imag, right_real, GMP_RNDN); + + mpfr_t liri; + mpfr_init(liri); + mpfr_mul(liri, left_imag, right_imag, GMP_RNDN); + + mpfr_sub(real, lrrr, liri, GMP_RNDN); + mpfr_add(imag, lrri, lirr, GMP_RNDN); + + // If we get NaN on both sides, check whether it should really + // be infinity. The rule is that if either side of the + // complex number is infinity, then the whole value is + // infinity, even if the other side is NaN. So the only case + // we have to fix is the one in which both sides are NaN. + if (mpfr_nan_p(real) && mpfr_nan_p(imag) + && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag)) + && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag))) + { + bool is_infinity = false; + + mpfr_t lr; + mpfr_t li; + mpfr_init_set(lr, left_real, GMP_RNDN); + mpfr_init_set(li, left_imag, GMP_RNDN); + + mpfr_t rr; + mpfr_t ri; + mpfr_init_set(rr, right_real, GMP_RNDN); + mpfr_init_set(ri, right_imag, GMP_RNDN); + + // If the left side is infinity, then the result is + // infinity. + if (mpfr_inf_p(lr) || mpfr_inf_p(li)) + { + mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN); + mpfr_copysign(lr, lr, left_real, GMP_RNDN); + mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN); + mpfr_copysign(li, li, left_imag, GMP_RNDN); + if (mpfr_nan_p(rr)) + { + mpfr_set_ui(rr, 0, GMP_RNDN); + mpfr_copysign(rr, rr, right_real, GMP_RNDN); + } + if (mpfr_nan_p(ri)) + { + mpfr_set_ui(ri, 0, GMP_RNDN); + mpfr_copysign(ri, ri, right_imag, GMP_RNDN); + } + is_infinity = true; + } + + // If the right side is infinity, then the result is + // infinity. + if (mpfr_inf_p(rr) || mpfr_inf_p(ri)) + { + mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN); + mpfr_copysign(rr, rr, right_real, GMP_RNDN); + mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN); + mpfr_copysign(ri, ri, right_imag, GMP_RNDN); + if (mpfr_nan_p(lr)) + { + mpfr_set_ui(lr, 0, GMP_RNDN); + mpfr_copysign(lr, lr, left_real, GMP_RNDN); + } + if (mpfr_nan_p(li)) + { + mpfr_set_ui(li, 0, GMP_RNDN); + mpfr_copysign(li, li, left_imag, GMP_RNDN); + } + is_infinity = true; + } + + // If we got an overflow in the intermediate computations, + // then the result is infinity. + if (!is_infinity + && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri) + || mpfr_inf_p(lirr) || mpfr_inf_p(liri))) + { + if (mpfr_nan_p(lr)) + { + mpfr_set_ui(lr, 0, GMP_RNDN); + mpfr_copysign(lr, lr, left_real, GMP_RNDN); + } + if (mpfr_nan_p(li)) + { + mpfr_set_ui(li, 0, GMP_RNDN); + mpfr_copysign(li, li, left_imag, GMP_RNDN); + } + if (mpfr_nan_p(rr)) + { + mpfr_set_ui(rr, 0, GMP_RNDN); + mpfr_copysign(rr, rr, right_real, GMP_RNDN); + } + if (mpfr_nan_p(ri)) + { + mpfr_set_ui(ri, 0, GMP_RNDN); + mpfr_copysign(ri, ri, right_imag, GMP_RNDN); + } + is_infinity = true; + } + + if (is_infinity) + { + mpfr_mul(lrrr, lr, rr, GMP_RNDN); + mpfr_mul(lrri, lr, ri, GMP_RNDN); + mpfr_mul(lirr, li, rr, GMP_RNDN); + mpfr_mul(liri, li, ri, GMP_RNDN); + mpfr_sub(real, lrrr, liri, GMP_RNDN); + mpfr_add(imag, lrri, lirr, GMP_RNDN); + mpfr_set_inf(real, mpfr_sgn(real)); + mpfr_set_inf(imag, mpfr_sgn(imag)); + } + + mpfr_clear(lr); + mpfr_clear(li); + mpfr_clear(rr); + mpfr_clear(ri); + } + + mpfr_clear(lrrr); + mpfr_clear(lrri); + mpfr_clear(lirr); + mpfr_clear(liri); + } + break; + case OPERATOR_DIV: + { + // For complex division we want to avoid having an + // intermediate overflow turn the whole result in a NaN. We + // scale the values to try to avoid this. + + if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag)) + error_at(location, "division by zero"); + + mpfr_t rra; + mpfr_t ria; + mpfr_init(rra); + mpfr_init(ria); + mpfr_abs(rra, right_real, GMP_RNDN); + mpfr_abs(ria, right_imag, GMP_RNDN); + mpfr_t t; + mpfr_init(t); + mpfr_max(t, rra, ria, GMP_RNDN); + + mpfr_t rr; + mpfr_t ri; + mpfr_init_set(rr, right_real, GMP_RNDN); + mpfr_init_set(ri, right_imag, GMP_RNDN); + long ilogbw = 0; + if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t)) + { + ilogbw = mpfr_get_exp(t); + mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN); + mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN); + } + + mpfr_t denom; + mpfr_init(denom); + mpfr_mul(denom, rr, rr, GMP_RNDN); + mpfr_mul(t, ri, ri, GMP_RNDN); + mpfr_add(denom, denom, t, GMP_RNDN); + + mpfr_mul(real, left_real, rr, GMP_RNDN); + mpfr_mul(t, left_imag, ri, GMP_RNDN); + mpfr_add(real, real, t, GMP_RNDN); + mpfr_div(real, real, denom, GMP_RNDN); + mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN); + + mpfr_mul(imag, left_imag, rr, GMP_RNDN); + mpfr_mul(t, left_real, ri, GMP_RNDN); + mpfr_sub(imag, imag, t, GMP_RNDN); + mpfr_div(imag, imag, denom, GMP_RNDN); + mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN); + + // If we wind up with NaN on both sides, check whether we + // should really have infinity. The rule is that if either + // side of the complex number is infinity, then the whole + // value is infinity, even if the other side is NaN. So the + // only case we have to fix is the one in which both sides are + // NaN. + if (mpfr_nan_p(real) && mpfr_nan_p(imag) + && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag)) + && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag))) + { + if (mpfr_zero_p(denom)) + { + mpfr_set_inf(real, mpfr_sgn(rr)); + mpfr_mul(real, real, left_real, GMP_RNDN); + mpfr_set_inf(imag, mpfr_sgn(rr)); + mpfr_mul(imag, imag, left_imag, GMP_RNDN); + } + else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag)) + && mpfr_number_p(rr) && mpfr_number_p(ri)) + { + mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN); + mpfr_copysign(t, t, left_real, GMP_RNDN); + + mpfr_t t2; + mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN); + mpfr_copysign(t2, t2, left_imag, GMP_RNDN); + + mpfr_t t3; + mpfr_init(t3); + mpfr_mul(t3, t, rr, GMP_RNDN); + + mpfr_t t4; + mpfr_init(t4); + mpfr_mul(t4, t2, ri, GMP_RNDN); + + mpfr_add(t3, t3, t4, GMP_RNDN); + mpfr_set_inf(real, mpfr_sgn(t3)); + + mpfr_mul(t3, t2, rr, GMP_RNDN); + mpfr_mul(t4, t, ri, GMP_RNDN); + mpfr_sub(t3, t3, t4, GMP_RNDN); + mpfr_set_inf(imag, mpfr_sgn(t3)); + + mpfr_clear(t2); + mpfr_clear(t3); + mpfr_clear(t4); + } + else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag)) + && mpfr_number_p(left_real) && mpfr_number_p(left_imag)) + { + mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN); + mpfr_copysign(t, t, rr, GMP_RNDN); + + mpfr_t t2; + mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN); + mpfr_copysign(t2, t2, ri, GMP_RNDN); + + mpfr_t t3; + mpfr_init(t3); + mpfr_mul(t3, left_real, t, GMP_RNDN); + + mpfr_t t4; + mpfr_init(t4); + mpfr_mul(t4, left_imag, t2, GMP_RNDN); + + mpfr_add(t3, t3, t4, GMP_RNDN); + mpfr_set_ui(real, 0, GMP_RNDN); + mpfr_mul(real, real, t3, GMP_RNDN); + + mpfr_mul(t3, left_imag, t, GMP_RNDN); + mpfr_mul(t4, left_real, t2, GMP_RNDN); + mpfr_sub(t3, t3, t4, GMP_RNDN); + mpfr_set_ui(imag, 0, GMP_RNDN); + mpfr_mul(imag, imag, t3, GMP_RNDN); + + mpfr_clear(t2); + mpfr_clear(t3); + mpfr_clear(t4); + } + } + + mpfr_clear(denom); + mpfr_clear(rr); + mpfr_clear(ri); + mpfr_clear(t); + mpfr_clear(rra); + mpfr_clear(ria); + } + break; + case OPERATOR_MOD: + return false; + case OPERATOR_LSHIFT: + case OPERATOR_RSHIFT: + return false; + default: + gcc_unreachable(); + } + + Type* type = left_type; + if (type == NULL) + type = right_type; + else if (type != right_type && right_type != NULL) + { + if (type->is_abstract()) + type = right_type; + else if (!right_type->is_abstract()) + { + // This looks like a type error which should be diagnosed + // elsewhere. Don't do anything here, to avoid an unhelpful + // chain of error messages. + return true; + } + } + + if (type != NULL && !type->is_abstract()) + { + if ((type != left_type + && !Complex_expression::check_constant(left_real, left_imag, + type, location)) + || (type != right_type + && !Complex_expression::check_constant(right_real, right_imag, + type, location)) + || !Complex_expression::check_constant(real, imag, type, + location)) + { + mpfr_set_ui(real, 0, GMP_RNDN); + mpfr_set_ui(imag, 0, GMP_RNDN); + } + } + + return true; +} + +// Lower a binary expression. We have to evaluate constant +// expressions now, in order to implement Go's unlimited precision +// constants. + +Expression* +Binary_expression::do_lower(Gogo*, Named_object*, int) +{ + source_location location = this->location(); + Operator op = this->op_; + Expression* left = this->left_; + Expression* right = this->right_; + + const bool is_comparison = (op == OPERATOR_EQEQ + || op == OPERATOR_NOTEQ + || op == OPERATOR_LT + || op == OPERATOR_LE + || op == OPERATOR_GT + || op == OPERATOR_GE); + + // Integer constant expressions. + { + mpz_t left_val; + mpz_init(left_val); + Type* left_type; + mpz_t right_val; + mpz_init(right_val); + Type* right_type; + if (left->integer_constant_value(false, left_val, &left_type) + && right->integer_constant_value(false, right_val, &right_type)) + { + Expression* ret = NULL; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base() + && op != OPERATOR_LSHIFT + && op != OPERATOR_RSHIFT) + { + // May be a type error--let it be diagnosed later. + } + else if (is_comparison) + { + bool b = Binary_expression::compare_integer(op, left_val, + right_val); + ret = Expression::make_cast(Type::lookup_bool_type(), + Expression::make_boolean(b, location), + location); + } + else + { + mpz_t val; + mpz_init(val); + + if (Binary_expression::eval_integer(op, left_type, left_val, + right_type, right_val, + location, val)) + { + gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND); + Type* type; + if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT) + type = left_type; + else if (left_type == NULL) + type = right_type; + else if (right_type == NULL) + type = left_type; + else if (!left_type->is_abstract() + && left_type->named_type() != NULL) + type = left_type; + else if (!right_type->is_abstract() + && right_type->named_type() != NULL) + type = right_type; + else if (!left_type->is_abstract()) + type = left_type; + else if (!right_type->is_abstract()) + type = right_type; + else if (left_type->float_type() != NULL) + type = left_type; + else if (right_type->float_type() != NULL) + type = right_type; + else if (left_type->complex_type() != NULL) + type = left_type; + else if (right_type->complex_type() != NULL) + type = right_type; + else + type = left_type; + ret = Expression::make_integer(&val, type, location); + } + + mpz_clear(val); + } + + if (ret != NULL) + { + mpz_clear(right_val); + mpz_clear(left_val); + return ret; + } + } + mpz_clear(right_val); + mpz_clear(left_val); + } + + // Floating point constant expressions. + { + mpfr_t left_val; + mpfr_init(left_val); + Type* left_type; + mpfr_t right_val; + mpfr_init(right_val); + Type* right_type; + if (left->float_constant_value(left_val, &left_type) + && right->float_constant_value(right_val, &right_type)) + { + Expression* ret = NULL; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base() + && op != OPERATOR_LSHIFT + && op != OPERATOR_RSHIFT) + { + // May be a type error--let it be diagnosed later. + } + else if (is_comparison) + { + bool b = Binary_expression::compare_float(op, + (left_type != NULL + ? left_type + : right_type), + left_val, right_val); + ret = Expression::make_boolean(b, location); + } + else + { + mpfr_t val; + mpfr_init(val); + + if (Binary_expression::eval_float(op, left_type, left_val, + right_type, right_val, val, + location)) + { + gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND + && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT); + Type* type; + if (left_type == NULL) + type = right_type; + else if (right_type == NULL) + type = left_type; + else if (!left_type->is_abstract() + && left_type->named_type() != NULL) + type = left_type; + else if (!right_type->is_abstract() + && right_type->named_type() != NULL) + type = right_type; + else if (!left_type->is_abstract()) + type = left_type; + else if (!right_type->is_abstract()) + type = right_type; + else if (left_type->float_type() != NULL) + type = left_type; + else if (right_type->float_type() != NULL) + type = right_type; + else + type = left_type; + ret = Expression::make_float(&val, type, location); + } + + mpfr_clear(val); + } + + if (ret != NULL) + { + mpfr_clear(right_val); + mpfr_clear(left_val); + return ret; + } + } + mpfr_clear(right_val); + mpfr_clear(left_val); + } + + // Complex constant expressions. + { + mpfr_t left_real; + mpfr_t left_imag; + mpfr_init(left_real); + mpfr_init(left_imag); + Type* left_type; + + mpfr_t right_real; + mpfr_t right_imag; + mpfr_init(right_real); + mpfr_init(right_imag); + Type* right_type; + + if (left->complex_constant_value(left_real, left_imag, &left_type) + && right->complex_constant_value(right_real, right_imag, &right_type)) + { + Expression* ret = NULL; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base()) + { + // May be a type error--let it be diagnosed later. + } + else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ) + { + bool b = Binary_expression::compare_complex(op, + (left_type != NULL + ? left_type + : right_type), + left_real, + left_imag, + right_real, + right_imag); + ret = Expression::make_boolean(b, location); + } + else + { + mpfr_t real; + mpfr_t imag; + mpfr_init(real); + mpfr_init(imag); + + if (Binary_expression::eval_complex(op, left_type, + left_real, left_imag, + right_type, + right_real, right_imag, + real, imag, + location)) + { + gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND + && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT); + Type* type; + if (left_type == NULL) + type = right_type; + else if (right_type == NULL) + type = left_type; + else if (!left_type->is_abstract() + && left_type->named_type() != NULL) + type = left_type; + else if (!right_type->is_abstract() + && right_type->named_type() != NULL) + type = right_type; + else if (!left_type->is_abstract()) + type = left_type; + else if (!right_type->is_abstract()) + type = right_type; + else if (left_type->complex_type() != NULL) + type = left_type; + else if (right_type->complex_type() != NULL) + type = right_type; + else + type = left_type; + ret = Expression::make_complex(&real, &imag, type, + location); + } + mpfr_clear(real); + mpfr_clear(imag); + } + + if (ret != NULL) + { + mpfr_clear(left_real); + mpfr_clear(left_imag); + mpfr_clear(right_real); + mpfr_clear(right_imag); + return ret; + } + } + + mpfr_clear(left_real); + mpfr_clear(left_imag); + mpfr_clear(right_real); + mpfr_clear(right_imag); + } + + // String constant expressions. + if (op == OPERATOR_PLUS + && left->type()->is_string_type() + && right->type()->is_string_type()) + { + std::string left_string; + std::string right_string; + if (left->string_constant_value(&left_string) + && right->string_constant_value(&right_string)) + return Expression::make_string(left_string + right_string, location); + } + + return this; +} + +// Return the integer constant value, if it has one. + +bool +Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val, + Type** ptype) const +{ + mpz_t left_val; + mpz_init(left_val); + Type* left_type; + if (!this->left_->integer_constant_value(iota_is_constant, left_val, + &left_type)) + { + mpz_clear(left_val); + return false; + } + + mpz_t right_val; + mpz_init(right_val); + Type* right_type; + if (!this->right_->integer_constant_value(iota_is_constant, right_val, + &right_type)) + { + mpz_clear(right_val); + mpz_clear(left_val); + return false; + } + + bool ret; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base() + && this->op_ != OPERATOR_RSHIFT + && this->op_ != OPERATOR_LSHIFT) + ret = false; + else + ret = Binary_expression::eval_integer(this->op_, left_type, left_val, + right_type, right_val, + this->location(), val); + + mpz_clear(right_val); + mpz_clear(left_val); + + if (ret) + *ptype = left_type; + + return ret; +} + +// Return the floating point constant value, if it has one. + +bool +Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const +{ + mpfr_t left_val; + mpfr_init(left_val); + Type* left_type; + if (!this->left_->float_constant_value(left_val, &left_type)) + { + mpfr_clear(left_val); + return false; + } + + mpfr_t right_val; + mpfr_init(right_val); + Type* right_type; + if (!this->right_->float_constant_value(right_val, &right_type)) + { + mpfr_clear(right_val); + mpfr_clear(left_val); + return false; + } + + bool ret; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base()) + ret = false; + else + ret = Binary_expression::eval_float(this->op_, left_type, left_val, + right_type, right_val, + val, this->location()); + + mpfr_clear(left_val); + mpfr_clear(right_val); + + if (ret) + *ptype = left_type; + + return ret; +} + +// Return the complex constant value, if it has one. + +bool +Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag, + Type** ptype) const +{ + mpfr_t left_real; + mpfr_t left_imag; + mpfr_init(left_real); + mpfr_init(left_imag); + Type* left_type; + if (!this->left_->complex_constant_value(left_real, left_imag, &left_type)) + { + mpfr_clear(left_real); + mpfr_clear(left_imag); + return false; + } + + mpfr_t right_real; + mpfr_t right_imag; + mpfr_init(right_real); + mpfr_init(right_imag); + Type* right_type; + if (!this->right_->complex_constant_value(right_real, right_imag, + &right_type)) + { + mpfr_clear(left_real); + mpfr_clear(left_imag); + mpfr_clear(right_real); + mpfr_clear(right_imag); + return false; + } + + bool ret; + if (left_type != right_type + && left_type != NULL + && right_type != NULL + && left_type->base() != right_type->base()) + ret = false; + else + ret = Binary_expression::eval_complex(this->op_, left_type, + left_real, left_imag, + right_type, + right_real, right_imag, + real, imag, + this->location()); + mpfr_clear(left_real); + mpfr_clear(left_imag); + mpfr_clear(right_real); + mpfr_clear(right_imag); + + if (ret) + *ptype = left_type; + + return ret; +} + +// Note that the value is being discarded. + +void +Binary_expression::do_discarding_value() +{ + if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND) + this->right_->discarding_value(); + else + this->warn_about_unused_value(); +} + +// Get type. + +Type* +Binary_expression::do_type() +{ + if (this->classification() == EXPRESSION_ERROR) + return Type::make_error_type(); + + switch (this->op_) + { + case OPERATOR_OROR: + case OPERATOR_ANDAND: + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + return Type::lookup_bool_type(); + + case OPERATOR_PLUS: + case OPERATOR_MINUS: + case OPERATOR_OR: + case OPERATOR_XOR: + case OPERATOR_MULT: + case OPERATOR_DIV: + case OPERATOR_MOD: + case OPERATOR_AND: + case OPERATOR_BITCLEAR: + { + Type* left_type = this->left_->type(); + Type* right_type = this->right_->type(); + if (left_type->is_error_type()) + return left_type; + else if (right_type->is_error_type()) + return right_type; + else if (!Type::are_compatible_for_binop(left_type, right_type)) + { + this->report_error(_("incompatible types in binary expression")); + return Type::make_error_type(); + } + else if (!left_type->is_abstract() && left_type->named_type() != NULL) + return left_type; + else if (!right_type->is_abstract() && right_type->named_type() != NULL) + return right_type; + else if (!left_type->is_abstract()) + return left_type; + else if (!right_type->is_abstract()) + return right_type; + else if (left_type->complex_type() != NULL) + return left_type; + else if (right_type->complex_type() != NULL) + return right_type; + else if (left_type->float_type() != NULL) + return left_type; + else if (right_type->float_type() != NULL) + return right_type; + else + return left_type; + } + + case OPERATOR_LSHIFT: + case OPERATOR_RSHIFT: + return this->left_->type(); + + default: + gcc_unreachable(); + } +} + +// Set type for a binary expression. + +void +Binary_expression::do_determine_type(const Type_context* context) +{ + Type* tleft = this->left_->type(); + Type* tright = this->right_->type(); + + // Both sides should have the same type, except for the shift + // operations. For a comparison, we should ignore the incoming + // type. + + bool is_shift_op = (this->op_ == OPERATOR_LSHIFT + || this->op_ == OPERATOR_RSHIFT); + + bool is_comparison = (this->op_ == OPERATOR_EQEQ + || this->op_ == OPERATOR_NOTEQ + || this->op_ == OPERATOR_LT + || this->op_ == OPERATOR_LE + || this->op_ == OPERATOR_GT + || this->op_ == OPERATOR_GE); + + Type_context subcontext(*context); + + if (is_comparison) + { + // In a comparison, the context does not determine the types of + // the operands. + subcontext.type = NULL; + } + + // Set the context for the left hand operand. + if (is_shift_op) + { + // The right hand operand plays no role in determining the type + // of the left hand operand. A shift of an abstract integer in + // a string context gets special treatment, which may be a + // language bug. + if (subcontext.type != NULL + && subcontext.type->is_string_type() + && tleft->is_abstract()) + error_at(this->location(), "shift of non-integer operand"); + } + else if (!tleft->is_abstract()) + subcontext.type = tleft; + else if (!tright->is_abstract()) + subcontext.type = tright; + else if (subcontext.type == NULL) + { + if ((tleft->integer_type() != NULL && tright->integer_type() != NULL) + || (tleft->float_type() != NULL && tright->float_type() != NULL) + || (tleft->complex_type() != NULL && tright->complex_type() != NULL)) + { + // Both sides have an abstract integer, abstract float, or + // abstract complex type. Just let CONTEXT determine + // whether they may remain abstract or not. + } + else if (tleft->complex_type() != NULL) + subcontext.type = tleft; + else if (tright->complex_type() != NULL) + subcontext.type = tright; + else if (tleft->float_type() != NULL) + subcontext.type = tleft; + else if (tright->float_type() != NULL) + subcontext.type = tright; + else + subcontext.type = tleft; + + if (subcontext.type != NULL && !context->may_be_abstract) + subcontext.type = subcontext.type->make_non_abstract_type(); + } + + this->left_->determine_type(&subcontext); + + // The context for the right hand operand is the same as for the + // left hand operand, except for a shift operator. + if (is_shift_op) + { + subcontext.type = Type::lookup_integer_type("uint"); + subcontext.may_be_abstract = false; + } + + this->right_->determine_type(&subcontext); +} + +// Report an error if the binary operator OP does not support TYPE. +// Return whether the operation is OK. This should not be used for +// shift. + +bool +Binary_expression::check_operator_type(Operator op, Type* type, + source_location location) +{ + switch (op) + { + case OPERATOR_OROR: + case OPERATOR_ANDAND: + if (!type->is_boolean_type()) + { + error_at(location, "expected boolean type"); + return false; + } + break; + + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + if (type->integer_type() == NULL + && type->float_type() == NULL + && type->complex_type() == NULL + && !type->is_string_type() + && type->points_to() == NULL + && !type->is_nil_type() + && !type->is_boolean_type() + && type->interface_type() == NULL + && (type->array_type() == NULL + || type->array_type()->length() != NULL) + && type->map_type() == NULL + && type->channel_type() == NULL + && type->function_type() == NULL) + { + error_at(location, + ("expected integer, floating, complex, string, pointer, " + "boolean, interface, slice, map, channel, " + "or function type")); + return false; + } + break; + + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + if (type->integer_type() == NULL + && type->float_type() == NULL + && !type->is_string_type()) + { + error_at(location, "expected integer, floating, or string type"); + return false; + } + break; + + case OPERATOR_PLUS: + case OPERATOR_PLUSEQ: + if (type->integer_type() == NULL + && type->float_type() == NULL + && type->complex_type() == NULL + && !type->is_string_type()) + { + error_at(location, + "expected integer, floating, complex, or string type"); + return false; + } + break; + + case OPERATOR_MINUS: + case OPERATOR_MINUSEQ: + case OPERATOR_MULT: + case OPERATOR_MULTEQ: + case OPERATOR_DIV: + case OPERATOR_DIVEQ: + if (type->integer_type() == NULL + && type->float_type() == NULL + && type->complex_type() == NULL) + { + error_at(location, "expected integer, floating, or complex type"); + return false; + } + break; + + case OPERATOR_MOD: + case OPERATOR_MODEQ: + case OPERATOR_OR: + case OPERATOR_OREQ: + case OPERATOR_AND: + case OPERATOR_ANDEQ: + case OPERATOR_XOR: + case OPERATOR_XOREQ: + case OPERATOR_BITCLEAR: + case OPERATOR_BITCLEAREQ: + if (type->integer_type() == NULL) + { + error_at(location, "expected integer type"); + return false; + } + break; + + default: + gcc_unreachable(); + } + + return true; +} + +// Check types. + +void +Binary_expression::do_check_types(Gogo*) +{ + if (this->classification() == EXPRESSION_ERROR) + return; + + Type* left_type = this->left_->type(); + Type* right_type = this->right_->type(); + if (left_type->is_error_type() || right_type->is_error_type()) + { + this->set_is_error(); + return; + } + + if (this->op_ == OPERATOR_EQEQ + || this->op_ == OPERATOR_NOTEQ + || this->op_ == OPERATOR_LT + || this->op_ == OPERATOR_LE + || this->op_ == OPERATOR_GT + || this->op_ == OPERATOR_GE) + { + if (!Type::are_assignable(left_type, right_type, NULL) + && !Type::are_assignable(right_type, left_type, NULL)) + { + this->report_error(_("incompatible types in binary expression")); + return; + } + if (!Binary_expression::check_operator_type(this->op_, left_type, + this->location()) + || !Binary_expression::check_operator_type(this->op_, right_type, + this->location())) + { + this->set_is_error(); + return; + } + } + else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT) + { + if (!Type::are_compatible_for_binop(left_type, right_type)) + { + this->report_error(_("incompatible types in binary expression")); + return; + } + if (!Binary_expression::check_operator_type(this->op_, left_type, + this->location())) + { + this->set_is_error(); + return; + } + } + else + { + if (left_type->integer_type() == NULL) + this->report_error(_("shift of non-integer operand")); + + if (!right_type->is_abstract() + && (right_type->integer_type() == NULL + || !right_type->integer_type()->is_unsigned())) + this->report_error(_("shift count not unsigned integer")); + else + { + mpz_t val; + mpz_init(val); + Type* type; + if (this->right_->integer_constant_value(true, val, &type)) + { + if (mpz_sgn(val) < 0) + this->report_error(_("negative shift count")); + } + mpz_clear(val); + } + } +} + +// Get a tree for a binary expression. + +tree +Binary_expression::do_get_tree(Translate_context* context) +{ + tree left = this->left_->get_tree(context); + tree right = this->right_->get_tree(context); + + if (left == error_mark_node || right == error_mark_node) + return error_mark_node; + + enum tree_code code; + bool use_left_type = true; + bool is_shift_op = false; + switch (this->op_) + { + case OPERATOR_EQEQ: + case OPERATOR_NOTEQ: + case OPERATOR_LT: + case OPERATOR_LE: + case OPERATOR_GT: + case OPERATOR_GE: + return Expression::comparison_tree(context, this->op_, + this->left_->type(), left, + this->right_->type(), right, + this->location()); + + case OPERATOR_OROR: + code = TRUTH_ORIF_EXPR; + use_left_type = false; + break; + case OPERATOR_ANDAND: + code = TRUTH_ANDIF_EXPR; + use_left_type = false; + break; + case OPERATOR_PLUS: + code = PLUS_EXPR; + break; + case OPERATOR_MINUS: + code = MINUS_EXPR; + break; + case OPERATOR_OR: + code = BIT_IOR_EXPR; + break; + case OPERATOR_XOR: + code = BIT_XOR_EXPR; + break; + case OPERATOR_MULT: + code = MULT_EXPR; + break; + case OPERATOR_DIV: + { + Type *t = this->left_->type(); + if (t->float_type() != NULL || t->complex_type() != NULL) + code = RDIV_EXPR; + else + code = TRUNC_DIV_EXPR; + } + break; + case OPERATOR_MOD: + code = TRUNC_MOD_EXPR; + break; + case OPERATOR_LSHIFT: + code = LSHIFT_EXPR; + is_shift_op = true; + break; + case OPERATOR_RSHIFT: + code = RSHIFT_EXPR; + is_shift_op = true; + break; + case OPERATOR_AND: + code = BIT_AND_EXPR; + break; + case OPERATOR_BITCLEAR: + right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right); + code = BIT_AND_EXPR; + break; + default: + gcc_unreachable(); + } + + tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right); + + if (this->left_->type()->is_string_type()) + { + gcc_assert(this->op_ == OPERATOR_PLUS); + tree string_type = Type::make_string_type()->get_tree(context->gogo()); + static tree string_plus_decl; + return Gogo::call_builtin(&string_plus_decl, + this->location(), + "__go_string_plus", + 2, + string_type, + string_type, + left, + string_type, + right); + } + + tree compute_type = excess_precision_type(type); + if (compute_type != NULL_TREE) + { + left = ::convert(compute_type, left); + right = ::convert(compute_type, right); + } + + tree eval_saved = NULL_TREE; + if (is_shift_op) + { + // Make sure the values are evaluated. + if (!DECL_P(left) && TREE_SIDE_EFFECTS(left)) + { + left = save_expr(left); + eval_saved = left; + } + if (!DECL_P(right) && TREE_SIDE_EFFECTS(right)) + { + right = save_expr(right); + if (eval_saved == NULL_TREE) + eval_saved = right; + else + eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR, + void_type_node, eval_saved, right); + } + } + + tree ret = fold_build2_loc(this->location(), + code, + compute_type != NULL_TREE ? compute_type : type, + left, right); + + if (compute_type != NULL_TREE) + ret = ::convert(type, ret); + + // In Go, a shift larger than the size of the type is well-defined. + // This is not true in GENERIC, so we need to insert a conditional. + if (is_shift_op) + { + gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left))); + gcc_assert(this->left_->type()->integer_type() != NULL); + int bits = TYPE_PRECISION(TREE_TYPE(left)); + + tree compare = fold_build2(LT_EXPR, boolean_type_node, right, + build_int_cst_type(TREE_TYPE(right), bits)); + + tree overflow_result = fold_convert_loc(this->location(), + TREE_TYPE(left), + integer_zero_node); + if (this->op_ == OPERATOR_RSHIFT + && !this->left_->type()->integer_type()->is_unsigned()) + { + tree neg = fold_build2_loc(this->location(), LT_EXPR, + boolean_type_node, left, + fold_convert_loc(this->location(), + TREE_TYPE(left), + integer_zero_node)); + tree neg_one = fold_build2_loc(this->location(), + MINUS_EXPR, TREE_TYPE(left), + fold_convert_loc(this->location(), + TREE_TYPE(left), + integer_zero_node), + fold_convert_loc(this->location(), + TREE_TYPE(left), + integer_one_node)); + overflow_result = fold_build3_loc(this->location(), COND_EXPR, + TREE_TYPE(left), neg, neg_one, + overflow_result); + } + + ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left), + compare, ret, overflow_result); + + if (eval_saved != NULL_TREE) + ret = fold_build2_loc(this->location(), COMPOUND_EXPR, + TREE_TYPE(ret), eval_saved, ret); + } + + return ret; +} + +// Export a binary expression. + +void +Binary_expression::do_export(Export* exp) const +{ + exp->write_c_string("("); + this->left_->export_expression(exp); + switch (this->op_) + { + case OPERATOR_OROR: + exp->write_c_string(" || "); + break; + case OPERATOR_ANDAND: + exp->write_c_string(" && "); + break; + case OPERATOR_EQEQ: + exp->write_c_string(" == "); + break; + case OPERATOR_NOTEQ: + exp->write_c_string(" != "); + break; + case OPERATOR_LT: + exp->write_c_string(" < "); + break; + case OPERATOR_LE: + exp->write_c_string(" <= "); + break; + case OPERATOR_GT: + exp->write_c_string(" > "); + break; + case OPERATOR_GE: + exp->write_c_string(" >= "); + break; + case OPERATOR_PLUS: + exp->write_c_string(" + "); + break; + case OPERATOR_MINUS: + exp->write_c_string(" - "); + break; + case OPERATOR_OR: + exp->write_c_string(" | "); + break; + case OPERATOR_XOR: + exp->write_c_string(" ^ "); + break; + case OPERATOR_MULT: + exp->write_c_string(" * "); + break; + case OPERATOR_DIV: + exp->write_c_string(" / "); + break; + case OPERATOR_MOD: + exp->write_c_string(" % "); + break; + case OPERATOR_LSHIFT: + exp->write_c_string(" << "); + break; + case OPERATOR_RSHIFT: + exp->write_c_string(" >> "); + break; + case OPERATOR_AND: + exp->write_c_string(" & "); + break; + case OPERATOR_BITCLEAR: + exp->write_c_string(" &^ "); + break; + default: + gcc_unreachable(); + } + this->right_->export_expression(exp); + exp->write_c_string(")"); +} + +// Import a binary expression. + +Expression* +Binary_expression::do_import(Import* imp) +{ + imp->require_c_string("("); + + Expression* left = Expression::import_expression(imp); + + Operator op; + if (imp->match_c_string(" || ")) + { + op = OPERATOR_OROR; + imp->advance(4); + } + else if (imp->match_c_string(" && ")) + { + op = OPERATOR_ANDAND; + imp->advance(4); + } + else if (imp->match_c_string(" == ")) + { + op = OPERATOR_EQEQ; + imp->advance(4); + } + else if (imp->match_c_string(" != ")) + { + op = OPERATOR_NOTEQ; + imp->advance(4); + } + else if (imp->match_c_string(" < ")) + { + op = OPERATOR_LT; + imp->advance(3); + } + else if (imp->match_c_string(" <= ")) + { + op = OPERATOR_LE; + imp->advance(4); + } + else if (imp->match_c_string(" > ")) + { + op = OPERATOR_GT; + imp->advance(3); + } + else if (imp->match_c_string(" >= ")) + { + op = OPERATOR_GE; + imp->advance(4); + } + else if (imp->match_c_string(" + ")) + { + op = OPERATOR_PLUS; + imp->advance(3); + } + else if (imp->match_c_string(" - ")) + { + op = OPERATOR_MINUS; + imp->advance(3); + } + else if (imp->match_c_string(" | ")) + { + op = OPERATOR_OR; + imp->advance(3); + } + else if (imp->match_c_string(" ^ ")) + { + op = OPERATOR_XOR; + imp->advance(3); + } + else if (imp->match_c_string(" * ")) + { + op = OPERATOR_MULT; + imp->advance(3); + } + else if (imp->match_c_string(" / ")) + { + op = OPERATOR_DIV; + imp->advance(3); + } + else if (imp->match_c_string(" % ")) + { + op = OPERATOR_MOD; + imp->advance(3); + } + else if (imp->match_c_string(" << ")) + { + op = OPERATOR_LSHIFT; + imp->advance(4); + } + else if (imp->match_c_string(" >> ")) + { + op = OPERATOR_RSHIFT; + imp->advance(4); + } + else if (imp->match_c_string(" & ")) + { + op = OPERATOR_AND; + imp->advance(3); + } + else if (imp->match_c_string(" &^ ")) + { + op = OPERATOR_BITCLEAR; + imp->advance(4); + } + else + { + error_at(imp->location(), "unrecognized binary operator"); + return Expression::make_error(imp->location()); + } + + Expression* right = Expression::import_expression(imp); + + imp->require_c_string(")"); + + return Expression::make_binary(op, left, right, imp->location()); +} + +// Make a binary expression. + +Expression* +Expression::make_binary(Operator op, Expression* left, Expression* right, + source_location location) +{ + return new Binary_expression(op, left, right, location); +} + +// Implement a comparison. + +tree +Expression::comparison_tree(Translate_context* context, Operator op, + Type* left_type, tree left_tree, + Type* right_type, tree right_tree, + source_location location) +{ + enum tree_code code; + switch (op) + { + case OPERATOR_EQEQ: + code = EQ_EXPR; + break; + case OPERATOR_NOTEQ: + code = NE_EXPR; + break; + case OPERATOR_LT: + code = LT_EXPR; + break; + case OPERATOR_LE: + code = LE_EXPR; + break; + case OPERATOR_GT: + code = GT_EXPR; + break; + case OPERATOR_GE: + code = GE_EXPR; + break; + default: + gcc_unreachable(); + } + + if (left_type->is_string_type() && right_type->is_string_type()) + { + tree string_type = Type::make_string_type()->get_tree(context->gogo()); + static tree string_compare_decl; + left_tree = Gogo::call_builtin(&string_compare_decl, + location, + "__go_strcmp", + 2, + integer_type_node, + string_type, + left_tree, + string_type, + right_tree); + right_tree = build_int_cst_type(integer_type_node, 0); + } + else if ((left_type->interface_type() != NULL + && right_type->interface_type() == NULL + && !right_type->is_nil_type()) + || (left_type->interface_type() == NULL + && !left_type->is_nil_type() + && right_type->interface_type() != NULL)) + { + // Comparing an interface value to a non-interface value. + if (left_type->interface_type() == NULL) + { + std::swap(left_type, right_type); + std::swap(left_tree, right_tree); + } + + // The right operand is not an interface. We need to take its + // address if it is not a pointer. + tree make_tmp; + tree arg; + if (right_type->points_to() != NULL) + { + make_tmp = NULL_TREE; + arg = right_tree; + } + else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree)) + { + make_tmp = NULL_TREE; + arg = build_fold_addr_expr_loc(location, right_tree); + if (DECL_P(right_tree)) + TREE_ADDRESSABLE(right_tree) = 1; + } + else + { + tree tmp = create_tmp_var(TREE_TYPE(right_tree), + get_name(right_tree)); + DECL_IGNORED_P(tmp) = 0; + DECL_INITIAL(tmp) = right_tree; + TREE_ADDRESSABLE(tmp) = 1; + make_tmp = build1(DECL_EXPR, void_type_node, tmp); + SET_EXPR_LOCATION(make_tmp, location); + arg = build_fold_addr_expr_loc(location, tmp); + } + arg = fold_convert_loc(location, ptr_type_node, arg); + + tree descriptor = right_type->type_descriptor_pointer(context->gogo()); + + if (left_type->interface_type()->is_empty()) + { + static tree empty_interface_value_compare_decl; + left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl, + location, + "__go_empty_interface_value_compare", + 3, + integer_type_node, + TREE_TYPE(left_tree), + left_tree, + TREE_TYPE(descriptor), + descriptor, + ptr_type_node, + arg); + if (left_tree == error_mark_node) + return error_mark_node; + // This can panic if the type is not comparable. + TREE_NOTHROW(empty_interface_value_compare_decl) = 0; + } + else + { + static tree interface_value_compare_decl; + left_tree = Gogo::call_builtin(&interface_value_compare_decl, + location, + "__go_interface_value_compare", + 3, + integer_type_node, + TREE_TYPE(left_tree), + left_tree, + TREE_TYPE(descriptor), + descriptor, + ptr_type_node, + arg); + if (left_tree == error_mark_node) + return error_mark_node; + // This can panic if the type is not comparable. + TREE_NOTHROW(interface_value_compare_decl) = 0; + } + right_tree = build_int_cst_type(integer_type_node, 0); + + if (make_tmp != NULL_TREE) + left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp, + left_tree); + } + else if (left_type->interface_type() != NULL + && right_type->interface_type() != NULL) + { + if (left_type->interface_type()->is_empty() + && right_type->interface_type()->is_empty()) + { + static tree empty_interface_compare_decl; + left_tree = Gogo::call_builtin(&empty_interface_compare_decl, + location, + "__go_empty_interface_compare", + 2, + integer_type_node, + TREE_TYPE(left_tree), + left_tree, + TREE_TYPE(right_tree), + right_tree); + if (left_tree == error_mark_node) + return error_mark_node; + // This can panic if the type is uncomparable. + TREE_NOTHROW(empty_interface_compare_decl) = 0; + } + else if (!left_type->interface_type()->is_empty() + && !right_type->interface_type()->is_empty()) + { + static tree interface_compare_decl; + left_tree = Gogo::call_builtin(&interface_compare_decl, + location, + "__go_interface_compare", + 2, + integer_type_node, + TREE_TYPE(left_tree), + left_tree, + TREE_TYPE(right_tree), + right_tree); + if (left_tree == error_mark_node) + return error_mark_node; + // This can panic if the type is uncomparable. + TREE_NOTHROW(interface_compare_decl) = 0; + } + else + { + if (left_type->interface_type()->is_empty()) + { + gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ); + std::swap(left_type, right_type); + std::swap(left_tree, right_tree); + } + gcc_assert(!left_type->interface_type()->is_empty()); + gcc_assert(right_type->interface_type()->is_empty()); + static tree interface_empty_compare_decl; + left_tree = Gogo::call_builtin(&interface_empty_compare_decl, + location, + "__go_interface_empty_compare", + 2, + integer_type_node, + TREE_TYPE(left_tree), + left_tree, + TREE_TYPE(right_tree), + right_tree); + if (left_tree == error_mark_node) + return error_mark_node; + // This can panic if the type is uncomparable. + TREE_NOTHROW(interface_empty_compare_decl) = 0; + } + + right_tree = build_int_cst_type(integer_type_node, 0); + } + + if (left_type->is_nil_type() + && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)) + { + std::swap(left_type, right_type); + std::swap(left_tree, right_tree); + } + + if (right_type->is_nil_type()) + { + if (left_type->array_type() != NULL + && left_type->array_type()->length() == NULL) + { + Array_type* at = left_type->array_type(); + left_tree = at->value_pointer_tree(context->gogo(), left_tree); + right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node); + } + else if (left_type->interface_type() != NULL) + { + // An interface is nil if the first field is nil. + tree left_type_tree = TREE_TYPE(left_tree); + gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE); + tree field = TYPE_FIELDS(left_type_tree); + left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree, + field, NULL_TREE); + right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node); + } + else + { + gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree))); + right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node); + } + } + + if (left_tree == error_mark_node || right_tree == error_mark_node) + return error_mark_node; + + tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree); + if (CAN_HAVE_LOCATION_P(ret)) + SET_EXPR_LOCATION(ret, location); + return ret; +} + +// Class Bound_method_expression. + +// Traversal. + +int +Bound_method_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return Expression::traverse(&this->method_, traverse); +} + +// Return the type of a bound method expression. The type of this +// object is really the type of the method with no receiver. We +// should be able to get away with just returning the type of the +// method. + +Type* +Bound_method_expression::do_type() +{ + return this->method_->type(); +} + +// Determine the types of a method expression. + +void +Bound_method_expression::do_determine_type(const Type_context*) +{ + this->method_->determine_type_no_context(); + Type* mtype = this->method_->type(); + Function_type* fntype = mtype == NULL ? NULL : mtype->function_type(); + if (fntype == NULL || !fntype->is_method()) + this->expr_->determine_type_no_context(); + else + { + Type_context subcontext(fntype->receiver()->type(), false); + this->expr_->determine_type(&subcontext); + } +} + +// Check the types of a method expression. + +void +Bound_method_expression::do_check_types(Gogo*) +{ + Type* type = this->method_->type()->deref(); + if (type == NULL + || type->function_type() == NULL + || !type->function_type()->is_method()) + this->report_error(_("object is not a method")); + else + { + Type* rtype = type->function_type()->receiver()->type()->deref(); + Type* etype = (this->expr_type_ != NULL + ? this->expr_type_ + : this->expr_->type()); + etype = etype->deref(); + if (!Type::are_identical(rtype, etype, true, NULL)) + this->report_error(_("method type does not match object type")); + } +} + +// Get the tree for a method expression. There is no standard tree +// representation for this. The only places it may currently be used +// are in a Call_expression or a Go_statement, which will take it +// apart directly. So this has nothing to do at present. + +tree +Bound_method_expression::do_get_tree(Translate_context*) +{ + error_at(this->location(), "reference to method other than calling it"); + return error_mark_node; +} + +// Make a method expression. + +Bound_method_expression* +Expression::make_bound_method(Expression* expr, Expression* method, + source_location location) +{ + return new Bound_method_expression(expr, method, location); +} + +// Class Builtin_call_expression. This is used for a call to a +// builtin function. + +class Builtin_call_expression : public Call_expression +{ + public: + Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args, + bool is_varargs, source_location location); + + protected: + // This overrides Call_expression::do_lower. + Expression* + do_lower(Gogo*, Named_object*, int); + + bool + do_is_constant() const; + + bool + do_integer_constant_value(bool, mpz_t, Type**) const; + + bool + do_float_constant_value(mpfr_t, Type**) const; + + bool + do_complex_constant_value(mpfr_t, mpfr_t, Type**) const; + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Builtin_call_expression(this->gogo_, this->fn()->copy(), + this->args()->copy(), + this->is_varargs(), + this->location()); + } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + virtual bool + do_is_recover_call() const; + + virtual void + do_set_recover_arg(Expression*); + + private: + // The builtin functions. + enum Builtin_function_code + { + BUILTIN_INVALID, + + // Predeclared builtin functions. + BUILTIN_APPEND, + BUILTIN_CAP, + BUILTIN_CLOSE, + BUILTIN_CLOSED, + BUILTIN_COMPLEX, + BUILTIN_COPY, + BUILTIN_IMAG, + BUILTIN_LEN, + BUILTIN_MAKE, + BUILTIN_NEW, + BUILTIN_PANIC, + BUILTIN_PRINT, + BUILTIN_PRINTLN, + BUILTIN_REAL, + BUILTIN_RECOVER, + + // Builtin functions from the unsafe package. + BUILTIN_ALIGNOF, + BUILTIN_OFFSETOF, + BUILTIN_SIZEOF + }; + + Expression* + one_arg() const; + + bool + check_one_arg(); + + static Type* + real_imag_type(Type*); + + static Type* + complex_type(Type*); + + // A pointer back to the general IR structure. This avoids a global + // variable, or passing it around everywhere. + Gogo* gogo_; + // The builtin function being called. + Builtin_function_code code_; + // Used to stop endless loops when the length of an array uses len + // or cap of the array itself. + mutable bool seen_; +}; + +Builtin_call_expression::Builtin_call_expression(Gogo* gogo, + Expression* fn, + Expression_list* args, + bool is_varargs, + source_location location) + : Call_expression(fn, args, is_varargs, location), + gogo_(gogo), code_(BUILTIN_INVALID), seen_(false) +{ + Func_expression* fnexp = this->fn()->func_expression(); + gcc_assert(fnexp != NULL); + const std::string& name(fnexp->named_object()->name()); + if (name == "append") + this->code_ = BUILTIN_APPEND; + else if (name == "cap") + this->code_ = BUILTIN_CAP; + else if (name == "close") + this->code_ = BUILTIN_CLOSE; + else if (name == "closed") + this->code_ = BUILTIN_CLOSED; + else if (name == "complex") + this->code_ = BUILTIN_COMPLEX; + else if (name == "copy") + this->code_ = BUILTIN_COPY; + else if (name == "imag") + this->code_ = BUILTIN_IMAG; + else if (name == "len") + this->code_ = BUILTIN_LEN; + else if (name == "make") + this->code_ = BUILTIN_MAKE; + else if (name == "new") + this->code_ = BUILTIN_NEW; + else if (name == "panic") + this->code_ = BUILTIN_PANIC; + else if (name == "print") + this->code_ = BUILTIN_PRINT; + else if (name == "println") + this->code_ = BUILTIN_PRINTLN; + else if (name == "real") + this->code_ = BUILTIN_REAL; + else if (name == "recover") + this->code_ = BUILTIN_RECOVER; + else if (name == "Alignof") + this->code_ = BUILTIN_ALIGNOF; + else if (name == "Offsetof") + this->code_ = BUILTIN_OFFSETOF; + else if (name == "Sizeof") + this->code_ = BUILTIN_SIZEOF; + else + gcc_unreachable(); +} + +// Return whether this is a call to recover. This is a virtual +// function called from the parent class. + +bool +Builtin_call_expression::do_is_recover_call() const +{ + if (this->classification() == EXPRESSION_ERROR) + return false; + return this->code_ == BUILTIN_RECOVER; +} + +// Set the argument for a call to recover. + +void +Builtin_call_expression::do_set_recover_arg(Expression* arg) +{ + const Expression_list* args = this->args(); + gcc_assert(args == NULL || args->empty()); + Expression_list* new_args = new Expression_list(); + new_args->push_back(arg); + this->set_args(new_args); +} + +// A traversal class which looks for a call expression. + +class Find_call_expression : public Traverse +{ + public: + Find_call_expression() + : Traverse(traverse_expressions), + found_(false) + { } + + int + expression(Expression**); + + bool + found() + { return this->found_; } + + private: + bool found_; +}; + +int +Find_call_expression::expression(Expression** pexpr) +{ + if ((*pexpr)->call_expression() != NULL) + { + this->found_ = true; + return TRAVERSE_EXIT; + } + return TRAVERSE_CONTINUE; +} + +// Lower a builtin call expression. This turns new and make into +// specific expressions. We also convert to a constant if we can. + +Expression* +Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int) +{ + if (this->code_ == BUILTIN_NEW) + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 1) + this->report_error(_("not enough arguments")); + else if (args->size() > 1) + this->report_error(_("too many arguments")); + else + { + Expression* arg = args->front(); + if (!arg->is_type_expression()) + { + error_at(arg->location(), "expected type"); + this->set_is_error(); + } + else + return Expression::make_allocation(arg->type(), this->location()); + } + } + else if (this->code_ == BUILTIN_MAKE) + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 1) + this->report_error(_("not enough arguments")); + else + { + Expression* arg = args->front(); + if (!arg->is_type_expression()) + { + error_at(arg->location(), "expected type"); + this->set_is_error(); + } + else + { + Expression_list* newargs; + if (args->size() == 1) + newargs = NULL; + else + { + newargs = new Expression_list(); + Expression_list::const_iterator p = args->begin(); + ++p; + for (; p != args->end(); ++p) + newargs->push_back(*p); + } + return Expression::make_make(arg->type(), newargs, + this->location()); + } + } + } + else if (this->is_constant()) + { + // We can only lower len and cap if there are no function calls + // in the arguments. Otherwise we have to make the call. + if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP) + { + Expression* arg = this->one_arg(); + if (!arg->is_constant()) + { + Find_call_expression find_call; + Expression::traverse(&arg, &find_call); + if (find_call.found()) + return this; + } + } + + mpz_t ival; + mpz_init(ival); + Type* type; + if (this->integer_constant_value(true, ival, &type)) + { + Expression* ret = Expression::make_integer(&ival, type, + this->location()); + mpz_clear(ival); + return ret; + } + mpz_clear(ival); + + mpfr_t rval; + mpfr_init(rval); + if (this->float_constant_value(rval, &type)) + { + Expression* ret = Expression::make_float(&rval, type, + this->location()); + mpfr_clear(rval); + return ret; + } + + mpfr_t imag; + mpfr_init(imag); + if (this->complex_constant_value(rval, imag, &type)) + { + Expression* ret = Expression::make_complex(&rval, &imag, type, + this->location()); + mpfr_clear(rval); + mpfr_clear(imag); + return ret; + } + mpfr_clear(rval); + mpfr_clear(imag); + } + else if (this->code_ == BUILTIN_RECOVER) + { + if (function != NULL) + function->func_value()->set_calls_recover(); + else + { + // Calling recover outside of a function always returns the + // nil empty interface. + Type* eface = Type::make_interface_type(NULL, this->location()); + return Expression::make_cast(eface, + Expression::make_nil(this->location()), + this->location()); + } + } + else if (this->code_ == BUILTIN_APPEND) + { + // Lower the varargs. + const Expression_list* args = this->args(); + if (args == NULL || args->empty()) + return this; + Type* slice_type = args->front()->type(); + if (!slice_type->is_open_array_type()) + { + error_at(args->front()->location(), "argument 1 must be a slice"); + this->set_is_error(); + return this; + } + return this->lower_varargs(gogo, function, slice_type, 2); + } + + return this; +} + +// Return the type of the real or imag functions, given the type of +// the argument. We need to map complex to float, complex64 to +// float32, and complex128 to float64, so it has to be done by name. +// This returns NULL if it can't figure out the type. + +Type* +Builtin_call_expression::real_imag_type(Type* arg_type) +{ + if (arg_type == NULL || arg_type->is_abstract()) + return NULL; + Named_type* nt = arg_type->named_type(); + if (nt == NULL) + return NULL; + while (nt->real_type()->named_type() != NULL) + nt = nt->real_type()->named_type(); + if (nt->name() == "complex64") + return Type::lookup_float_type("float32"); + else if (nt->name() == "complex128") + return Type::lookup_float_type("float64"); + else + return NULL; +} + +// Return the type of the complex function, given the type of one of the +// argments. Like real_imag_type, we have to map by name. + +Type* +Builtin_call_expression::complex_type(Type* arg_type) +{ + if (arg_type == NULL || arg_type->is_abstract()) + return NULL; + Named_type* nt = arg_type->named_type(); + if (nt == NULL) + return NULL; + while (nt->real_type()->named_type() != NULL) + nt = nt->real_type()->named_type(); + if (nt->name() == "float32") + return Type::lookup_complex_type("complex64"); + else if (nt->name() == "float64") + return Type::lookup_complex_type("complex128"); + else + return NULL; +} + +// Return a single argument, or NULL if there isn't one. + +Expression* +Builtin_call_expression::one_arg() const +{ + const Expression_list* args = this->args(); + if (args->size() != 1) + return NULL; + return args->front(); +} + +// Return whether this is constant: len of a string, or len or cap of +// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof. + +bool +Builtin_call_expression::do_is_constant() const +{ + switch (this->code_) + { + case BUILTIN_LEN: + case BUILTIN_CAP: + { + if (this->seen_) + return false; + + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + Type* arg_type = arg->type(); + + if (arg_type->points_to() != NULL + && arg_type->points_to()->array_type() != NULL + && !arg_type->points_to()->is_open_array_type()) + arg_type = arg_type->points_to(); + + if (arg_type->array_type() != NULL + && arg_type->array_type()->length() != NULL) + return true; + + if (this->code_ == BUILTIN_LEN && arg_type->is_string_type()) + { + this->seen_ = true; + bool ret = arg->is_constant(); + this->seen_ = false; + return ret; + } + } + break; + + case BUILTIN_SIZEOF: + case BUILTIN_ALIGNOF: + return this->one_arg() != NULL; + + case BUILTIN_OFFSETOF: + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + return arg->field_reference_expression() != NULL; + } + + case BUILTIN_COMPLEX: + { + const Expression_list* args = this->args(); + if (args != NULL && args->size() == 2) + return args->front()->is_constant() && args->back()->is_constant(); + } + break; + + case BUILTIN_REAL: + case BUILTIN_IMAG: + { + Expression* arg = this->one_arg(); + return arg != NULL && arg->is_constant(); + } + + default: + break; + } + + return false; +} + +// Return an integer constant value if possible. + +bool +Builtin_call_expression::do_integer_constant_value(bool iota_is_constant, + mpz_t val, + Type** ptype) const +{ + if (this->code_ == BUILTIN_LEN + || this->code_ == BUILTIN_CAP) + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + Type* arg_type = arg->type(); + + if (this->code_ == BUILTIN_LEN && arg_type->is_string_type()) + { + std::string sval; + if (arg->string_constant_value(&sval)) + { + mpz_set_ui(val, sval.length()); + *ptype = Type::lookup_integer_type("int"); + return true; + } + } + + if (arg_type->points_to() != NULL + && arg_type->points_to()->array_type() != NULL + && !arg_type->points_to()->is_open_array_type()) + arg_type = arg_type->points_to(); + + if (arg_type->array_type() != NULL + && arg_type->array_type()->length() != NULL) + { + if (this->seen_) + return false; + Expression* e = arg_type->array_type()->length(); + this->seen_ = true; + bool r = e->integer_constant_value(iota_is_constant, val, ptype); + this->seen_ = false; + if (r) + { + *ptype = Type::lookup_integer_type("int"); + return true; + } + } + } + else if (this->code_ == BUILTIN_SIZEOF + || this->code_ == BUILTIN_ALIGNOF) + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + Type* arg_type = arg->type(); + if (arg_type->is_error_type() || arg_type->is_undefined()) + return false; + if (arg_type->is_abstract()) + return false; + if (arg_type->named_type() != NULL) + arg_type->named_type()->convert(this->gogo_); + tree arg_type_tree = arg_type->get_tree(this->gogo_); + if (arg_type_tree == error_mark_node) + return false; + unsigned long val_long; + if (this->code_ == BUILTIN_SIZEOF) + { + tree type_size = TYPE_SIZE_UNIT(arg_type_tree); + gcc_assert(TREE_CODE(type_size) == INTEGER_CST); + if (TREE_INT_CST_HIGH(type_size) != 0) + return false; + unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size); + val_long = static_cast<unsigned long>(val_wide); + if (val_long != val_wide) + return false; + } + else if (this->code_ == BUILTIN_ALIGNOF) + { + if (arg->field_reference_expression() == NULL) + val_long = go_type_alignment(arg_type_tree); + else + { + // Calling unsafe.Alignof(s.f) returns the alignment of + // the type of f when it is used as a field in a struct. + val_long = go_field_alignment(arg_type_tree); + } + } + else + gcc_unreachable(); + mpz_set_ui(val, val_long); + *ptype = NULL; + return true; + } + else if (this->code_ == BUILTIN_OFFSETOF) + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + Field_reference_expression* farg = arg->field_reference_expression(); + if (farg == NULL) + return false; + Expression* struct_expr = farg->expr(); + Type* st = struct_expr->type(); + if (st->struct_type() == NULL) + return false; + if (st->named_type() != NULL) + st->named_type()->convert(this->gogo_); + tree struct_tree = st->get_tree(this->gogo_); + gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE); + tree field = TYPE_FIELDS(struct_tree); + for (unsigned int index = farg->field_index(); index > 0; --index) + { + field = DECL_CHAIN(field); + gcc_assert(field != NULL_TREE); + } + HOST_WIDE_INT offset_wide = int_byte_position (field); + if (offset_wide < 0) + return false; + unsigned long offset_long = static_cast<unsigned long>(offset_wide); + if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide)) + return false; + mpz_set_ui(val, offset_long); + return true; + } + return false; +} + +// Return a floating point constant value if possible. + +bool +Builtin_call_expression::do_float_constant_value(mpfr_t val, + Type** ptype) const +{ + if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG) + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return false; + + mpfr_t real; + mpfr_t imag; + mpfr_init(real); + mpfr_init(imag); + + bool ret = false; + Type* type; + if (arg->complex_constant_value(real, imag, &type)) + { + if (this->code_ == BUILTIN_REAL) + mpfr_set(val, real, GMP_RNDN); + else + mpfr_set(val, imag, GMP_RNDN); + *ptype = Builtin_call_expression::real_imag_type(type); + ret = true; + } + + mpfr_clear(real); + mpfr_clear(imag); + return ret; + } + + return false; +} + +// Return a complex constant value if possible. + +bool +Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag, + Type** ptype) const +{ + if (this->code_ == BUILTIN_COMPLEX) + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() != 2) + return false; + + mpfr_t r; + mpfr_init(r); + Type* rtype; + if (!args->front()->float_constant_value(r, &rtype)) + { + mpfr_clear(r); + return false; + } + + mpfr_t i; + mpfr_init(i); + + bool ret = false; + Type* itype; + if (args->back()->float_constant_value(i, &itype) + && Type::are_identical(rtype, itype, false, NULL)) + { + mpfr_set(real, r, GMP_RNDN); + mpfr_set(imag, i, GMP_RNDN); + *ptype = Builtin_call_expression::complex_type(rtype); + ret = true; + } + + mpfr_clear(r); + mpfr_clear(i); + + return ret; + } + + return false; +} + +// Return the type. + +Type* +Builtin_call_expression::do_type() +{ + switch (this->code_) + { + case BUILTIN_INVALID: + default: + gcc_unreachable(); + + case BUILTIN_NEW: + case BUILTIN_MAKE: + { + const Expression_list* args = this->args(); + if (args == NULL || args->empty()) + return Type::make_error_type(); + return Type::make_pointer_type(args->front()->type()); + } + + case BUILTIN_CAP: + case BUILTIN_COPY: + case BUILTIN_LEN: + case BUILTIN_ALIGNOF: + case BUILTIN_OFFSETOF: + case BUILTIN_SIZEOF: + return Type::lookup_integer_type("int"); + + case BUILTIN_CLOSE: + case BUILTIN_PANIC: + case BUILTIN_PRINT: + case BUILTIN_PRINTLN: + return Type::make_void_type(); + + case BUILTIN_CLOSED: + return Type::lookup_bool_type(); + + case BUILTIN_RECOVER: + return Type::make_interface_type(NULL, BUILTINS_LOCATION); + + case BUILTIN_APPEND: + { + const Expression_list* args = this->args(); + if (args == NULL || args->empty()) + return Type::make_error_type(); + return args->front()->type(); + } + + case BUILTIN_REAL: + case BUILTIN_IMAG: + { + Expression* arg = this->one_arg(); + if (arg == NULL) + return Type::make_error_type(); + Type* t = arg->type(); + if (t->is_abstract()) + t = t->make_non_abstract_type(); + t = Builtin_call_expression::real_imag_type(t); + if (t == NULL) + t = Type::make_error_type(); + return t; + } + + case BUILTIN_COMPLEX: + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() != 2) + return Type::make_error_type(); + Type* t = args->front()->type(); + if (t->is_abstract()) + { + t = args->back()->type(); + if (t->is_abstract()) + t = t->make_non_abstract_type(); + } + t = Builtin_call_expression::complex_type(t); + if (t == NULL) + t = Type::make_error_type(); + return t; + } + } +} + +// Determine the type. + +void +Builtin_call_expression::do_determine_type(const Type_context* context) +{ + if (!this->determining_types()) + return; + + this->fn()->determine_type_no_context(); + + const Expression_list* args = this->args(); + + bool is_print; + Type* arg_type = NULL; + switch (this->code_) + { + case BUILTIN_PRINT: + case BUILTIN_PRINTLN: + // Do not force a large integer constant to "int". + is_print = true; + break; + + case BUILTIN_REAL: + case BUILTIN_IMAG: + arg_type = Builtin_call_expression::complex_type(context->type); + is_print = false; + break; + + case BUILTIN_COMPLEX: + { + // For the complex function the type of one operand can + // determine the type of the other, as in a binary expression. + arg_type = Builtin_call_expression::real_imag_type(context->type); + if (args != NULL && args->size() == 2) + { + Type* t1 = args->front()->type(); + Type* t2 = args->front()->type(); + if (!t1->is_abstract()) + arg_type = t1; + else if (!t2->is_abstract()) + arg_type = t2; + } + is_print = false; + } + break; + + default: + is_print = false; + break; + } + + if (args != NULL) + { + for (Expression_list::const_iterator pa = args->begin(); + pa != args->end(); + ++pa) + { + Type_context subcontext; + subcontext.type = arg_type; + + if (is_print) + { + // We want to print large constants, we so can't just + // use the appropriate nonabstract type. Use uint64 for + // an integer if we know it is nonnegative, otherwise + // use int64 for a integer, otherwise use float64 for a + // float or complex128 for a complex. + Type* want_type = NULL; + Type* atype = (*pa)->type(); + if (atype->is_abstract()) + { + if (atype->integer_type() != NULL) + { + mpz_t val; + mpz_init(val); + Type* dummy; + if (this->integer_constant_value(true, val, &dummy) + && mpz_sgn(val) >= 0) + want_type = Type::lookup_integer_type("uint64"); + else + want_type = Type::lookup_integer_type("int64"); + mpz_clear(val); + } + else if (atype->float_type() != NULL) + want_type = Type::lookup_float_type("float64"); + else if (atype->complex_type() != NULL) + want_type = Type::lookup_complex_type("complex128"); + else if (atype->is_abstract_string_type()) + want_type = Type::lookup_string_type(); + else if (atype->is_abstract_boolean_type()) + want_type = Type::lookup_bool_type(); + else + gcc_unreachable(); + subcontext.type = want_type; + } + } + + (*pa)->determine_type(&subcontext); + } + } +} + +// If there is exactly one argument, return true. Otherwise give an +// error message and return false. + +bool +Builtin_call_expression::check_one_arg() +{ + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 1) + { + this->report_error(_("not enough arguments")); + return false; + } + else if (args->size() > 1) + { + this->report_error(_("too many arguments")); + return false; + } + if (args->front()->is_error_expression() + || args->front()->type()->is_error_type() + || args->front()->type()->is_undefined()) + { + this->set_is_error(); + return false; + } + return true; +} + +// Check argument types for a builtin function. + +void +Builtin_call_expression::do_check_types(Gogo*) +{ + switch (this->code_) + { + case BUILTIN_INVALID: + case BUILTIN_NEW: + case BUILTIN_MAKE: + return; + + case BUILTIN_LEN: + case BUILTIN_CAP: + { + // The single argument may be either a string or an array or a + // map or a channel, or a pointer to a closed array. + if (this->check_one_arg()) + { + Type* arg_type = this->one_arg()->type(); + if (arg_type->points_to() != NULL + && arg_type->points_to()->array_type() != NULL + && !arg_type->points_to()->is_open_array_type()) + arg_type = arg_type->points_to(); + if (this->code_ == BUILTIN_CAP) + { + if (!arg_type->is_error_type() + && arg_type->array_type() == NULL + && arg_type->channel_type() == NULL) + this->report_error(_("argument must be array or slice " + "or channel")); + } + else + { + if (!arg_type->is_error_type() + && !arg_type->is_string_type() + && arg_type->array_type() == NULL + && arg_type->map_type() == NULL + && arg_type->channel_type() == NULL) + this->report_error(_("argument must be string or " + "array or slice or map or channel")); + } + } + } + break; + + case BUILTIN_PRINT: + case BUILTIN_PRINTLN: + { + const Expression_list* args = this->args(); + if (args == NULL) + { + if (this->code_ == BUILTIN_PRINT) + warning_at(this->location(), 0, + "no arguments for builtin function %<%s%>", + (this->code_ == BUILTIN_PRINT + ? "print" + : "println")); + } + else + { + for (Expression_list::const_iterator p = args->begin(); + p != args->end(); + ++p) + { + Type* type = (*p)->type(); + if (type->is_error_type() + || type->is_string_type() + || type->integer_type() != NULL + || type->float_type() != NULL + || type->complex_type() != NULL + || type->is_boolean_type() + || type->points_to() != NULL + || type->interface_type() != NULL + || type->channel_type() != NULL + || type->map_type() != NULL + || type->function_type() != NULL + || type->is_open_array_type()) + ; + else + this->report_error(_("unsupported argument type to " + "builtin function")); + } + } + } + break; + + case BUILTIN_CLOSE: + case BUILTIN_CLOSED: + if (this->check_one_arg()) + { + if (this->one_arg()->type()->channel_type() == NULL) + this->report_error(_("argument must be channel")); + } + break; + + case BUILTIN_PANIC: + case BUILTIN_SIZEOF: + case BUILTIN_ALIGNOF: + this->check_one_arg(); + break; + + case BUILTIN_RECOVER: + if (this->args() != NULL && !this->args()->empty()) + this->report_error(_("too many arguments")); + break; + + case BUILTIN_OFFSETOF: + if (this->check_one_arg()) + { + Expression* arg = this->one_arg(); + if (arg->field_reference_expression() == NULL) + this->report_error(_("argument must be a field reference")); + } + break; + + case BUILTIN_COPY: + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 2) + { + this->report_error(_("not enough arguments")); + break; + } + else if (args->size() > 2) + { + this->report_error(_("too many arguments")); + break; + } + Type* arg1_type = args->front()->type(); + Type* arg2_type = args->back()->type(); + if (arg1_type->is_error_type() || arg2_type->is_error_type()) + break; + + Type* e1; + if (arg1_type->is_open_array_type()) + e1 = arg1_type->array_type()->element_type(); + else + { + this->report_error(_("left argument must be a slice")); + break; + } + + Type* e2; + if (arg2_type->is_open_array_type()) + e2 = arg2_type->array_type()->element_type(); + else if (arg2_type->is_string_type()) + e2 = Type::lookup_integer_type("uint8"); + else + { + this->report_error(_("right argument must be a slice or a string")); + break; + } + + if (!Type::are_identical(e1, e2, true, NULL)) + this->report_error(_("element types must be the same")); + } + break; + + case BUILTIN_APPEND: + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 2) + { + this->report_error(_("not enough arguments")); + break; + } + if (args->size() > 2) + { + this->report_error(_("too many arguments")); + break; + } + std::string reason; + if (!Type::are_assignable(args->front()->type(), args->back()->type(), + &reason)) + { + if (reason.empty()) + this->report_error(_("arguments 1 and 2 have different types")); + else + { + error_at(this->location(), + "arguments 1 and 2 have different types (%s)", + reason.c_str()); + this->set_is_error(); + } + } + break; + } + + case BUILTIN_REAL: + case BUILTIN_IMAG: + if (this->check_one_arg()) + { + if (this->one_arg()->type()->complex_type() == NULL) + this->report_error(_("argument must have complex type")); + } + break; + + case BUILTIN_COMPLEX: + { + const Expression_list* args = this->args(); + if (args == NULL || args->size() < 2) + this->report_error(_("not enough arguments")); + else if (args->size() > 2) + this->report_error(_("too many arguments")); + else if (args->front()->is_error_expression() + || args->front()->type()->is_error_type() + || args->back()->is_error_expression() + || args->back()->type()->is_error_type()) + this->set_is_error(); + else if (!Type::are_identical(args->front()->type(), + args->back()->type(), true, NULL)) + this->report_error(_("complex arguments must have identical types")); + else if (args->front()->type()->float_type() == NULL) + this->report_error(_("complex arguments must have " + "floating-point type")); + } + break; + + default: + gcc_unreachable(); + } +} + +// Return the tree for a builtin function. + +tree +Builtin_call_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + source_location location = this->location(); + switch (this->code_) + { + case BUILTIN_INVALID: + case BUILTIN_NEW: + case BUILTIN_MAKE: + gcc_unreachable(); + + case BUILTIN_LEN: + case BUILTIN_CAP: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 1); + Expression* arg = *args->begin(); + Type* arg_type = arg->type(); + + if (this->seen_) + { + gcc_assert(saw_errors()); + return error_mark_node; + } + this->seen_ = true; + + tree arg_tree = arg->get_tree(context); + + this->seen_ = false; + + if (arg_tree == error_mark_node) + return error_mark_node; + + if (arg_type->points_to() != NULL) + { + arg_type = arg_type->points_to(); + gcc_assert(arg_type->array_type() != NULL + && !arg_type->is_open_array_type()); + gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree))); + arg_tree = build_fold_indirect_ref(arg_tree); + } + + tree val_tree; + if (this->code_ == BUILTIN_LEN) + { + if (arg_type->is_string_type()) + val_tree = String_type::length_tree(gogo, arg_tree); + else if (arg_type->array_type() != NULL) + { + if (this->seen_) + { + gcc_assert(saw_errors()); + return error_mark_node; + } + this->seen_ = true; + val_tree = arg_type->array_type()->length_tree(gogo, arg_tree); + this->seen_ = false; + } + else if (arg_type->map_type() != NULL) + { + static tree map_len_fndecl; + val_tree = Gogo::call_builtin(&map_len_fndecl, + location, + "__go_map_len", + 1, + sizetype, + arg_type->get_tree(gogo), + arg_tree); + } + else if (arg_type->channel_type() != NULL) + { + static tree chan_len_fndecl; + val_tree = Gogo::call_builtin(&chan_len_fndecl, + location, + "__go_chan_len", + 1, + sizetype, + arg_type->get_tree(gogo), + arg_tree); + } + else + gcc_unreachable(); + } + else + { + if (arg_type->array_type() != NULL) + { + if (this->seen_) + { + gcc_assert(saw_errors()); + return error_mark_node; + } + this->seen_ = true; + val_tree = arg_type->array_type()->capacity_tree(gogo, + arg_tree); + this->seen_ = false; + } + else if (arg_type->channel_type() != NULL) + { + static tree chan_cap_fndecl; + val_tree = Gogo::call_builtin(&chan_cap_fndecl, + location, + "__go_chan_cap", + 1, + sizetype, + arg_type->get_tree(gogo), + arg_tree); + } + else + gcc_unreachable(); + } + + if (val_tree == error_mark_node) + return error_mark_node; + + tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo); + if (type_tree == TREE_TYPE(val_tree)) + return val_tree; + else + return fold(convert_to_integer(type_tree, val_tree)); + } + + case BUILTIN_PRINT: + case BUILTIN_PRINTLN: + { + const bool is_ln = this->code_ == BUILTIN_PRINTLN; + tree stmt_list = NULL_TREE; + + const Expression_list* call_args = this->args(); + if (call_args != NULL) + { + for (Expression_list::const_iterator p = call_args->begin(); + p != call_args->end(); + ++p) + { + if (is_ln && p != call_args->begin()) + { + static tree print_space_fndecl; + tree call = Gogo::call_builtin(&print_space_fndecl, + location, + "__go_print_space", + 0, + void_type_node); + if (call == error_mark_node) + return error_mark_node; + append_to_statement_list(call, &stmt_list); + } + + Type* type = (*p)->type(); + + tree arg = (*p)->get_tree(context); + if (arg == error_mark_node) + return error_mark_node; + + tree* pfndecl; + const char* fnname; + if (type->is_string_type()) + { + static tree print_string_fndecl; + pfndecl = &print_string_fndecl; + fnname = "__go_print_string"; + } + else if (type->integer_type() != NULL + && type->integer_type()->is_unsigned()) + { + static tree print_uint64_fndecl; + pfndecl = &print_uint64_fndecl; + fnname = "__go_print_uint64"; + Type* itype = Type::lookup_integer_type("uint64"); + arg = fold_convert_loc(location, itype->get_tree(gogo), + arg); + } + else if (type->integer_type() != NULL) + { + static tree print_int64_fndecl; + pfndecl = &print_int64_fndecl; + fnname = "__go_print_int64"; + Type* itype = Type::lookup_integer_type("int64"); + arg = fold_convert_loc(location, itype->get_tree(gogo), + arg); + } + else if (type->float_type() != NULL) + { + static tree print_double_fndecl; + pfndecl = &print_double_fndecl; + fnname = "__go_print_double"; + arg = fold_convert_loc(location, double_type_node, arg); + } + else if (type->complex_type() != NULL) + { + static tree print_complex_fndecl; + pfndecl = &print_complex_fndecl; + fnname = "__go_print_complex"; + arg = fold_convert_loc(location, complex_double_type_node, + arg); + } + else if (type->is_boolean_type()) + { + static tree print_bool_fndecl; + pfndecl = &print_bool_fndecl; + fnname = "__go_print_bool"; + } + else if (type->points_to() != NULL + || type->channel_type() != NULL + || type->map_type() != NULL + || type->function_type() != NULL) + { + static tree print_pointer_fndecl; + pfndecl = &print_pointer_fndecl; + fnname = "__go_print_pointer"; + arg = fold_convert_loc(location, ptr_type_node, arg); + } + else if (type->interface_type() != NULL) + { + if (type->interface_type()->is_empty()) + { + static tree print_empty_interface_fndecl; + pfndecl = &print_empty_interface_fndecl; + fnname = "__go_print_empty_interface"; + } + else + { + static tree print_interface_fndecl; + pfndecl = &print_interface_fndecl; + fnname = "__go_print_interface"; + } + } + else if (type->is_open_array_type()) + { + static tree print_slice_fndecl; + pfndecl = &print_slice_fndecl; + fnname = "__go_print_slice"; + } + else + gcc_unreachable(); + + tree call = Gogo::call_builtin(pfndecl, + location, + fnname, + 1, + void_type_node, + TREE_TYPE(arg), + arg); + if (call == error_mark_node) + return error_mark_node; + append_to_statement_list(call, &stmt_list); + } + } + + if (is_ln) + { + static tree print_nl_fndecl; + tree call = Gogo::call_builtin(&print_nl_fndecl, + location, + "__go_print_nl", + 0, + void_type_node); + if (call == error_mark_node) + return error_mark_node; + append_to_statement_list(call, &stmt_list); + } + + return stmt_list; + } + + case BUILTIN_PANIC: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 1); + Expression* arg = args->front(); + tree arg_tree = arg->get_tree(context); + if (arg_tree == error_mark_node) + return error_mark_node; + Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION); + arg_tree = Expression::convert_for_assignment(context, empty, + arg->type(), + arg_tree, location); + static tree panic_fndecl; + tree call = Gogo::call_builtin(&panic_fndecl, + location, + "__go_panic", + 1, + void_type_node, + TREE_TYPE(arg_tree), + arg_tree); + if (call == error_mark_node) + return error_mark_node; + // This function will throw an exception. + TREE_NOTHROW(panic_fndecl) = 0; + // This function will not return. + TREE_THIS_VOLATILE(panic_fndecl) = 1; + return call; + } + + case BUILTIN_RECOVER: + { + // The argument is set when building recover thunks. It's a + // boolean value which is true if we can recover a value now. + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 1); + Expression* arg = args->front(); + tree arg_tree = arg->get_tree(context); + if (arg_tree == error_mark_node) + return error_mark_node; + + Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION); + tree empty_tree = empty->get_tree(context->gogo()); + + Type* nil_type = Type::make_nil_type(); + Expression* nil = Expression::make_nil(location); + tree nil_tree = nil->get_tree(context); + tree empty_nil_tree = Expression::convert_for_assignment(context, + empty, + nil_type, + nil_tree, + location); + + // We need to handle a deferred call to recover specially, + // because it changes whether it can recover a panic or not. + // See test7 in test/recover1.go. + tree call; + if (this->is_deferred()) + { + static tree deferred_recover_fndecl; + call = Gogo::call_builtin(&deferred_recover_fndecl, + location, + "__go_deferred_recover", + 0, + empty_tree); + } + else + { + static tree recover_fndecl; + call = Gogo::call_builtin(&recover_fndecl, + location, + "__go_recover", + 0, + empty_tree); + } + if (call == error_mark_node) + return error_mark_node; + return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree, + call, empty_nil_tree); + } + + case BUILTIN_CLOSE: + case BUILTIN_CLOSED: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 1); + Expression* arg = args->front(); + tree arg_tree = arg->get_tree(context); + if (arg_tree == error_mark_node) + return error_mark_node; + if (this->code_ == BUILTIN_CLOSE) + { + static tree close_fndecl; + return Gogo::call_builtin(&close_fndecl, + location, + "__go_builtin_close", + 1, + void_type_node, + TREE_TYPE(arg_tree), + arg_tree); + } + else + { + static tree closed_fndecl; + return Gogo::call_builtin(&closed_fndecl, + location, + "__go_builtin_closed", + 1, + boolean_type_node, + TREE_TYPE(arg_tree), + arg_tree); + } + } + + case BUILTIN_SIZEOF: + case BUILTIN_OFFSETOF: + case BUILTIN_ALIGNOF: + { + mpz_t val; + mpz_init(val); + Type* dummy; + bool b = this->integer_constant_value(true, val, &dummy); + if (!b) + { + gcc_assert(saw_errors()); + return error_mark_node; + } + tree type = Type::lookup_integer_type("int")->get_tree(gogo); + tree ret = Expression::integer_constant_tree(val, type); + mpz_clear(val); + return ret; + } + + case BUILTIN_COPY: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 2); + Expression* arg1 = args->front(); + Expression* arg2 = args->back(); + + tree arg1_tree = arg1->get_tree(context); + tree arg2_tree = arg2->get_tree(context); + if (arg1_tree == error_mark_node || arg2_tree == error_mark_node) + return error_mark_node; + + Type* arg1_type = arg1->type(); + Array_type* at = arg1_type->array_type(); + arg1_tree = save_expr(arg1_tree); + tree arg1_val = at->value_pointer_tree(gogo, arg1_tree); + tree arg1_len = at->length_tree(gogo, arg1_tree); + if (arg1_val == error_mark_node || arg1_len == error_mark_node) + return error_mark_node; + + Type* arg2_type = arg2->type(); + tree arg2_val; + tree arg2_len; + if (arg2_type->is_open_array_type()) + { + at = arg2_type->array_type(); + arg2_tree = save_expr(arg2_tree); + arg2_val = at->value_pointer_tree(gogo, arg2_tree); + arg2_len = at->length_tree(gogo, arg2_tree); + } + else + { + arg2_tree = save_expr(arg2_tree); + arg2_val = String_type::bytes_tree(gogo, arg2_tree); + arg2_len = String_type::length_tree(gogo, arg2_tree); + } + if (arg2_val == error_mark_node || arg2_len == error_mark_node) + return error_mark_node; + + arg1_len = save_expr(arg1_len); + arg2_len = save_expr(arg2_len); + tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len), + fold_build2_loc(location, LT_EXPR, + boolean_type_node, + arg1_len, arg2_len), + arg1_len, arg2_len); + len = save_expr(len); + + Type* element_type = at->element_type(); + tree element_type_tree = element_type->get_tree(gogo); + if (element_type_tree == error_mark_node) + return error_mark_node; + tree element_size = TYPE_SIZE_UNIT(element_type_tree); + tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size), + len); + bytecount = fold_build2_loc(location, MULT_EXPR, + TREE_TYPE(element_size), + bytecount, element_size); + bytecount = fold_convert_loc(location, size_type_node, bytecount); + + arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val); + arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val); + + static tree copy_fndecl; + tree call = Gogo::call_builtin(©_fndecl, + location, + "__go_copy", + 3, + void_type_node, + ptr_type_node, + arg1_val, + ptr_type_node, + arg2_val, + size_type_node, + bytecount); + if (call == error_mark_node) + return error_mark_node; + + return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len), + call, len); + } + + case BUILTIN_APPEND: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 2); + Expression* arg1 = args->front(); + Expression* arg2 = args->back(); + + tree arg1_tree = arg1->get_tree(context); + tree arg2_tree = arg2->get_tree(context); + if (arg1_tree == error_mark_node || arg2_tree == error_mark_node) + return error_mark_node; + + Array_type* at = arg1->type()->array_type(); + Type* element_type = at->element_type(); + + arg2_tree = Expression::convert_for_assignment(context, at, + arg2->type(), + arg2_tree, + location); + if (arg2_tree == error_mark_node) + return error_mark_node; + + arg2_tree = save_expr(arg2_tree); + tree arg2_val = at->value_pointer_tree(gogo, arg2_tree); + tree arg2_len = at->length_tree(gogo, arg2_tree); + if (arg2_val == error_mark_node || arg2_len == error_mark_node) + return error_mark_node; + arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val); + arg2_len = fold_convert_loc(location, size_type_node, arg2_len); + + tree element_type_tree = element_type->get_tree(gogo); + if (element_type_tree == error_mark_node) + return error_mark_node; + tree element_size = TYPE_SIZE_UNIT(element_type_tree); + element_size = fold_convert_loc(location, size_type_node, + element_size); + + // We rebuild the decl each time since the slice types may + // change. + tree append_fndecl = NULL_TREE; + return Gogo::call_builtin(&append_fndecl, + location, + "__go_append", + 4, + TREE_TYPE(arg1_tree), + TREE_TYPE(arg1_tree), + arg1_tree, + ptr_type_node, + arg2_val, + size_type_node, + arg2_len, + size_type_node, + element_size); + } + + case BUILTIN_REAL: + case BUILTIN_IMAG: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 1); + Expression* arg = args->front(); + tree arg_tree = arg->get_tree(context); + if (arg_tree == error_mark_node) + return error_mark_node; + gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree))); + if (this->code_ == BUILTIN_REAL) + return fold_build1_loc(location, REALPART_EXPR, + TREE_TYPE(TREE_TYPE(arg_tree)), + arg_tree); + else + return fold_build1_loc(location, IMAGPART_EXPR, + TREE_TYPE(TREE_TYPE(arg_tree)), + arg_tree); + } + + case BUILTIN_COMPLEX: + { + const Expression_list* args = this->args(); + gcc_assert(args != NULL && args->size() == 2); + tree r = args->front()->get_tree(context); + tree i = args->back()->get_tree(context); + if (r == error_mark_node || i == error_mark_node) + return error_mark_node; + gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r)) + == TYPE_MAIN_VARIANT(TREE_TYPE(i))); + gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r))); + return fold_build2_loc(location, COMPLEX_EXPR, + build_complex_type(TREE_TYPE(r)), + r, i); + } + + default: + gcc_unreachable(); + } +} + +// We have to support exporting a builtin call expression, because +// code can set a constant to the result of a builtin expression. + +void +Builtin_call_expression::do_export(Export* exp) const +{ + bool ok = false; + + mpz_t val; + mpz_init(val); + Type* dummy; + if (this->integer_constant_value(true, val, &dummy)) + { + Integer_expression::export_integer(exp, val); + ok = true; + } + mpz_clear(val); + + if (!ok) + { + mpfr_t fval; + mpfr_init(fval); + if (this->float_constant_value(fval, &dummy)) + { + Float_expression::export_float(exp, fval); + ok = true; + } + mpfr_clear(fval); + } + + if (!ok) + { + mpfr_t real; + mpfr_t imag; + mpfr_init(real); + mpfr_init(imag); + if (this->complex_constant_value(real, imag, &dummy)) + { + Complex_expression::export_complex(exp, real, imag); + ok = true; + } + mpfr_clear(real); + mpfr_clear(imag); + } + + if (!ok) + { + error_at(this->location(), "value is not constant"); + return; + } + + // A trailing space lets us reliably identify the end of the number. + exp->write_c_string(" "); +} + +// Class Call_expression. + +// Traversal. + +int +Call_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (this->args_ != NULL) + { + if (this->args_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } + return TRAVERSE_CONTINUE; +} + +// Lower a call statement. + +Expression* +Call_expression::do_lower(Gogo* gogo, Named_object* function, int) +{ + // A type case can look like a function call. + if (this->fn_->is_type_expression() + && this->args_ != NULL + && this->args_->size() == 1) + return Expression::make_cast(this->fn_->type(), this->args_->front(), + this->location()); + + // Recognize a call to a builtin function. + Func_expression* fne = this->fn_->func_expression(); + if (fne != NULL + && fne->named_object()->is_function_declaration() + && fne->named_object()->func_declaration_value()->type()->is_builtin()) + return new Builtin_call_expression(gogo, this->fn_, this->args_, + this->is_varargs_, this->location()); + + // Handle an argument which is a call to a function which returns + // multiple results. + if (this->args_ != NULL + && this->args_->size() == 1 + && this->args_->front()->call_expression() != NULL + && this->fn_->type()->function_type() != NULL) + { + Function_type* fntype = this->fn_->type()->function_type(); + size_t rc = this->args_->front()->call_expression()->result_count(); + if (rc > 1 + && fntype->parameters() != NULL + && (fntype->parameters()->size() == rc + || (fntype->is_varargs() + && fntype->parameters()->size() - 1 <= rc))) + { + Call_expression* call = this->args_->front()->call_expression(); + Expression_list* args = new Expression_list; + for (size_t i = 0; i < rc; ++i) + args->push_back(Expression::make_call_result(call, i)); + // We can't return a new call expression here, because this + // one may be referenced by Call_result expressions. We + // also can't delete the old arguments, because we may still + // traverse them somewhere up the call stack. FIXME. + this->args_ = args; + } + } + + // Handle a call to a varargs function by packaging up the extra + // parameters. + if (this->fn_->type()->function_type() != NULL + && this->fn_->type()->function_type()->is_varargs()) + { + Function_type* fntype = this->fn_->type()->function_type(); + const Typed_identifier_list* parameters = fntype->parameters(); + gcc_assert(parameters != NULL && !parameters->empty()); + Type* varargs_type = parameters->back().type(); + return this->lower_varargs(gogo, function, varargs_type, + parameters->size()); + } + + return this; +} + +// Lower a call to a varargs function. FUNCTION is the function in +// which the call occurs--it's not the function we are calling. +// VARARGS_TYPE is the type of the varargs parameter, a slice type. +// PARAM_COUNT is the number of parameters of the function we are +// calling; the last of these parameters will be the varargs +// parameter. + +Expression* +Call_expression::lower_varargs(Gogo* gogo, Named_object* function, + Type* varargs_type, size_t param_count) +{ + if (this->varargs_are_lowered_) + return this; + + source_location loc = this->location(); + + gcc_assert(param_count > 0); + gcc_assert(varargs_type->is_open_array_type()); + + size_t arg_count = this->args_ == NULL ? 0 : this->args_->size(); + if (arg_count < param_count - 1) + { + // Not enough arguments; will be caught in check_types. + return this; + } + + Expression_list* old_args = this->args_; + Expression_list* new_args = new Expression_list(); + bool push_empty_arg = false; + if (old_args == NULL || old_args->empty()) + { + gcc_assert(param_count == 1); + push_empty_arg = true; + } + else + { + Expression_list::const_iterator pa; + int i = 1; + for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i) + { + if (static_cast<size_t>(i) == param_count) + break; + new_args->push_back(*pa); + } + + // We have reached the varargs parameter. + + bool issued_error = false; + if (pa == old_args->end()) + push_empty_arg = true; + else if (pa + 1 == old_args->end() && this->is_varargs_) + new_args->push_back(*pa); + else if (this->is_varargs_) + { + this->report_error(_("too many arguments")); + return this; + } + else + { + Type* element_type = varargs_type->array_type()->element_type(); + Expression_list* vals = new Expression_list; + for (; pa != old_args->end(); ++pa, ++i) + { + // Check types here so that we get a better message. + Type* patype = (*pa)->type(); + source_location paloc = (*pa)->location(); + if (!this->check_argument_type(i, element_type, patype, + paloc, issued_error)) + continue; + vals->push_back(*pa); + } + Expression* val = + Expression::make_slice_composite_literal(varargs_type, vals, loc); + new_args->push_back(val); + } + } + + if (push_empty_arg) + new_args->push_back(Expression::make_nil(loc)); + + // We can't return a new call expression here, because this one may + // be referenced by Call_result expressions. FIXME. + if (old_args != NULL) + delete old_args; + this->args_ = new_args; + this->varargs_are_lowered_ = true; + + // Lower all the new subexpressions. + Expression* ret = this; + gogo->lower_expression(function, &ret); + gcc_assert(ret == this); + return ret; +} + +// Get the function type. Returns NULL if we don't know the type. If +// this returns NULL, and if_ERROR is true, issues an error. + +Function_type* +Call_expression::get_function_type() const +{ + return this->fn_->type()->function_type(); +} + +// Return the number of values which this call will return. + +size_t +Call_expression::result_count() const +{ + const Function_type* fntype = this->get_function_type(); + if (fntype == NULL) + return 0; + if (fntype->results() == NULL) + return 0; + return fntype->results()->size(); +} + +// Return whether this is a call to the predeclared function recover. + +bool +Call_expression::is_recover_call() const +{ + return this->do_is_recover_call(); +} + +// Set the argument to the recover function. + +void +Call_expression::set_recover_arg(Expression* arg) +{ + this->do_set_recover_arg(arg); +} + +// Virtual functions also implemented by Builtin_call_expression. + +bool +Call_expression::do_is_recover_call() const +{ + return false; +} + +void +Call_expression::do_set_recover_arg(Expression*) +{ + gcc_unreachable(); +} + +// Get the type. + +Type* +Call_expression::do_type() +{ + if (this->type_ != NULL) + return this->type_; + + Type* ret; + Function_type* fntype = this->get_function_type(); + if (fntype == NULL) + return Type::make_error_type(); + + const Typed_identifier_list* results = fntype->results(); + if (results == NULL) + ret = Type::make_void_type(); + else if (results->size() == 1) + ret = results->begin()->type(); + else + ret = Type::make_call_multiple_result_type(this); + + this->type_ = ret; + + return this->type_; +} + +// Determine types for a call expression. We can use the function +// parameter types to set the types of the arguments. + +void +Call_expression::do_determine_type(const Type_context*) +{ + if (!this->determining_types()) + return; + + this->fn_->determine_type_no_context(); + Function_type* fntype = this->get_function_type(); + const Typed_identifier_list* parameters = NULL; + if (fntype != NULL) + parameters = fntype->parameters(); + if (this->args_ != NULL) + { + Typed_identifier_list::const_iterator pt; + if (parameters != NULL) + pt = parameters->begin(); + for (Expression_list::const_iterator pa = this->args_->begin(); + pa != this->args_->end(); + ++pa) + { + if (parameters != NULL && pt != parameters->end()) + { + Type_context subcontext(pt->type(), false); + (*pa)->determine_type(&subcontext); + ++pt; + } + else + (*pa)->determine_type_no_context(); + } + } +} + +// Called when determining types for a Call_expression. Return true +// if we should go ahead, false if they have already been determined. + +bool +Call_expression::determining_types() +{ + if (this->types_are_determined_) + return false; + else + { + this->types_are_determined_ = true; + return true; + } +} + +// Check types for parameter I. + +bool +Call_expression::check_argument_type(int i, const Type* parameter_type, + const Type* argument_type, + source_location argument_location, + bool issued_error) +{ + std::string reason; + if (!Type::are_assignable(parameter_type, argument_type, &reason)) + { + if (!issued_error) + { + if (reason.empty()) + error_at(argument_location, "argument %d has incompatible type", i); + else + error_at(argument_location, + "argument %d has incompatible type (%s)", + i, reason.c_str()); + } + this->set_is_error(); + return false; + } + return true; +} + +// Check types. + +void +Call_expression::do_check_types(Gogo*) +{ + Function_type* fntype = this->get_function_type(); + if (fntype == NULL) + { + if (!this->fn_->type()->is_error_type()) + this->report_error(_("expected function")); + return; + } + + if (fntype->is_method()) + { + // We don't support pointers to methods, so the function has to + // be a bound method expression. + Bound_method_expression* bme = this->fn_->bound_method_expression(); + if (bme == NULL) + { + this->report_error(_("method call without object")); + return; + } + Type* first_arg_type = bme->first_argument()->type(); + if (first_arg_type->points_to() == NULL) + { + // When passing a value, we need to check that we are + // permitted to copy it. + std::string reason; + if (!Type::are_assignable(fntype->receiver()->type(), + first_arg_type, &reason)) + { + if (reason.empty()) + this->report_error(_("incompatible type for receiver")); + else + { + error_at(this->location(), + "incompatible type for receiver (%s)", + reason.c_str()); + this->set_is_error(); + } + } + } + } + + // Note that varargs was handled by the lower_varargs() method, so + // we don't have to worry about it here. + + const Typed_identifier_list* parameters = fntype->parameters(); + if (this->args_ == NULL) + { + if (parameters != NULL && !parameters->empty()) + this->report_error(_("not enough arguments")); + } + else if (parameters == NULL) + this->report_error(_("too many arguments")); + else + { + int i = 0; + Typed_identifier_list::const_iterator pt = parameters->begin(); + for (Expression_list::const_iterator pa = this->args_->begin(); + pa != this->args_->end(); + ++pa, ++pt, ++i) + { + if (pt == parameters->end()) + { + this->report_error(_("too many arguments")); + return; + } + this->check_argument_type(i + 1, pt->type(), (*pa)->type(), + (*pa)->location(), false); + } + if (pt != parameters->end()) + this->report_error(_("not enough arguments")); + } +} + +// Return whether we have to use a temporary variable to ensure that +// we evaluate this call expression in order. If the call returns no +// results then it will inevitably be executed last. If the call +// returns more than one result then it will be used with Call_result +// expressions. So we only have to use a temporary variable if the +// call returns exactly one result. + +bool +Call_expression::do_must_eval_in_order() const +{ + return this->result_count() == 1; +} + +// Get the function and the first argument to use when calling a bound +// method. + +tree +Call_expression::bound_method_function(Translate_context* context, + Bound_method_expression* bound_method, + tree* first_arg_ptr) +{ + Expression* first_argument = bound_method->first_argument(); + tree first_arg = first_argument->get_tree(context); + if (first_arg == error_mark_node) + return error_mark_node; + + // We always pass a pointer to the first argument when calling a + // method. + if (first_argument->type()->points_to() == NULL) + { + tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg)); + if (TREE_ADDRESSABLE(TREE_TYPE(first_arg)) + || DECL_P(first_arg) + || TREE_CODE(first_arg) == INDIRECT_REF + || TREE_CODE(first_arg) == COMPONENT_REF) + { + first_arg = build_fold_addr_expr(first_arg); + if (DECL_P(first_arg)) + TREE_ADDRESSABLE(first_arg) = 1; + } + else + { + tree tmp = create_tmp_var(TREE_TYPE(first_arg), + get_name(first_arg)); + DECL_IGNORED_P(tmp) = 0; + DECL_INITIAL(tmp) = first_arg; + first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type, + build1(DECL_EXPR, void_type_node, tmp), + build_fold_addr_expr(tmp)); + TREE_ADDRESSABLE(tmp) = 1; + } + if (first_arg == error_mark_node) + return error_mark_node; + } + + Type* fatype = bound_method->first_argument_type(); + if (fatype != NULL) + { + if (fatype->points_to() == NULL) + fatype = Type::make_pointer_type(fatype); + first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg); + if (first_arg == error_mark_node + || TREE_TYPE(first_arg) == error_mark_node) + return error_mark_node; + } + + *first_arg_ptr = first_arg; + + return bound_method->method()->get_tree(context); +} + +// Get the function and the first argument to use when calling an +// interface method. + +tree +Call_expression::interface_method_function( + Translate_context* context, + Interface_field_reference_expression* interface_method, + tree* first_arg_ptr) +{ + tree expr = interface_method->expr()->get_tree(context); + if (expr == error_mark_node) + return error_mark_node; + expr = save_expr(expr); + tree first_arg = interface_method->get_underlying_object_tree(context, expr); + if (first_arg == error_mark_node) + return error_mark_node; + *first_arg_ptr = first_arg; + return interface_method->get_function_tree(context, expr); +} + +// Build the call expression. + +tree +Call_expression::do_get_tree(Translate_context* context) +{ + if (this->tree_ != NULL_TREE) + return this->tree_; + + Function_type* fntype = this->get_function_type(); + if (fntype == NULL) + return error_mark_node; + + if (this->fn_->is_error_expression()) + return error_mark_node; + + Gogo* gogo = context->gogo(); + source_location location = this->location(); + + Func_expression* func = this->fn_->func_expression(); + Bound_method_expression* bound_method = this->fn_->bound_method_expression(); + Interface_field_reference_expression* interface_method = + this->fn_->interface_field_reference_expression(); + const bool has_closure = func != NULL && func->closure() != NULL; + const bool is_method = bound_method != NULL || interface_method != NULL; + gcc_assert(!fntype->is_method() || is_method); + + int nargs; + tree* args; + if (this->args_ == NULL || this->args_->empty()) + { + nargs = is_method ? 1 : 0; + args = nargs == 0 ? NULL : new tree[nargs]; + } + else + { + const Typed_identifier_list* params = fntype->parameters(); + gcc_assert(params != NULL); + + nargs = this->args_->size(); + int i = is_method ? 