diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/tree-eh.c | |
download | cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2 cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/tree-eh.c')
-rw-r--r-- | gcc/tree-eh.c | 4179 |
1 files changed, 4179 insertions, 0 deletions
diff --git a/gcc/tree-eh.c b/gcc/tree-eh.c new file mode 100644 index 000000000..fab4a3a48 --- /dev/null +++ b/gcc/tree-eh.c @@ -0,0 +1,4179 @@ +/* Exception handling semantics and decomposition for trees. + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "flags.h" +#include "function.h" +#include "except.h" +#include "pointer-set.h" +#include "tree-flow.h" +#include "tree-dump.h" +#include "tree-inline.h" +#include "tree-iterator.h" +#include "tree-pass.h" +#include "timevar.h" +#include "langhooks.h" +#include "ggc.h" +#include "diagnostic-core.h" +#include "gimple.h" +#include "target.h" + +/* In some instances a tree and a gimple need to be stored in a same table, + i.e. in hash tables. This is a structure to do this. */ +typedef union {tree *tp; tree t; gimple g;} treemple; + +/* Nonzero if we are using EH to handle cleanups. */ +static int using_eh_for_cleanups_p = 0; + +void +using_eh_for_cleanups (void) +{ + using_eh_for_cleanups_p = 1; +} + +/* Misc functions used in this file. */ + +/* Compare and hash for any structure which begins with a canonical + pointer. Assumes all pointers are interchangeable, which is sort + of already assumed by gcc elsewhere IIRC. */ + +static int +struct_ptr_eq (const void *a, const void *b) +{ + const void * const * x = (const void * const *) a; + const void * const * y = (const void * const *) b; + return *x == *y; +} + +static hashval_t +struct_ptr_hash (const void *a) +{ + const void * const * x = (const void * const *) a; + return (size_t)*x >> 4; +} + + +/* Remember and lookup EH landing pad data for arbitrary statements. + Really this means any statement that could_throw_p. We could + stuff this information into the stmt_ann data structure, but: + + (1) We absolutely rely on this information being kept until + we get to rtl. Once we're done with lowering here, if we lose + the information there's no way to recover it! + + (2) There are many more statements that *cannot* throw as + compared to those that can. We should be saving some amount + of space by only allocating memory for those that can throw. */ + +/* Add statement T in function IFUN to landing pad NUM. */ + +void +add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num) +{ + struct throw_stmt_node *n; + void **slot; + + gcc_assert (num != 0); + + n = ggc_alloc_throw_stmt_node (); + n->stmt = t; + n->lp_nr = num; + + if (!get_eh_throw_stmt_table (ifun)) + set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash, + struct_ptr_eq, + ggc_free)); + + slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT); + gcc_assert (!*slot); + *slot = n; +} + +/* Add statement T in the current function (cfun) to EH landing pad NUM. */ + +void +add_stmt_to_eh_lp (gimple t, int num) +{ + add_stmt_to_eh_lp_fn (cfun, t, num); +} + +/* Add statement T to the single EH landing pad in REGION. */ + +static void +record_stmt_eh_region (eh_region region, gimple t) +{ + if (region == NULL) + return; + if (region->type == ERT_MUST_NOT_THROW) + add_stmt_to_eh_lp_fn (cfun, t, -region->index); + else + { + eh_landing_pad lp = region->landing_pads; + if (lp == NULL) + lp = gen_eh_landing_pad (region); + else + gcc_assert (lp->next_lp == NULL); + add_stmt_to_eh_lp_fn (cfun, t, lp->index); + } +} + + +/* Remove statement T in function IFUN from its EH landing pad. */ + +bool +remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t) +{ + struct throw_stmt_node dummy; + void **slot; + + if (!get_eh_throw_stmt_table (ifun)) + return false; + + dummy.stmt = t; + slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy, + NO_INSERT); + if (slot) + { + htab_clear_slot (get_eh_throw_stmt_table (ifun), slot); + return true; + } + else + return false; +} + + +/* Remove statement T in the current function (cfun) from its + EH landing pad. */ + +bool +remove_stmt_from_eh_lp (gimple t) +{ + return remove_stmt_from_eh_lp_fn (cfun, t); +} + +/* Determine if statement T is inside an EH region in function IFUN. + Positive numbers indicate a landing pad index; negative numbers + indicate a MUST_NOT_THROW region index; zero indicates that the + statement is not recorded in the region table. */ + +int +lookup_stmt_eh_lp_fn (struct function *ifun, gimple t) +{ + struct throw_stmt_node *p, n; + + if (ifun->eh->throw_stmt_table == NULL) + return 0; + + n.stmt = t; + p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n); + return p ? p->lp_nr : 0; +} + +/* Likewise, but always use the current function. */ + +int +lookup_stmt_eh_lp (gimple t) +{ + /* We can get called from initialized data when -fnon-call-exceptions + is on; prevent crash. */ + if (!cfun) + return 0; + return lookup_stmt_eh_lp_fn (cfun, t); +} + +/* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY + nodes and LABEL_DECL nodes. We will use this during the second phase to + determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */ + +struct finally_tree_node +{ + /* When storing a GIMPLE_TRY, we have to record a gimple. However + when deciding whether a GOTO to a certain LABEL_DECL (which is a + tree) leaves the TRY block, its necessary to record a tree in + this field. Thus a treemple is used. */ + treemple child; + gimple parent; +}; + +/* Note that this table is *not* marked GTY. It is short-lived. */ +static htab_t finally_tree; + +static void +record_in_finally_tree (treemple child, gimple parent) +{ + struct finally_tree_node *n; + void **slot; + + n = XNEW (struct finally_tree_node); + n->child = child; + n->parent = parent; + + slot = htab_find_slot (finally_tree, n, INSERT); + gcc_assert (!*slot); + *slot = n; +} + +static void +collect_finally_tree (gimple stmt, gimple region); + +/* Go through the gimple sequence. Works with collect_finally_tree to + record all GIMPLE_LABEL and GIMPLE_TRY statements. */ + +static void +collect_finally_tree_1 (gimple_seq seq, gimple region) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) + collect_finally_tree (gsi_stmt (gsi), region); +} + +static void +collect_finally_tree (gimple stmt, gimple region) +{ + treemple temp; + + switch (gimple_code (stmt)) + { + case GIMPLE_LABEL: + temp.t = gimple_label_label (stmt); + record_in_finally_tree (temp, region); + break; + + case GIMPLE_TRY: + if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY) + { + temp.g = stmt; + record_in_finally_tree (temp, region); + collect_finally_tree_1 (gimple_try_eval (stmt), stmt); + collect_finally_tree_1 (gimple_try_cleanup (stmt), region); + } + else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH) + { + collect_finally_tree_1 (gimple_try_eval (stmt), region); + collect_finally_tree_1 (gimple_try_cleanup (stmt), region); + } + break; + + case GIMPLE_CATCH: + collect_finally_tree_1 (gimple_catch_handler (stmt), region); + break; + + case GIMPLE_EH_FILTER: + collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region); + break; + + default: + /* A type, a decl, or some kind of statement that we're not + interested in. Don't walk them. */ + break; + } +} + + +/* Use the finally tree to determine if a jump from START to TARGET + would leave the try_finally node that START lives in. */ + +static bool +outside_finally_tree (treemple start, gimple target) +{ + struct finally_tree_node n, *p; + + do + { + n.child = start; + p = (struct finally_tree_node *) htab_find (finally_tree, &n); + if (!p) + return true; + start.g = p->parent; + } + while (start.g != target); + + return false; +} + +/* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY + nodes into a set of gotos, magic labels, and eh regions. + The eh region creation is straight-forward, but frobbing all the gotos + and such into shape isn't. */ + +/* The sequence into which we record all EH stuff. This will be + placed at the end of the function when we're all done. */ +static gimple_seq eh_seq; + +/* Record whether an EH region contains something that can throw, + indexed by EH region number. */ +static bitmap eh_region_may_contain_throw_map; + +/* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN + statements that are seen to escape this GIMPLE_TRY_FINALLY node. + The idea is to record a gimple statement for everything except for + the conditionals, which get their labels recorded. Since labels are + of type 'tree', we need this node to store both gimple and tree + objects. REPL_STMT is the sequence used to replace the goto/return + statement. CONT_STMT is used to store the statement that allows + the return/goto to jump to the original destination. */ + +struct goto_queue_node +{ + treemple stmt; + gimple_seq repl_stmt; + gimple cont_stmt; + int index; + /* This is used when index >= 0 to indicate that stmt is a label (as + opposed to a goto stmt). */ + int is_label; +}; + +/* State of the world while lowering. */ + +struct leh_state +{ + /* What's "current" while constructing the eh region tree. These + correspond to variables of the same name in cfun->eh, which we + don't have easy access to. */ + eh_region cur_region; + + /* What's "current" for the purposes of __builtin_eh_pointer. For + a CATCH, this is the associated TRY. For an EH_FILTER, this is + the associated ALLOWED_EXCEPTIONS, etc. */ + eh_region ehp_region; + + /* Processing of TRY_FINALLY requires a bit more state. This is + split out into a separate structure so that we don't have to + copy so much when processing other nodes. */ + struct leh_tf_state *tf; +}; + +struct leh_tf_state +{ + /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The + try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain + this so that outside_finally_tree can reliably reference the tree used + in the collect_finally_tree data structures. */ + gimple try_finally_expr; + gimple top_p; + + /* While lowering a top_p usually it is expanded into multiple statements, + thus we need the following field to store them. */ + gimple_seq top_p_seq; + + /* The state outside this try_finally node. */ + struct leh_state *outer; + + /* The exception region created for it. */ + eh_region region; + + /* The goto queue. */ + struct goto_queue_node *goto_queue; + size_t goto_queue_size; + size_t goto_queue_active; + + /* Pointer map to help in searching goto_queue when it is large. */ + struct pointer_map_t *goto_queue_map; + + /* The set of unique labels seen as entries in the goto queue. */ + VEC(tree,heap) *dest_array; + + /* A label to be added at the end of the completed transformed + sequence. It will be set if may_fallthru was true *at one time*, + though subsequent transformations may have cleared that flag. */ + tree fallthru_label; + + /* True if it is possible to fall out the bottom of the try block. + Cleared if the fallthru is converted to a goto. */ + bool may_fallthru; + + /* True if any entry in goto_queue is a GIMPLE_RETURN. */ + bool may_return; + + /* True if the finally block can receive an exception edge. + Cleared if the exception case is handled by code duplication. */ + bool may_throw; +}; + +static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple); + +/* Search for STMT in the goto queue. Return the replacement, + or null if the statement isn't in the queue. */ + +#define LARGE_GOTO_QUEUE 20 + +static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq); + +static gimple_seq +find_goto_replacement (struct leh_tf_state *tf, treemple stmt) +{ + unsigned int i; + void **slot; + + if (tf->goto_queue_active < LARGE_GOTO_QUEUE) + { + for (i = 0; i < tf->goto_queue_active; i++) + if ( tf->goto_queue[i].stmt.g == stmt.g) + return tf->goto_queue[i].repl_stmt; + return NULL; + } + + /* If we have a large number of entries in the goto_queue, create a + pointer map and use that for searching. */ + + if (!tf->goto_queue_map) + { + tf->goto_queue_map = pointer_map_create (); + for (i = 0; i < tf->goto_queue_active; i++) + { + slot = pointer_map_insert (tf->goto_queue_map, + tf->goto_queue[i].stmt.g); + gcc_assert (*slot == NULL); + *slot = &tf->goto_queue[i]; + } + } + + slot = pointer_map_contains (tf->goto_queue_map, stmt.g); + if (slot != NULL) + return (((struct goto_queue_node *) *slot)->repl_stmt); + + return NULL; +} + +/* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a + lowered GIMPLE_COND. If, by chance, the replacement is a simple goto, + then we can just splat it in, otherwise we add the new stmts immediately + after the GIMPLE_COND and redirect. */ + +static void +replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf, + gimple_stmt_iterator *gsi) +{ + tree label; + gimple_seq new_seq; + treemple temp; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + temp.tp = tp; + new_seq = find_goto_replacement (tf, temp); + if (!new_seq) + return; + + if (gimple_seq_singleton_p (new_seq) + && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO) + { + *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq)); + return; + } + + label = create_artificial_label (loc); + /* Set the new label for the GIMPLE_COND */ + *tp = label; + + gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING); + gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING); +} + +/* The real work of replace_goto_queue. Returns with TSI updated to + point to the next statement. */ + +static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *); + +static void +replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf, + gimple_stmt_iterator *gsi) +{ + gimple_seq seq; + treemple temp; + temp.g = NULL; + + switch (gimple_code (stmt)) + { + case GIMPLE_GOTO: + case GIMPLE_RETURN: + temp.g = stmt; + seq = find_goto_replacement (tf, temp); + if (seq) + { + gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT); + gsi_remove (gsi, false); + return; + } + break; + + case GIMPLE_COND: + replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi); + replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi); + break; + + case GIMPLE_TRY: + replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf); + replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf); + break; + case GIMPLE_CATCH: + replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf); + break; + case GIMPLE_EH_FILTER: + replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf); + break; + + default: + /* These won't have gotos in them. */ + break; + } + + gsi_next (gsi); +} + +/* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */ + +static void +replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf) +{ + gimple_stmt_iterator gsi = gsi_start (seq); + + while (!gsi_end_p (gsi)) + replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi); +} + +/* Replace all goto queue members. */ + +static void +replace_goto_queue (struct leh_tf_state *tf) +{ + if (tf->goto_queue_active == 0) + return; + replace_goto_queue_stmt_list (tf->top_p_seq, tf); + replace_goto_queue_stmt_list (eh_seq, tf); +} + +/* Add a new record to the goto queue contained in TF. NEW_STMT is the + data to be added, IS_LABEL indicates whether NEW_STMT is a label or + a gimple return. */ + +static void +record_in_goto_queue (struct leh_tf_state *tf, + treemple new_stmt, + int index, + bool is_label) +{ + size_t active, size; + struct goto_queue_node *q; + + gcc_assert (!tf->goto_queue_map); + + active = tf->goto_queue_active; + size = tf->goto_queue_size; + if (active >= size) + { + size = (size ? size * 2 : 32); + tf->goto_queue_size = size; + tf->goto_queue + = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size); + } + + q = &tf->goto_queue[active]; + tf->goto_queue_active = active + 1; + + memset (q, 0, sizeof (*q)); + q->stmt = new_stmt; + q->index = index; + q->is_label = is_label; +} + +/* Record the LABEL label in the goto queue contained in TF. + TF is not null. */ + +static void +record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label) +{ + int index; + treemple temp, new_stmt; + + if (!label) + return; + + /* Computed and non-local gotos do not get processed. Given + their nature we can neither tell whether we've escaped the + finally block nor redirect them if we knew. */ + if (TREE_CODE (label) != LABEL_DECL) + return; + + /* No need to record gotos that don't leave the try block. */ + temp.t = label; + if (!outside_finally_tree (temp, tf->try_finally_expr)) + return; + + if (! tf->dest_array) + { + tf->dest_array = VEC_alloc (tree, heap, 10); + VEC_quick_push (tree, tf->dest_array, label); + index = 0; + } + else + { + int n = VEC_length (tree, tf->dest_array); + for (index = 0; index < n; ++index) + if (VEC_index (tree, tf->dest_array, index) == label) + break; + if (index == n) + VEC_safe_push (tree, heap, tf->dest_array, label); + } + + /* In the case of a GOTO we want to record the destination label, + since with a GIMPLE_COND we have an easy access to the then/else + labels. */ + new_stmt = stmt; + record_in_goto_queue (tf, new_stmt, index, true); +} + +/* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally + node, and if so record that fact in the goto queue associated with that + try_finally node. */ + +static void +maybe_record_in_goto_queue (struct leh_state *state, gimple stmt) +{ + struct leh_tf_state *tf = state->tf; + treemple new_stmt; + + if (!tf) + return; + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + new_stmt.tp = gimple_op_ptr (stmt, 2); + record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt)); + new_stmt.tp = gimple_op_ptr (stmt, 3); + record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt)); + break; + case GIMPLE_GOTO: + new_stmt.g = stmt; + record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt)); + break; + + case GIMPLE_RETURN: + tf->may_return = true; + new_stmt.g = stmt; + record_in_goto_queue (tf, new_stmt, -1, false); + break; + + default: + gcc_unreachable (); + } +} + + +#ifdef ENABLE_CHECKING +/* We do not process GIMPLE_SWITCHes for now. As long as the original source + was in fact structured, and we've not yet done jump threading, then none + of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */ + +static void +verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr) +{ + struct leh_tf_state *tf = state->tf; + size_t i, n; + + if (!tf) + return; + + n = gimple_switch_num_labels (switch_expr); + + for (i = 0; i < n; ++i) + { + treemple temp; + tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i)); + temp.t = lab; + gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr)); + } +} +#else +#define verify_norecord_switch_expr(state, switch_expr) +#endif + +/* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P + whatever is needed to finish the return. If MOD is non-null, insert it + before the new branch. RETURN_VALUE_P is a cache containing a temporary + variable to be used in manipulating the value returned from the function. */ + +static void +do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod, + tree *return_value_p) +{ + tree ret_expr; + gimple x; + + /* In the case of a return, the queue node must be a gimple statement. */ + gcc_assert (!q->is_label); + + ret_expr = gimple_return_retval (q->stmt.g); + + if (ret_expr) + { + if (!*return_value_p) + *return_value_p = ret_expr; + else + gcc_assert (*return_value_p == ret_expr); + q->cont_stmt = q->stmt.g; + /* The nasty part about redirecting the return value is that the + return value itself is to be computed before the FINALLY block + is executed. e.g. + + int x; + int foo (void) + { + x = 0; + try { + return x; + } finally { + x++; + } + } + + should return 0, not 1. Arrange for this to happen by copying + computed the return value into a local temporary. This also + allows us to redirect multiple return statements through the + same destination block; whether this is a net win or not really + depends, I guess, but it does make generation of the switch in + lower_try_finally_switch easier. */ + + if (TREE_CODE (ret_expr) == RESULT_DECL) + { + if (!*return_value_p) + *return_value_p = ret_expr; + else + gcc_assert (*return_value_p == ret_expr); + q->cont_stmt = q->stmt.g; + } + else + gcc_unreachable (); + } + else + /* If we don't return a value, all return statements are the same. */ + q->cont_stmt = q->stmt.g; + + if (!q->repl_stmt) + q->repl_stmt = gimple_seq_alloc (); + + if (mod) + gimple_seq_add_seq (&q->repl_stmt, mod); + + x = gimple_build_goto (finlab); + gimple_seq_add_stmt (&q->repl_stmt, x); +} + +/* Similar, but easier, for GIMPLE_GOTO. */ + +static void +do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod, + struct leh_tf_state *tf) +{ + gimple x; + + gcc_assert (q->is_label); + if (!q->repl_stmt) + q->repl_stmt = gimple_seq_alloc (); + + q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index)); + + if (mod) + gimple_seq_add_seq (&q->repl_stmt, mod); + + x = gimple_build_goto (finlab); + gimple_seq_add_stmt (&q->repl_stmt, x); +} + +/* Emit a standard landing pad sequence into SEQ for REGION. */ + +static void +emit_post_landing_pad (gimple_seq *seq, eh_region region) +{ + eh_landing_pad lp = region->landing_pads; + gimple x; + + if (lp == NULL) + lp = gen_eh_landing_pad (region); + + lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION); + EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index; + + x = gimple_build_label (lp->post_landing_pad); + gimple_seq_add_stmt (seq, x); +} + +/* Emit a RESX statement into SEQ for REGION. */ + +static void +emit_resx (gimple_seq *seq, eh_region region) +{ + gimple x = gimple_build_resx (region->index); + gimple_seq_add_stmt (seq, x); + if (region->outer) + record_stmt_eh_region (region->outer, x); +} + +/* Emit an EH_DISPATCH statement into SEQ for REGION. */ + +static void +emit_eh_dispatch (gimple_seq *seq, eh_region region) +{ + gimple x = gimple_build_eh_dispatch (region->index); + gimple_seq_add_stmt (seq, x); +} + +/* Note that the current EH region may contain a throw, or a + call to a function which itself may contain a throw. */ + +static void +note_eh_region_may_contain_throw (eh_region region) +{ + while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index)) + { + if (region->type == ERT_MUST_NOT_THROW) + break; + region = region->outer; + if (region == NULL) + break; + } +} + +/* Check if REGION has been marked as containing a throw. If REGION is + NULL, this predicate is false. */ + +static inline bool +eh_region_may_contain_throw (eh_region r) +{ + return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index); +} + +/* We want to transform + try { body; } catch { stuff; } + to + normal_seqence: + body; + over: + eh_seqence: + landing_pad: + stuff; + goto over; + + TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad + should be placed before the second operand, or NULL. OVER is + an existing label that should be put at the exit, or NULL. */ + +static gimple_seq +frob_into_branch_around (gimple tp, eh_region region, tree over) +{ + gimple x; + gimple_seq cleanup, result; + location_t loc = gimple_location (tp); + + cleanup = gimple_try_cleanup (tp); + result = gimple_try_eval (tp); + + if (region) + emit_post_landing_pad (&eh_seq, region); + + if (gimple_seq_may_fallthru (cleanup)) + { + if (!over) + over = create_artificial_label (loc); + x = gimple_build_goto (over); + gimple_seq_add_stmt (&cleanup, x); + } + gimple_seq_add_seq (&eh_seq, cleanup); + + if (over) + { + x = gimple_build_label (over); + gimple_seq_add_stmt (&result, x); + } + return result; +} + +/* A subroutine of lower_try_finally. Duplicate the tree rooted at T. + Make sure to record all new labels found. */ + +static gimple_seq +lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state) +{ + gimple region = NULL; + gimple_seq new_seq; + + new_seq = copy_gimple_seq_and_replace_locals (seq); + + if (outer_state->tf) + region = outer_state->tf->try_finally_expr; + collect_finally_tree_1 (new_seq, region); + + return new_seq; +} + +/* A subroutine of lower_try_finally. Create a fallthru label for + the given try_finally state. The only tricky bit here is that + we have to make sure to record the label in our outer context. */ + +static tree +lower_try_finally_fallthru_label (struct leh_tf_state *tf) +{ + tree label = tf->fallthru_label; + treemple temp; + + if (!label) + { + label = create_artificial_label (gimple_location (tf->try_finally_expr)); + tf->fallthru_label = label; + if (tf->outer->tf) + { + temp.t = label; + record_in_finally_tree (temp, tf->outer->tf->try_finally_expr); + } + } + return label; +} + +/* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions + langhook returns non-null, then the language requires that the exception + path out of a try_finally be treated specially. To wit: the code within + the finally block may not itself throw an exception. We have two choices + here. First we can duplicate the finally block and wrap it in a + must_not_throw region. Second, we can generate code like + + try { + finally_block; + } catch { + if (fintmp == eh_edge) + protect_cleanup_actions; + } + + where "fintmp" is the temporary used in the switch statement generation + alternative considered below. For the nonce, we always choose the first + option. + + THIS_STATE may be null if this is a try-cleanup, not a try-finally. */ + +static void +honor_protect_cleanup_actions (struct leh_state *outer_state, + struct leh_state *this_state, + struct leh_tf_state *tf) +{ + tree protect_cleanup_actions; + gimple_stmt_iterator gsi; + bool finally_may_fallthru; + gimple_seq finally; + gimple x; + + /* First check for nothing to do. */ + if (lang_hooks.eh_protect_cleanup_actions == NULL) + return; + protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions (); + if (protect_cleanup_actions == NULL) + return; + + finally = gimple_try_cleanup (tf->top_p); + finally_may_fallthru = gimple_seq_may_fallthru (finally); + + /* Duplicate the FINALLY block. Only need to do this for try-finally, + and not for cleanups. */ + if (this_state) + finally = lower_try_finally_dup_block (finally, outer_state); + + /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP + set, the handler of the TRY_CATCH_EXPR is another cleanup which ought + to be in an enclosing scope, but needs to be implemented at this level + to avoid a nesting violation (see wrap_temporary_cleanups in + cp/decl.c). Since it's logically at an outer level, we should call + terminate before we get to it, so strip it away before adding the + MUST_NOT_THROW filter. */ + gsi = gsi_start (finally); + x = gsi_stmt (gsi); + if (gimple_code (x) == GIMPLE_TRY + && gimple_try_kind (x) == GIMPLE_TRY_CATCH + && gimple_try_catch_is_cleanup (x)) + { + gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT); + gsi_remove (&gsi, false); + } + + /* Wrap the block with protect_cleanup_actions as the action. */ + x = gimple_build_eh_must_not_throw (protect_cleanup_actions); + x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x), + GIMPLE_TRY_CATCH); + finally = lower_eh_must_not_throw (outer_state, x); + + /* Drop all of this into the exception sequence. */ + emit_post_landing_pad (&eh_seq, tf->region); + gimple_seq_add_seq (&eh_seq, finally); + if (finally_may_fallthru) + emit_resx (&eh_seq, tf->region); + + /* Having now been handled, EH isn't to be considered with + the