summaryrefslogtreecommitdiff
path: root/libquadmath/math/fmaq.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libquadmath/math/fmaq.c
downloadcbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2
cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libquadmath/math/fmaq.c')
-rw-r--r--libquadmath/math/fmaq.c241
1 files changed, 241 insertions, 0 deletions
diff --git a/libquadmath/math/fmaq.c b/libquadmath/math/fmaq.c
new file mode 100644
index 000000000..126b0a2d2
--- /dev/null
+++ b/libquadmath/math/fmaq.c
@@ -0,0 +1,241 @@
+/* Compute x * y + z as ternary operation.
+ Copyright (C) 2010 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include "quadmath-imp.h"
+#include <math.h>
+#include <float.h>
+#ifdef HAVE_FENV_H
+# include <fenv.h>
+# if defined HAVE_FEHOLDEXCEPT && defined HAVE_FESETROUND \
+ && defined HAVE_FEUPDATEENV && defined HAVE_FETESTEXCEPT \
+ && defined FE_TOWARDZERO && defined FE_INEXACT
+# define USE_FENV_H
+# endif
+#endif
+
+/* This implementation uses rounding to odd to avoid problems with
+ double rounding. See a paper by Boldo and Melquiond:
+ http://www.lri.fr/~melquion/doc/08-tc.pdf */
+
+__float128
+fmaq (__float128 x, __float128 y, __float128 z)
+{
+ ieee854_float128 u, v, w;
+ int adjust = 0;
+ u.value = x;
+ v.value = y;
+ w.value = z;
+ if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
+ >= 0x7fff + IEEE854_FLOAT128_BIAS
+ - FLT128_MANT_DIG, 0)
+ || __builtin_expect (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
+ || __builtin_expect (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
+ || __builtin_expect (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
+ || __builtin_expect (u.ieee.exponent + v.ieee.exponent
+ <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG, 0))
+ {
+ /* If z is Inf, but x and y are finite, the result should be
+ z rather than NaN. */
+ if (w.ieee.exponent == 0x7fff
+ && u.ieee.exponent != 0x7fff
+ && v.ieee.exponent != 0x7fff)
+ return (z + x) + y;
+ /* If x or y or z is Inf/NaN, or if fma will certainly overflow,
+ or if x * y is less than half of FLT128_DENORM_MIN,
+ compute as x * y + z. */
+ if (u.ieee.exponent == 0x7fff
+ || v.ieee.exponent == 0x7fff
+ || w.ieee.exponent == 0x7fff
+ || u.ieee.exponent + v.ieee.exponent
+ > 0x7fff + IEEE854_FLOAT128_BIAS
+ || u.ieee.exponent + v.ieee.exponent
+ < IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG - 2)
+ return x * y + z;
+ if (u.ieee.exponent + v.ieee.exponent
+ >= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG)
+ {
+ /* Compute 1p-113 times smaller result and multiply
+ at the end. */
+ if (u.ieee.exponent > v.ieee.exponent)
+ u.ieee.exponent -= FLT128_MANT_DIG;
+ else
+ v.ieee.exponent -= FLT128_MANT_DIG;
+ /* If x + y exponent is very large and z exponent is very small,
+ it doesn't matter if we don't adjust it. */
+ if (w.ieee.exponent > FLT128_MANT_DIG)
+ w.ieee.exponent -= FLT128_MANT_DIG;
+ adjust = 1;
+ }
+ else if (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
+ {
+ /* Similarly.