1 : 0; + nargs += i; + args = new tree[nargs]; + + Typed_identifier_list::const_iterator pp = params->begin(); + Expression_list::const_iterator pe; + for (pe = this->args_->begin(); + pe != this->args_->end(); + ++pe, ++pp, ++i) + { + gcc_assert(pp != params->end()); + tree arg_val = (*pe)->get_tree(context); + args[i] = Expression::convert_for_assignment(context, + pp->type(), + (*pe)->type(), + arg_val, + location); + if (args[i] == error_mark_node) + { + delete[] args; + return error_mark_node; + } + } + gcc_assert(pp == params->end()); + gcc_assert(i == nargs); + } + + tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo))); + if (rettype == error_mark_node) + { + delete[] args; + return error_mark_node; + } + + tree fn; + if (has_closure) + fn = func->get_tree_without_closure(gogo); + else if (!is_method) + fn = this->fn_->get_tree(context); + else if (bound_method != NULL) + fn = this->bound_method_function(context, bound_method, &args[0]); + else if (interface_method != NULL) + fn = this->interface_method_function(context, interface_method, &args[0]); + else + gcc_unreachable(); + + if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node) + { + delete[] args; + return error_mark_node; + } + + tree fndecl = fn; + if (TREE_CODE(fndecl) == ADDR_EXPR) + fndecl = TREE_OPERAND(fndecl, 0); + + // Add a type cast in case the type of the function is a recursive + // type which refers to itself. + if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl)) + { + tree fnt = fntype->get_tree(gogo); + if (fnt == error_mark_node) + return error_mark_node; + fn = fold_convert_loc(location, fnt, fn); + } + + // This is to support builtin math functions when using 80387 math. + tree excess_type = NULL_TREE; + if (DECL_P(fndecl) + && DECL_IS_BUILTIN(fndecl) + && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL + && nargs > 0 + && ((SCALAR_FLOAT_TYPE_P(rettype) + && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0]))) + || (COMPLEX_FLOAT_TYPE_P(rettype) + && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0]))))) + { + excess_type = excess_precision_type(TREE_TYPE(args[0])); + if (excess_type != NULL_TREE) + { + tree excess_fndecl = mathfn_built_in(excess_type, + DECL_FUNCTION_CODE(fndecl)); + if (excess_fndecl == NULL_TREE) + excess_type = NULL_TREE; + else + { + fn = build_fold_addr_expr_loc(location, excess_fndecl); + for (int i = 0; i < nargs; ++i) + args[i] = ::convert(excess_type, args[i]); + } + } + } + + tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype, + fn, nargs, args); + delete[] args; + + SET_EXPR_LOCATION(ret, location); + + if (has_closure) + { + tree closure_tree = func->closure()->get_tree(context); + if (closure_tree != error_mark_node) + CALL_EXPR_STATIC_CHAIN(ret) = closure_tree; + } + + // If this is a recursive function type which returns itself, as in + // type F func() F + // we have used ptr_type_node for the return type. Add a cast here + // to the correct type. + if (TREE_TYPE(ret) == ptr_type_node) + { + tree t = this->type()->base()->get_tree(gogo); + ret = fold_convert_loc(location, t, ret); + } + + if (excess_type != NULL_TREE) + { + // Calling convert here can undo our excess precision change. + // That may or may not be a bug in convert_to_real. + ret = build1(NOP_EXPR, rettype, ret); + } + + // If there is more than one result, we will refer to the call + // multiple times. + if (fntype->results() != NULL && fntype->results()->size() > 1) + ret = save_expr(ret); + + this->tree_ = ret; + + return ret; +} + +// Make a call expression. + +Call_expression* +Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs, + source_location location) +{ + return new Call_expression(fn, args, is_varargs, location); +} + +// A single result from a call which returns multiple results. + +class Call_result_expression : public Expression +{ + public: + Call_result_expression(Call_expression* call, unsigned int index) + : Expression(EXPRESSION_CALL_RESULT, call->location()), + call_(call), index_(index) + { } + + protected: + int + do_traverse(Traverse*); + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Call_result_expression(this->call_->call_expression(), + this->index_); + } + + bool + do_must_eval_in_order() const + { return true; } + + tree + do_get_tree(Translate_context*); + + private: + // The underlying call expression. + Expression* call_; + // Which result we want. + unsigned int index_; +}; + +// Traverse a call result. + +int +Call_result_expression::do_traverse(Traverse* traverse) +{ + if (traverse->remember_expression(this->call_)) + { + // We have already traversed the call expression. + return TRAVERSE_CONTINUE; + } + return Expression::traverse(&this->call_, traverse); +} + +// Get the type. + +Type* +Call_result_expression::do_type() +{ + if (this->classification() == EXPRESSION_ERROR) + return Type::make_error_type(); + + // THIS->CALL_ can be replaced with a temporary reference due to + // Call_expression::do_must_eval_in_order when there is an error. + Call_expression* ce = this->call_->call_expression(); + if (ce == NULL) + { + this->set_is_error(); + return Type::make_error_type(); + } + Function_type* fntype = ce->get_function_type(); + if (fntype == NULL) + { + this->set_is_error(); + return Type::make_error_type(); + } + const Typed_identifier_list* results = fntype->results(); + if (results == NULL) + { + this->report_error(_("number of results does not match " + "number of values")); + return Type::make_error_type(); + } + Typed_identifier_list::const_iterator pr = results->begin(); + for (unsigned int i = 0; i < this->index_; ++i) + { + if (pr == results->end()) + break; + ++pr; + } + if (pr == results->end()) + { + this->report_error(_("number of results does not match " + "number of values")); + return Type::make_error_type(); + } + return pr->type(); +} + +// Check the type. Just make sure that we trigger the warning in +// do_type. + +void +Call_result_expression::do_check_types(Gogo*) +{ + this->type(); +} + +// Determine the type. We have nothing to do here, but the 0 result +// needs to pass down to the caller. + +void +Call_result_expression::do_determine_type(const Type_context*) +{ + this->call_->determine_type_no_context(); +} + +// Return the tree. + +tree +Call_result_expression::do_get_tree(Translate_context* context) +{ + tree call_tree = this->call_->get_tree(context); + if (call_tree == error_mark_node) + return error_mark_node; + if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE) + { + gcc_assert(saw_errors()); + return error_mark_node; + } + tree field = TYPE_FIELDS(TREE_TYPE(call_tree)); + for (unsigned int i = 0; i < this->index_; ++i) + { + gcc_assert(field != NULL_TREE); + field = DECL_CHAIN(field); + } + gcc_assert(field != NULL_TREE); + return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE); +} + +// Make a reference to a single result of a call which returns +// multiple results. + +Expression* +Expression::make_call_result(Call_expression* call, unsigned int index) +{ + return new Call_result_expression(call, index); +} + +// Class Index_expression. + +// Traversal. + +int +Index_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT + || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT + || (this->end_ != NULL + && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Lower an index expression. This converts the generic index +// expression into an array index, a string index, or a map index. + +Expression* +Index_expression::do_lower(Gogo*, Named_object*, int) +{ + source_location location = this->location(); + Expression* left = this->left_; + Expression* start = this->start_; + Expression* end = this->end_; + + Type* type = left->type(); + if (type->is_error_type()) + return Expression::make_error(location); + else if (left->is_type_expression()) + { + error_at(location, "attempt to index type expression"); + return Expression::make_error(location); + } + else if (type->array_type() != NULL) + return Expression::make_array_index(left, start, end, location); + else if (type->points_to() != NULL + && type->points_to()->array_type() != NULL + && !type->points_to()->is_open_array_type()) + { + Expression* deref = Expression::make_unary(OPERATOR_MULT, left, + location); + return Expression::make_array_index(deref, start, end, location); + } + else if (type->is_string_type()) + return Expression::make_string_index(left, start, end, location); + else if (type->map_type() != NULL) + { + if (end != NULL) + { + error_at(location, "invalid slice of map"); + return Expression::make_error(location); + } + Map_index_expression* ret= Expression::make_map_index(left, start, + location); + if (this->is_lvalue_) + ret->set_is_lvalue(); + return ret; + } + else + { + error_at(location, + "attempt to index object which is not array, string, or map"); + return Expression::make_error(location); + } +} + +// Make an index expression. + +Expression* +Expression::make_index(Expression* left, Expression* start, Expression* end, + source_location location) +{ + return new Index_expression(left, start, end, location); +} + +// An array index. This is used for both indexing and slicing. + +class Array_index_expression : public Expression +{ + public: + Array_index_expression(Expression* array, Expression* start, + Expression* end, source_location location) + : Expression(EXPRESSION_ARRAY_INDEX, location), + array_(array), start_(start), end_(end), type_(NULL) + { } + + protected: + int + do_traverse(Traverse*); + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return Expression::make_array_index(this->array_->copy(), + this->start_->copy(), + (this->end_ == NULL + ? NULL + : this->end_->copy()), + this->location()); + } + + bool + do_is_addressable() const; + + void + do_address_taken(bool escapes) + { this->array_->address_taken(escapes); } + + tree + do_get_tree(Translate_context*); + + private: + // The array we are getting a value from. + Expression* array_; + // The start or only index. + Expression* start_; + // The end index of a slice. This may be NULL for a simple array + // index, or it may be a nil expression for the length of the array. + Expression* end_; + // The type of the expression. + Type* type_; +}; + +// Array index traversal. + +int +Array_index_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (this->end_ != NULL) + { + if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } + return TRAVERSE_CONTINUE; +} + +// Return the type of an array index. + +Type* +Array_index_expression::do_type() +{ + if (this->type_ == NULL) + { + Array_type* type = this->array_->type()->array_type(); + if (type == NULL) + this->type_ = Type::make_error_type(); + else if (this->end_ == NULL) + this->type_ = type->element_type(); + else if (type->is_open_array_type()) + { + // A slice of a slice has the same type as the original + // slice. + this->type_ = this->array_->type()->deref(); + } + else + { + // A slice of an array is a slice. + this->type_ = Type::make_array_type(type->element_type(), NULL); + } + } + return this->type_; +} + +// Set the type of an array index. + +void +Array_index_expression::do_determine_type(const Type_context*) +{ + this->array_->determine_type_no_context(); + this->start_->determine_type_no_context(); + if (this->end_ != NULL) + this->end_->determine_type_no_context(); +} + +// Check types of an array index. + +void +Array_index_expression::do_check_types(Gogo*) +{ + if (this->start_->type()->integer_type() == NULL) + this->report_error(_("index must be integer")); + if (this->end_ != NULL + && this->end_->type()->integer_type() == NULL + && !this->end_->is_nil_expression()) + this->report_error(_("slice end must be integer")); + + Array_type* array_type = this->array_->type()->array_type(); + if (array_type == NULL) + { + gcc_assert(this->array_->type()->is_error_type()); + return; + } + + unsigned int int_bits = + Type::lookup_integer_type("int")->integer_type()->bits(); + + Type* dummy; + mpz_t lval; + mpz_init(lval); + bool lval_valid = (array_type->length() != NULL + && array_type->length()->integer_constant_value(true, + lval, + &dummy)); + mpz_t ival; + mpz_init(ival); + if (this->start_->integer_constant_value(true, ival, &dummy)) + { + if (mpz_sgn(ival) < 0 + || mpz_sizeinbase(ival, 2) >= int_bits + || (lval_valid + && (this->end_ == NULL + ? mpz_cmp(ival, lval) >= 0 + : mpz_cmp(ival, lval) > 0))) + { + error_at(this->start_->location(), "array index out of bounds"); + this->set_is_error(); + } + } + if (this->end_ != NULL && !this->end_->is_nil_expression()) + { + if (this->end_->integer_constant_value(true, ival, &dummy)) + { + if (mpz_sgn(ival) < 0 + || mpz_sizeinbase(ival, 2) >= int_bits + || (lval_valid && mpz_cmp(ival, lval) > 0)) + { + error_at(this->end_->location(), "array index out of bounds"); + this->set_is_error(); + } + } + } + mpz_clear(ival); + mpz_clear(lval); + + // A slice of an array requires an addressable array. A slice of a + // slice is always possible. + if (this->end_ != NULL + && !array_type->is_open_array_type() + && !this->array_->is_addressable()) + this->report_error(_("array is not addressable")); +} + +// Return whether this expression is addressable. + +bool +Array_index_expression::do_is_addressable() const +{ + // A slice expression is not addressable. + if (this->end_ != NULL) + return false; + + // An index into a slice is addressable. + if (this->array_->type()->is_open_array_type()) + return true; + + // An index into an array is addressable if the array is + // addressable. + return this->array_->is_addressable(); +} + +// Get a tree for an array index. + +tree +Array_index_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + source_location loc = this->location(); + + Array_type* array_type = this->array_->type()->array_type(); + if (array_type == NULL) + { + gcc_assert(this->array_->type()->is_error_type()); + return error_mark_node; + } + + tree type_tree = array_type->get_tree(gogo); + if (type_tree == error_mark_node) + return error_mark_node; + + tree array_tree = this->array_->get_tree(context); + if (array_tree == error_mark_node) + return error_mark_node; + + if (array_type->length() == NULL && !DECL_P(array_tree)) + array_tree = save_expr(array_tree); + tree length_tree = array_type->length_tree(gogo, array_tree); + if (length_tree == error_mark_node) + return error_mark_node; + length_tree = save_expr(length_tree); + tree length_type = TREE_TYPE(length_tree); + + tree bad_index = boolean_false_node; + + tree start_tree = this->start_->get_tree(context); + if (start_tree == error_mark_node) + return error_mark_node; + if (!DECL_P(start_tree)) + start_tree = save_expr(start_tree); + if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree))) + start_tree = convert_to_integer(length_type, start_tree); + + bad_index = Expression::check_bounds(start_tree, length_type, bad_index, + loc); + + start_tree = fold_convert_loc(loc, length_type, start_tree); + bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index, + fold_build2_loc(loc, + (this->end_ == NULL + ? GE_EXPR + : GT_EXPR), + boolean_type_node, start_tree, + length_tree)); + + int code = (array_type->length() != NULL + ? (this->end_ == NULL + ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS + : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS) + : (this->end_ == NULL + ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS + : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS)); + tree crash = Gogo::runtime_error(code, loc); + + if (this->end_ == NULL) + { + // Simple array indexing. This has to return an l-value, so + // wrap the index check into START_TREE. + start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree), + build3(COND_EXPR, void_type_node, + bad_index, crash, NULL_TREE), + start_tree); + start_tree = fold_convert_loc(loc, sizetype, start_tree); + + if (array_type->length() != NULL) + { + // Fixed array. + return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree, + start_tree, NULL_TREE, NULL_TREE); + } + else + { + // Open array. + tree values = array_type->value_pointer_tree(gogo, array_tree); + tree element_type_tree = array_type->element_type()->get_tree(gogo); + if (element_type_tree == error_mark_node) + return error_mark_node; + tree element_size = TYPE_SIZE_UNIT(element_type_tree); + tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype, + start_tree, element_size); + tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, + TREE_TYPE(values), values, offset); + return build_fold_indirect_ref(ptr); + } + } + + // Array slice. + + tree capacity_tree = array_type->capacity_tree(gogo, array_tree); + if (capacity_tree == error_mark_node) + return error_mark_node; + capacity_tree = fold_convert_loc(loc, length_type, capacity_tree); + + tree end_tree; + if (this->end_->is_nil_expression()) + end_tree = length_tree; + else + { + end_tree = this->end_->get_tree(context); + if (end_tree == error_mark_node) + return error_mark_node; + if (!DECL_P(end_tree)) + end_tree = save_expr(end_tree); + if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree))) + end_tree = convert_to_integer(length_type, end_tree); + + bad_index = Expression::check_bounds(end_tree, length_type, bad_index, + loc); + + end_tree = fold_convert_loc(loc, length_type, end_tree); + + capacity_tree = save_expr(capacity_tree); + tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, + fold_build2_loc(loc, LT_EXPR, + boolean_type_node, + end_tree, start_tree), + fold_build2_loc(loc, GT_EXPR, + boolean_type_node, + end_tree, capacity_tree)); + bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, + bad_index, bad_end); + } + + tree element_type_tree = array_type->element_type()->get_tree(gogo); + if (element_type_tree == error_mark_node) + return error_mark_node; + tree element_size = TYPE_SIZE_UNIT(element_type_tree); + + tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype, + fold_convert_loc(loc, sizetype, start_tree), + element_size); + + tree value_pointer = array_type->value_pointer_tree(gogo, array_tree); + if (value_pointer == error_mark_node) + return error_mark_node; + + value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR, + TREE_TYPE(value_pointer), + value_pointer, offset); + + tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type, + end_tree, start_tree); + + tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type, + capacity_tree, start_tree); + + tree struct_tree = this->type()->get_tree(gogo); + gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE); + + VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3); + + constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); + tree field = TYPE_FIELDS(struct_tree); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0); + elt->index = field; + elt->value = value_pointer; + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0); + elt->index = field; + elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0); + elt->index = field; + elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree); + + tree constructor = build_constructor(struct_tree, init); + + if (TREE_CONSTANT(value_pointer) + && TREE_CONSTANT(result_length_tree) + && TREE_CONSTANT(result_capacity_tree)) + TREE_CONSTANT(constructor) = 1; + + return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor), + build3(COND_EXPR, void_type_node, + bad_index, crash, NULL_TREE), + constructor); +} + +// Make an array index expression. END may be NULL. + +Expression* +Expression::make_array_index(Expression* array, Expression* start, + Expression* end, source_location location) +{ + // Taking a slice of a composite literal requires moving the literal + // onto the heap. + if (end != NULL && array->is_composite_literal()) + { + array = Expression::make_heap_composite(array, location); + array = Expression::make_unary(OPERATOR_MULT, array, location); + } + return new Array_index_expression(array, start, end, location); +} + +// A string index. This is used for both indexing and slicing. + +class String_index_expression : public Expression +{ + public: + String_index_expression(Expression* string, Expression* start, + Expression* end, source_location location) + : Expression(EXPRESSION_STRING_INDEX, location), + string_(string), start_(start), end_(end) + { } + + protected: + int + do_traverse(Traverse*); + + Type* + do_type(); + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return Expression::make_string_index(this->string_->copy(), + this->start_->copy(), + (this->end_ == NULL + ? NULL + : this->end_->copy()), + this->location()); + } + + tree + do_get_tree(Translate_context*); + + private: + // The string we are getting a value from. + Expression* string_; + // The start or only index. + Expression* start_; + // The end index of a slice. This may be NULL for a single index, + // or it may be a nil expression for the length of the string. + Expression* end_; +}; + +// String index traversal. + +int +String_index_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (this->end_ != NULL) + { + if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } + return TRAVERSE_CONTINUE; +} + +// Return the type of a string index. + +Type* +String_index_expression::do_type() +{ + if (this->end_ == NULL) + return Type::lookup_integer_type("uint8"); + else + return this->string_->type(); +} + +// Determine the type of a string index. + +void +String_index_expression::do_determine_type(const Type_context*) +{ + this->string_->determine_type_no_context(); + this->start_->determine_type_no_context(); + if (this->end_ != NULL) + this->end_->determine_type_no_context(); +} + +// Check types of a string index. + +void +String_index_expression::do_check_types(Gogo*) +{ + if (this->start_->type()->integer_type() == NULL) + this->report_error(_("index must be integer")); + if (this->end_ != NULL + && this->end_->type()->integer_type() == NULL + && !this->end_->is_nil_expression()) + this->report_error(_("slice end must be integer")); + + std::string sval; + bool sval_valid = this->string_->string_constant_value(&sval); + + mpz_t ival; + mpz_init(ival); + Type* dummy; + if (this->start_->integer_constant_value(true, ival, &dummy)) + { + if (mpz_sgn(ival) < 0 + || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0)) + { + error_at(this->start_->location(), "string index out of bounds"); + this->set_is_error(); + } + } + if (this->end_ != NULL && !this->end_->is_nil_expression()) + { + if (this->end_->integer_constant_value(true, ival, &dummy)) + { + if (mpz_sgn(ival) < 0 + || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0)) + { + error_at(this->end_->location(), "string index out of bounds"); + this->set_is_error(); + } + } + } + mpz_clear(ival); +} + +// Get a tree for a string index. + +tree +String_index_expression::do_get_tree(Translate_context* context) +{ + source_location loc = this->location(); + + tree string_tree = this->string_->get_tree(context); + if (string_tree == error_mark_node) + return error_mark_node; + + if (this->string_->type()->points_to() != NULL) + string_tree = build_fold_indirect_ref(string_tree); + if (!DECL_P(string_tree)) + string_tree = save_expr(string_tree); + tree string_type = TREE_TYPE(string_tree); + + tree length_tree = String_type::length_tree(context->gogo(), string_tree); + length_tree = save_expr(length_tree); + tree length_type = TREE_TYPE(length_tree); + + tree bad_index = boolean_false_node; + + tree start_tree = this->start_->get_tree(context); + if (start_tree == error_mark_node) + return error_mark_node; + if (!DECL_P(start_tree)) + start_tree = save_expr(start_tree); + if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree))) + start_tree = convert_to_integer(length_type, start_tree); + + bad_index = Expression::check_bounds(start_tree, length_type, bad_index, + loc); + + start_tree = fold_convert_loc(loc, length_type, start_tree); + + int code = (this->end_ == NULL + ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS + : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS); + tree crash = Gogo::runtime_error(code, loc); + + if (this->end_ == NULL) + { + bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, + bad_index, + fold_build2_loc(loc, GE_EXPR, + boolean_type_node, + start_tree, length_tree)); + + tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree); + tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree), + bytes_tree, + fold_convert_loc(loc, sizetype, start_tree)); + tree index = build_fold_indirect_ref_loc(loc, ptr); + + return build2(COMPOUND_EXPR, TREE_TYPE(index), + build3(COND_EXPR, void_type_node, + bad_index, crash, NULL_TREE), + index); + } + else + { + tree end_tree; + if (this->end_->is_nil_expression()) + end_tree = build_int_cst(length_type, -1); + else + { + end_tree = this->end_->get_tree(context); + if (end_tree == error_mark_node) + return error_mark_node; + if (!DECL_P(end_tree)) + end_tree = save_expr(end_tree); + if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree))) + end_tree = convert_to_integer(length_type, end_tree); + + bad_index = Expression::check_bounds(end_tree, length_type, + bad_index, loc); + + end_tree = fold_convert_loc(loc, length_type, end_tree); + } + + static tree strslice_fndecl; + tree ret = Gogo::call_builtin(&strslice_fndecl, + loc, + "__go_string_slice", + 3, + string_type, + string_type, + string_tree, + length_type, + start_tree, + length_type, + end_tree); + if (ret == error_mark_node) + return error_mark_node; + // This will panic if the bounds are out of range for the + // string. + TREE_NOTHROW(strslice_fndecl) = 0; + + if (bad_index == boolean_false_node) + return ret; + else + return build2(COMPOUND_EXPR, TREE_TYPE(ret), + build3(COND_EXPR, void_type_node, + bad_index, crash, NULL_TREE), + ret); + } +} + +// Make a string index expression. END may be NULL. + +Expression* +Expression::make_string_index(Expression* string, Expression* start, + Expression* end, source_location location) +{ + return new String_index_expression(string, start, end, location); +} + +// Class Map_index. + +// Get the type of the map. + +Map_type* +Map_index_expression::get_map_type() const +{ + Map_type* mt = this->map_->type()->deref()->map_type(); + if (mt == NULL) + gcc_assert(saw_errors()); + return mt; +} + +// Map index traversal. + +int +Map_index_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return Expression::traverse(&this->index_, traverse); +} + +// Return the type of a map index. + +Type* +Map_index_expression::do_type() +{ + Map_type* mt = this->get_map_type(); + if (mt == NULL) + return Type::make_error_type(); + Type* type = mt->val_type(); + // If this map index is in a tuple assignment, we actually return a + // pointer to the value type. Tuple_map_assignment_statement is + // responsible for handling this correctly. We need to get the type + // right in case this gets assigned to a temporary variable. + if (this->is_in_tuple_assignment_) + type = Type::make_pointer_type(type); + return type; +} + +// Fix the type of a map index. + +void +Map_index_expression::do_determine_type(const Type_context*) +{ + this->map_->determine_type_no_context(); + Map_type* mt = this->get_map_type(); + Type* key_type = mt == NULL ? NULL : mt->key_type(); + Type_context subcontext(key_type, false); + this->index_->determine_type(&subcontext); +} + +// Check types of a map index. + +void +Map_index_expression::do_check_types(Gogo*) +{ + std::string reason; + Map_type* mt = this->get_map_type(); + if (mt == NULL) + return; + if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason)) + { + if (reason.empty()) + this->report_error(_("incompatible type for map index")); + else + { + error_at(this->location(), "incompatible type for map index (%s)", + reason.c_str()); + this->set_is_error(); + } + } +} + +// Get a tree for a map index. + +tree +Map_index_expression::do_get_tree(Translate_context* context) +{ + Map_type* type = this->get_map_type(); + if (type == NULL) + return error_mark_node; + + tree valptr = this->get_value_pointer(context, this->is_lvalue_); + if (valptr == error_mark_node) + return error_mark_node; + valptr = save_expr(valptr); + + tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr)); + + if (this->is_lvalue_) + return build_fold_indirect_ref(valptr); + else if (this->is_in_tuple_assignment_) + { + // Tuple_map_assignment_statement is responsible for using this + // appropriately. + return valptr; + } + else + { + return fold_build3(COND_EXPR, val_type_tree, + fold_build2(EQ_EXPR, boolean_type_node, valptr, + fold_convert(TREE_TYPE(valptr), + null_pointer_node)), + type->val_type()->get_init_tree(context->gogo(), + false), + build_fold_indirect_ref(valptr)); + } +} + +// Get a tree for the map index. This returns a tree which evaluates +// to a pointer to a value. The pointer will be NULL if the key is +// not in the map. + +tree +Map_index_expression::get_value_pointer(Translate_context* context, + bool insert) +{ + Map_type* type = this->get_map_type(); + if (type == NULL) + return error_mark_node; + + tree map_tree = this->map_->get_tree(context); + tree index_tree = this->index_->get_tree(context); + index_tree = Expression::convert_for_assignment(context, type->key_type(), + this->index_->type(), + index_tree, + this->location()); + if (map_tree == error_mark_node || index_tree == error_mark_node) + return error_mark_node; + + if (this->map_->type()->points_to() != NULL) + map_tree = build_fold_indirect_ref(map_tree); + + // We need to pass in a pointer to the key, so stuff it into a + // variable. + tree tmp; + tree make_tmp; + if (current_function_decl != NULL) + { + tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree)); + DECL_IGNORED_P(tmp) = 0; + DECL_INITIAL(tmp) = index_tree; + make_tmp = build1(DECL_EXPR, void_type_node, tmp); + TREE_ADDRESSABLE(tmp) = 1; + } + else + { + tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"), + TREE_TYPE(index_tree)); + DECL_EXTERNAL(tmp) = 0; + TREE_PUBLIC(tmp) = 0; + TREE_STATIC(tmp) = 1; + DECL_ARTIFICIAL(tmp) = 1; + if (!TREE_CONSTANT(index_tree)) + make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node, + tmp, index_tree); + else + { + TREE_READONLY(tmp) = 1; + TREE_CONSTANT(tmp) = 1; + DECL_INITIAL(tmp) = index_tree; + make_tmp = NULL_TREE; + } + rest_of_decl_compilation(tmp, 1, 0); + } + tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node, + build_fold_addr_expr_loc(this->location(), + tmp)); + + static tree map_index_fndecl; + tree call = Gogo::call_builtin(&map_index_fndecl, + this->location(), + "__go_map_index", + 3, + const_ptr_type_node, + TREE_TYPE(map_tree), + map_tree, + const_ptr_type_node, + tmpref, + boolean_type_node, + (insert + ? boolean_true_node + : boolean_false_node)); + if (call == error_mark_node) + return error_mark_node; + // This can panic on a map of interface type if the interface holds + // an uncomparable or unhashable type. + TREE_NOTHROW(map_index_fndecl) = 0; + + tree val_type_tree = type->val_type()->get_tree(context->gogo()); + if (val_type_tree == error_mark_node) + return error_mark_node; + tree ptr_val_type_tree = build_pointer_type(val_type_tree); + + tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call); + if (make_tmp != NULL_TREE) + ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret); + return ret; +} + +// Make a map index expression. + +Map_index_expression* +Expression::make_map_index(Expression* map, Expression* index, + source_location location) +{ + return new Map_index_expression(map, index, location); +} + +// Class Field_reference_expression. + +// Return the type of a field reference. + +Type* +Field_reference_expression::do_type() +{ + Type* type = this->expr_->type(); + if (type->is_error_type()) + return type; + Struct_type* struct_type = type->struct_type(); + gcc_assert(struct_type != NULL); + return struct_type->field(this->field_index_)->type(); +} + +// Check the types for a field reference. + +void +Field_reference_expression::do_check_types(Gogo*) +{ + Type* type = this->expr_->type(); + if (type->is_error_type()) + return; + Struct_type* struct_type = type->struct_type(); + gcc_assert(struct_type != NULL); + gcc_assert(struct_type->field(this->field_index_) != NULL); +} + +// Get a tree for a field reference. + +tree +Field_reference_expression::do_get_tree(Translate_context* context) +{ + tree struct_tree = this->expr_->get_tree(context); + if (struct_tree == error_mark_node + || TREE_TYPE(struct_tree) == error_mark_node) + return error_mark_node; + gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE); + tree field = TYPE_FIELDS(TREE_TYPE(struct_tree)); + if (field == NULL_TREE) + { + // This can happen for a type which refers to itself indirectly + // and then turns out to be erroneous. + gcc_assert(saw_errors()); + return error_mark_node; + } + for (unsigned int i = this->field_index_; i > 0; --i) + { + field = DECL_CHAIN(field); + gcc_assert(field != NULL_TREE); + } + if (TREE_TYPE(field) == error_mark_node) + return error_mark_node; + return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field, + NULL_TREE); +} + +// Make a reference to a qualified identifier in an expression. + +Field_reference_expression* +Expression::make_field_reference(Expression* expr, unsigned int field_index, + source_location location) +{ + return new Field_reference_expression(expr, field_index, location); +} + +// Class Interface_field_reference_expression. + +// Return a tree for the pointer to the function to call. + +tree +Interface_field_reference_expression::get_function_tree(Translate_context*, + tree expr) +{ + if (this->expr_->type()->points_to() != NULL) + expr = build_fold_indirect_ref(expr); + + tree expr_type = TREE_TYPE(expr); + gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE); + + tree field = TYPE_FIELDS(expr_type); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0); + + tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE); + gcc_assert(POINTER_TYPE_P(TREE_TYPE(table))); + + table = build_fold_indirect_ref(table); + gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE); + + std::string name = Gogo::unpack_hidden_name(this->name_); + for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table))); + field != NULL_TREE; + field = DECL_CHAIN(field)) + { + if (name == IDENTIFIER_POINTER(DECL_NAME(field))) + break; + } + gcc_assert(field != NULL_TREE); + + return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE); +} + +// Return a tree for the first argument to pass to the interface +// function. + +tree +Interface_field_reference_expression::get_underlying_object_tree( + Translate_context*, + tree expr) +{ + if (this->expr_->type()->points_to() != NULL) + expr = build_fold_indirect_ref(expr); + + tree expr_type = TREE_TYPE(expr); + gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE); + + tree field = DECL_CHAIN(TYPE_FIELDS(expr_type)); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0); + + return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE); +} + +// Traversal. + +int +Interface_field_reference_expression::do_traverse(Traverse* traverse) +{ + return Expression::traverse(&this->expr_, traverse); +} + +// Return the type of an interface field reference. + +Type* +Interface_field_reference_expression::do_type() +{ + Type* expr_type = this->expr_->type(); + + Type* points_to = expr_type->points_to(); + if (points_to != NULL) + expr_type = points_to; + + Interface_type* interface_type = expr_type->interface_type(); + if (interface_type == NULL) + return Type::make_error_type(); + + const Typed_identifier* method = interface_type->find_method(this->name_); + if (method == NULL) + return Type::make_error_type(); + + return method->type(); +} + +// Determine types. + +void +Interface_field_reference_expression::do_determine_type(const Type_context*) +{ + this->expr_->determine_type_no_context(); +} + +// Check the types for an interface field reference. + +void +Interface_field_reference_expression::do_check_types(Gogo*) +{ + Type* type = this->expr_->type(); + + Type* points_to = type->points_to(); + if (points_to != NULL) + type = points_to; + + Interface_type* interface_type = type->interface_type(); + if (interface_type == NULL) + this->report_error(_("expected interface or pointer to interface")); + else + { + const Typed_identifier* method = + interface_type->find_method(this->name_); + if (method == NULL) + { + error_at(this->location(), "method %qs not in interface", + Gogo::message_name(this->name_).c_str()); + this->set_is_error(); + } + } +} + +// Get a tree for a reference to a field in an interface. There is no +// standard tree type representation for this: it's a function +// attached to its first argument, like a Bound_method_expression. +// The only places it may currently be used are in a Call_expression +// or a Go_statement, which will take it apart directly. So this has +// nothing to do at present. + +tree +Interface_field_reference_expression::do_get_tree(Translate_context*) +{ + gcc_unreachable(); +} + +// Make a reference to a field in an interface. + +Expression* +Expression::make_interface_field_reference(Expression* expr, + const std::string& field, + source_location location) +{ + return new Interface_field_reference_expression(expr, field, location); +} + +// A general selector. This is a Parser_expression for LEFT.NAME. It +// is lowered after we know the type of the left hand side. + +class Selector_expression : public Parser_expression +{ + public: + Selector_expression(Expression* left, const std::string& name, + source_location location) + : Parser_expression(EXPRESSION_SELECTOR, location), + left_(left), name_(name) + { } + + protected: + int + do_traverse(Traverse* traverse) + { return Expression::traverse(&this->left_, traverse); } + + Expression* + do_lower(Gogo*, Named_object*, int); + + Expression* + do_copy() + { + return new Selector_expression(this->left_->copy(), this->name_, + this->location()); + } + + private: + Expression* + lower_method_expression(Gogo*); + + // The expression on the left hand side. + Expression* left_; + // The name on the right hand side. + std::string name_; +}; + +// Lower a selector expression once we know the real type of the left +// hand side. + +Expression* +Selector_expression::do_lower(Gogo* gogo, Named_object*, int) +{ + Expression* left = this->left_; + if (left->is_type_expression()) + return this->lower_method_expression(gogo); + return Type::bind_field_or_method(gogo, left->type(), left, this->name_, + this->location()); +} + +// Lower a method expression T.M or (*T).M. We turn this into a +// function literal. + +Expression* +Selector_expression::lower_method_expression(Gogo* gogo) +{ + source_location location = this->location(); + Type* type = this->left_->type(); + const std::string& name(this->name_); + + bool is_pointer; + if (type->points_to() == NULL) + is_pointer = false; + else + { + is_pointer = true; + type = type->points_to(); + } + Named_type* nt = type->named_type(); + if (nt == NULL) + { + error_at(location, + ("method expression requires named type or " + "pointer to named type")); + return Expression::make_error(location); + } + + bool is_ambiguous; + Method* method = nt->method_function(name, &is_ambiguous); + if (method == NULL) + { + if (!is_ambiguous) + error_at(location, "type %<%s%> has no method %<%s%>", + nt->message_name().c_str(), + Gogo::message_name(name).c_str()); + else + error_at(location, "method %<%s%> is ambiguous in type %<%s%>", + Gogo::message_name(name).c_str(), + nt->message_name().c_str()); + return Expression::make_error(location); + } + + if (!is_pointer && !method->is_value_method()) + { + error_at(location, "method requires pointer (use %<(*%s).%s)%>", + nt->message_name().c_str(), + Gogo::message_name(name).c_str()); + return Expression::make_error(location); + } + + // Build a new function type in which the receiver becomes the first + // argument. + Function_type* method_type = method->type(); + gcc_assert(method_type->is_method()); + + const char* const receiver_name = "$this"; + Typed_identifier_list* parameters = new Typed_identifier_list(); + parameters->push_back(Typed_identifier(receiver_name, this->left_->type(), + location)); + + const Typed_identifier_list* method_parameters = method_type->parameters(); + if (method_parameters != NULL) + { + for (Typed_identifier_list::const_iterator p = method_parameters->begin(); + p != method_parameters->end(); + ++p) + parameters->push_back(*p); + } + + const Typed_identifier_list* method_results = method_type->results(); + Typed_identifier_list* results; + if (method_results == NULL) + results = NULL; + else + { + results = new Typed_identifier_list(); + for (Typed_identifier_list::const_iterator p = method_results->begin(); + p != method_results->end(); + ++p) + results->push_back(*p); + } + + Function_type* fntype = Type::make_function_type(NULL, parameters, results, + location); + if (method_type->is_varargs()) + fntype->set_is_varargs(); + + // We generate methods which always takes a pointer to the receiver + // as their first argument. If this is for a pointer type, we can + // simply reuse the existing function. We use an internal hack to + // get the right type. + + if (is_pointer) + { + Named_object* mno = (method->needs_stub_method() + ? method->stub_object() + : method->named_object()); + Expression* f = Expression::make_func_reference(mno, NULL, location); + f = Expression::make_cast(fntype, f, location); + Type_conversion_expression* tce = + static_cast<Type_conversion_expression*>(f); + tce->set_may_convert_function_types(); + return f; + } + + Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false, + location); + + Named_object* vno = gogo->lookup(receiver_name, NULL); + gcc_assert(vno != NULL); + Expression* ve = Expression::make_var_reference(vno, location); + Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location); + + // Even though we found the method above, if it has an error type we + // may see an error here. + if (bm->is_error_expression()) + { + gogo->finish_function(location); + return bm; + } + + Expression_list* args; + if (method_parameters == NULL) + args = NULL; + else + { + args = new Expression_list(); + for (Typed_identifier_list::const_iterator p = method_parameters->begin(); + p != method_parameters->end(); + ++p) + { + vno = gogo->lookup(p->name(), NULL); + gcc_assert(vno != NULL); + args->push_back(Expression::make_var_reference(vno, location)); + } + } + + Call_expression* call = Expression::make_call(bm, args, + method_type->is_varargs(), + location); + + size_t count = call->result_count(); + Statement* s; + if (count == 0) + s = Statement::make_statement(call); + else + { + Expression_list* retvals = new Expression_list(); + if (count <= 1) + retvals->push_back(call); + else + { + for (size_t i = 0; i < count; ++i) + retvals->push_back(Expression::make_call_result(call, i)); + } + s = Statement::make_return_statement(no->func_value()->type()->results(), + retvals, location); + } + gogo->add_statement(s); + + gogo->finish_function(location); + + return Expression::make_func_reference(no, NULL, location); +} + +// Make a selector expression. + +Expression* +Expression::make_selector(Expression* left, const std::string& name, + source_location location) +{ + return new Selector_expression(left, name, location); +} + +// Implement the builtin function new. + +class Allocation_expression : public Expression +{ + public: + Allocation_expression(Type* type, source_location location) + : Expression(EXPRESSION_ALLOCATION, location), + type_(type) + { } + + protected: + int + do_traverse(Traverse* traverse) + { return Type::traverse(this->type_, traverse); } + + Type* + do_type() + { return Type::make_pointer_type(this->type_); } + + void + do_determine_type(const Type_context*) + { } + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { return new Allocation_expression(this->type_, this->location()); } + + tree + do_get_tree(Translate_context*); + + private: + // The type we are allocating. + Type* type_; +}; + +// Check the type of an allocation expression. + +void +Allocation_expression::do_check_types(Gogo*) +{ + if (this->type_->function_type() != NULL) + this->report_error(_("invalid new of function type")); +} + +// Return a tree for an allocation expression. + +tree +Allocation_expression::do_get_tree(Translate_context* context) +{ + tree type_tree = this->type_->get_tree(context->gogo()); + if (type_tree == error_mark_node) + return error_mark_node; + tree size_tree = TYPE_SIZE_UNIT(type_tree); + tree space = context->gogo()->allocate_memory(this->type_, size_tree, + this->location()); + if (space == error_mark_node) + return error_mark_node; + return fold_convert(build_pointer_type(type_tree), space); +} + +// Make an allocation expression. + +Expression* +Expression::make_allocation(Type* type, source_location location) +{ + return new Allocation_expression(type, location); +} + +// Implement the builtin function make. + +class Make_expression : public Expression +{ + public: + Make_expression(Type* type, Expression_list* args, source_location location) + : Expression(EXPRESSION_MAKE, location), + type_(type), args_(args) + { } + + protected: + int + do_traverse(Traverse* traverse); + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Make_expression(this->type_, this->args_->copy(), + this->location()); + } + + tree + do_get_tree(Translate_context*); + + private: + // The type we are making. + Type* type_; + // The arguments to pass to the make routine. + Expression_list* args_; +}; + +// Traversal. + +int +Make_expression::do_traverse(Traverse* traverse) +{ + if (this->args_ != NULL + && this->args_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Set types of arguments. + +void +Make_expression::do_determine_type(const Type_context*) +{ + if (this->args_ != NULL) + { + Type_context context(Type::lookup_integer_type("int"), false); + for (Expression_list::const_iterator pe = this->args_->begin(); + pe != this->args_->end(); + ++pe) + (*pe)->determine_type(&context); + } +} + +// Check types for a make expression. + +void +Make_expression::do_check_types(Gogo*) +{ + if (this->type_->channel_type() == NULL + && this->type_->map_type() == NULL + && (this->type_->array_type() == NULL + || this->type_->array_type()->length() != NULL)) + this->report_error(_("invalid type for make function")); + else if (!this->type_->check_make_expression(this->args_, this->location())) + this->set_is_error(); +} + +// Return a tree for a make expression. + +tree +Make_expression::do_get_tree(Translate_context* context) +{ + return this->type_->make_expression_tree(context, this->args_, + this->location()); +} + +// Make a make expression. + +Expression* +Expression::make_make(Type* type, Expression_list* args, + source_location location) +{ + return new Make_expression(type, args, location); +} + +// Construct a struct. + +class Struct_construction_expression : public Expression +{ + public: + Struct_construction_expression(Type* type, Expression_list* vals, + source_location location) + : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location), + type_(type), vals_(vals) + { } + + // Return whether this is a constant initializer. + bool + is_constant_struct() const; + + protected: + int + do_traverse(Traverse* traverse); + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Struct_construction_expression(this->type_, this->vals_->copy(), + this->location()); + } + + bool + do_is_addressable() const + { return true; } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + private: + // The type of the struct to construct. + Type* type_; + // The list of values, in order of the fields in the struct. A NULL + // entry means that the field should be zero-initialized. + Expression_list* vals_; +}; + +// Traversal. + +int +Struct_construction_expression::do_traverse(Traverse* traverse) +{ + if (this->vals_ != NULL + && this->vals_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Return whether this is a constant initializer. + +bool +Struct_construction_expression::is_constant_struct() const +{ + if (this->vals_ == NULL) + return true; + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + if (*pv != NULL + && !(*pv)->is_constant() + && (!