diff options
Diffstat (limited to 'gcc/config/i386/i386.c')
-rw-r--r-- | gcc/config/i386/i386.c | 35376 |
1 files changed, 35376 insertions, 0 deletions
diff --git a/gcc/config/i386/i386.c b/gcc/config/i386/i386.c new file mode 100644 index 000000000..c43d3ed57 --- /dev/null +++ b/gcc/config/i386/i386.c @@ -0,0 +1,35376 @@ +/* Subroutines used for code generation on IA-32. + Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, + 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "tree.h" +#include "tm_p.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "insn-config.h" +#include "conditions.h" +#include "output.h" +#include "insn-codes.h" +#include "insn-attr.h" +#include "flags.h" +#include "except.h" +#include "function.h" +#include "recog.h" +#include "expr.h" +#include "optabs.h" +#include "diagnostic-core.h" +#include "toplev.h" +#include "basic-block.h" +#include "ggc.h" +#include "target.h" +#include "target-def.h" +#include "langhooks.h" +#include "reload.h" +#include "cgraph.h" +#include "gimple.h" +#include "dwarf2.h" +#include "df.h" +#include "tm-constrs.h" +#include "params.h" +#include "cselib.h" +#include "debug.h" +#include "dwarf2out.h" +#include "sched-int.h" +#include "sbitmap.h" +#include "fibheap.h" + +enum upper_128bits_state +{ + unknown = 0, + unused, + used +}; + +typedef struct block_info_def +{ + /* State of the upper 128bits of AVX registers at exit. */ + enum upper_128bits_state state; + /* TRUE if state of the upper 128bits of AVX registers is unchanged + in this block. */ + bool unchanged; + /* TRUE if block has been processed. */ + bool processed; + /* TRUE if block has been scanned. */ + bool scanned; + /* Previous state of the upper 128bits of AVX registers at entry. */ + enum upper_128bits_state prev; +} *block_info; + +#define BLOCK_INFO(B) ((block_info) (B)->aux) + +enum call_avx256_state +{ + /* Callee returns 256bit AVX register. */ + callee_return_avx256 = -1, + /* Callee returns and passes 256bit AVX register. */ + callee_return_pass_avx256, + /* Callee passes 256bit AVX register. */ + callee_pass_avx256, + /* Callee doesn't return nor passe 256bit AVX register, or no + 256bit AVX register in function return. */ + call_no_avx256, + /* vzeroupper intrinsic. */ + vzeroupper_intrinsic +}; + +/* Check if a 256bit AVX register is referenced in stores. */ + +static void +check_avx256_stores (rtx dest, const_rtx set, void *data) +{ + if ((REG_P (dest) + && VALID_AVX256_REG_MODE (GET_MODE (dest))) + || (GET_CODE (set) == SET + && REG_P (SET_SRC (set)) + && VALID_AVX256_REG_MODE (GET_MODE (SET_SRC (set))))) + { + enum upper_128bits_state *state + = (enum upper_128bits_state *) data; + *state = used; + } +} + +/* Helper function for move_or_delete_vzeroupper_1. Look for vzeroupper + in basic block BB. Delete it if upper 128bit AVX registers are + unused. If it isn't deleted, move it to just before a jump insn. + + STATE is state of the upper 128bits of AVX registers at entry. */ + +static void +move_or_delete_vzeroupper_2 (basic_block bb, + enum upper_128bits_state state) +{ + rtx insn, bb_end; + rtx vzeroupper_insn = NULL_RTX; + rtx pat; + int avx256; + bool unchanged; + + if (BLOCK_INFO (bb)->unchanged) + { + if (dump_file) + fprintf (dump_file, " [bb %i] unchanged: upper 128bits: %d\n", + bb->index, state); + + BLOCK_INFO (bb)->state = state; + return; + } + + if (BLOCK_INFO (bb)->scanned && BLOCK_INFO (bb)->prev == state) + { + if (dump_file) + fprintf (dump_file, " [bb %i] scanned: upper 128bits: %d\n", + bb->index, BLOCK_INFO (bb)->state); + return; + } + + BLOCK_INFO (bb)->prev = state; + + if (dump_file) + fprintf (dump_file, " [bb %i] entry: upper 128bits: %d\n", + bb->index, state); + + unchanged = true; + + /* BB_END changes when it is deleted. */ + bb_end = BB_END (bb); + insn = BB_HEAD (bb); + while (insn != bb_end) + { + insn = NEXT_INSN (insn); + + if (!NONDEBUG_INSN_P (insn)) + continue; + + /* Move vzeroupper before jump/call. */ + if (JUMP_P (insn) || CALL_P (insn)) + { + if (!vzeroupper_insn) + continue; + + if (PREV_INSN (insn) != vzeroupper_insn) + { + if (dump_file) + { + fprintf (dump_file, "Move vzeroupper after:\n"); + print_rtl_single (dump_file, PREV_INSN (insn)); + fprintf (dump_file, "before:\n"); + print_rtl_single (dump_file, insn); + } + reorder_insns_nobb (vzeroupper_insn, vzeroupper_insn, + PREV_INSN (insn)); + } + vzeroupper_insn = NULL_RTX; + continue; + } + + pat = PATTERN (insn); + + /* Check insn for vzeroupper intrinsic. */ + if (GET_CODE (pat) == UNSPEC_VOLATILE + && XINT (pat, 1) == UNSPECV_VZEROUPPER) + { + if (dump_file) + { + /* Found vzeroupper intrinsic. */ + fprintf (dump_file, "Found vzeroupper:\n"); + print_rtl_single (dump_file, insn); + } + } + else + { + /* Check insn for vzeroall intrinsic. */ + if (GET_CODE (pat) == PARALLEL + && GET_CODE (XVECEXP (pat, 0, 0)) == UNSPEC_VOLATILE + && XINT (XVECEXP (pat, 0, 0), 1) == UNSPECV_VZEROALL) + { + state = unused; + unchanged = false; + + /* Delete pending vzeroupper insertion. */ + if (vzeroupper_insn) + { + delete_insn (vzeroupper_insn); + vzeroupper_insn = NULL_RTX; + } + } + else if (state != used) + { + note_stores (pat, check_avx256_stores, &state); + if (state == used) + unchanged = false; + } + continue; + } + + /* Process