summaryrefslogtreecommitdiff
path: root/libquadmath/math/sqrtq.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libquadmath/math/sqrtq.c
downloadcbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.bz2
cbb-gcc-4.6.4-15d2061ac0796199866debe9ac87130894b0cdd3.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libquadmath/math/sqrtq.c')
-rw-r--r--libquadmath/math/sqrtq.c57
1 files changed, 57 insertions, 0 deletions
diff --git a/libquadmath/math/sqrtq.c b/libquadmath/math/sqrtq.c
new file mode 100644
index 000000000..6ed4605ed
--- /dev/null
+++ b/libquadmath/math/sqrtq.c
@@ -0,0 +1,57 @@
+#include "quadmath-imp.h"
+#include <math.h>
+#include <float.h>
+
+__float128
+sqrtq (const __float128 x)
+{
+ __float128 y;
+ int exp;
+
+ if (x == 0)
+ return x;
+
+ if (isnanq (x))
+ return x;
+
+ if (x < 0)
+ return nanq ("");
+
+ if (x <= DBL_MAX && x >= DBL_MIN)
+ {
+ /* Use double result as starting point. */
+ y = sqrt ((double) x);
+
+ /* Two Newton iterations. */
+ y -= 0.5q * (y - x / y);
+ y -= 0.5q * (y - x / y);
+ return y;
+ }
+
+#ifdef HAVE_SQRTL
+ if (x <= LDBL_MAX && x >= LDBL_MIN)
+ {
+ /* Use long double result as starting point. */
+ y = sqrtl ((long double) x);
+
+ /* One Newton iteration. */
+ y -= 0.5q * (y - x / y);
+ return y;
+ }
+#endif
+
+ /* If we're outside of the range of C types, we have to compute
+ the initial guess the hard way. */
+ y = frexpq (x, &exp);
+ if (exp % 2)
+ y *= 2, exp--;
+
+ y = sqrt (y);
+ y = scalbnq (y, exp / 2);
+
+ /* Two Newton iterations. */
+ y -= 0.5q * (y - x / y);
+ y -= 0.5q * (y - x / y);
+ return y;
+}
+