(*pv)->is_composite_literal() + || (*pv)->is_nonconstant_composite_literal())) + return false; + } + + const Struct_field_list* fields = this->type_->struct_type()->fields(); + for (Struct_field_list::const_iterator pf = fields->begin(); + pf != fields->end(); + ++pf) + { + // There are no constant constructors for interfaces. + if (pf->type()->interface_type() != NULL) + return false; + } + + return true; +} + +// Final type determination. + +void +Struct_construction_expression::do_determine_type(const Type_context*) +{ + if (this->vals_ == NULL) + return; + const Struct_field_list* fields = this->type_->struct_type()->fields(); + Expression_list::const_iterator pv = this->vals_->begin(); + for (Struct_field_list::const_iterator pf = fields->begin(); + pf != fields->end(); + ++pf, ++pv) + { + if (pv == this->vals_->end()) + return; + if (*pv != NULL) + { + Type_context subcontext(pf->type(), false); + (*pv)->determine_type(&subcontext); + } + } + // Extra values are an error we will report elsewhere; we still want + // to determine the type to avoid knockon errors. + for (; pv != this->vals_->end(); ++pv) + (*pv)->determine_type_no_context(); +} + +// Check types. + +void +Struct_construction_expression::do_check_types(Gogo*) +{ + if (this->vals_ == NULL) + return; + + Struct_type* st = this->type_->struct_type(); + if (this->vals_->size() > st->field_count()) + { + this->report_error(_("too many expressions for struct")); + return; + } + + const Struct_field_list* fields = st->fields(); + Expression_list::const_iterator pv = this->vals_->begin(); + int i = 0; + for (Struct_field_list::const_iterator pf = fields->begin(); + pf != fields->end(); + ++pf, ++pv, ++i) + { + if (pv == this->vals_->end()) + { + this->report_error(_("too few expressions for struct")); + break; + } + + if (*pv == NULL) + continue; + + std::string reason; + if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason)) + { + if (reason.empty()) + error_at((*pv)->location(), + "incompatible type for field %d in struct construction", + i + 1); + else + error_at((*pv)->location(), + ("incompatible type for field %d in " + "struct construction (%s)"), + i + 1, reason.c_str()); + this->set_is_error(); + } + } + gcc_assert(pv == this->vals_->end()); +} + +// Return a tree for constructing a struct. + +tree +Struct_construction_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + + if (this->vals_ == NULL) + return this->type_->get_init_tree(gogo, false); + + tree type_tree = this->type_->get_tree(gogo); + if (type_tree == error_mark_node) + return error_mark_node; + gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE); + + bool is_constant = true; + const Struct_field_list* fields = this->type_->struct_type()->fields(); + VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc, + fields->size()); + Struct_field_list::const_iterator pf = fields->begin(); + Expression_list::const_iterator pv = this->vals_->begin(); + for (tree field = TYPE_FIELDS(type_tree); + field != NULL_TREE; + field = DECL_CHAIN(field), ++pf) + { + gcc_assert(pf != fields->end()); + + tree val; + if (pv == this->vals_->end()) + val = pf->type()->get_init_tree(gogo, false); + else if (*pv == NULL) + { + val = pf->type()->get_init_tree(gogo, false); + ++pv; + } + else + { + val = Expression::convert_for_assignment(context, pf->type(), + (*pv)->type(), + (*pv)->get_tree(context), + this->location()); + ++pv; + } + + if (val == error_mark_node || TREE_TYPE(val) == error_mark_node) + return error_mark_node; + + constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL); + elt->index = field; + elt->value = val; + if (!TREE_CONSTANT(val)) + is_constant = false; + } + gcc_assert(pf == fields->end()); + + tree ret = build_constructor(type_tree, elts); + if (is_constant) + TREE_CONSTANT(ret) = 1; + return ret; +} + +// Export a struct construction. + +void +Struct_construction_expression::do_export(Export* exp) const +{ + exp->write_c_string("convert("); + exp->write_type(this->type_); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + exp->write_c_string(", "); + if (*pv != NULL) + (*pv)->export_expression(exp); + } + exp->write_c_string(")"); +} + +// Make a struct composite literal. This used by the thunk code. + +Expression* +Expression::make_struct_composite_literal(Type* type, Expression_list* vals, + source_location location) +{ + gcc_assert(type->struct_type() != NULL); + return new Struct_construction_expression(type, vals, location); +} + +// Construct an array. This class is not used directly; instead we +// use the child classes, Fixed_array_construction_expression and +// Open_array_construction_expression. + +class Array_construction_expression : public Expression +{ + protected: + Array_construction_expression(Expression_classification classification, + Type* type, Expression_list* vals, + source_location location) + : Expression(classification, location), + type_(type), vals_(vals) + { } + + public: + // Return whether this is a constant initializer. + bool + is_constant_array() const; + + // Return the number of elements. + size_t + element_count() const + { return this->vals_ == NULL ? 0 : this->vals_->size(); } + +protected: + int + do_traverse(Traverse* traverse); + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + bool + do_is_addressable() const + { return true; } + + void + do_export(Export*) const; + + // The list of values. + Expression_list* + vals() + { return this->vals_; } + + // Get a constructor tree for the array values. + tree + get_constructor_tree(Translate_context* context, tree type_tree); + + private: + // The type of the array to construct. + Type* type_; + // The list of values. + Expression_list* vals_; +}; + +// Traversal. + +int +Array_construction_expression::do_traverse(Traverse* traverse) +{ + if (this->vals_ != NULL + && this->vals_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Return whether this is a constant initializer. + +bool +Array_construction_expression::is_constant_array() const +{ + if (this->vals_ == NULL) + return true; + + // There are no constant constructors for interfaces. + if (this->type_->array_type()->element_type()->interface_type() != NULL) + return false; + + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + if (*pv != NULL + && !(*pv)->is_constant() + && (!(*pv)->is_composite_literal() + || (*pv)->is_nonconstant_composite_literal())) + return false; + } + return true; +} + +// Final type determination. + +void +Array_construction_expression::do_determine_type(const Type_context*) +{ + if (this->vals_ == NULL) + return; + Type_context subcontext(this->type_->array_type()->element_type(), false); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + if (*pv != NULL) + (*pv)->determine_type(&subcontext); + } +} + +// Check types. + +void +Array_construction_expression::do_check_types(Gogo*) +{ + if (this->vals_ == NULL) + return; + + Array_type* at = this->type_->array_type(); + int i = 0; + Type* element_type = at->element_type(); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv, ++i) + { + if (*pv != NULL + && !Type::are_assignable(element_type, (*pv)->type(), NULL)) + { + error_at((*pv)->location(), + "incompatible type for element %d in composite literal", + i + 1); + this->set_is_error(); + } + } + + Expression* length = at->length(); + if (length != NULL) + { + mpz_t val; + mpz_init(val); + Type* type; + if (at->length()->integer_constant_value(true, val, &type)) + { + if (this->vals_->size() > mpz_get_ui(val)) + this->report_error(_("too many elements in composite literal")); + } + mpz_clear(val); + } +} + +// Get a constructor tree for the array values. + +tree +Array_construction_expression::get_constructor_tree(Translate_context* context, + tree type_tree) +{ + VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc, + (this->vals_ == NULL + ? 0 + : this->vals_->size())); + Type* element_type = this->type_->array_type()->element_type(); + bool is_constant = true; + if (this->vals_ != NULL) + { + size_t i = 0; + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv, ++i) + { + constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL); + elt->index = size_int(i); + if (*pv == NULL) + elt->value = element_type->get_init_tree(context->gogo(), false); + else + { + tree value_tree = (*pv)->get_tree(context); + elt->value = Expression::convert_for_assignment(context, + element_type, + (*pv)->type(), + value_tree, + this->location()); + } + if (elt->value == error_mark_node) + return error_mark_node; + if (!TREE_CONSTANT(elt->value)) + is_constant = false; + } + } + + tree ret = build_constructor(type_tree, values); + if (is_constant) + TREE_CONSTANT(ret) = 1; + return ret; +} + +// Export an array construction. + +void +Array_construction_expression::do_export(Export* exp) const +{ + exp->write_c_string("convert("); + exp->write_type(this->type_); + if (this->vals_ != NULL) + { + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + exp->write_c_string(", "); + if (*pv != NULL) + (*pv)->export_expression(exp); + } + } + exp->write_c_string(")"); +} + +// Construct a fixed array. + +class Fixed_array_construction_expression : + public Array_construction_expression +{ + public: + Fixed_array_construction_expression(Type* type, Expression_list* vals, + source_location location) + : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION, + type, vals, location) + { + gcc_assert(type->array_type() != NULL + && type->array_type()->length() != NULL); + } + + protected: + Expression* + do_copy() + { + return new Fixed_array_construction_expression(this->type(), + (this->vals() == NULL + ? NULL + : this->vals()->copy()), + this->location()); + } + + tree + do_get_tree(Translate_context*); +}; + +// Return a tree for constructing a fixed array. + +tree +Fixed_array_construction_expression::do_get_tree(Translate_context* context) +{ + return this->get_constructor_tree(context, + this->type()->get_tree(context->gogo())); +} + +// Construct an open array. + +class Open_array_construction_expression : public Array_construction_expression +{ + public: + Open_array_construction_expression(Type* type, Expression_list* vals, + source_location location) + : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION, + type, vals, location) + { + gcc_assert(type->array_type() != NULL + && type->array_type()->length() == NULL); + } + + protected: + // Note that taking the address of an open array literal is invalid. + + Expression* + do_copy() + { + return new Open_array_construction_expression(this->type(), + (this->vals() == NULL + ? NULL + : this->vals()->copy()), + this->location()); + } + + tree + do_get_tree(Translate_context*); +}; + +// Return a tree for constructing an open array. + +tree +Open_array_construction_expression::do_get_tree(Translate_context* context) +{ + Array_type* array_type = this->type()->array_type(); + if (array_type == NULL) + { + gcc_assert(this->type()->is_error_type()); + return error_mark_node; + } + + Type* element_type = array_type->element_type(); + tree element_type_tree = element_type->get_tree(context->gogo()); + if (element_type_tree == error_mark_node) + return error_mark_node; + + tree values; + tree length_tree; + if (this->vals() == NULL || this->vals()->empty()) + { + // We need to create a unique value. + tree max = size_int(0); + tree constructor_type = build_array_type(element_type_tree, + build_index_type(max)); + if (constructor_type == error_mark_node) + return error_mark_node; + VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1); + constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL); + elt->index = size_int(0); + elt->value = element_type->get_init_tree(context->gogo(), false); + values = build_constructor(constructor_type, vec); + if (TREE_CONSTANT(elt->value)) + TREE_CONSTANT(values) = 1; + length_tree = size_int(0); + } + else + { + tree max = size_int(this->vals()->size() - 1); + tree constructor_type = build_array_type(element_type_tree, + build_index_type(max)); + if (constructor_type == error_mark_node) + return error_mark_node; + values = this->get_constructor_tree(context, constructor_type); + length_tree = size_int(this->vals()->size()); + } + + if (values == error_mark_node) + return error_mark_node; + + bool is_constant_initializer = TREE_CONSTANT(values); + + // We have to copy the initial values into heap memory if we are in + // a function or if the values are not constants. We also have to + // copy them if they may contain pointers in a non-constant context, + // as otherwise the garbage collector won't see them. + bool copy_to_heap = (context->function() != NULL + || !is_constant_initializer + || (element_type->has_pointer() + && !context->is_const())); + + if (is_constant_initializer) + { + tree tmp = build_decl(this->location(), VAR_DECL, + create_tmp_var_name("C"), TREE_TYPE(values)); + DECL_EXTERNAL(tmp) = 0; + TREE_PUBLIC(tmp) = 0; + TREE_STATIC(tmp) = 1; + DECL_ARTIFICIAL(tmp) = 1; + if (copy_to_heap) + { + // If we are not copying the value to the heap, we will only + // initialize the value once, so we can use this directly + // rather than copying it. In that case we can't make it + // read-only, because the program is permitted to change it. + TREE_READONLY(tmp) = 1; + TREE_CONSTANT(tmp) = 1; + } + DECL_INITIAL(tmp) = values; + rest_of_decl_compilation(tmp, 1, 0); + values = tmp; + } + + tree space; + tree set; + if (!copy_to_heap) + { + // the initializer will only run once. + space = build_fold_addr_expr(values); + set = NULL_TREE; + } + else + { + tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values)); + space = context->gogo()->allocate_memory(element_type, memsize, + this->location()); + space = save_expr(space); + + tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space); + tree ref = build_fold_indirect_ref_loc(this->location(), s); + TREE_THIS_NOTRAP(ref) = 1; + set = build2(MODIFY_EXPR, void_type_node, ref, values); + } + + // Build a constructor for the open array. + + tree type_tree = this->type()->get_tree(context->gogo()); + if (type_tree == error_mark_node) + return error_mark_node; + gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE); + + VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3); + + constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); + tree field = TYPE_FIELDS(type_tree); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), space); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), length_tree); + + elt = VEC_quick_push(constructor_elt, init, NULL); + field = DECL_CHAIN(field); + gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0); + elt->index = field; + elt->value = fold_convert(TREE_TYPE(field), length_tree); + + tree constructor = build_constructor(type_tree, init); + if (constructor == error_mark_node) + return error_mark_node; + if (!copy_to_heap) + TREE_CONSTANT(constructor) = 1; + + if (set == NULL_TREE) + return constructor; + else + return build2(COMPOUND_EXPR, type_tree, set, constructor); +} + +// Make a slice composite literal. This is used by the type +// descriptor code. + +Expression* +Expression::make_slice_composite_literal(Type* type, Expression_list* vals, + source_location location) +{ + gcc_assert(type->is_open_array_type()); + return new Open_array_construction_expression(type, vals, location); +} + +// Construct a map. + +class Map_construction_expression : public Expression +{ + public: + Map_construction_expression(Type* type, Expression_list* vals, + source_location location) + : Expression(EXPRESSION_MAP_CONSTRUCTION, location), + type_(type), vals_(vals) + { gcc_assert(vals == NULL || vals->size() % 2 == 0); } + + protected: + int + do_traverse(Traverse* traverse); + + Type* + do_type() + { return this->type_; } + + void + do_determine_type(const Type_context*); + + void + do_check_types(Gogo*); + + Expression* + do_copy() + { + return new Map_construction_expression(this->type_, this->vals_->copy(), + this->location()); + } + + tree + do_get_tree(Translate_context*); + + void + do_export(Export*) const; + + private: + // The type of the map to construct. + Type* type_; + // The list of values. + Expression_list* vals_; +}; + +// Traversal. + +int +Map_construction_expression::do_traverse(Traverse* traverse) +{ + if (this->vals_ != NULL + && this->vals_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Final type determination. + +void +Map_construction_expression::do_determine_type(const Type_context*) +{ + if (this->vals_ == NULL) + return; + + Map_type* mt = this->type_->map_type(); + Type_context key_context(mt->key_type(), false); + Type_context val_context(mt->val_type(), false); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + (*pv)->determine_type(&key_context); + ++pv; + (*pv)->determine_type(&val_context); + } +} + +// Check types. + +void +Map_construction_expression::do_check_types(Gogo*) +{ + if (this->vals_ == NULL) + return; + + Map_type* mt = this->type_->map_type(); + int i = 0; + Type* key_type = mt->key_type(); + Type* val_type = mt->val_type(); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv, ++i) + { + if (!Type::are_assignable(key_type, (*pv)->type(), NULL)) + { + error_at((*pv)->location(), + "incompatible type for element %d key in map construction", + i + 1); + this->set_is_error(); + } + ++pv; + if (!Type::are_assignable(val_type, (*pv)->type(), NULL)) + { + error_at((*pv)->location(), + ("incompatible type for element %d value " + "in map construction"), + i + 1); + this->set_is_error(); + } + } +} + +// Return a tree for constructing a map. + +tree +Map_construction_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + source_location loc = this->location(); + + Map_type* mt = this->type_->map_type(); + + // Build a struct to hold the key and value. + tree struct_type = make_node(RECORD_TYPE); + + Type* key_type = mt->key_type(); + tree id = get_identifier("__key"); + tree key_type_tree = key_type->get_tree(gogo); + if (key_type_tree == error_mark_node) + return error_mark_node; + tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree); + DECL_CONTEXT(key_field) = struct_type; + TYPE_FIELDS(struct_type) = key_field; + + Type* val_type = mt->val_type(); + id = get_identifier("__val"); + tree val_type_tree = val_type->get_tree(gogo); + if (val_type_tree == error_mark_node) + return error_mark_node; + tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree); + DECL_CONTEXT(val_field) = struct_type; + DECL_CHAIN(key_field) = val_field; + + layout_type(struct_type); + + bool is_constant = true; + size_t i = 0; + tree valaddr; + tree make_tmp; + + if (this->vals_ == NULL || this->vals_->empty()) + { + valaddr = null_pointer_node; + make_tmp = NULL_TREE; + } + else + { + VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc, + this->vals_->size() / 2); + + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv, ++i) + { + bool one_is_constant = true; + + VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2); + + constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL); + elt->index = key_field; + tree val_tree = (*pv)->get_tree(context); + elt->value = Expression::convert_for_assignment(context, key_type, + (*pv)->type(), + val_tree, loc); + if (elt->value == error_mark_node) + return error_mark_node; + if (!TREE_CONSTANT(elt->value)) + one_is_constant = false; + + ++pv; + + elt = VEC_quick_push(constructor_elt, one, NULL); + elt->index = val_field; + val_tree = (*pv)->get_tree(context); + elt->value = Expression::convert_for_assignment(context, val_type, + (*pv)->type(), + val_tree, loc); + if (elt->value == error_mark_node) + return error_mark_node; + if (!TREE_CONSTANT(elt->value)) + one_is_constant = false; + + elt = VEC_quick_push(constructor_elt, values, NULL); + elt->index = size_int(i); + elt->value = build_constructor(struct_type, one); + if (one_is_constant) + TREE_CONSTANT(elt->value) = 1; + else + is_constant = false; + } + + tree index_type = build_index_type(size_int(i - 1)); + tree array_type = build_array_type(struct_type, index_type); + tree init = build_constructor(array_type, values); + if (is_constant) + TREE_CONSTANT(init) = 1; + tree tmp; + if (current_function_decl != NULL) + { + tmp = create_tmp_var(array_type, get_name(array_type)); + DECL_INITIAL(tmp) = init; + make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp); + TREE_ADDRESSABLE(tmp) = 1; + } + else + { + tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type); + DECL_EXTERNAL(tmp) = 0; + TREE_PUBLIC(tmp) = 0; + TREE_STATIC(tmp) = 1; + DECL_ARTIFICIAL(tmp) = 1; + if (!TREE_CONSTANT(init)) + make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp, + init); + else + { + TREE_READONLY(tmp) = 1; + TREE_CONSTANT(tmp) = 1; + DECL_INITIAL(tmp) = init; + make_tmp = NULL_TREE; + } + rest_of_decl_compilation(tmp, 1, 0); + } + + valaddr = build_fold_addr_expr(tmp); + } + + tree descriptor = gogo->map_descriptor(mt); + + tree type_tree = this->type_->get_tree(gogo); + if (type_tree == error_mark_node) + return error_mark_node; + + static tree construct_map_fndecl; + tree call = Gogo::call_builtin(&construct_map_fndecl, + loc, + "__go_construct_map", + 6, + type_tree, + TREE_TYPE(descriptor), + descriptor, + sizetype, + size_int(i), + sizetype, + TYPE_SIZE_UNIT(struct_type), + sizetype, + byte_position(val_field), + sizetype, + TYPE_SIZE_UNIT(TREE_TYPE(val_field)), + const_ptr_type_node, + fold_convert(const_ptr_type_node, valaddr)); + if (call == error_mark_node) + return error_mark_node; + + tree ret; + if (make_tmp == NULL) + ret = call; + else + ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call); + return ret; +} + +// Export an array construction. + +void +Map_construction_expression::do_export(Export* exp) const +{ + exp->write_c_string("convert("); + exp->write_type(this->type_); + for (Expression_list::const_iterator pv = this->vals_->begin(); + pv != this->vals_->end(); + ++pv) + { + exp->write_c_string(", "); + (*pv)->export_expression(exp); + } + exp->write_c_string(")"); +} + +// A general composite literal. This is lowered to a type specific +// version. + +class Composite_literal_expression : public Parser_expression +{ + public: + Composite_literal_expression(Type* type, int depth, bool has_keys, + Expression_list* vals, source_location location) + : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location), + type_(type), depth_(depth), vals_(vals), has_keys_(has_keys) + { } + + protected: + int + do_traverse(Traverse* traverse); + + Expression* + do_lower(Gogo*, Named_object*, int); + + Expression* + do_copy() + { + return new Composite_literal_expression(this->type_, this->depth_, + this->has_keys_, + (this->vals_ == NULL + ? NULL + : this->vals_->copy()), + this->location()); + } + + private: + Expression* + lower_struct(Gogo*, Type*); + + Expression* + lower_array(Type*); + + Expression* + make_array(Type*, Expression_list*); + + Expression* + lower_map(Gogo*, Named_object*, Type*); + + // The type of the composite literal. + Type* type_; + // The depth within a list of composite literals within a composite + // literal, when the type is omitted. + int depth_; + // The values to put in the composite literal. + Expression_list* vals_; + // If this is true, then VALS_ is a list of pairs: a key and a + // value. In an array initializer, a missing key will be NULL. + bool has_keys_; +}; + +// Traversal. + +int +Composite_literal_expression::do_traverse(Traverse* traverse) +{ + if (this->vals_ != NULL + && this->vals_->traverse(traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return Type::traverse(this->type_, traverse); +} + +// Lower a generic composite literal into a specific version based on +// the type. + +Expression* +Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int) +{ + Type* type = this->type_; + + for (int depth = this->depth_; depth > 0; --depth) + { + if (type->array_type() != NULL) + type = type->array_type()->element_type(); + else if (type->map_type() != NULL) + type = type->map_type()->val_type(); + else + { + if (!type->is_error_type()) + error_at(this->location(), + ("may only omit types within composite literals " + "of slice, array, or map type")); + return Expression::make_error(this->location()); + } + } + + if (type->is_error_type()) + return Expression::make_error(this->location()); + else if (type->struct_type() != NULL) + return this->lower_struct(gogo, type); + else if (type->array_type() != NULL) + return this->lower_array(type); + else if (type->map_type() != NULL) + return this->lower_map(gogo, function, type); + else + { + error_at(this->location(), + ("expected struct, slice, array, or map type " + "for composite literal")); + return Expression::make_error(this->location()); + } +} + +// Lower a struct composite literal. + +Expression* +Composite_literal_expression::lower_struct(Gogo* gogo, Type* type) +{ + source_location location = this->location(); + Struct_type* st = type->struct_type(); + if (this->vals_ == NULL || !this->has_keys_) + return new Struct_construction_expression(type, this->vals_, location); + + size_t field_count = st->field_count(); + std::vector<Expression*> vals(field_count); + Expression_list::const_iterator p = this->vals_->begin(); + while (p != this->vals_->end()) + { + Expression* name_expr = *p; + + ++p; + gcc_assert(p != this->vals_->end()); + Expression* val = *p; + + ++p; + + if (name_expr == NULL) + { + error_at(val->location(), "mixture of field and value initializers"); + return Expression::make_error(location); + } + + bool bad_key = false; + std::string name; + const Named_object* no = NULL; + switch (name_expr->classification()) + { + case EXPRESSION_UNKNOWN_REFERENCE: + name = name_expr->unknown_expression()->name(); + break; + + case EXPRESSION_CONST_REFERENCE: + no = static_cast<Const_expression*>(name_expr)->named_object(); + break; + + case EXPRESSION_TYPE: + { + Type* t = name_expr->type(); + Named_type* nt = t->named_type(); + if (nt == NULL) + bad_key = true; + else + no = nt->named_object(); + } + break; + + case EXPRESSION_VAR_REFERENCE: + no = name_expr->var_expression()->named_object(); + break; + + case EXPRESSION_FUNC_REFERENCE: + no = name_expr->func_expression()->named_object(); + break; + + case EXPRESSION_UNARY: + // If there is a local variable around with the same name as + // the field, and this occurs in the closure, then the + // parser may turn the field reference into an indirection + // through the closure. FIXME: This is a mess. + { + bad_key = true; + Unary_expression* ue = static_cast<Unary_expression*>(name_expr); + if (ue->op() == OPERATOR_MULT) + { + Field_reference_expression* fre = + ue->operand()->field_reference_expression(); + if (fre != NULL) + { + Struct_type* st = + fre->expr()->type()->deref()->struct_type(); + if (st != NULL) + { + const Struct_field* sf = st->field(fre->field_index()); + name = sf->field_name(); + char buf[20]; + snprintf(buf, sizeof buf, "%u", fre->field_index()); + size_t buflen = strlen(buf); + if (name.compare(name.length() - buflen, buflen, buf) + == 0) + { + name = name.substr(0, name.length() - buflen); + bad_key = false; + } + } + } + } + } + break; + + default: + bad_key = true; + break; + } + if (bad_key) + { + error_at(name_expr->location(), "expected struct field name"); + return Expression::make_error(location); + } + + if (no != NULL) + { + name = no->name(); + + // A predefined name won't be packed. If it starts with a + // lower case letter we need to check for that case, because + // the field name will be packed. + if (!Gogo::is_hidden_name(name) + && name[0] >= 'a' + && name[0] <= 'z') + { + Named_object* gno = gogo->lookup_global(name.c_str()); + if (gno == no) + name = gogo->pack_hidden_name(name, false); + } + } + + unsigned int index; + const Struct_field* sf = st->find_local_field(name, &index); + if (sf == NULL) + { + error_at(name_expr->location(), "unknown field %qs in %qs", + Gogo::message_name(name).c_str(), + (type->named_type() != NULL + ? type->named_type()->message_name().c_str() + : "unnamed struct")); + return Expression::make_error(location); + } + if (vals[index] != NULL) + { + error_at(name_expr->location(), + "duplicate value for field %qs in %qs", + Gogo::message_name(name).c_str(), + (type->named_type() != NULL + ? type->named_type()->message_name().c_str() + : "unnamed struct")); + return Expression::make_error(location); + } + + vals[index] = val; + } + + Expression_list* list = new Expression_list; + list->reserve(field_count); + for (size_t i = 0; i < field_count; ++i) + list->push_back(vals[i]); + + return new Struct_construction_expression(type, list, location); +} + +// Lower an array composite literal. + +Expression* +Composite_literal_expression::lower_array(Type* type) +{ + source_location location = this->location(); + if (this->vals_ == NULL || !this->has_keys_) + return this->make_array(type, this->vals_); + + std::vector<Expression*> vals; + vals.reserve(this->vals_->size()); + unsigned long index = 0; + Expression_list::const_iterator p = this->vals_->begin(); + while (p != this->vals_->end()) + { + Expression* index_expr = *p; + + ++p; + gcc_assert(p != this->vals_->end()); + Expression* val = *p; + + ++p; + + if (index_expr != NULL) + { + mpz_t ival; + mpz_init(ival); + + Type* dummy; + if (!index_expr->integer_constant_value(true, ival, &dummy)) + { + mpz_clear(ival); + error_at(index_expr->location(), + "index expression is not integer constant"); + return Expression::make_error(location); + } + + if (mpz_sgn(ival) < 0) + { + mpz_clear(ival); + error_at(index_expr->location(), "index expression is negative"); + return Expression::make_error(location); + } + + index = mpz_get_ui(ival); + if (mpz_cmp_ui(ival, index) != 0) + { + mpz_clear(ival); + error_at(index_expr->location(), "index value overflow"); + return Expression::make_error(location); + } + + Named_type* ntype = Type::lookup_integer_type("int"); + Integer_type* inttype = ntype->integer_type(); + mpz_t max; + mpz_init_set_ui(max, 1); + mpz_mul_2exp(max, max, inttype->bits() - 1); + bool ok = mpz_cmp(ival, max) < 0; + mpz_clear(max); + if (!ok) + { + mpz_clear(ival); + error_at(index_expr->location(), "index value overflow"); + return Expression::make_error(location); + } + + mpz_clear(ival); + + // FIXME: Our representation isn't very good; this avoids + // thrashing. + if (index > 0x1000000) + { + error_at(index_expr->location(), "index too large for compiler"); + return Expression::make_error(location); + } + } + + if (index == vals.size()) + vals.push_back(val); + else + { + if (index > vals.size()) + { + vals.reserve(index + 32); + vals.resize(index + 1, static_cast<Expression*>(NULL)); + } + if (vals[index] != NULL) + { + error_at((index_expr != NULL + ? index_expr->location() + : val->location()), + "duplicate value for index %lu", + index); + return Expression::make_error(location); + } + vals[index] = val; + } + + ++index; + } + + size_t size = vals.size(); + Expression_list* list = new Expression_list; + list->reserve(size); + for (size_t i = 0; i < size; ++i) + list->push_back(vals[i]); + + return this->make_array(type, list); +} + +// Actually build the array composite literal. This handles +// [...]{...}. + +Expression* +Composite_literal_expression::make_array(Type* type, Expression_list* vals) +{ + source_location location = this->location(); + Array_type* at = type->array_type(); + if (at->length() != NULL && at->length()->is_nil_expression()) + { + size_t size = vals == NULL ? 0 : vals->size(); + mpz_t vlen; + mpz_init_set_ui(vlen, size); + Expression* elen = Expression::make_integer(&vlen, NULL, location); + mpz_clear(vlen); + at = Type::make_array_type(at->element_type(), elen); + type = at; + } + if (at->length() != NULL) + return new Fixed_array_construction_expression(type, vals, location); + else + return new Open_array_construction_expression(type, vals, location); +} + +// Lower a map composite literal. + +Expression* +Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function, + Type* type) +{ + source_location location = this->location(); + if (this->vals_ != NULL) + { + if (!this->has_keys_) + { + error_at(location, "map composite literal must have keys"); + return Expression::make_error(location); + } + + for (Expression_list::iterator p = this->vals_->begin(); + p != this->vals_->end(); + p += 2) + { + if (*p == NULL) + { + ++p; + error_at((*p)->location(), + "map composite literal must have keys for every value"); + return Expression::make_error(location); + } + // Make sure we have lowered the key; it may not have been + // lowered in order to handle keys for struct composite + // literals. Lower it now to get the right error message. + if ((*p)->unknown_expression() != NULL) + { + (*p)->unknown_expression()->clear_is_composite_literal_key(); + gogo->lower_expression(function, &*p); + gcc_assert((*p)->is_error_expression()); + return Expression::make_error(location); + } + } + } + + return new Map_construction_expression(type, this->vals_, location); +} + +// Make a composite literal expression. + +Expression* +Expression::make_composite_literal(Type* type, int depth, bool has_keys, + Expression_list* vals, + source_location location) +{ + return new Composite_literal_expression(type, depth, has_keys, vals, + location); +} + +// Return whether this expression is a composite literal. + +bool +Expression::is_composite_literal() const +{ + switch (this->classification_) + { + case EXPRESSION_COMPOSITE_LITERAL: + case EXPRESSION_STRUCT_CONSTRUCTION: + case EXPRESSION_FIXED_ARRAY_CONSTRUCTION: + case EXPRESSION_OPEN_ARRAY_CONSTRUCTION: + case EXPRESSION_MAP_CONSTRUCTION: + return true; + default: + return false; + } +} + +// Return whether this expression is a composite literal which is not +// constant. + +bool +Expression::is_nonconstant_composite_literal() const +{ + switch (this->classification_) + { + case EXPRESSION_STRUCT_CONSTRUCTION: + { + const Struct_construction_expression *psce = + static_cast<const Struct_construction_expression*>(this); + return !psce->is_constant_struct(); + } + case EXPRESSION_FIXED_ARRAY_CONSTRUCTION: + { + const Fixed_array_construction_expression *pace = + static_cast<const Fixed_array_construction_expression*>(this); + return !pace->is_constant_array(); + } + case EXPRESSION_OPEN_ARRAY_CONSTRUCTION: + { + const Open_array_construction_expression *pace = + static_cast<const Open_array_construction_expression*>(this); + return !pace->is_constant_array(); + } + case EXPRESSION_MAP_CONSTRUCTION: + return true; + default: + return false; + } +} + +// Return true if this is a reference to a local variable. + +bool +Expression::is_local_variable() const +{ + const Var_expression* ve = this->var_expression(); + if (ve == NULL) + return false; + const Named_object* no = ve->named_object(); + return (no->is_result_variable() + || (no->is_variable() && !no->var_value()->is_global())); +} + +// Class Type_guard_expression. + +// Traversal. + +int +Type_guard_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT + || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return TRAVERSE_CONTINUE; +} + +// Check types of a type guard expression. The expression must have +// an interface type, but the actual type conversion is checked at run +// time. + +void +Type_guard_expression::do_check_types(Gogo*) +{ + // 6g permits using a type guard with unsafe.pointer; we are + // compatible. + Type* expr_type = this->expr_->type(); + if (expr_type->is_unsafe_pointer_type()) + { + if (this->type_->points_to() == NULL + && (this->type_->integer_type() == NULL + || (this->type_->forwarded() + != Type::lookup_integer_type("uintptr")))) + this->report_error(_("invalid unsafe.Pointer conversion")); + } + else if (this->type_->is_unsafe_pointer_type()) + { + if (expr_type->points_to() == NULL + && (expr_type->integer_type() == NULL + || (expr_type->forwarded() + != Type::lookup_integer_type("uintptr")))) + this->report_error(_("invalid unsafe.Pointer conversion")); + } + else if (expr_type->interface_type() == NULL) + { + if (!expr_type->is_error_type() && !this->type_->is_error_type()) + this->report_error(_("type assertion only valid for interface types")); + this->set_is_error(); + } + else if (this->type_->interface_type() == NULL) + { + std::string reason; + if (!expr_type->interface_type()->implements_interface(this->type_, + &reason)) + { + if (!this->type_->is_error_type()) + { + if (reason.empty()) + this->report_error(_("impossible type assertion: " + "type does not implement interface")); + else + error_at(this->location(), + ("impossible type assertion: " + "type does not implement interface (%s)"), + reason.c_str()); + } + this->set_is_error(); + } + } +} + +// Return a tree for a type guard expression. + +tree +Type_guard_expression::do_get_tree(Translate_context* context) +{ + Gogo* gogo = context->gogo(); + tree expr_tree = this->expr_->get_tree(context); + if (expr_tree == error_mark_node) + return error_mark_node; + Type* expr_type = this->expr_->type(); + if ((this->type_->is_unsafe_pointer_type() + && (expr_type->points_to() != NULL + || expr_type->integer_type() != NULL)) + || (expr_type->is_unsafe_pointer_type() + && this->type_->points_to() != NULL)) + return convert_to_pointer(this->type_->get_tree(gogo), expr_tree); + else if (expr_type->is_unsafe_pointer_type() + && this->type_->integer_type() != NULL) + return convert_to_integer(this->type_->get_tree(gogo), expr_tree); + else if (this->type_->interface_type() != NULL) + return Expression::convert_interface_to_interface(context, this->type_, + this->expr_->type(), + expr_tree, true, + this->location()); + else + return Expression::convert_for_assignment(context, this->type_, + this->expr_->type(), expr_tree, + this->location()); +} + +// Make a type guard expression. + +Expression* +Expression::make_type_guard(Expression* expr, Type* type, + source_location location) +{ + return new Type_guard_expression(expr, type, location); +} + +// Class Heap_composite_expression. + +// When you take the address of a composite literal, it is allocated +// on the heap. This class implements that. + +class Heap_composite_expression : public Expression +{ + public: + Heap_composite_expression(Expression* expr, source_location location) + : Expression(EXPRESSION_HEAP_COMPOSITE, location), + expr_(expr) + { } + + protected: + int + do_traverse(Traverse* traverse) + { return Expression::traverse(&this->expr_, traverse); } + + Type* + do_type() + { return Type::make_pointer_type(this->expr_->type()); } + + void + do_determine_type(const Type_context*) + { this->expr_->determine_type_no_context(); } + + Expression* + do_copy() + { + return Expression::make_heap_composite(this->expr_->copy(), + this->location()); + } + + tree + do_get_tree(Translate_context*); + + // We only export global objects, and the parser does not generate + // this in global scope. + void + do_export(Export*) const + { gcc_unreachable(); } + + private: + // The composite literal which is being put on the heap. + Expression* expr_; +}; + +// Return a tree which allocates a composite literal on the heap. + +tree +Heap_composite_expression::do_get_tree(Translate_context* context) +{ + tree expr_tree = this->expr_->get_tree(context); + if (expr_tree == error_mark_node) + return error_mark_node; + tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree)); + gcc_assert(TREE_CODE(expr_size) == INTEGER_CST); + tree space = context->gogo()->allocate_memory(this->expr_->type(), + expr_size, this->location()); + space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space); + space = save_expr(space); + tree ref = build_fold_indirect_ref_loc(this->location(), space); + TREE_THIS_NOTRAP(ref) = 1; + tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space), + build2(MODIFY_EXPR, void_type_node, ref, expr_tree), + space); + SET_EXPR_LOCATION(ret, this->location()); + return ret; +} + +// Allocate a composite literal on the heap. + +Expression* +Expression::make_heap_composite(Expression* expr, source_location location) +{ + return new Heap_composite_expression(expr, location); +} + +// Class Receive_expression. + +// Return the type of a receive expression. + +Type* +Receive_expression::do_type() +{ + Channel_type* channel_type = this->channel_->type()->channel_type(); + if (channel_type == NULL) + return Type::make_error_type(); + return channel_type->element_type(); +} + +// Check types for a receive expression. + +void +Receive_expression::do_check_types(Gogo*) +{ + Type* type = this->channel_->type(); + if (type->is_error_type()) + { + this->set_is_error(); + return; + } + if (type->channel_type() == NULL) + { + this->report_error(_("expected channel")); + return; + } + if (!type->channel_type()->may_receive()) + { + this->report_error(_("invalid receive on send-only channel")); + return; + } +} + +// Get a tree for a receive expression. + +tree +Receive_expression::do_get_tree(Translate_context* context) +{ + Channel_type* channel_type = this->channel_->type()->channel_type(); + if (channel_type == NULL) + { + gcc_assert(this->channel_->type()->is_error_type()); + return error_mark_node; + } + Type* element_type = channel_type->element_type(); + tree element_type_tree = element_type->get_tree(context->gogo()); + + tree channel = this->channel_->get_tree(context); + if (element_type_tree == error_mark_node || channel == error_mark_node) + return error_mark_node; + + return Gogo::receive_from_channel(element_type_tree, channel, + this->for_select_, this->location()); +} + +// Make a receive expression. + +Receive_expression* +Expression::make_receive(Expression* channel, source_location location) +{ + return new Receive_expression(channel, location); +} + +// Class Send_expression. + +// Traversal. + +int +Send_expression::do_traverse(Traverse* traverse) +{ + if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + return Expression::traverse(&this->val_, traverse); +} + +// Get the type. + +Type* +Send_expression::do_type() +{ + if (this->is_value_discarded_) + return Type::make_void_type(); + else + return Type::lookup_bool_type(); +} + +// Set types. + +void +Send_expression::do_determine_type(const Type_context*) +{ + this->channel_->determine_type_no_context(); + + Type* type = this->channel_->type(); + Type_context subcontext; + if (type->channel_type() != NULL) + subcontext.type = type->channel_type()->element_type(); + this->val_->determine_type(&subcontext); +} + +// Check types. + +void +Send_expression::do_check_types(Gogo*) +{ + Type* type = this->channel_->type(); + if (type->is_error_type()) + { + this->set_is_error(); + return; + } + Channel_type* channel_type = type->channel_type(); + if (channel_type == NULL) + { + error_at(this->location(), "left operand of %<<-%> must be channel"); + this->set_is_error(); + return; + } + Type* element_type = channel_type->element_type(); + if (element_type != NULL + && !Type::are_assignable(element_type, this->val_->type(), NULL)) + { + this->report_error(_("incompatible types in send")); + return; + } + if (!channel_type->may_send()) + { + this->report_error(_("invalid send on receive-only channel")); + return; + } +} + +// Get a tree for a send expression. + +tree +Send_expression::do_get_tree(Translate_context* context) +{ + tree channel = this->channel_->get_tree(context); + tree val = this->val_->get_tree(context); + if (channel == error_mark_node || val == error_mark_node) + return error_mark_node; + Channel_type* channel_type = this->channel_->type()->channel_type(); + val = Expression::convert_for_assignment(context, + channel_type->element_type(), + this->val_->type(), + val, + this->location()); + return Gogo::send_on_channel(channel, val, this->is_value_discarded_, + this->for_select_, this->location()); +} + +// Make a send expression + +Send_expression* +Expression::make_send(Expression* channel, Expression* val, + source_location location) +{ + return new Send_expression(channel, val, location); +} + +// An expression which evaluates to a pointer to the type descriptor +// of a type. + +class Type_descriptor_expression : public Expression +{ + public: + Type_descriptor_expression(Type* type, source_location location) + : Expression(EXPRESSION_TYPE_DESCRIPTOR, location), + type_(type) + { } + + protected: + Type* + do_type() + { return Type::make_type_descriptor_ptr_type(); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context* context) + { return this->type_->type_descriptor_pointer(context->gogo()); } + + private: + // The type for which this is the descriptor. + Type* type_; +}; + +// Make a type descriptor expression. + +Expression* +Expression::make_type_descriptor(Type* type, source_location location) +{ + return new Type_descriptor_expression(type, location); +} + +// An expression which evaluates to some characteristic of a type. +// This is only used to initialize fields of a type descriptor. Using +// a new expression class is slightly inefficient but gives us a good +// separation between the frontend and the middle-end with regard to +// how types are laid out. + +class Type_info_expression : public Expression +{ + public: + Type_info_expression(Type* type, Type_info type_info) + : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION), + type_(type), type_info_(type_info) + { } + + protected: + Type* + do_type(); + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context* context); + + private: + // The type for which we are getting information. + Type* type_; + // What information we want. + Type_info type_info_; +}; + +// The type is chosen to match what the type descriptor struct +// expects. + +Type* +Type_info_expression::do_type() +{ + switch (this->type_info_) + { + case TYPE_INFO_SIZE: + return Type::lookup_integer_type("uintptr"); + case TYPE_INFO_ALIGNMENT: + case TYPE_INFO_FIELD_ALIGNMENT: + return Type::lookup_integer_type("uint8"); + default: + gcc_unreachable(); + } +} + +// Return type information in GENERIC. + +tree +Type_info_expression::do_get_tree(Translate_context* context) +{ + tree type_tree = this->type_->get_tree(context->gogo()); + if (type_tree == error_mark_node) + return error_mark_node; + + tree val_type_tree = this->type()->get_tree(context->gogo()); + gcc_assert(val_type_tree != error_mark_node); + + if (this->type_info_ == TYPE_INFO_SIZE) + return fold_convert_loc(BUILTINS_LOCATION, val_type_tree, + TYPE_SIZE_UNIT(type_tree)); + else + { + unsigned int val; + if (this->type_info_ == TYPE_INFO_ALIGNMENT) + val = go_type_alignment(type_tree); + else + val = go_field_alignment(type_tree); + return build_int_cstu(val_type_tree, val); + } +} + +// Make a type info expression. + +Expression* +Expression::make_type_info(Type* type, Type_info type_info) +{ + return new Type_info_expression(type, type_info); +} + +// An expression which evaluates to the offset of a field within a +// struct. This, like Type_info_expression, q.v., is only used to +// initialize fields of a type descriptor. + +class Struct_field_offset_expression : public Expression +{ + public: + Struct_field_offset_expression(Struct_type* type, const Struct_field* field) + : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION), + type_(type), field_(field) + { } + + protected: + Type* + do_type() + { return Type::lookup_integer_type("uintptr"); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return this; } + + tree + do_get_tree(Translate_context* context); + + private: + // The type of the struct. + Struct_type* type_; + // The field. + const Struct_field* field_; +}; + +// Return a struct field offset in GENERIC. + +tree +Struct_field_offset_expression::do_get_tree(Translate_context* context) +{ + tree type_tree = this->type_->get_tree(context->gogo()); + if (type_tree == error_mark_node) + return error_mark_node; + + tree val_type_tree = this->type()->get_tree(context->gogo()); + gcc_assert(val_type_tree != error_mark_node); + + const Struct_field_list* fields = this->type_->fields(); + tree struct_field_tree = TYPE_FIELDS(type_tree); + Struct_field_list::const_iterator p; + for (p = fields->begin(); + p != fields->end(); + ++p, struct_field_tree = DECL_CHAIN(struct_field_tree)) + { + gcc_assert(struct_field_tree != NULL_TREE); + if (&*p == this->field_) + break; + } + gcc_assert(&*p == this->field_); + + return fold_convert_loc(BUILTINS_LOCATION, val_type_tree, + byte_position(struct_field_tree)); +} + +// Make an expression for a struct field offset. + +Expression* +Expression::make_struct_field_offset(Struct_type* type, + const Struct_field* field) +{ + return new Struct_field_offset_expression(type, field); +} + +// An expression which evaluates to the address of an unnamed label. + +class Label_addr_expression : public Expression +{ + public: + Label_addr_expression(Label* label, source_location location) + : Expression(EXPRESSION_LABEL_ADDR, location), + label_(label) + { } + + protected: + Type* + do_type() + { return Type::make_pointer_type(Type::make_void_type()); } + + void + do_determine_type(const Type_context*) + { } + + Expression* + do_copy() + { return new Label_addr_expression(this->label_, this->location()); } + + tree + do_get_tree(Translate_context*) + { return this->label_->get_addr(this->location()); } + + private: + // The label whose address we are taking. + Label* label_; +}; + +// Make an expression for the address of an unnamed label. + +Expression* +Expression::make_label_addr(Label* label, source_location location) +{ + return new Label_addr_expression(label, location); +} + +// Import an expression. This comes at the end in order to see the +// various class definitions. + +Expression* +Expression::import_expression(Import* imp) +{ + int c = imp->peek_char(); + if (imp->match_c_string("- ") + || imp->match_c_string("! ") + || imp->match_c_string("^ ")) + return Unary_expression::do_import(imp); + else if (c == '(') + return Binary_expression::do_import(imp); + else if (imp->match_c_string("true") + || imp->match_c_string("false")) + return Boolean_expression::do_import(imp); + else if (c == '"') + return String_expression::do_import(imp); + else if (c == '-' || (c >= '0' && c <= '9')) + { + // This handles integers, floats and complex constants. + return Integer_expression::do_import(imp); + } + else if (imp->match_c_string("nil")) + return Nil_expression::do_import(imp); + else if (imp->match_c_string("convert")) + return Type_conversion_expression::do_import(imp); + else + { + error_at(imp->location(), "import error: expected expression"); + return Expression::make_error(imp->location()); + } +} + +// Class Expression_list. + +// Traverse the list. + +int +Expression_list::traverse(Traverse* traverse) +{ + for (Expression_list::iterator p = this->begin(); + p != this->end(); + ++p) + { + if (*p != NULL) + { + if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } + } + return TRAVERSE_CONTINUE; +} + +// Copy the list. + +Expression_list* +Expression_list::copy() +{ + Expression_list* ret = new Expression_list(); + for (Expression_list::iterator p = this->begin(); + p != this->end(); + ++p) + { + if (*p == NULL) + ret->push_back(NULL); + else + ret->push_back((*p)->copy()); + } + return ret; +} + +// Return whether an expression list has an error expression. + +bool +Expression_list::contains_error() const +{ + for (Expression_list::const_iterator p = this->begin(); + p != this->end(); + ++p) + if (*p != NULL && (*p)->is_error_expression()) + return true; + return false; +} |