vzeroupper intrinsic. */ + avx256 = INTVAL (XVECEXP (pat, 0, 0)); + + if (state == unused) + { + /* Since the upper 128bits are cleared, callee must not pass + 256bit AVX register. We only need to check if callee + returns 256bit AVX register. */ + if (avx256 == callee_return_avx256) + { + state = used; + unchanged = false; + } + + /* Remove unnecessary vzeroupper since upper 128bits are + cleared. */ + if (dump_file) + { + fprintf (dump_file, "Delete redundant vzeroupper:\n"); + print_rtl_single (dump_file, insn); + } + delete_insn (insn); + } + else + { + /* Set state to UNUSED if callee doesn't return 256bit AVX + register. */ + if (avx256 != callee_return_pass_avx256) + state = unused; + + if (avx256 == callee_return_pass_avx256 + || avx256 == callee_pass_avx256) + { + /* Must remove vzeroupper since callee passes in 256bit + AVX register. */ + if (dump_file) + { + fprintf (dump_file, "Delete callee pass vzeroupper:\n"); + print_rtl_single (dump_file, insn); + } + delete_insn (insn); + } + else + { + vzeroupper_insn = insn; + unchanged = false; + } + } + } + + BLOCK_INFO (bb)->state = state; + BLOCK_INFO (bb)->unchanged = unchanged; + BLOCK_INFO (bb)->scanned = true; + + if (dump_file) + fprintf (dump_file, " [bb %i] exit: %s: upper 128bits: %d\n", + bb->index, unchanged ? "unchanged" : "changed", + state); +} + +/* Helper function for move_or_delete_vzeroupper. Process vzeroupper + in BLOCK and check its predecessor blocks. Treat UNKNOWN state + as USED if UNKNOWN_IS_UNUSED is true. Return TRUE if the exit + state is changed. */ + +static bool +move_or_delete_vzeroupper_1 (basic_block block, bool unknown_is_unused) +{ + edge e; + edge_iterator ei; + enum upper_128bits_state state, old_state, new_state; + bool seen_unknown; + + if (dump_file) + fprintf (dump_file, " Process [bb %i]: status: %d\n", + block->index, BLOCK_INFO (block)->processed); + + if (BLOCK_INFO (block)->processed) + return false; + + state = unused; + + /* Check all predecessor edges of this block. */ + seen_unknown = false; + FOR_EACH_EDGE (e, ei, block->preds) + { + if (e->src == block) + continue; + switch (BLOCK_INFO (e->src)->state) + { + case unknown: + if (!unknown_is_unused) + seen_unknown = true; + case unused: + break; + case used: + state = used; + goto done; + } + } + + if (seen_unknown) + state = unknown; + +done: + old_state = BLOCK_INFO (block)->state; + move_or_delete_vzeroupper_2 (block, state); + new_state = BLOCK_INFO (block)->state; + + if (state != unknown || new_state == used) + BLOCK_INFO (block)->processed = true; + + /* Need to rescan if the upper 128bits of AVX registers are changed + to USED at exit. */ + if (new_state != old_state) + { + if (new_state == used) + cfun->machine->rescan_vzeroupper_p = 1; + return true; + } + else + return false; +} + +/* Go through the instruction stream looking for vzeroupper. Delete + it if upper 128bit AVX registers are unused. If it isn't deleted, + move it to just before a jump insn. */ + +static void +move_or_delete_vzeroupper (void) +{ + edge e; + edge_iterator ei; + basic_block bb; + fibheap_t worklist, pending, fibheap_swap; + sbitmap visited, in_worklist, in_pending, sbitmap_swap; + int *bb_order; + int *rc_order; + int i; + + /* Set up block info for each basic block. */ + alloc_aux_for_blocks (sizeof (struct block_info_def)); + + /* Process outgoing edges of entry point. */ + if (dump_file) + fprintf (dump_file, "Process outgoing edges of entry point\n"); + + FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) + { + move_or_delete_vzeroupper_2 (e->dest, + cfun->machine->caller_pass_avx256_p + ? used : unused); + BLOCK_INFO (e->dest)->processed = true; + } + + /* Compute reverse completion order of depth first search of the CFG + so that the data-flow runs faster. */ + rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS); + bb_order = XNEWVEC (int, last_basic_block); + pre_and_rev_post_order_compute (NULL, rc_order, false); + for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++) + bb_order[rc_order[i]] = i; + free (rc_order); + + worklist = fibheap_new (); + pending = fibheap_new (); + visited = sbitmap_alloc (last_basic_block); + in_worklist = sbitmap_alloc (last_basic_block); + in_pending = sbitmap_alloc (last_basic_block); + sbitmap_zero (in_worklist); + + /* Don't check outgoing edges of entry point. */ + sbitmap_ones (in_pending); + FOR_EACH_BB (bb) + if (BLOCK_INFO (bb)->processed) + RESET_BIT (in_pending, bb->index); + else + { + move_or_delete_vzeroupper_1 (bb, false); + fibheap_insert (pending, bb_order[bb->index], bb); + } + + if (dump_file) + fprintf (dump_file, "Check remaining basic blocks\n"); + + while (!fibheap_empty (pending)) + { + fibheap_swap = pending; + pending = worklist; + worklist = fibheap_swap; + sbitmap_swap = in_pending; + in_pending = in_worklist; + in_worklist = sbitmap_swap; + + sbitmap_zero (visited); + + cfun->machine->rescan_vzeroupper_p = 0; + + while (!fibheap_empty (worklist)) + { + bb = (basic_block) fibheap_extract_min (worklist); + RESET_BIT (in_worklist, bb->index); + gcc_assert (!TEST_BIT (visited, bb->index)); + if (!TEST_BIT (visited, bb->index)) + { + edge_iterator ei; + + SET_BIT (visited, bb->index); + + if (move_or_delete_vzeroupper_1 (bb, false)) + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (e->dest == EXIT_BLOCK_PTR + || BLOCK_INFO (e->dest)->processed) + continue; + + if (TEST_BIT (visited, e->dest->index)) + { + if (!TEST_BIT (in_pending, e->dest->index)) + { + /* Send E->DEST to next round. */ + SET_BIT (in_pending, e->dest->index); + fibheap_insert (pending, + bb_order[e->dest->index], + e->dest); + } + } + else if (!TEST_BIT (in_worklist, e->dest->index)) + { + /* Add E->DEST to current round. */ + SET_BIT (in_worklist, e->dest->index); + fibheap_insert (worklist, bb_order[e->dest->index], + e->dest); + } + } + } + } + + if (!cfun->machine->rescan_vzeroupper_p) + break; + } + + free (bb_order); + fibheap_delete (worklist); + fibheap_delete (pending); + sbitmap_free (visited); + sbitmap_free (in_worklist); + sbitmap_free (in_pending); + + if (dump_file) + fprintf (dump_file, "Process remaining basic blocks\n"); + + FOR_EACH_BB (bb) + move_or_delete_vzeroupper_1 (bb, true); + + free_aux_for_blocks (); +} + +static rtx legitimize_dllimport_symbol (rtx, bool); + +#ifndef CHECK_STACK_LIMIT +#define CHECK_STACK_LIMIT (-1) +#endif + +/* Return index of given mode in mult and division cost tables. */ +#define MODE_INDEX(mode) \ + ((mode) == QImode ? 0 \ + : (mode) == HImode ? 1 \ + : (mode) == SImode ? 2 \ + : (mode) == DImode ? 3 \ + : 4) + +/* Processor costs (relative to an add) */ +/* We assume COSTS_N_INSNS is defined as (N)*4 and an addition is 2 bytes. */ +#define COSTS_N_BYTES(N) ((N) * 2) + +#define DUMMY_STRINGOP_ALGS {libcall, {{-1, libcall}}} + +const +struct processor_costs ix86_size_cost = {/* costs for tuning for size */ + COSTS_N_BYTES (2), /* cost of an add instruction */ + COSTS_N_BYTES (3), /* cost of a lea instruction */ + COSTS_N_BYTES (2), /* variable shift costs */ + COSTS_N_BYTES (3), /* constant shift costs */ + {COSTS_N_BYTES (3), /* cost of starting multiply for QI */ + COSTS_N_BYTES (3), /* HI */ + COSTS_N_BYTES (3), /* SI */ + COSTS_N_BYTES (3), /* DI */ + COSTS_N_BYTES (5)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_BYTES (3), /* cost of a divide/mod for QI */ + COSTS_N_BYTES (3), /* HI */ + COSTS_N_BYTES (3), /* SI */ + COSTS_N_BYTES (3), /* DI */ + COSTS_N_BYTES (5)}, /* other */ + COSTS_N_BYTES (3), /* cost of movsx */ + COSTS_N_BYTES (3), /* cost of movzx */ + 0, /* "large" insn */ + 2, /* MOVE_RATIO */ + 2, /* cost for loading QImode using movzbl */ + {2, 2, 2}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 2, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {2, 2, 2}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {2, 2, 2}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 3, /* cost of moving MMX register */ + {3, 3}, /* cost of loading MMX registers + in SImode and DImode */ + {3, 3}, /* cost of storing MMX registers + in SImode and DImode */ + 3, /* cost of moving SSE register */ + {3, 3, 3}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {3, 3, 3}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + 0, /* size of l1 cache */ + 0, /* size of l2 cache */ + 0, /* size of prefetch block */ + 0, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_BYTES (2), /* cost of FADD and FSUB insns. */ + COSTS_N_BYTES (2), /* cost of FMUL instruction. */ + COSTS_N_BYTES (2), /* cost of FDIV instruction. */ + COSTS_N_BYTES (2), /* cost of FABS instruction. */ + COSTS_N_BYTES (2), /* cost of FCHS instruction. */ + COSTS_N_BYTES (2), /* cost of FSQRT instruction. */ + {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, + {rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}}, + {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, + {rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 1, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 1, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +/* Processor costs (relative to an add) */ +static const +struct processor_costs i386_cost = { /* 386 specific costs */ + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (3), /* variable shift costs */ + COSTS_N_INSNS (2), /* constant shift costs */ + {COSTS_N_INSNS (6), /* cost of starting multiply for QI */ + COSTS_N_INSNS (6), /* HI */ + COSTS_N_INSNS (6), /* SI */ + COSTS_N_INSNS (6), /* DI */ + COSTS_N_INSNS (6)}, /* other */ + COSTS_N_INSNS (1), /* cost of multiply per each bit set */ + {COSTS_N_INSNS (23), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (23), /* HI */ + COSTS_N_INSNS (23), /* SI */ + COSTS_N_INSNS (23), /* DI */ + COSTS_N_INSNS (23)}, /* other */ + COSTS_N_INSNS (3), /* cost of movsx */ + COSTS_N_INSNS (2), /* cost of movzx */ + 15, /* "large" insn */ + 3, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {2, 4, 2}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 4, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {8, 8, 8}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {8, 8, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {4, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 8, 16}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 8, 16}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + 0, /* size of l1 cache */ + 0, /* size of l2 cache */ + 0, /* size of prefetch block */ + 0, /* number of parallel prefetches */ + 1, /* Branch cost */ + COSTS_N_INSNS (23), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (27), /* cost of FMUL instruction. */ + COSTS_N_INSNS (88), /* cost of FDIV instruction. */ + COSTS_N_INSNS (22), /* cost of FABS instruction. */ + COSTS_N_INSNS (24), /* cost of FCHS instruction. */ + COSTS_N_INSNS (122), /* cost of FSQRT instruction. */ + {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, + DUMMY_STRINGOP_ALGS}, + {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs i486_cost = { /* 486 specific costs */ + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (3), /* variable shift costs */ + COSTS_N_INSNS (2), /* constant shift costs */ + {COSTS_N_INSNS (12), /* cost of starting multiply for QI */ + COSTS_N_INSNS (12), /* HI */ + COSTS_N_INSNS (12), /* SI */ + COSTS_N_INSNS (12), /* DI */ + COSTS_N_INSNS (12)}, /* other */ + 1, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (40), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (40), /* HI */ + COSTS_N_INSNS (40), /* SI */ + COSTS_N_INSNS (40), /* DI */ + COSTS_N_INSNS (40)}, /* other */ + COSTS_N_INSNS (3), /* cost of movsx */ + COSTS_N_INSNS (2), /* cost of movzx */ + 15, /* "large" insn */ + 3, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {2, 4, 2}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 4, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {8, 8, 8}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {8, 8, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {4, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 8, 16}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 8, 16}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + 4, /* size of l1 cache. 486 has 8kB cache + shared for code and data, so 4kB is + not really precise. */ + 4, /* size of l2 cache */ + 0, /* size of prefetch block */ + 0, /* number of parallel prefetches */ + 1, /* Branch cost */ + COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (16), /* cost of FMUL instruction. */ + COSTS_N_INSNS (73), /* cost of FDIV instruction. */ + COSTS_N_INSNS (3), /* cost of FABS instruction. */ + COSTS_N_INSNS (3), /* cost of FCHS instruction. */ + COSTS_N_INSNS (83), /* cost of FSQRT instruction. */ + {{rep_prefix_4_byte, {{-1, rep_prefix_4_byte}}}, + DUMMY_STRINGOP_ALGS}, + {{rep_prefix_4_byte, {{-1, rep_prefix_4_byte}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs pentium_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (4), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (11), /* cost of starting multiply for QI */ + COSTS_N_INSNS (11), /* HI */ + COSTS_N_INSNS (11), /* SI */ + COSTS_N_INSNS (11), /* DI */ + COSTS_N_INSNS (11)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (25), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (25), /* HI */ + COSTS_N_INSNS (25), /* SI */ + COSTS_N_INSNS (25), /* DI */ + COSTS_N_INSNS (25)}, /* other */ + COSTS_N_INSNS (3), /* cost of movsx */ + COSTS_N_INSNS (2), /* cost of movzx */ + 8, /* "large" insn */ + 6, /* MOVE_RATIO */ + 6, /* cost for loading QImode using movzbl */ + {2, 4, 2}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 4, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {2, 2, 6}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 6}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 8, /* cost of moving MMX register */ + {8, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {8, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 8, 16}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 8, 16}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + 8, /* size of l1 cache. */ + 8, /* size of l2 cache */ + 0, /* size of prefetch block */ + 0, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (3), /* cost of FMUL instruction. */ + COSTS_N_INSNS (39), /* cost of FDIV instruction. */ + COSTS_N_INSNS (1), /* cost of FABS instruction. */ + COSTS_N_INSNS (1), /* cost of FCHS instruction. */ + COSTS_N_INSNS (70), /* cost of FSQRT instruction. */ + {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{-1, rep_prefix_4_byte}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs pentiumpro_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (4), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (4)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (17), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (17), /* HI */ + COSTS_N_INSNS (17), /* SI */ + COSTS_N_INSNS (17), /* DI */ + COSTS_N_INSNS (17)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 6, /* MOVE_RATIO */ + 2, /* cost for loading QImode using movzbl */ + {4, 4, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 2, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {2, 2, 6}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 6}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {2, 2}, /* cost of loading MMX registers + in SImode and DImode */ + {2, 2}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {2, 2, 8}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {2, 2, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + 8, /* size of l1 cache. */ + 256, /* size of l2 cache */ + 32, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (5), /* cost of FMUL instruction. */ + COSTS_N_INSNS (56), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ + /* PentiumPro has optimized rep instructions for blocks aligned by 8 bytes + (we ensure the alignment). For small blocks inline loop is still a + noticeable win, for bigger blocks either rep movsl or rep movsb is + way to go. Rep movsb has apparently more expensive startup time in CPU, + but after 4K the difference is down in the noise. */ + {{rep_prefix_4_byte, {{128, loop}, {1024, unrolled_loop}, + {8192, rep_prefix_4_byte}, {-1, rep_prefix_1_byte}}}, + DUMMY_STRINGOP_ALGS}, + {{rep_prefix_4_byte, {{1024, unrolled_loop}, + {8192, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs geode_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (2), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (7), /* SI */ + COSTS_N_INSNS (7), /* DI */ + COSTS_N_INSNS (7)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (15), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (23), /* HI */ + COSTS_N_INSNS (39), /* SI */ + COSTS_N_INSNS (39), /* DI */ + COSTS_N_INSNS (39)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 4, /* MOVE_RATIO */ + 1, /* cost for loading QImode using movzbl */ + {1, 1, 1}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {1, 1, 1}, /* cost of storing integer registers */ + 1, /* cost of reg,reg fld/fst */ + {1, 1, 1}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 6, 6}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + + 1, /* cost of moving MMX register */ + {1, 1}, /* cost of loading MMX registers + in SImode and DImode */ + {1, 1}, /* cost of storing MMX registers + in SImode and DImode */ + 1, /* cost of moving SSE register */ + {1, 1, 1}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {1, 1, 1}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 1, /* MMX or SSE register to integer */ + 64, /* size of l1 cache. */ + 128, /* size of l2 cache. */ + 32, /* size of prefetch block */ + 1, /* number of parallel prefetches */ + 1, /* Branch cost */ + COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (11), /* cost of FMUL instruction. */ + COSTS_N_INSNS (47), /* cost of FDIV instruction. */ + COSTS_N_INSNS (1), /* cost of FABS instruction. */ + COSTS_N_INSNS (1), /* cost of FCHS instruction. */ + COSTS_N_INSNS (54), /* cost of FSQRT instruction. */ + {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs k6_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (2), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (3), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (3), /* DI */ + COSTS_N_INSNS (3)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (18), /* HI */ + COSTS_N_INSNS (18), /* SI */ + COSTS_N_INSNS (18), /* DI */ + COSTS_N_INSNS (18)}, /* other */ + COSTS_N_INSNS (2), /* cost of movsx */ + COSTS_N_INSNS (2), /* cost of movzx */ + 8, /* "large" insn */ + 4, /* MOVE_RATIO */ + 3, /* cost for loading QImode using movzbl */ + {4, 5, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 3, 2}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {6, 6, 6}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 4}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {2, 2}, /* cost of loading MMX registers + in SImode and DImode */ + {2, 2}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {2, 2, 8}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {2, 2, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 6, /* MMX or SSE register to integer */ + 32, /* size of l1 cache. */ + 32, /* size of l2 cache. Some models + have integrated l2 cache, but + optimizing for k6 is not important + enough to worry about that. */ + 32, /* size of prefetch block */ + 1, /* number of parallel prefetches */ + 1, /* Branch cost */ + COSTS_N_INSNS (2), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (2), /* cost of FMUL instruction. */ + COSTS_N_INSNS (56), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ + {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs athlon_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (2), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (5), /* cost of starting multiply for QI */ + COSTS_N_INSNS (5), /* HI */ + COSTS_N_INSNS (5), /* SI */ + COSTS_N_INSNS (5), /* DI */ + COSTS_N_INSNS (5)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (26), /* HI */ + COSTS_N_INSNS (42), /* SI */ + COSTS_N_INSNS (74), /* DI */ + COSTS_N_INSNS (74)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 9, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {3, 4, 3}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {3, 4, 3}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {4, 4, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {4, 4}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 4}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 4, 6}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 4, 5}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 5, /* MMX or SSE register to integer */ + 64, /* size of l1 cache. */ + 256, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + 5, /* Branch cost */ + COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (4), /* cost of FMUL instruction. */ + COSTS_N_INSNS (24), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ + /* For some reason, Athlon deals better with REP prefix (relative to loops) + compared to K8. Alignment