rest of the outgoing edges. */ + tf->may_throw = false; +} + +/* A subroutine of lower_try_finally. We have determined that there is + no fallthru edge out of the finally block. This means that there is + no outgoing edge corresponding to any incoming edge. Restructure the + try_finally node for this special case. */ + +static void +lower_try_finally_nofallthru (struct leh_state *state, + struct leh_tf_state *tf) +{ + tree lab, return_val; + gimple x; + gimple_seq finally; + struct goto_queue_node *q, *qe; + + lab = create_artificial_label (gimple_location (tf->try_finally_expr)); + + /* We expect that tf->top_p is a GIMPLE_TRY. */ + finally = gimple_try_cleanup (tf->top_p); + tf->top_p_seq = gimple_try_eval (tf->top_p); + + x = gimple_build_label (lab); + gimple_seq_add_stmt (&tf->top_p_seq, x); + + return_val = NULL; + q = tf->goto_queue; + qe = q + tf->goto_queue_active; + for (; q < qe; ++q) + if (q->index < 0) + do_return_redirection (q, lab, NULL, &return_val); + else + do_goto_redirection (q, lab, NULL, tf); + + replace_goto_queue (tf); + + lower_eh_constructs_1 (state, finally); + gimple_seq_add_seq (&tf->top_p_seq, finally); + + if (tf->may_throw) + { + emit_post_landing_pad (&eh_seq, tf->region); + + x = gimple_build_goto (lab); + gimple_seq_add_stmt (&eh_seq, x); + } +} + +/* A subroutine of lower_try_finally. We have determined that there is + exactly one destination of the finally block. Restructure the + try_finally node for this special case. */ + +static void +lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf) +{ + struct goto_queue_node *q, *qe; + gimple x; + gimple_seq finally; + tree finally_label; + location_t loc = gimple_location (tf->try_finally_expr); + + finally = gimple_try_cleanup (tf->top_p); + tf->top_p_seq = gimple_try_eval (tf->top_p); + + lower_eh_constructs_1 (state, finally); + + if (tf->may_throw) + { + /* Only reachable via the exception edge. Add the given label to + the head of the FINALLY block. Append a RESX at the end. */ + emit_post_landing_pad (&eh_seq, tf->region); + gimple_seq_add_seq (&eh_seq, finally); + emit_resx (&eh_seq, tf->region); + return; + } + + if (tf->may_fallthru) + { + /* Only reachable via the fallthru edge. Do nothing but let + the two blocks run together; we'll fall out the bottom. */ + gimple_seq_add_seq (&tf->top_p_seq, finally); + return; + } + + finally_label = create_artificial_label (loc); + x = gimple_build_label (finally_label); + gimple_seq_add_stmt (&tf->top_p_seq, x); + + gimple_seq_add_seq (&tf->top_p_seq, finally); + + q = tf->goto_queue; + qe = q + tf->goto_queue_active; + + if (tf->may_return) + { + /* Reachable by return expressions only. Redirect them. */ + tree return_val = NULL; + for (; q < qe; ++q) + do_return_redirection (q, finally_label, NULL, &return_val); + replace_goto_queue (tf); + } + else + { + /* Reachable by goto expressions only. Redirect them. */ + for (; q < qe; ++q) + do_goto_redirection (q, finally_label, NULL, tf); + replace_goto_queue (tf); + + if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label) + { + /* Reachable by goto to fallthru label only. Redirect it + to the new label (already created, sadly), and do not + emit the final branch out, or the fallthru label. */ + tf->fallthru_label = NULL; + return; + } + } + + /* Place the original return/goto to the original destination + immediately after the finally block. */ + x = tf->goto_queue[0].cont_stmt; + gimple_seq_add_stmt (&tf->top_p_seq, x); + maybe_record_in_goto_queue (state, x); +} + +/* A subroutine of lower_try_finally. There are multiple edges incoming + and outgoing from the finally block. Implement this by duplicating the + finally block for every destination. */ + +static void +lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf) +{ + gimple_seq finally; + gimple_seq new_stmt; + gimple_seq seq; + gimple x; + tree tmp; + location_t tf_loc = gimple_location (tf->try_finally_expr); + + finally = gimple_try_cleanup (tf->top_p); + tf->top_p_seq = gimple_try_eval (tf->top_p); + new_stmt = NULL; + + if (tf->may_fallthru) + { + seq = lower_try_finally_dup_block (finally, state); + lower_eh_constructs_1 (state, seq); + gimple_seq_add_seq (&new_stmt, seq); + + tmp = lower_try_finally_fallthru_label (tf); + x = gimple_build_goto (tmp); + gimple_seq_add_stmt (&new_stmt, x); + } + + if (tf->may_throw) + { + seq = lower_try_finally_dup_block (finally, state); + lower_eh_constructs_1 (state, seq); + + emit_post_landing_pad (&eh_seq, tf->region); + gimple_seq_add_seq (&eh_seq, seq); + emit_resx (&eh_seq, tf->region); + } + + if (tf->goto_queue) + { + struct goto_queue_node *q, *qe; + tree return_val = NULL; + int return_index, index; + struct labels_s + { + struct goto_queue_node *q; + tree label; + } *labels; + + return_index = VEC_length (tree, tf->dest_array); + labels = XCNEWVEC (struct labels_s, return_index + 1); + + q = tf->goto_queue; + qe = q + tf->goto_queue_active; + for (; q < qe; q++) + { + index = q->index < 0 ? return_index : q->index; + + if (!labels[index].q) + labels[index].q = q; + } + + for (index = 0; index < return_index + 1; index++) + { + tree lab; + + q = labels[index].q; + if (! q) + continue; + + lab = labels[index].label + = create_artificial_label (tf_loc); + + if (index == return_index) + do_return_redirection (q, lab, NULL, &return_val); + else + do_goto_redirection (q, lab, NULL, tf); + + x = gimple_build_label (lab); + gimple_seq_add_stmt (&new_stmt, x); + + seq = lower_try_finally_dup_block (finally, state); + lower_eh_constructs_1 (state, seq); + gimple_seq_add_seq (&new_stmt, seq); + + gimple_seq_add_stmt (&new_stmt, q->cont_stmt); + maybe_record_in_goto_queue (state, q->cont_stmt); + } + + for (q = tf->goto_queue; q < qe; q++) + { + tree lab; + + index = q->index < 0 ? return_index : q->index; + + if (labels[index].q == q) + continue; + + lab = labels[index].label; + + if (index == return_index) + do_return_redirection (q, lab, NULL, &return_val); + else + do_goto_redirection (q, lab, NULL, tf); + } + + replace_goto_queue (tf); + free (labels); + } + + /* Need to link new stmts after running replace_goto_queue due + to not wanting to process the same goto stmts twice. */ + gimple_seq_add_seq (&tf->top_p_seq, new_stmt); +} + +/* A subroutine of lower_try_finally. There are multiple edges incoming + and outgoing from the finally block. Implement this by instrumenting + each incoming edge and creating a switch statement at the end of the + finally block that branches to the appropriate destination. */ + +static void +lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf) +{ + struct goto_queue_node *q, *qe; + tree return_val = NULL; + tree finally_tmp, finally_label; + int return_index, eh_index, fallthru_index; + int nlabels, ndests, j, last_case_index; + tree last_case; + VEC (tree,heap) *case_label_vec; + gimple_seq switch_body; + gimple x; + tree tmp; + gimple switch_stmt; + gimple_seq finally; + struct pointer_map_t *cont_map = NULL; + /* The location of the TRY_FINALLY stmt. */ + location_t tf_loc = gimple_location (tf->try_finally_expr); + /* The location of the finally block. */ + location_t finally_loc; + + switch_body = gimple_seq_alloc (); + + /* Mash the TRY block to the head of the chain. */ + finally = gimple_try_cleanup (tf->top_p); + tf->top_p_seq = gimple_try_eval (tf->top_p); + + /* The location of the finally is either the last stmt in the finally + block or the location of the TRY_FINALLY itself. */ + finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ? + gimple_location (gimple_seq_last_stmt (tf->top_p_seq)) + : tf_loc; + + /* Lower the finally block itself. */ + lower_eh_constructs_1 (state, finally); + + /* Prepare for switch statement generation. */ + nlabels = VEC_length (tree, tf->dest_array); + return_index = nlabels; + eh_index = return_index + tf->may_return; + fallthru_index = eh_index + tf->may_throw; + ndests = fallthru_index + tf->may_fallthru; + + finally_tmp = create_tmp_var (integer_type_node, "finally_tmp"); + finally_label = create_artificial_label (finally_loc); + + /* We use VEC_quick_push on case_label_vec throughout this function, + since we know the size in advance and allocate precisely as muce + space as needed. */ + case_label_vec = VEC_alloc (tree, heap, ndests); + last_case = NULL; + last_case_index = 0; + + /* Begin inserting code for getting to the finally block. Things + are done in this order to correspond to the sequence the code is + layed out. */ + + if (tf->may_fallthru) + { + x = gimple_build_assign (finally_tmp, + build_int_cst (NULL, fallthru_index)); + gimple_seq_add_stmt (&tf->top_p_seq, x); + + last_case = build3 (CASE_LABEL_EXPR, void_type_node, + build_int_cst (NULL, fallthru_index), + NULL, create_artificial_label (tf_loc)); + VEC_quick_push (tree, case_label_vec, last_case); + last_case_index++; + + x = gimple_build_label (CASE_LABEL (last_case)); + gimple_seq_add_stmt (&switch_body, x); + + tmp = lower_try_finally_fallthru_label (tf); + x = gimple_build_goto (tmp); + gimple_seq_add_stmt (&switch_body, x); + } + + if (tf->may_throw) + { + emit_post_landing_pad (&eh_seq, tf->region); + + x = gimple_build_assign (finally_tmp, + build_int_cst (NULL, eh_index)); + gimple_seq_add_stmt (&eh_seq, x); + + x = gimple_build_goto (finally_label); + gimple_seq_add_stmt (&eh_seq, x); + + last_case = build3 (CASE_LABEL_EXPR, void_type_node, + build_int_cst (NULL, eh_index), + NULL, create_artificial_label (tf_loc)); + VEC_quick_push (tree, case_label_vec, last_case); + last_case_index++; + + x = gimple_build_label (CASE_LABEL (last_case)); + gimple_seq_add_stmt (&eh_seq, x); + emit_resx (&eh_seq, tf->region); + } + + x = gimple_build_label (finally_label); + gimple_seq_add_stmt (&tf->top_p_seq, x); + + gimple_seq_add_seq (&tf->top_p_seq, finally); + + /* Redirect each incoming goto edge. */ + q = tf->goto_queue; + qe = q + tf->goto_queue_active; + j = last_case_index + tf->may_return; + /* Prepare the assignments to finally_tmp that are executed upon the + entrance through a particular edge. */ + for (; q < qe; ++q) + { + gimple_seq mod; + int switch_id; + unsigned int case_index; + + mod = gimple_seq_alloc (); + + if (q->index < 0) + { + x = gimple_build_assign (finally_tmp, + build_int_cst (NULL, return_index)); + gimple_seq_add_stmt (&mod, x); + do_return_redirection (q, finally_label, mod, &return_val); + switch_id = return_index; + } + else + { + x = gimple_build_assign (finally_tmp, + build_int_cst (NULL, q->index)); + gimple_seq_add_stmt (&mod, x); + do_goto_redirection (q, finally_label, mod, tf); + switch_id = q->index; + } + + case_index = j + q->index; + if (VEC_length (tree, case_label_vec) <= case_index + || !VEC_index (tree, case_label_vec, case_index)) + { + tree case_lab; + void **slot; + case_lab = build3 (CASE_LABEL_EXPR, void_type_node, + build_int_cst (NULL, switch_id), + NULL, NULL); + /* We store the cont_stmt in the pointer map, so that we can recover + it in the loop below. We don't create the new label while + walking the goto_queue because pointers don't offer a stable + order. */ + if (!cont_map) + cont_map = pointer_map_create (); + slot = pointer_map_insert (cont_map, case_lab); + *slot = q->cont_stmt; + VEC_quick_push (tree, case_label_vec, case_lab); + } + } + for (j = last_case_index; j < last_case_index + nlabels; j++) + { + tree label; + gimple cont_stmt; + void **slot; + + last_case = VEC_index (tree, case_label_vec, j); + + gcc_assert (last_case); + gcc_assert (cont_map); + + slot = pointer_map_contains (cont_map, last_case); + /* As the comment above suggests, CASE_LABEL (last_case) was just a + placeholder, it does not store an actual label, yet. */ + gcc_assert (slot); + cont_stmt = *(gimple *) slot; + + label = create_artificial_label (tf_loc); + CASE_LABEL (last_case) = label; + + x = gimple_build_label (label); + gimple_seq_add_stmt (&switch_body, x); + gimple_seq_add_stmt (&switch_body, cont_stmt); + maybe_record_in_goto_queue (state, cont_stmt); + } + if (cont_map) + pointer_map_destroy (cont_map); + + replace_goto_queue (tf); + + /* Make sure that the last case is the default label, as one is required. + Then sort the labels, which is also required in GIMPLE. */ + CASE_LOW (last_case) = NULL; + sort_case_labels (case_label_vec); + + /* Build the switch statement, setting last_case to be the default + label. */ + switch_stmt = gimple_build_switch_vec (finally_tmp, last_case, + case_label_vec); + gimple_set_location (switch_stmt, finally_loc); + + /* Need to link SWITCH_STMT after running replace_goto_queue + due to not wanting to process the same goto stmts twice. */ + gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt); + gimple_seq_add_seq (&tf->top_p_seq, switch_body); +} + +/* Decide whether or not we are going to duplicate the finally block. + There are several considerations. + + First, if this is Java, then the finally block contains code + written by the user. It has line numbers associated with it, + so duplicating the block means it's difficult to set a breakpoint. + Since controlling code generation via -g is verboten, we simply + never duplicate code without optimization. + + Second, we'd like to prevent egregious code growth. One way to + do this is to estimate the size of the finally block, multiply + that by the number of copies we'd need to make, and compare against + the estimate of the size of the switch machinery we'd have to add. */ + +static bool +decide_copy_try_finally (int ndests, gimple_seq finally) +{ + int f_estimate, sw_estimate; + + if (!optimize) + return false; + + /* Finally estimate N times, plus N gotos. */ + f_estimate = count_insns_seq (finally, &eni_size_weights); + f_estimate = (f_estimate + 1) * ndests; + + /* Switch statement (cost 10), N variable assignments, N gotos. */ + sw_estimate = 10 + 2 * ndests; + + /* Optimize for size clearly wants our best guess. */ + if (optimize_function_for_size_p (cfun)) + return f_estimate < sw_estimate; + + /* ??? These numbers are completely made up so far. */ + if (optimize > 1) + return f_estimate < 100 || f_estimate < sw_estimate * 2; + else + return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3; +} + +/* REG is the enclosing region for a possible cleanup region, or the region + itself. Returns TRUE if such a region would be unreachable. + + Cleanup regions within a must-not-throw region aren't actually reachable + even if there are throwing stmts within them, because the personality + routine will call terminate before unwinding. */ + +static bool +cleanup_is_dead_in (eh_region reg) +{ + while (reg && reg->type == ERT_CLEANUP) + reg = reg->outer; + return (reg && reg->type == ERT_MUST_NOT_THROW); +} + +/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes + to a sequence of labels and blocks, plus the exception region trees + that record all the magic. This is complicated by the need to + arrange for the FINALLY block to be executed on all exits. */ + +static gimple_seq +lower_try_finally (struct leh_state *state, gimple tp) +{ + struct leh_tf_state this_tf; + struct leh_state this_state; + int ndests; + gimple_seq old_eh_seq; + + /* Process the try block. */ + + memset (&this_tf, 0, sizeof (this_tf)); + this_tf.try_finally_expr = tp; + this_tf.top_p = tp; + this_tf.outer = state; + if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region)) + { + this_tf.region = gen_eh_region_cleanup (state->cur_region); + this_state.cur_region = this_tf.region; + } + else + { + this_tf.region = NULL; + this_state.cur_region = state->cur_region; + } + + this_state.ehp_region = state->ehp_region; + this_state.tf = &this_tf; + + old_eh_seq = eh_seq; + eh_seq = NULL; + + lower_eh_constructs_1 (&this_state, gimple_try_eval(tp)); + + /* Determine if the try block is escaped through the bottom. */ + this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp)); + + /* Determine if any exceptions are possible within the try block. */ + if (this_tf.region) + this_tf.may_throw = eh_region_may_contain_throw (this_tf.region); + if (this_tf.may_throw) + honor_protect_cleanup_actions (state, &this_state, &this_tf); + + /* Determine how many edges (still) reach the finally block. Or rather, + how many destinations are reached by the finally block. Use this to + determine how we process the finally block itself. */ + + ndests = VEC_length (tree, this_tf.dest_array); + ndests += this_tf.may_fallthru; + ndests += this_tf.may_return; + ndests += this_tf.may_throw; + + /* If the FINALLY block is not reachable, dike it out. */ + if (ndests == 0) + { + gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp)); + gimple_try_set_cleanup (tp, NULL); + } + /* If the finally block doesn't fall through, then any destination + we might try to impose there isn't reached either. There may be + some minor amount of cleanup and redirection still needed. */ + else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp))) + lower_try_finally_nofallthru (state, &this_tf); + + /* We can easily special-case redirection to a single destination. */ + else if (ndests == 1) + lower_try_finally_onedest (state, &this_tf); + else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp))) + lower_try_finally_copy (state, &this_tf); + else + lower_try_finally_switch (state, &this_tf); + + /* If someone requested we add a label at the end of the transformed + block, do so. */ + if (this_tf.fallthru_label) + { + /* This must be reached only if ndests == 0. */ + gimple x = gimple_build_label (this_tf.fallthru_label); + gimple_seq_add_stmt (&this_tf.top_p_seq, x); + } + + VEC_free (tree, heap, this_tf.dest_array); + if (this_tf.goto_queue) + free (this_tf.goto_queue); + if (this_tf.goto_queue_map) + pointer_map_destroy (this_tf.goto_queue_map); + + /* If there was an old (aka outer) eh_seq, append the current eh_seq. + If there was no old eh_seq, then the append is trivially already done. */ + if (old_eh_seq) + { + if (eh_seq == NULL) + eh_seq = old_eh_seq; + else + { + gimple_seq new_eh_seq = eh_seq; + eh_seq = old_eh_seq; + gimple_seq_add_seq(&eh_seq, new_eh_seq); + } + } + + return this_tf.top_p_seq; +} + +/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a + list of GIMPLE_CATCH to a sequence of labels and blocks, plus the + exception region trees that records all the magic. */ + +static gimple_seq +lower_catch (struct leh_state *state, gimple tp) +{ + eh_region try_region = NULL; + struct leh_state this_state = *state; + gimple_stmt_iterator gsi; + tree out_label; + gimple_seq new_seq; + gimple x; + location_t try_catch_loc = gimple_location (tp); + + if (flag_exceptions) + { + try_region = gen_eh_region_try (state->cur_region); + this_state.cur_region = try_region; + } + + lower_eh_constructs_1 (&this_state, gimple_try_eval (tp)); + + if (!eh_region_may_contain_throw (try_region)) + return gimple_try_eval (tp); + + new_seq = NULL; + emit_eh_dispatch (&new_seq, try_region); + emit_resx (&new_seq, try_region); + + this_state.cur_region = state->cur_region; + this_state.ehp_region = try_region; + + out_label = NULL; + for (gsi = gsi_start (gimple_try_cleanup (tp)); + !gsi_end_p (gsi); + gsi_next (&gsi)) + { + eh_catch c; + gimple gcatch; + gimple_seq handler; + + gcatch = gsi_stmt (gsi); + c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch)); + + handler = gimple_catch_handler (gcatch); + lower_eh_constructs_1 (&this_state, handler); + + c->label = create_artificial_label (UNKNOWN_LOCATION); + x = gimple_build_label (c->label); + gimple_seq_add_stmt (&new_seq, x); + + gimple_seq_add_seq (&new_seq, handler); + + if (gimple_seq_may_fallthru (new_seq)) + { + if (!out_label) + out_label = create_artificial_label (try_catch_loc); + + x = gimple_build_goto (out_label); + gimple_seq_add_stmt (&new_seq, x); + } + if (!c->type_list) + break; + } + + gimple_try_set_cleanup (tp, new_seq); + + return frob_into_branch_around (tp, try_region, out_label); +} + +/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a + GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception + region trees that record all the magic. */ + +static gimple_seq +lower_eh_filter (struct leh_state *state, gimple tp) +{ + struct leh_state this_state = *state; + eh_region this_region = NULL; + gimple inner, x; + gimple_seq new_seq; + + inner = gimple_seq_first_stmt (gimple_try_cleanup (tp)); + + if (flag_exceptions) + { + this_region = gen_eh_region_allowed (state->cur_region, + gimple_eh_filter_types (inner)); + this_state.cur_region = this_region; + } + + lower_eh_constructs_1 (&this_state, gimple_try_eval (tp)); + + if (!eh_region_may_contain_throw (this_region)) + return gimple_try_eval (tp); + + new_seq = NULL; + this_state.cur_region = state->cur_region; + this_state.ehp_region = this_region; + + emit_eh_dispatch (&new_seq, this_region); + emit_resx (&new_seq, this_region); + + this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION); + x = gimple_build_label (this_region->u.allowed.label); + gimple_seq_add_stmt (&new_seq, x); + + lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner)); + gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner)); + + gimple_try_set_cleanup (tp, new_seq); + + return frob_into_branch_around (tp, this_region, NULL); +} + +/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with + an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks, + plus the exception region trees that record all the magic. */ + +static gimple_seq +lower_eh_must_not_throw (struct leh_state *state, gimple tp) +{ + struct leh_state this_state = *state; + + if (flag_exceptions) + { + gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp)); + eh_region this_region; + + this_region = gen_eh_region_must_not_throw (state->cur_region); + this_region->u.must_not_throw.failure_decl + = gimple_eh_must_not_throw_fndecl (inner); + this_region->u.must_not_throw.failure_loc = gimple_location (tp); + + /* In order to get mangling applied to this decl, we must mark it + used now. Otherwise, pass_ipa_free_lang_data won't think it + needs to happen. */ + TREE_USED (this_region->u.must_not_throw.failure_decl) = 1; + + this_state.cur_region = this_region; + } + + lower_eh_constructs_1 (&this_state, gimple_try_eval (tp)); + + return gimple_try_eval (tp); +} + +/* Implement a cleanup expression. This is similar to try-finally, + except that we only execute the cleanup block for exception edges. */ + +static gimple_seq +lower_cleanup (struct leh_state *state, gimple tp) +{ + struct leh_state this_state = *state; + eh_region this_region = NULL; + struct leh_tf_state fake_tf; + gimple_seq result; + bool cleanup_dead = cleanup_is_dead_in (state->cur_region); + + if (flag_exceptions && !cleanup_dead) + { + this_region = gen_eh_region_cleanup (state->cur_region); + this_state.cur_region = this_region; + } + + lower_eh_constructs_1 (&this_state, gimple_try_eval (tp)); + + if (cleanup_dead || !eh_region_may_contain_throw (this_region)) + return gimple_try_eval (tp); + + /* Build enough of a try-finally state so that we can reuse + honor_protect_cleanup_actions. */ + memset (&fake_tf, 0, sizeof (fake_tf)); + fake_tf.top_p = fake_tf.try_finally_expr = tp; + fake_tf.outer = state; + fake_tf.region = this_region; + fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp)); + fake_tf.may_throw = true; + + honor_protect_cleanup_actions (state, NULL, &fake_tf); + + if (fake_tf.may_throw) + { + /* In this case honor_protect_cleanup_actions had nothing to do, + and we should process this normally. */ + lower_eh_constructs_1 (state, gimple_try_cleanup (tp)); + result = frob_into_branch_around (tp, this_region, + fake_tf.fallthru_label); + } + else + { + /* In this case honor_protect_cleanup_actions did nearly all of + the work. All we have left is to append the fallthru_label. */ + + result = gimple_try_eval (tp); + if (fake_tf.fallthru_label) + { + gimple x = gimple_build_label (fake_tf.fallthru_label); + gimple_seq_add_stmt (&result, x); + } + } + return result; +} + +/* Main loop for lowering eh constructs. Also moves gsi to the next + statement. */ + +static void +lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi) +{ + gimple_seq replace; + gimple x; + gimple stmt = gsi_stmt (*gsi); + + switch (gimple_code (stmt)) + { + case GIMPLE_CALL: + { + tree fndecl = gimple_call_fndecl (stmt); + tree rhs, lhs; + + if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_EH_POINTER: + /* The front end may have generated a call to + __builtin_eh_pointer (0) within a catch region. Replace + this zero argument with the current catch region number. */ + if (state->ehp_region) + { + tree nr = build_int_cst (NULL, state->ehp_region->index); + gimple_call_set_arg (stmt, 0, nr); + } + else + { + /* The user has dome something silly. Remove it. */ + rhs = null_pointer_node; + goto do_replace; + } + break; + + case BUILT_IN_EH_FILTER: + /* ??? This should never appear, but since it's a builtin it + is accessible to abuse by users. Just remove it and + replace the use with the arbitrary value zero. */ + rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0); + do_replace: + lhs = gimple_call_lhs (stmt); + x = gimple_build_assign (lhs, rhs); + gsi_insert_before (gsi, x, GSI_SAME_STMT); + /* FALLTHRU */ + + case BUILT_IN_EH_COPY_VALUES: + /* Likewise this should not appear. Remove it. */ + gsi_remove (gsi, true); + return; + + default: + break; + } + } + /* FALLTHRU */ + + case GIMPLE_ASSIGN: + /* If the stmt can throw use a new temporary for the assignment + to a LHS. This makes sure the old value of the LHS is + available on the EH edge. Only do so for statements that + potentially fall thru (no noreturn calls e.g.), otherwise + this new assignment might create fake fallthru regions. */ + if (stmt_could_throw_p (stmt) + && gimple_has_lhs (stmt) + && gimple_stmt_may_fallthru (stmt) + && !tree_could_throw_p (gimple_get_lhs (stmt)) + && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) + { + tree lhs = gimple_get_lhs (stmt); + tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL); + gimple s = gimple_build_assign (lhs, tmp); + gimple_set_location (s, gimple_location (stmt)); + gimple_set_block (s, gimple_block (stmt)); + gimple_set_lhs (stmt, tmp); + if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) + DECL_GIMPLE_REG_P (tmp) = 1; + gsi_insert_after (gsi, s, GSI_SAME_STMT); + } + /* Look for things that can throw exceptions, and record them. */ + if (state->cur_region && stmt_could_throw_p (stmt)) + { + record_stmt_eh_region (state->cur_region, stmt); + note_eh_region_may_contain_throw (state->cur_region); + } + break; + + case GIMPLE_COND: + case GIMPLE_GOTO: + case GIMPLE_RETURN: + maybe_record_in_goto_queue (state, stmt); + break; + + case GIMPLE_SWITCH: + verify_norecord_switch_expr (state, stmt); + break; + + case GIMPLE_TRY: + if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY) + replace = lower_try_finally (state, stmt); + else + { + x = gimple_seq_first_stmt (gimple_try_cleanup (stmt)); + if (!x) + { + replace = gimple_try_eval (stmt); + lower_eh_constructs_1 (state, replace); + } + else + switch (gimple_code (x)) + { + case GIMPLE_CATCH: + replace = lower_catch (state, stmt); + break; + case GIMPLE_EH_FILTER: + replace = lower_eh_filter (state, stmt); + break; + case GIMPLE_EH_MUST_NOT_THROW: + replace = lower_eh_must_not_throw (state, stmt); + break; + default: + replace = lower_cleanup (state, stmt); + break; + } + } + + /* Remove the old stmt and insert the transformed sequence + instead. */ + gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT); + gsi_remove (gsi, true); + + /* Return since we don't want gsi_next () */ + return; + + default: + /* A type, a decl, or some kind of statement that we're not + interested in. Don't walk them. */ + break; + } + + gsi_next (gsi); +} + +/* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */ + +static void +lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq) +{ + gimple_stmt_iterator gsi; + for (gsi = gsi_start (seq); !gsi_end_p (gsi);) + lower_eh_constructs_2 (state, &gsi); +} + +static unsigned int +lower_eh_constructs (void) +{ + struct leh_state null_state; + gimple_seq bodyp; + + bodyp = gimple_body (current_function_decl); + if (bodyp == NULL) + return 0; + + finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free); + eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL); + memset (&null_state, 0, sizeof (null_state)); + + collect_finally_tree_1 (bodyp, NULL); + lower_eh_constructs_1 (&null_state, bodyp); + + /* We assume there's a return statement, or something, at the end of + the function, and thus ploping the EH sequence afterward won't + change anything. */ + gcc_assert (!gimple_seq_may_fallthru (bodyp)); + gimple_seq_add_seq (&bodyp, eh_seq); + + /* We assume that since BODYP already existed, adding EH_SEQ to it + didn't change its value, and we don't have to re-set the function. */ + gcc_assert (bodyp == gimple_body (current_function_decl)); + + htab_delete (finally_tree); + BITMAP_FREE (eh_region_may_contain_throw_map); + eh_seq = NULL; + + /* If this function needs a language specific EH personality routine + and the frontend didn't already set one do so now. */ + if (function_needs_eh_personality (cfun) == eh_personality_lang + && !DECL_FUNCTION_PERSONALITY (current_function_decl)) + DECL_FUNCTION_PERSONALITY (current_function_decl) + = lang_hooks.eh_personality (); + + return 0; +} + +struct gimple_opt_pass pass_lower_eh = +{ + { + GIMPLE_PASS, + "eh", /* name */ + NULL, /* gate */ + lower_eh_constructs, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_EH, /* tv_id */ + PROP_gimple_lcf, /* properties_required */ + PROP_gimple_leh, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func /* todo_flags_finish */ + } +}; + +/* Create the multiple edges from an EH_DISPATCH statement to all of + the possible handlers for its EH region. Return true if there's + no fallthru edge; false if there is. */ + +bool +make_eh_dispatch_edges (gimple stmt) +{ + eh_region r; + eh_catch c; + basic_block src, dst; + + r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); + src = gimple_bb (stmt); + + switch (r->type) + { + case ERT_TRY: + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + dst = label_to_block (c->label); + make_edge (src, dst, 0); + + /* A catch-all handler doesn't have a fallthru. */ + if (c->type_list == NULL) + return false; + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + dst = label_to_block (r->u.allowed.label); + make_edge (src, dst, 0); + break; + + default: + gcc_unreachable (); + } + + return true; +} + +/* Create the single EH edge from STMT to its nearest landing pad, + if there is such a landing pad within the current function. */ + +void +make_eh_edges (gimple stmt) +{ + basic_block src, dst; + eh_landing_pad lp; + int lp_nr; + + lp_nr = lookup_stmt_eh_lp (stmt); + if (lp_nr <= 0) + return; + + lp = get_eh_landing_pad_from_number (lp_nr); + gcc_assert (lp != NULL); + + src = gimple_bb (stmt); + dst = label_to_block (lp->post_landing_pad); + make_edge (src, dst, EDGE_EH); +} + +/* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree; + do not actually perform the final edge redirection. + + CHANGE_REGION is true when we're being called from cleanup_empty_eh and + we intend to change the destination EH region as well; this means + EH_LANDING_PAD_NR must already be set on the destination block label. + If false, we're being called from generic cfg manipulation code and we + should preserve our place within the region tree. */ + +static void +redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region) +{ + eh_landing_pad old_lp, new_lp; + basic_block old_bb; + gimple throw_stmt; + int old_lp_nr, new_lp_nr; + tree old_label, new_label; + edge_iterator ei; + edge e; + + old_bb = edge_in->dest; + old_label = gimple_block_label (old_bb); + old_lp_nr = EH_LANDING_PAD_NR (old_label); + gcc_assert (old_lp_nr > 0); + old_lp = get_eh_landing_pad_from_number (old_lp_nr); + + throw_stmt = last_stmt (edge_in->src); + gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr); + + new_label = gimple_block_label (new_bb); + + /* Look for an existing region that might be using NEW_BB already. */ + new_lp_nr = EH_LANDING_PAD_NR (new_label); + if (new_lp_nr) + { + new_lp = get_eh_landing_pad_from_number (new_lp_nr); + gcc_assert (new_lp); + + /* Unless CHANGE_REGION is true, the new and old landing pad + had better be associated with the same EH region. */ + gcc_assert (change_region || new_lp->region == old_lp->region); + } + else + { + new_lp = NULL; + gcc_assert (!change_region); + } + + /* Notice when we redirect the last EH edge away from OLD_BB. */ + FOR_EACH_EDGE (e, ei, old_bb->preds) + if (e != edge_in && (e->flags & EDGE_EH)) + break; + + if (new_lp) + { + /* NEW_LP already exists. If there are still edges into OLD_LP, + there's nothing to do with the EH tree. If there are no more + edges into OLD_LP, then we want to remove OLD_LP as it is unused. + If CHANGE_REGION is true, then our caller is expecting to remove + the landing pad. */ + if (e == NULL && !change_region) + remove_eh_landing_pad (old_lp); + } + else + { + /* No correct landing pad exists. If there are no more edges + into OLD_LP, then we can simply re-use the existing landing pad. + Otherwise, we have to create a new landing pad. */ + if (e == NULL) + { + EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0; + new_lp = old_lp; + } + else + new_lp = gen_eh_landing_pad (old_lp->region); + new_lp->post_landing_pad = new_label; + EH_LANDING_PAD_NR (new_label) = new_lp->index; + } + + /* Maybe move the throwing statement to the new region. */ + if (old_lp != new_lp) + { + remove_stmt_from_eh_lp (throw_stmt); + add_stmt_to_eh_lp (throw_stmt, new_lp->index); + } +} + +/* Redirect EH edge E to NEW_BB. */ + +edge +redirect_eh_edge (edge edge_in, basic_block new_bb) +{ + redirect_eh_edge_1 (edge_in, new_bb, false); + return ssa_redirect_edge (edge_in, new_bb); +} + +/* This is a subroutine of gimple_redirect_edge_and_branch. Update the + labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB. + The actual edge update will happen in the caller. */ + +void +redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb) +{ + tree new_lab = gimple_block_label (new_bb); + bool any_changed = false; + basic_block old_bb; + eh_region r; + eh_catch c; + + r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); + switch (r->type) + { + case ERT_TRY: + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + old_bb = label_to_block (c->label); + if (old_bb == e->dest) + { + c->label = new_lab; + any_changed = true; + } + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + old_bb = label_to_block (r->u.allowed.label); + gcc_assert (old_bb == e->dest); + r->u.allowed.label = new_lab; + any_changed = true; + break; + + default: + gcc_unreachable (); + } + + gcc_assert (any_changed); +} + +/* Helper function for operation_could_trap_p and stmt_could_throw_p. */ + +bool +operation_could_trap_helper_p (enum tree_code op, + bool fp_operation, + bool honor_trapv, + bool honor_nans, + bool honor_snans, + tree divisor, + bool *handled) +{ + *handled = true; + switch (op) + { + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case TRUNC_MOD_EXPR: + case RDIV_EXPR: + if (honor_snans || honor_trapv) + return true; + if (fp_operation) + return flag_trapping_math; + if (!TREE_CONSTANT (divisor) || integer_zerop (divisor)) + return true; + return false; + + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case LTGT_EXPR: + /* Some floating point comparisons may trap. */ + return honor_nans; + + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + return honor_snans; + + case CONVERT_EXPR: + case FIX_TRUNC_EXPR: + /* Conversion of floating point might trap. */ + return honor_nans; + + case NEGATE_EXPR: + case ABS_EXPR: + case CONJ_EXPR: + /* These operations don't trap with floating point. */ + if (honor_trapv) + return true; + return false; + + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + /* Any floating arithmetic may trap. */ + if (fp_operation && flag_trapping_math) + return true; + if (honor_trapv) + return true; + return false; + + case COMPLEX_EXPR: + case CONSTRUCTOR: + /* Constructing an object cannot trap. */ + return false; + + default: + /* Any floating arithmetic may trap. */ + if (fp_operation && flag_trapping_math) + return true; + + *handled = false; + return false; + } +} + +/* Return true if operation OP may trap. FP_OPERATION is true if OP is applied + on floating-point values. HONOR_TRAPV is true if OP is applied on integer + type operands that may trap. If OP is a division operator, DIVISOR contains + the value of the divisor. */ + +bool +operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv, + tree divisor) +{ + bool honor_nans = (fp_operation && flag_trapping_math + && !flag_finite_math_only); + bool honor_snans = fp_operation && flag_signaling_nans != 0; + bool handled; + + if (TREE_CODE_CLASS (op) != tcc_comparison + && TREE_CODE_CLASS (op) != tcc_unary + && TREE_CODE_CLASS (op) != tcc_binary) + return false; + + return operation_could_trap_helper_p (op, fp_operation, honor_trapv, + honor_nans, honor_snans, divisor, + &handled); +} + +/* Return true if EXPR can trap, as in dereferencing an invalid pointer + location or floating point arithmetic. C.f. the rtl version, may_trap_p. + This routine expects only GIMPLE lhs or rhs input. */ + +bool +tree_could_trap_p (tree expr) +{ + enum tree_code code; + bool fp_operation = false; + bool honor_trapv = false; + tree t, base, div = NULL_TREE; + + if (!expr) + return false; + + code = TREE_CODE (expr); + t = TREE_TYPE (expr); + + if (t) + { + if (COMPARISON_CLASS_P (expr)) + fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))); + else + fp_operation = FLOAT_TYPE_P (t); + honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t); + } + + if (TREE_CODE_CLASS (code) == tcc_binary) + div = TREE_OPERAND (expr, 1); + if (operation_could_trap_p (code, fp_operation, honor_trapv, div)) + return true; + + restart: + switch (code) + { + case TARGET_MEM_REF: + if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR + && !TMR_INDEX (expr) && !TMR_INDEX2 (expr)) + return false; + return !TREE_THIS_NOTRAP (expr); + + case COMPONENT_REF: + case REALPART_EXPR: + case IMAGPART_EXPR: + case BIT_FIELD_REF: + case VIEW_CONVERT_EXPR: + case WITH_SIZE_EXPR: + expr = TREE_OPERAND (expr, 0); + code = TREE_CODE (expr); + goto restart; + + case ARRAY_RANGE_REF: + base = TREE_OPERAND (expr, 0); + if (tree_could_trap_p (base)) + return true; + if (TREE_THIS_NOTRAP (expr)) + return false; + return !range_in_array_bounds_p (expr); + + case ARRAY_REF: + base = TREE_OPERAND (expr, 0); + if (tree_could_trap_p (base)) + return true; + if (TREE_THIS_NOTRAP (expr)) + return false; + return !in_array_bounds_p (expr); + + case MEM_REF: + if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR) + return false; + /* Fallthru. */ + case INDIRECT_REF: + return !TREE_THIS_NOTRAP (expr); + + case ASM_EXPR: + return TREE_THIS_VOLATILE (expr); + + case CALL_EXPR: + t = get_callee_fndecl (expr); + /* Assume that calls to weak functions may trap. */ + if (!t || !DECL_P (t) || DECL_WEAK (t)) + return true; + return false; + + case VAR_DECL: + case FUNCTION_DECL: + /* Assume that accesses to weak vars or functions may trap. */ + if (DECL_WEAK (expr)) + return true; + return false; + + default: + return false; + } +} + + +/* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a + an assignment or a conditional) may throw. */ + +static bool +stmt_could_throw_1_p (gimple stmt) +{ + enum tree_code code = gimple_expr_code (stmt); + bool honor_nans = false; + bool honor_snans = false; + bool fp_operation = false; + bool honor_trapv = false; + tree t; + size_t i; + bool handled, ret; + + if (TREE_CODE_CLASS (code) == tcc_comparison + || TREE_CODE_CLASS (code) == tcc_unary + || TREE_CODE_CLASS (code) == tcc_binary) + { + t = gimple_expr_type (stmt); + fp_operation = FLOAT_TYPE_P (t); + if (fp_operation) + { + honor_nans = flag_trapping_math && !flag_finite_math_only; + honor_snans = flag_signaling_nans != 0; + } + else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t)) + honor_trapv = true; + } + + /* Check if the main expression may trap. */ + t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL; + ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv, + honor_nans, honor_snans, t, + &handled); + if (handled) + return ret; + + /* If the expression does not trap, see if any of the individual operands may + trap. */ + for (i = 0; i < gimple_num_ops (stmt); i++) + if (tree_could_trap_p (gimple_op (stmt, i))) + return true; + + return false; +} + + +/* Return true if statement STMT could throw an exception. */ + +bool +stmt_could_throw_p (gimple stmt) +{ + if (!flag_exceptions) + return false; + + /* The only statements that can throw an exception are assignments, + conditionals, calls, resx, and asms. */ + switch (gimple_code (stmt)) + { + case GIMPLE_RESX: + return true; + + case GIMPLE_CALL: + return !gimple_call_nothrow_p (stmt); + + case GIMPLE_ASSIGN: + case GIMPLE_COND: + if (!cfun->can_throw_non_call_exceptions) + return false; + return stmt_could_throw_1_p (stmt); + + case GIMPLE_ASM: + if (!cfun->can_throw_non_call_exceptions) + return false; + return gimple_asm_volatile_p (stmt); + + default: + return false; + } +} + + +/* Return true if expression T could throw an exception. */ + +bool +tree_could_throw_p (tree t) +{ + if (!flag_exceptions) + return false; + if (TREE_CODE (t) == MODIFY_EXPR) + { + if (cfun->can_throw_non_call_exceptions + && tree_could_trap_p (TREE_OPERAND (t, 0))) + return true; + t = TREE_OPERAND (t, 1); + } + + if (TREE_CODE (t) == WITH_SIZE_EXPR) + t = TREE_OPERAND (t, 0); + if (TREE_CODE (t) == CALL_EXPR) + return (call_expr_flags (t) & ECF_NOTHROW) == 0; + if (cfun->can_throw_non_call_exceptions) + return tree_could_trap_p (t); + return false; +} + +/* Return true if STMT can throw an exception that is not caught within + the current function (CFUN). */ + +bool +stmt_can_throw_external (gimple stmt) +{ + int lp_nr; + + if (!stmt_could_throw_p (stmt)) + return false; + + lp_nr = lookup_stmt_eh_lp (stmt); + return lp_nr == 0; +} + +/* Return true if STMT can throw an exception that is caught within + the current function (CFUN). */ + +bool +stmt_can_throw_internal (gimple stmt) +{ + int lp_nr; + + if (!stmt_could_throw_p (stmt)) + return false; + + lp_nr = lookup_stmt_eh_lp (stmt); + return lp_nr > 0; +} + +/* Given a statement STMT in IFUN, if STMT can no longer throw, then + remove any entry it might have from the EH table. Return true if + any change was made. */ + +bool +maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt) +{ + if (stmt_could_throw_p (stmt)) + return false; + return remove_stmt_from_eh_lp_fn (ifun, stmt); +} + +/* Likewise, but always use the current function. */ + +bool +maybe_clean_eh_stmt (gimple stmt) +{ + return maybe_clean_eh_stmt_fn (cfun, stmt); +} + +/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced + OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT + in the table if it should be in there. Return TRUE if a replacement was + done that my require an EH edge purge. */ + +bool +maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt) +{ + int lp_nr = lookup_stmt_eh_lp (old_stmt); + + if (lp_nr != 0) + { + bool new_stmt_could_throw = stmt_could_throw_p (new_stmt); + + if (new_stmt == old_stmt && new_stmt_could_throw) + return false; + + remove_stmt_from_eh_lp (old_stmt); + if (new_stmt_could_throw) + { + add_stmt_to_eh_lp (new_stmt, lp_nr); + return false; + } + else + return true; + } + + return false; +} + +/* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT + in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP + operand is the return value of duplicate_eh_regions. */ + +bool +maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt, + struct function *old_fun, gimple old_stmt, + struct pointer_map_t *map, int default_lp_nr) +{ + int old_lp_nr, new_lp_nr; + void **slot; + + if (!stmt_could_throw_p (new_stmt)) + return false; + + old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt); + if (old_lp_nr == 0) + { + if (default_lp_nr == 0) + return false; + new_lp_nr = default_lp_nr; + } + else if (old_lp_nr > 0) + { + eh_landing_pad old_lp, new_lp; + + old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr); + slot = pointer_map_contains (map, old_lp); + new_lp = (eh_landing_pad) *slot; + new_lp_nr = new_lp->index; + } + else + { + eh_region old_r, new_r; + + old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr); + slot = pointer_map_contains (map, old_r); + new_r = (eh_region) *slot; + new_lp_nr = -new_r->index; + } + + add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr); + return true; +} + +/* Similar, but both OLD_STMT and NEW_STMT are within the current function, + and thus no remapping is required. */ + +bool +maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt) +{ + int lp_nr; + + if (!stmt_could_throw_p (new_stmt)) + return false; + + lp_nr = lookup_stmt_eh_lp (old_stmt); + if (lp_nr == 0) + return false; + + add_stmt_to_eh_lp (new_stmt, lp_nr); + return true; +} + +/* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of + GIMPLE_TRY) that are similar enough to be considered the same. Currently + this only handles handlers consisting of a single call, as that's the + important case for C++: a destructor call for a particular object showing + up in multiple handlers. */ + +static bool +same_handler_p (gimple_seq oneh, gimple_seq twoh) +{ + gimple_stmt_iterator gsi; + gimple ones, twos; + unsigned int ai; + + gsi = gsi_start (oneh); + if (!gsi_one_before_end_p (gsi)) + return false; + ones = gsi_stmt (gsi); + + gsi = gsi_start (twoh); + if (!gsi_one_before_end_p (gsi)) + return false; + twos = gsi_stmt (gsi); + + if (!is_gimple_call (ones) + || !is_gimple_call (twos) + || gimple_call_lhs (ones) + || gimple_call_lhs (twos) + || gimple_call_chain (ones) + || gimple_call_chain (twos) + || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0) + || gimple_call_num_args (ones) != gimple_call_num_args (twos)) + return false; + + for (ai = 0; ai < gimple_call_num_args (ones); ++ai) + if (!operand_equal_p (gimple_call_arg (ones, ai), + gimple_call_arg (twos, ai), 0)) + return false; + + return true; +} + +/* Optimize + try { A() } finally { try { ~B() } catch { ~A() } } + try { ... } finally { ~A() } + into + try { A() } catch { ~B() } + try { ~B() ... } finally { ~A() } + + This occurs frequently in C++, where A is a local variable and B is a + temporary used in the initializer for A. */ + +static void +optimize_double_finally (gimple one, gimple two) +{ + gimple oneh; + gimple_stmt_iterator gsi; + + gsi = gsi_start (gimple_try_cleanup (one)); + if (!gsi_one_before_end_p (gsi)) + return; + + oneh = gsi_stmt (gsi); + if (gimple_code (oneh) != GIMPLE_TRY + || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH) + return; + + if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two))) + { + gimple_seq seq = gimple_try_eval (oneh); + + gimple_try_set_cleanup (one, seq); + gimple_try_set_kind (one, GIMPLE_TRY_CATCH); + seq = copy_gimple_seq_and_replace_locals (seq); + gimple_seq_add_seq (&seq, gimple_try_eval (two)); + gimple_try_set_eval (two, seq); + } +} + +/* Perform EH refactoring optimizations that are simpler to do when code + flow has been lowered but EH structures haven't. */ + +static void +refactor_eh_r (gimple_seq seq) +{ + gimple_stmt_iterator gsi; + gimple one, two; + + one = NULL; + two = NULL; + gsi = gsi_start (seq); + while (1) + { + one = two; + if (gsi_end_p (gsi)) + two = NULL; + else + two = gsi_stmt (gsi); + if (one + && two + && gimple_code (one) == GIMPLE_TRY + && gimple_code (two) == GIMPLE_TRY + && gimple_try_kind (one) == GIMPLE_TRY_FINALLY + && gimple_try_kind (two) == GIMPLE_TRY_FINALLY) + optimize_double_finally (one, two); + if (one) + switch (gimple_code (one)) + { + case GIMPLE_TRY: + refactor_eh_r (gimple_try_eval (one)); + refactor_eh_r (gimple_try_cleanup (one)); + break; + case GIMPLE_CATCH: + refactor_eh_r (gimple_catch_handler (one)); + break; + case GIMPLE_EH_FILTER: + refactor_eh_r (gimple_eh_filter_failure (one)); + break; + default: + break; + } + if (two) + gsi_next (&gsi); + else + break; + } +} + +static unsigned +refactor_eh (void) +{ + refactor_eh_r (gimple_body (current_function_decl)); + return 0; +} + +static bool +gate_refactor_eh (void) +{ + return flag_exceptions != 0; +} + +struct gimple_opt_pass pass_refactor_eh = +{ + { + GIMPLE_PASS, + "ehopt", /* name */ + gate_refactor_eh, /* gate */ + refactor_eh, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_EH, /* tv_id */ + PROP_gimple_lcf, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func /* todo_flags_finish */ + } +}; + +/* At the end of gimple optimization, we can lower RESX. */ + +static bool +lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map) +{ + int lp_nr; + eh_region src_r, dst_r; + gimple_stmt_iterator gsi; + gimple x; + tree fn, src_nr; + bool ret = false; + + lp_nr = lookup_stmt_eh_lp (stmt); + if (lp_nr != 0) + dst_r = get_eh_region_from_lp_number (lp_nr); + else + dst_r = NULL; + + src_r = get_eh_region_from_number (gimple_resx_region (stmt)); + gsi = gsi_last_bb (bb); + + if (src_r == NULL) + { + /* We can wind up with no source region when pass_cleanup_eh shows + that there are no entries into an eh region and deletes it, but + then the block that contains the resx isn't removed. This can + happen without optimization when the switch statement created by + lower_try_finally_switch isn't simplified to remove the eh case. + + Resolve this by expanding the resx node to an abort. */ + + fn = implicit_built_in_decls[BUILT_IN_TRAP]; + x = gimple_build_call (fn, 0); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + while (EDGE_COUNT (bb->succs) > 0) + remove_edge (EDGE_SUCC (bb, 0)); + } + else if (dst_r) + { + /* When we have a destination region, we resolve this by copying + the excptr and filter values into place, and changing the edge + to immediately after the landing pad. */ + edge e; + + if (lp_nr < 0) + { + basic_block new_bb; + void **slot; + tree lab; + + /* We are resuming into a MUST_NOT_CALL region. Expand a call to + the failure decl into a new block, if needed. */ + gcc_assert (dst_r->type == ERT_MUST_NOT_THROW); + + slot = pointer_map_contains (mnt_map, dst_r); + if (slot == NULL) + { + gimple_stmt_iterator gsi2; + + new_bb = create_empty_bb (bb); + lab = gimple_block_label (new_bb); + gsi2 = gsi_start_bb (new_bb); + + fn = dst_r->u.must_not_throw.failure_decl; + x = gimple_build_call (fn, 0); + gimple_set_location (x, dst_r->u.must_not_throw.failure_loc); + gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING); + + slot = pointer_map_insert (mnt_map, dst_r); + *slot = lab; + } + else + { + lab = (tree) *slot; + new_bb = label_to_block (lab); + } + + gcc_assert (EDGE_COUNT (bb->succs) == 0); + e = make_edge (bb, new_bb, EDGE_FALLTHRU); + e->count = bb->count; + e->probability = REG_BR_PROB_BASE; + } + else + { + edge_iterator ei; + tree dst_nr = build_int_cst (NULL, dst_r->index); + + fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES]; + src_nr = build_int_cst (NULL, src_r->index); + x = gimple_build_call (fn, 2, dst_nr, src_nr); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + /* Update the flags for the outgoing edge. */ + e = single_succ_edge (bb); + gcc_assert (e->flags & EDGE_EH); + e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU; + + /* If there are no more EH users of the landing pad, delete it. */ + FOR_EACH_EDGE (e, ei, e->dest->preds) + if (e->flags & EDGE_EH) + break; + if (e == NULL) + { + eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); + remove_eh_landing_pad (lp); + } + } + + ret = true; + } + else + { + tree var; + + /* When we don't have a destination region, this exception escapes + up the call chain. We resolve this by generating a call to the + _Unwind_Resume library function. */ + + /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup + with no arguments for C++ and Java. Check for that. */ + if (src_r->use_cxa_end_cleanup) + { + fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP]; + x = gimple_build_call (fn, 0); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + } + else + { + fn = implicit_built_in_decls[BUILT_IN_EH_POINTER]; + src_nr = build_int_cst (NULL, src_r->index); + x = gimple_build_call (fn, 1, src_nr); + var = create_tmp_var (ptr_type_node, NULL); + var = make_ssa_name (var, x); + gimple_call_set_lhs (x, var); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME]; + x = gimple_build_call (fn, 1, var); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + } + + gcc_assert (EDGE_COUNT (bb->succs) == 0); + } + + gsi_remove (&gsi, true); + + return ret; +} + +static unsigned +execute_lower_resx (void) +{ + basic_block bb; + struct pointer_map_t *mnt_map; + bool dominance_invalidated = false; + bool any_rewritten = false; + + mnt_map = pointer_map_create (); + + FOR_EACH_BB (bb) + { + gimple last = last_stmt (bb); + if (last && is_gimple_resx (last)) + { + dominance_invalidated |= lower_resx (bb, last, mnt_map); + any_rewritten = true; + } + } + + pointer_map_destroy (mnt_map); + + if (dominance_invalidated) + { + free_dominance_info (CDI_DOMINATORS); + free_dominance_info (CDI_POST_DOMINATORS); + } + + return any_rewritten ? TODO_update_ssa_only_virtuals : 0; +} + +static bool +gate_lower_resx (void) +{ + return flag_exceptions != 0; +} + +struct gimple_opt_pass pass_lower_resx = +{ + { + GIMPLE_PASS, + "resx", /* name */ + gate_lower_resx, /* gate */ + execute_lower_resx, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_EH, /* tv_id */ + PROP_gimple_lcf, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_flow /* todo_flags_finish */ + } +}; + + +/* At the end of inlining, we can lower EH_DISPATCH. Return true when + we have found some duplicate labels and removed some edges. */ + +static bool +lower_eh_dispatch (basic_block src, gimple stmt) +{ + gimple_stmt_iterator gsi; + int region_nr; + eh_region r; + tree filter, fn; + gimple x; + bool redirected = false; + + region_nr = gimple_eh_dispatch_region (stmt); + r = get_eh_region_from_number (region_nr); + + gsi = gsi_last_bb (src); + + switch (r->type) + { + case ERT_TRY: + { + VEC (tree, heap) *labels = NULL; + tree default_label = NULL; + eh_catch c; + edge_iterator ei; + edge e; + struct pointer_set_t *seen_values = pointer_set_create (); + + /* Collect the labels for a switch. Zero the