+ If z exponent is very large and x and y exponents are
+ very small, it doesn't matter if we don't adjust it. */
+ if (u.ieee.exponent > v.ieee.exponent)
+ {
+ if (u.ieee.exponent > FLT128_MANT_DIG)
+ u.ieee.exponent -= FLT128_MANT_DIG;
+ }
+ else if (v.ieee.exponent > FLT128_MANT_DIG)
+ v.ieee.exponent -= FLT128_MANT_DIG;
+ w.ieee.exponent -= FLT128_MANT_DIG;
+ adjust = 1;
+ }
+ else if (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
+ {
+ u.ieee.exponent -= FLT128_MANT_DIG;
+ if (v.ieee.exponent)
+ v.ieee.exponent += FLT128_MANT_DIG;
+ else
+ v.value *= 0x1p113Q;
+ }
+ else if (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
+ {
+ v.ieee.exponent -= FLT128_MANT_DIG;
+ if (u.ieee.exponent)
+ u.ieee.exponent += FLT128_MANT_DIG;
+ else
+ u.value *= 0x1p113Q;
+ }
+ else /* if (u.ieee.exponent + v.ieee.exponent
+ <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */
+ {
+ if (u.ieee.exponent > v.ieee.exponent)
+ u.ieee.exponent += 2 * FLT128_MANT_DIG;
+ else
+ v.ieee.exponent += 2 * FLT128_MANT_DIG;
+ if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 4)
+ {
+ if (w.ieee.exponent)
+ w.ieee.exponent += 2 * FLT128_MANT_DIG;
+ else
+ w.value *= 0x1p226Q;
+ adjust = -1;
+ }
+ /* Otherwise x * y should just affect inexact
+ and nothing else. */
+ }
+ x = u.value;
+ y = v.value;
+ z = w.value;
+ }
+ /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
+#define C ((1LL << (FLT128_MANT_DIG + 1) / 2) + 1)
+ __float128 x1 = x * C;
+ __float128 y1 = y * C;
+ __float128 m1 = x * y;
+ x1 = (x - x1) + x1;
+ y1 = (y - y1) + y1;
+ __float128 x2 = x - x1;
+ __float128 y2 = y - y1;
+ __float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
+
+ /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
+ __float128 a1 = z + m1;
+ __float128 t1 = a1 - z;
+ __float128 t2 = a1 - t1;
+ t1 = m1 - t1;
+ t2 = z - t2;
+ __float128 a2 = t1 + t2;
+
+#ifdef USE_FENV_H
+ fenv_t env;
+ feholdexcept (&env);
+ fesetround (FE_TOWARDZERO);
+#endif
+ /* Perform m2 + a2 addition with round to odd. */
+ u.value = a2 + m2;
+
+ if (__builtin_expect (adjust == 0, 1))
+ {
+#ifdef USE_FENV_H
+ if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff)
+ u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
+ feupdateenv (&env);
+#endif
+ /* Result is a1 + u.value. */
+ return a1 + u.value;
+ }
+ else if (__builtin_expect (adjust > 0, 1))
+ {
+#ifdef USE_FENV_H
+ if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff)
+ u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
+ feupdateenv (&env);
+#endif
+ /* Result is a1 + u.value, scaled up. */
+ return (a1 + u.value) * 0x1p113Q;
+ }
+ else
+ {
+#ifdef USE_FENV_H
+ if ((u.ieee.mant_low & 1) == 0)
+ u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
+#endif
+ v.value = a1 + u.value;
+ /* Ensure the addition is not scheduled after fetestexcept call. */
+ asm volatile ("" : : "m" (v));
+#ifdef USE_FENV_H
+ int j = fetestexcept (FE_INEXACT) != 0;
+ feupdateenv (&env);
+#else
+ int j = 0;
+#endif
+ /* Ensure the following computations are performed in default rounding
+ mode instead of just reusing the round to zero computation. */
+ asm volatile ("" : "=m" (u) : "m" (u));
+ /* If a1 + u.value is exact, the only rounding happens during
+ scaling down. */
+ if (j == 0)
+ return v.value * 0x1p-226Q;
+ /* If result rounded to zero is not subnormal, no double
+ rounding will occur. */
+ if (v.ieee.exponent > 226)
+ return (a1 + u.value) * 0x1p-226Q;
+ /* If v.value * 0x1p-226Q with round to zero is a subnormal above
+ or equal to FLT128_MIN / 2, then v.value * 0x1p-226Q shifts mantissa
+ down just by 1 bit, which means v.ieee.mant_low |= j would
+ change the round bit, not sticky or guard bit.
+ v.value * 0x1p-226Q never normalizes by shifting up,
+ so round bit plus sticky bit should be already enough
+ for proper rounding. */
+ if (v.ieee.exponent == 226)
+ {
+ /* v.ieee.mant_low & 2 is LSB bit of the result before rounding,
+ v.ieee.mant_low & 1 is the round bit and j is our sticky
+ bit. In round-to-nearest 001 rounds down like 00,
+ 011 rounds up, even though 01 rounds down (thus we need
+ to adjust), 101 rounds down like 10 and 111 rounds up
+ like 11. */
+ if ((v.ieee.mant_low & 3) == 1)
+ {
+ v.value *= 0x1p-226Q;
+ if (v.ieee.negative)
+ return v.value - 0x1p-16494Q /* __FLT128_DENORM_MIN__ */;
+ else
+ return v.value + 0x1p-16494Q /* __FLT128_DENORM_MIN__ */;
+ }
+ else
+ return v.value * 0x1p-226Q;
+ }
+ v.ieee.mant_low |= j;
+ return v.value * 0x1p-226Q;
+ }
+}