becomes important after 8 bytes for memcpy and + 128 bytes for memset. */ + {{libcall, {{2048, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{2048, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs k8_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (2), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (5)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (26), /* HI */ + COSTS_N_INSNS (42), /* SI */ + COSTS_N_INSNS (74), /* DI */ + COSTS_N_INSNS (74)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 9, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {3, 4, 3}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {3, 4, 3}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {4, 4, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {3, 3}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 4}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 3, 6}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 4, 5}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 5, /* MMX or SSE register to integer */ + 64, /* size of l1 cache. */ + 512, /* size of l2 cache. */ + 64, /* size of prefetch block */ + /* New AMD processors never drop prefetches; if they cannot be performed + immediately, they are queued. We set number of simultaneous prefetches + to a large constant to reflect this (it probably is not a good idea not + to limit number of prefetches at all, as their execution also takes some + time). */ + 100, /* number of parallel prefetches */ + 3, /* Branch cost */ + COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (4), /* cost of FMUL instruction. */ + COSTS_N_INSNS (19), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ + /* K8 has optimized REP instruction for medium sized blocks, but for very + small blocks it is better to use loop. For large blocks, libcall can + do nontemporary accesses and beat inline considerably. */ + {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, + {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {{libcall, {{8, loop}, {24, unrolled_loop}, + {2048, rep_prefix_4_byte}, {-1, libcall}}}, + {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 4, /* scalar_stmt_cost. */ + 2, /* scalar load_cost. */ + 2, /* scalar_store_cost. */ + 5, /* vec_stmt_cost. */ + 0, /* vec_to_scalar_cost. */ + 2, /* scalar_to_vec_cost. */ + 2, /* vec_align_load_cost. */ + 3, /* vec_unalign_load_cost. */ + 3, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 2, /* cond_not_taken_branch_cost. */ +}; + +struct processor_costs amdfam10_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (2), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (5)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (35), /* HI */ + COSTS_N_INSNS (51), /* SI */ + COSTS_N_INSNS (83), /* DI */ + COSTS_N_INSNS (83)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 9, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {3, 4, 3}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {3, 4, 3}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {4, 4, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {3, 3}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 4}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 4, 3}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 4, 5}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + /* On K8: + MOVD reg64, xmmreg Double FSTORE 4 + MOVD reg32, xmmreg Double FSTORE 4 + On AMDFAM10: + MOVD reg64, xmmreg Double FADD 3 + 1/1 1/1 + MOVD reg32, xmmreg Double FADD 3 + 1/1 1/1 */ + 64, /* size of l1 cache. */ + 512, /* size of l2 cache. */ + 64, /* size of prefetch block */ + /* New AMD processors never drop prefetches; if they cannot be performed + immediately, they are queued. We set number of simultaneous prefetches + to a large constant to reflect this (it probably is not a good idea not + to limit number of prefetches at all, as their execution also takes some + time). */ + 100, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (4), /* cost of FMUL instruction. */ + COSTS_N_INSNS (19), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ + + /* AMDFAM10 has optimized REP instruction for medium sized blocks, but for + very small blocks it is better to use loop. For large blocks, libcall can + do nontemporary accesses and beat inline considerably. */ + {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, + {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {{libcall, {{8, loop}, {24, unrolled_loop}, + {2048, rep_prefix_4_byte}, {-1, libcall}}}, + {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 4, /* scalar_stmt_cost. */ + 2, /* scalar load_cost. */ + 2, /* scalar_store_cost. */ + 6, /* vec_stmt_cost. */ + 0, /* vec_to_scalar_cost. */ + 2, /* scalar_to_vec_cost. */ + 2, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 2, /* vec_store_cost. */ + 2, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +struct processor_costs bdver1_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (4), /* SI */ + COSTS_N_INSNS (6), /* DI */ + COSTS_N_INSNS (6)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (35), /* HI */ + COSTS_N_INSNS (51), /* SI */ + COSTS_N_INSNS (83), /* DI */ + COSTS_N_INSNS (83)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 9, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {5, 5, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {4, 4, 4}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {5, 5, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {4, 4}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 4}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 4, 4}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 4, 4}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 2, /* MMX or SSE register to integer */ + /* On K8: + MOVD reg64, xmmreg Double FSTORE 4 + MOVD reg32, xmmreg Double FSTORE 4 + On AMDFAM10: + MOVD reg64, xmmreg Double FADD 3 + 1/1 1/1 + MOVD reg32, xmmreg Double FADD 3 + 1/1 1/1 */ + 16, /* size of l1 cache. */ + 2048, /* size of l2 cache. */ + 64, /* size of prefetch block */ + /* New AMD processors never drop prefetches; if they cannot be performed + immediately, they are queued. We set number of simultaneous prefetches + to a large constant to reflect this (it probably is not a good idea not + to limit number of prefetches at all, as their execution also takes some + time). */ + 100, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (6), /* cost of FMUL instruction. */ + COSTS_N_INSNS (42), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (52), /* cost of FSQRT instruction. */ + + /* BDVER1 has optimized REP instruction for medium sized blocks, but for + very small blocks it is better to use loop. For large blocks, libcall + can do nontemporary accesses and beat inline considerably. */ + {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, + {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {{libcall, {{8, loop}, {24, unrolled_loop}, + {2048, rep_prefix_4_byte}, {-1, libcall}}}, + {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 6, /* scalar_stmt_cost. */ + 4, /* scalar load_cost. */ + 4, /* scalar_store_cost. */ + 6, /* vec_stmt_cost. */ + 0, /* vec_to_scalar_cost. */ + 2, /* scalar_to_vec_cost. */ + 4, /* vec_align_load_cost. */ + 4, /* vec_unalign_load_cost. */ + 4, /* vec_store_cost. */ + 2, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +struct processor_costs btver1_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (2), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (5)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (35), /* HI */ + COSTS_N_INSNS (51), /* SI */ + COSTS_N_INSNS (83), /* DI */ + COSTS_N_INSNS (83)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 9, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {3, 4, 3}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {3, 4, 3}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {4, 4, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {3, 3}, /* cost of loading MMX registers + in SImode and DImode */ + {4, 4}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {4, 4, 3}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {4, 4, 5}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 3, /* MMX or SSE register to integer */ + /* On K8: + MOVD reg64, xmmreg Double FSTORE 4 + MOVD reg32, xmmreg Double FSTORE 4 + On AMDFAM10: + MOVD reg64, xmmreg Double FADD 3 + 1/1 1/1 + MOVD reg32, xmmreg Double FADD 3 + 1/1 1/1 */ + 32, /* size of l1 cache. */ + 512, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 100, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (4), /* cost of FMUL instruction. */ + COSTS_N_INSNS (19), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ + + /* BTVER1 has optimized REP instruction for medium sized blocks, but for + very small blocks it is better to use loop. For large blocks, libcall can + do nontemporary accesses and beat inline considerably. */ + {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, + {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {{libcall, {{8, loop}, {24, unrolled_loop}, + {2048, rep_prefix_4_byte}, {-1, libcall}}}, + {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 4, /* scalar_stmt_cost. */ + 2, /* scalar load_cost. */ + 2, /* scalar_store_cost. */ + 6, /* vec_stmt_cost. */ + 0, /* vec_to_scalar_cost. */ + 2, /* scalar_to_vec_cost. */ + 2, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 2, /* vec_store_cost. */ + 2, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs pentium4_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (3), /* cost of a lea instruction */ + COSTS_N_INSNS (4), /* variable shift costs */ + COSTS_N_INSNS (4), /* constant shift costs */ + {COSTS_N_INSNS (15), /* cost of starting multiply for QI */ + COSTS_N_INSNS (15), /* HI */ + COSTS_N_INSNS (15), /* SI */ + COSTS_N_INSNS (15), /* DI */ + COSTS_N_INSNS (15)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (56), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (56), /* HI */ + COSTS_N_INSNS (56), /* SI */ + COSTS_N_INSNS (56), /* DI */ + COSTS_N_INSNS (56)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 16, /* "large" insn */ + 6, /* MOVE_RATIO */ + 2, /* cost for loading QImode using movzbl */ + {4, 5, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {2, 3, 2}, /* cost of storing integer registers */ + 2, /* cost of reg,reg fld/fst */ + {2, 2, 6}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 6}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {2, 2}, /* cost of loading MMX