post_landing_pad + field becase we'll no longer have anything keeping these labels + in existance and the optimizer will be free to merge these + blocks at will. */ + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + tree tp_node, flt_node, lab = c->label; + bool have_label = false; + + c->label = NULL; + tp_node = c->type_list; + flt_node = c->filter_list; + + if (tp_node == NULL) + { + default_label = lab; + break; + } + do + { + /* Filter out duplicate labels that arise when this handler + is shadowed by an earlier one. When no labels are + attached to the handler anymore, we remove + the corresponding edge and then we delete unreachable + blocks at the end of this pass. */ + if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node))) + { + tree t = build3 (CASE_LABEL_EXPR, void_type_node, + TREE_VALUE (flt_node), NULL, lab); + VEC_safe_push (tree, heap, labels, t); + pointer_set_insert (seen_values, TREE_VALUE (flt_node)); + have_label = true; + } + + tp_node = TREE_CHAIN (tp_node); + flt_node = TREE_CHAIN (flt_node); + } + while (tp_node); + if (! have_label) + { + remove_edge (find_edge (src, label_to_block (lab))); + redirected = true; + } + } + + /* Clean up the edge flags. */ + FOR_EACH_EDGE (e, ei, src->succs) + { + if (e->flags & EDGE_FALLTHRU) + { + /* If there was no catch-all, use the fallthru edge. */ + if (default_label == NULL) + default_label = gimple_block_label (e->dest); + e->flags &= ~EDGE_FALLTHRU; + } + } + gcc_assert (default_label != NULL); + + /* Don't generate a switch if there's only a default case. + This is common in the form of try { A; } catch (...) { B; }. */ + if (labels == NULL) + { + e = single_succ_edge (src); + e->flags |= EDGE_FALLTHRU; + } + else + { + fn = implicit_built_in_decls[BUILT_IN_EH_FILTER]; + x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr)); + filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL); + filter = make_ssa_name (filter, x); + gimple_call_set_lhs (x, filter); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + /* Turn the default label into a default case. */ + default_label = build3 (CASE_LABEL_EXPR, void_type_node, + NULL, NULL, default_label); + sort_case_labels (labels); + + x = gimple_build_switch_vec (filter, default_label, labels); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + VEC_free (tree, heap, labels); + } + pointer_set_destroy (seen_values); + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + { + edge b_e = BRANCH_EDGE (src); + edge f_e = FALLTHRU_EDGE (src); + + fn = implicit_built_in_decls[BUILT_IN_EH_FILTER]; + x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr)); + filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL); + filter = make_ssa_name (filter, x); + gimple_call_set_lhs (x, filter); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + r->u.allowed.label = NULL; + x = gimple_build_cond (EQ_EXPR, filter, + build_int_cst (TREE_TYPE (filter), + r->u.allowed.filter), + NULL_TREE, NULL_TREE); + gsi_insert_before (&gsi, x, GSI_SAME_STMT); + + b_e->flags = b_e->flags | EDGE_TRUE_VALUE; + f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE; + } + break; + + default: + gcc_unreachable (); + } + + /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */ + gsi_remove (&gsi, true); + return redirected; +} + +static unsigned +execute_lower_eh_dispatch (void) +{ + basic_block bb; + bool any_rewritten = false; + bool redirected = false; + + assign_filter_values (); + + FOR_EACH_BB (bb) + { + gimple last = last_stmt (bb); + if (last && gimple_code (last) == GIMPLE_EH_DISPATCH) + { + redirected |= lower_eh_dispatch (bb, last); + any_rewritten = true; + } + } + + if (redirected) + delete_unreachable_blocks (); + return any_rewritten ? TODO_update_ssa_only_virtuals : 0; +} + +static bool +gate_lower_eh_dispatch (void) +{ + return cfun->eh->region_tree != NULL; +} + +struct gimple_opt_pass pass_lower_eh_dispatch = +{ + { + GIMPLE_PASS, + "ehdisp", /* name */ + gate_lower_eh_dispatch, /* gate */ + execute_lower_eh_dispatch, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_EH, /* tv_id */ + PROP_gimple_lcf, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_flow /* todo_flags_finish */ + } +}; + +/* Walk statements, see what regions are really referenced and remove + those that are unused. */ + +static void +remove_unreachable_handlers (void) +{ + sbitmap r_reachable, lp_reachable; + eh_region region; + eh_landing_pad lp; + basic_block bb; + int lp_nr, r_nr; + + r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array)); + lp_reachable + = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array)); + sbitmap_zero (r_reachable); + sbitmap_zero (lp_reachable); + + FOR_EACH_BB (bb) + { + gimple_stmt_iterator gsi = gsi_start_bb (bb); + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + lp_nr = lookup_stmt_eh_lp (stmt); + + /* Negative LP numbers are MUST_NOT_THROW regions which + are not considered BB enders. */ + if (lp_nr < 0) + SET_BIT (r_reachable, -lp_nr); + + /* Positive LP numbers are real landing pads, are are BB enders. */ + else if (lp_nr > 0) + { + gcc_assert (gsi_one_before_end_p (gsi)); + region = get_eh_region_from_lp_number (lp_nr); + SET_BIT (r_reachable, region->index); + SET_BIT (lp_reachable, lp_nr); + } + + /* Avoid removing regions referenced from RESX/EH_DISPATCH. */ + switch (gimple_code (stmt)) + { + case GIMPLE_RESX: + SET_BIT (r_reachable, gimple_resx_region (stmt)); + break; + case GIMPLE_EH_DISPATCH: + SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt)); + break; + default: + break; + } + } + } + + if (dump_file) + { + fprintf (dump_file, "Before removal of unreachable regions:\n"); + dump_eh_tree (dump_file, cfun); + fprintf (dump_file, "Reachable regions: "); + dump_sbitmap_file (dump_file, r_reachable); + fprintf (dump_file, "Reachable landing pads: "); + dump_sbitmap_file (dump_file, lp_reachable); + } + + for (r_nr = 1; + VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr) + if (region && !TEST_BIT (r_reachable, r_nr)) + { + if (dump_file) + fprintf (dump_file, "Removing unreachable region %d\n", r_nr); + remove_eh_handler (region); + } + + for (lp_nr = 1; + VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr) + if (lp && !TEST_BIT (lp_reachable, lp_nr)) + { + if (dump_file) + fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr); + remove_eh_landing_pad (lp); + } + + if (dump_file) + { + fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n"); + dump_eh_tree (dump_file, cfun); + fprintf (dump_file, "\n\n"); + } + + sbitmap_free (r_reachable); + sbitmap_free (lp_reachable); + +#ifdef ENABLE_CHECKING + verify_eh_tree (cfun); +#endif +} + +/* Remove regions that do not have landing pads. This assumes + that remove_unreachable_handlers has already been run, and + that we've just manipulated the landing pads since then. */ + +static void +remove_unreachable_handlers_no_lp (void) +{ + eh_region r; + int i; + + for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i) + if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW) + { + if (dump_file) + fprintf (dump_file, "Removing unreachable region %d\n", i); + remove_eh_handler (r); + } +} + +/* Undo critical edge splitting on an EH landing pad. Earlier, we + optimisticaly split all sorts of edges, including EH edges. The + optimization passes in between may not have needed them; if not, + we should undo the split. + + Recognize this case by having one EH edge incoming to the BB and + one normal edge outgoing; BB should be empty apart from the + post_landing_pad label. + + Note that this is slightly different from the empty handler case + handled by cleanup_empty_eh, in that the actual handler may yet + have actual code but the landing pad has been separated from the + handler. As such, cleanup_empty_eh relies on this transformation + having been done first. */ + +static bool +unsplit_eh (eh_landing_pad lp) +{ + basic_block bb = label_to_block (lp->post_landing_pad); + gimple_stmt_iterator gsi; + edge e_in, e_out; + + /* Quickly check the edge counts on BB for singularity. */ + if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1) + return false; + e_in = EDGE_PRED (bb, 0); + e_out = EDGE_SUCC (bb, 0); + + /* Input edge must be EH and output edge must be normal. */ + if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0) + return false; + + /* The block must be empty except for the labels and debug insns. */ + gsi = gsi_after_labels (bb); + if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + if (!gsi_end_p (gsi)) + return false; + + /* The destination block must not already have a landing pad + for a different region. */ + for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + tree lab; + int lp_nr; + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + lab = gimple_label_label (stmt); + lp_nr = EH_LANDING_PAD_NR (lab); + if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region) + return false; + } + + /* The new destination block must not already be a destination of + the source block, lest we merge fallthru and eh edges and get + all sorts of confused. */ + if (find_edge (e_in->src, e_out->dest)) + return false; + + /* ??? We can get degenerate phis due to cfg cleanups. I would have + thought this should have been cleaned up by a phicprop pass, but + that doesn't appear to handle virtuals. Propagate by hand. */ + if (!gimple_seq_empty_p (phi_nodes (bb))) + { + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) + { + gimple use_stmt, phi = gsi_stmt (gsi); + tree lhs = gimple_phi_result (phi); + tree rhs = gimple_phi_arg_def (phi, 0); + use_operand_p use_p; + imm_use_iterator iter; + + FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) + { + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, rhs); + } + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1; + + remove_phi_node (&gsi, true); + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n", + lp->index, e_out->dest->index); + + /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving + a successor edge, humor it. But do the real CFG change with the + predecessor of E_OUT in order to preserve the ordering of arguments + to the PHI nodes in E_OUT->DEST. */ + redirect_eh_edge_1 (e_in, e_out->dest, false); + redirect_edge_pred (e_out, e_in->src); + e_out->flags = e_in->flags; + e_out->probability = e_in->probability; + e_out->count = e_in->count; + remove_edge (e_in); + + return true; +} + +/* Examine each landing pad block and see if it matches unsplit_eh. */ + +static bool +unsplit_all_eh (void) +{ + bool changed = false; + eh_landing_pad lp; + int i; + + for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i) + if (lp) + changed |= unsplit_eh (lp); + + return changed; +} + +/* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming + to OLD_BB to NEW_BB; return true on success, false on failure. + + OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any + PHI variables from OLD_BB we can pick them up from OLD_BB_OUT. + Virtual PHIs may be deleted and marked for renaming. */ + +static bool +cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb, + edge old_bb_out, bool change_region) +{ + gimple_stmt_iterator ngsi, ogsi; + edge_iterator ei; + edge e; + bitmap rename_virts; + bitmap ophi_handled; + + FOR_EACH_EDGE (e, ei, old_bb->preds) + redirect_edge_var_map_clear (e); + + ophi_handled = BITMAP_ALLOC (NULL); + rename_virts = BITMAP_ALLOC (NULL); + + /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map + for the edges we're going to move. */ + for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi)) + { + gimple ophi, nphi = gsi_stmt (ngsi); + tree nresult, nop; + + nresult = gimple_phi_result (nphi); + nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx); + + /* Find the corresponding PHI in OLD_BB so we can forward-propagate + the source ssa_name. */ + ophi = NULL; + for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi)) + { + ophi = gsi_stmt (ogsi); + if (gimple_phi_result (ophi) == nop) + break; + ophi = NULL; + } + + /* If we did find the corresponding PHI, copy those inputs. */ + if (ophi) + { + /* If NOP is used somewhere else beyond phis in new_bb, give up. */ + if (!has_single_use (nop)) + { + imm_use_iterator imm_iter; + use_operand_p use_p; + + FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop) + { + if (!gimple_debug_bind_p (USE_STMT (use_p)) + && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI + || gimple_bb (USE_STMT (use_p)) != new_bb)) + goto fail; + } + } + bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop)); + FOR_EACH_EDGE (e, ei, old_bb->preds) + { + location_t oloc; + tree oop; + + if ((e->flags & EDGE_EH) == 0) + continue; + oop = gimple_phi_arg_def (ophi, e->dest_idx); + oloc = gimple_phi_arg_location (ophi, e->dest_idx); + redirect_edge_var_map_add (e, nresult, oop, oloc); + } + } + /* If we didn't find the PHI, but it's a VOP, remember to rename + it later, assuming all other tests succeed. */ + else if (!is_gimple_reg (nresult)) + bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult)); + /* If we didn't find the PHI, and it's a real variable, we know + from the fact that OLD_BB is tree_empty_eh_handler_p that the + variable is unchanged from input to the block and we can simply + re-use the input to NEW_BB from the OLD_BB_OUT edge. */ + else + { + location_t nloc + = gimple_phi_arg_location (nphi, old_bb_out->dest_idx); + FOR_EACH_EDGE (e, ei, old_bb->preds) + redirect_edge_var_map_add (e, nresult, nop, nloc); + } + } + + /* Second, verify that all PHIs from OLD_BB have been handled. If not, + we don't know what values from the other edges into NEW_BB to use. */ + for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi)) + { + gimple ophi = gsi_stmt (ogsi); + tree oresult = gimple_phi_result (ophi); + if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult))) + goto fail; + } + + /* At this point we know that the merge will succeed. Remove the PHI + nodes for the virtuals that we want to rename. */ + if (!bitmap_empty_p (rename_virts)) + { + for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); ) + { + gimple nphi = gsi_stmt (ngsi); + tree nresult = gimple_phi_result (nphi); + if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult))) + { + mark_virtual_phi_result_for_renaming (nphi); + remove_phi_node (&ngsi, true); + } + else + gsi_next (&ngsi); + } + } + + /* Finally, move the edges and update the PHIs. */ + for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); ) + if (e->flags & EDGE_EH) + { + redirect_eh_edge_1 (e, new_bb, change_region); + redirect_edge_succ (e, new_bb); + flush_pending_stmts (e); + } + else + ei_next (&ei); + + BITMAP_FREE (ophi_handled); + BITMAP_FREE (rename_virts); + return true; + + fail: + FOR_EACH_EDGE (e, ei, old_bb->preds) + redirect_edge_var_map_clear (e); + BITMAP_FREE (ophi_handled); + BITMAP_FREE (rename_virts); + return false; +} + +/* A subroutine of cleanup_empty_eh. Move a landing pad LP from its + old region to NEW_REGION at BB. */ + +static void +cleanup_empty_eh_move_lp (basic_block bb, edge e_out, + eh_landing_pad lp, eh_region new_region) +{ + gimple_stmt_iterator gsi; + eh_landing_pad *pp; + + for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp) + continue; + *pp = lp->next_lp; + + lp->region = new_region; + lp->next_lp = new_region->landing_pads; + new_region->landing_pads = lp; + + /* Delete the RESX that was matched within the empty handler block. */ + gsi = gsi_last_bb (bb); + mark_virtual_ops_for_renaming (gsi_stmt (gsi)); + gsi_remove (&gsi, true); + + /* Clean up E_OUT for the fallthru. */ + e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU; + e_out->probability = REG_BR_PROB_BASE; +} + +/* A subroutine of cleanup_empty_eh. Handle more complex cases of + unsplitting than unsplit_eh was prepared to handle, e.g. when + multiple incoming edges and phis are involved. */ + +static bool +cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp) +{ + gimple_stmt_iterator gsi; + tree lab; + edge_iterator ei; + edge e; + + /* We really ought not have totally lost everything following + a landing pad label. Given that BB is empty, there had better + be a successor. */ + gcc_assert (e_out != NULL); + + /* The destination block must not already have a landing pad + for a different region. */ + lab = NULL; + for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + int lp_nr; + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + lab = gimple_label_label (stmt); + lp_nr = EH_LANDING_PAD_NR (lab); + if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region) + return false; + } + + /* The destination block must not be a regular successor for any + of the preds of the landing pad. Thus, avoid turning + <..> + | \ EH + | <..> + | / + <..> + into + <..> + | | EH + <..> + which CFG verification would choke on. See PR45172. */ + FOR_EACH_EDGE (e, ei, bb->preds) + if (find_edge (e->src, e_out->dest)) + return false; + + /* Attempt to move the PHIs into the successor block. */ + if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "Unsplit EH landing pad %d to block %i " + "(via cleanup_empty_eh).\n", + lp->index, e_out->dest->index); + return true; + } + + return false; +} + +/* Return true if edge E_FIRST is part of an empty infinite loop + or leads to such a loop through a series of single successor + empty bbs. */ + +static bool +infinite_empty_loop_p (edge e_first) +{ + bool inf_loop = false; + edge e; + + if (e_first->dest == e_first->src) + return true; + + e_first->src->aux = (void *) 1; + for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest)) + { + gimple_stmt_iterator gsi; + if (e->dest->aux) + { + inf_loop = true; + break; + } + e->dest->aux = (void *) 1; + gsi = gsi_after_labels (e->dest); + if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + if (!gsi_end_p (gsi)) + break; + } + e_first->src->aux = NULL; + for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest)) + e->dest->aux = NULL; + + return inf_loop; +} + +/* Examine the block associated with LP to determine if it's an empty + handler for its EH region. If so, attempt to redirect EH edges to + an outer region. Return true the CFG was updated in any way. This + is similar to jump forwarding, just across EH edges. */ + +static bool +cleanup_empty_eh (eh_landing_pad lp) +{ + basic_block bb = label_to_block (lp->post_landing_pad); + gimple_stmt_iterator gsi; + gimple resx; + eh_region new_region; + edge_iterator ei; + edge e, e_out; + bool has_non_eh_pred; + int new_lp_nr; + + /* There can be zero or one edges out of BB. This is the quickest test. */ + switch (EDGE_COUNT (bb->succs)) + { + case 0: + e_out = NULL; + break; + case 1: + e_out = EDGE_SUCC (bb, 0); + break; + default: + return false; + } + gsi = gsi_after_labels (bb); + + /* Make sure to skip debug statements. */ + if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + + /* If the block is totally empty, look for more unsplitting cases. */ + if (gsi_end_p (gsi)) + { + /* For the degenerate case of an infinite loop bail out. */ + if (infinite_empty_loop_p (e_out)) + return false; + + return cleanup_empty_eh_unsplit (bb, e_out, lp); + } + + /* The block should consist only of a single RESX statement. */ + resx = gsi_stmt (gsi); + if (!is_gimple_resx (resx)) + return false; + gcc_assert (gsi_one_before_end_p (gsi)); + + /* Determine if there are non-EH edges, or resx edges into the handler. */ + has_non_eh_pred = false; + FOR_EACH_EDGE (e, ei, bb->preds) + if (!(e->flags & EDGE_EH)) + has_non_eh_pred = true; + + /* Find the handler that's outer of the empty handler by looking at + where the RESX instruction was vectored. */ + new_lp_nr = lookup_stmt_eh_lp (resx); + new_region = get_eh_region_from_lp_number (new_lp_nr); + + /* If there's no destination region within the current function, + redirection is trivial via removing the throwing statements from + the EH region, removing the EH edges, and allowing the block + to go unreachable. */ + if (new_region == NULL) + { + gcc_assert (e_out == NULL); + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) + if (e->flags & EDGE_EH) + { + gimple stmt = last_stmt (e->src); + remove_stmt_from_eh_lp (stmt); + remove_edge (e); + } + else + ei_next (&ei); + goto succeed; + } + + /* If the destination region is a MUST_NOT_THROW, allow the runtime + to handle the abort and allow the blocks to go unreachable. */ + if (new_region->type == ERT_MUST_NOT_THROW) + { + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) + if (e->flags & EDGE_EH) + { + gimple stmt = last_stmt (e->src); + remove_stmt_from_eh_lp (stmt); + add_stmt_to_eh_lp (stmt, new_lp_nr); + remove_edge (e); + } + else + ei_next (&ei); + goto succeed; + } + + /* Try to redirect the EH edges and merge the PHIs into the destination + landing pad block. If the merge succeeds, we'll already have redirected + all the EH edges. The handler itself will go unreachable if there were + no normal edges. */ + if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true)) + goto succeed; + + /* Finally, if all input edges are EH edges, then we can (potentially) + reduce the number of transfers from the runtime by moving the landing + pad from the original region to the new region. This is a win when + we remove the last CLEANUP region along a particular exception + propagation path. Since nothing changes except for the region with + which the landing pad is associated, the PHI nodes do not need to be + adjusted at all. */ + if (!has_non_eh_pred) + { + cleanup_empty_eh_move_lp (bb, e_out, lp, new_region); + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n", + lp->index, new_region->index); + + /* ??? The CFG didn't change, but we may have rendered the + old EH region unreachable. Trigger a cleanup there. */ + return true; + } + + return false; + + succeed: + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index); + remove_eh_landing_pad (lp); + return true; +} + +/* Do a post-order traversal of the EH region tree. Examine each + post_landing_pad block and see if we can eliminate it as empty. */ + +static bool +cleanup_all_empty_eh (void) +{ + bool changed = false; + eh_landing_pad lp; + int i; + + for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i) + if (lp) + changed |= cleanup_empty_eh (lp); + + return changed; +} + +/* Perform cleanups and lowering of exception handling + 1) cleanups regions with handlers doing nothing are optimized out + 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out + 3) Info about regions that are containing instructions, and regions + reachable via local EH edges is collected + 4) Eh tree is pruned for regions no longer neccesary. + + TODO: Push MUST_NOT_THROW regions to the root of the EH tree. + Unify those that have the same failure decl and locus. +*/ + +static unsigned int +execute_cleanup_eh_1 (void) +{ + /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die + looking up unreachable landing pads. */ + remove_unreachable_handlers (); + + /* Watch out for the region tree vanishing due to all unreachable. */ + if (cfun->eh->region_tree && optimize) + { + bool changed = false; + + changed |= unsplit_all_eh (); + changed |= cleanup_all_empty_eh (); + + if (changed) + { + free_dominance_info (CDI_DOMINATORS); + free_dominance_info (CDI_POST_DOMINATORS); + + /* We delayed all basic block deletion, as we may have performed + cleanups on EH edges while non-EH edges were still present. */ + delete_unreachable_blocks (); + + /* We manipulated the landing pads. Remove any region that no + longer has a landing pad. */ + remove_unreachable_handlers_no_lp (); + + return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; + } + } + + return 0; +} + +static unsigned int +execute_cleanup_eh (void) +{ + int ret = execute_cleanup_eh_1 (); + + /* If the function no longer needs an EH personality routine + clear it. This exposes cross-language inlining opportunities + and avoids references to a never defined personality routine. */ + if (DECL_FUNCTION_PERSONALITY (current_function_decl) + && function_needs_eh_personality (cfun) != eh_personality_lang) + DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE; + + return ret; +} + +static bool +gate_cleanup_eh (void) +{ + return cfun->eh != NULL && cfun->eh->region_tree != NULL; +} + +struct gimple_opt_pass pass_cleanup_eh = { + { + GIMPLE_PASS, + "ehcleanup", /* name */ + gate_cleanup_eh, /* gate */ + execute_cleanup_eh, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_EH, /* tv_id */ + PROP_gimple_lcf, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func /* todo_flags_finish */ + } +}; + +/* Verify that BB containing STMT as the last statement, has precisely the + edge that make_eh_edges would create. */ + +DEBUG_FUNCTION bool +verify_eh_edges (gimple stmt) +{ + basic_block bb = gimple_bb (stmt); + eh_landing_pad lp = NULL; + int lp_nr; + edge_iterator ei; + edge e, eh_edge; + + lp_nr = lookup_stmt_eh_lp (stmt); + if (lp_nr > 0) + lp = get_eh_landing_pad_from_number (lp_nr); + + eh_edge = NULL; + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (e->flags & EDGE_EH) + { + if (eh_edge) + { + error ("BB %i has multiple EH edges", bb->index); + return true; + } + else + eh_edge = e; + } + } + + if (lp == NULL) + { + if (eh_edge) + { + error ("BB %i can not throw but has an EH edge", bb->index); + return true; + } + return false; + } + + if (!stmt_could_throw_p (stmt)) + { + error ("BB %i last statement has incorrectly set lp", bb->index); + return true; + } + + if (eh_edge == NULL) + { + error ("BB %i is missing an EH edge", bb->index); + return true; + } + + if (eh_edge->dest != label_to_block (lp->post_landing_pad)) + { + error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index); + return true; + } + + return false; +} + +/* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */ + +DEBUG_FUNCTION bool +verify_eh_dispatch_edge (gimple stmt) +{ + eh_region r; + eh_catch c; + basic_block src, dst; + bool want_fallthru = true; + edge_iterator ei; + edge e, fall_edge; + + r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); + src = gimple_bb (stmt); + + FOR_EACH_EDGE (e, ei, src->succs) + gcc_assert (e->aux == NULL); + + switch (r->type) + { + case ERT_TRY: + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + dst = label_to_block (c->label); + e = find_edge (src, dst); + if (e == NULL) + { + error ("BB %i is missing an edge", src->index); + return true; + } + e->aux = (void *)e; + + /* A catch-all handler doesn't have a fallthru. */ + if (c->type_list == NULL) + { + want_fallthru = false; + break; + } + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + dst = label_to_block (r->u.allowed.label); + e = find_edge (src, dst); + if (e == NULL) + { + error ("BB %i is missing an edge", src->index); + return true; + } + e->aux = (void *)e; + break; + + default: + gcc_unreachable (); + } + + fall_edge = NULL; + FOR_EACH_EDGE (e, ei, src->succs) + { + if (e->flags & EDGE_FALLTHRU) + { + if (fall_edge != NULL) + { + error ("BB %i too many fallthru edges", src->index); + return true; + } + fall_edge = e; + } + else if (e->aux) + e->aux = NULL; + else + { + error ("BB %i has incorrect edge", src->index); + return true; + } + } + if ((fall_edge != NULL) ^ want_fallthru) + { + error ("BB %i has incorrect fallthru edge", src->index); + return true; + } + + return false; +} |