registers + in SImode and DImode */ + {2, 2}, /* cost of storing MMX registers + in SImode and DImode */ + 12, /* cost of moving SSE register */ + {12, 12, 12}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {2, 2, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 10, /* MMX or SSE register to integer */ + 8, /* size of l1 cache. */ + 256, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + 2, /* Branch cost */ + COSTS_N_INSNS (5), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (7), /* cost of FMUL instruction. */ + COSTS_N_INSNS (43), /* cost of FDIV instruction. */ + COSTS_N_INSNS (2), /* cost of FABS instruction. */ + COSTS_N_INSNS (2), /* cost of FCHS instruction. */ + COSTS_N_INSNS (43), /* cost of FSQRT instruction. */ + {{libcall, {{12, loop_1_byte}, {-1, rep_prefix_4_byte}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{6, loop_1_byte}, {48, loop}, {20480, rep_prefix_4_byte}, + {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs nocona_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1), /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (10), /* cost of starting multiply for QI */ + COSTS_N_INSNS (10), /* HI */ + COSTS_N_INSNS (10), /* SI */ + COSTS_N_INSNS (10), /* DI */ + COSTS_N_INSNS (10)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (66), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (66), /* HI */ + COSTS_N_INSNS (66), /* SI */ + COSTS_N_INSNS (66), /* DI */ + COSTS_N_INSNS (66)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 16, /* "large" insn */ + 17, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {4, 4, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {4, 4, 4}, /* cost of storing integer registers */ + 3, /* cost of reg,reg fld/fst */ + {12, 12, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {4, 4, 4}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 6, /* cost of moving MMX register */ + {12, 12}, /* cost of loading MMX registers + in SImode and DImode */ + {12, 12}, /* cost of storing MMX registers + in SImode and DImode */ + 6, /* cost of moving SSE register */ + {12, 12, 12}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {12, 12, 12}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 8, /* MMX or SSE register to integer */ + 8, /* size of l1 cache. */ + 1024, /* size of l2 cache. */ + 128, /* size of prefetch block */ + 8, /* number of parallel prefetches */ + 1, /* Branch cost */ + COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (8), /* cost of FMUL instruction. */ + COSTS_N_INSNS (40), /* cost of FDIV instruction. */ + COSTS_N_INSNS (3), /* cost of FABS instruction. */ + COSTS_N_INSNS (3), /* cost of FCHS instruction. */ + COSTS_N_INSNS (44), /* cost of FSQRT instruction. */ + {{libcall, {{12, loop_1_byte}, {-1, rep_prefix_4_byte}}}, + {libcall, {{32, loop}, {20000, rep_prefix_8_byte}, + {100000, unrolled_loop}, {-1, libcall}}}}, + {{libcall, {{6, loop_1_byte}, {48, loop}, {20480, rep_prefix_4_byte}, + {-1, libcall}}}, + {libcall, {{24, loop}, {64, unrolled_loop}, + {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +static const +struct processor_costs atom_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (2)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (26), /* HI */ + COSTS_N_INSNS (42), /* SI */ + COSTS_N_INSNS (74), /* DI */ + COSTS_N_INSNS (74)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 17, /* MOVE_RATIO */ + 2, /* cost for loading QImode using movzbl */ + {4, 4, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {4, 4, 4}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {12, 12, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {8, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {8, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {8, 8, 8}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {8, 8, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 5, /* MMX or SSE register to integer */ + 32, /* size of l1 cache. */ + 256, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + 3, /* Branch cost */ + COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (8), /* cost of FMUL instruction. */ + COSTS_N_INSNS (20), /* cost of FDIV instruction. */ + COSTS_N_INSNS (8), /* cost of FABS instruction. */ + COSTS_N_INSNS (8), /* cost of FCHS instruction. */ + COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ + {{libcall, {{11, loop}, {-1, rep_prefix_4_byte}}}, + {libcall, {{32, loop}, {64, rep_prefix_4_byte}, + {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {{libcall, {{8, loop}, {15, unrolled_loop}, + {2048, rep_prefix_4_byte}, {-1, libcall}}}, + {libcall, {{24, loop}, {32, unrolled_loop}, + {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +/* Generic64 should produce code tuned for Nocona and K8. */ +static const +struct processor_costs generic64_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + /* On all chips taken into consideration lea is 2 cycles and more. With + this cost however our current implementation of synth_mult results in + use of unnecessary temporary registers causing regression on several + SPECfp benchmarks. */ + COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (2)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (26), /* HI */ + COSTS_N_INSNS (42), /* SI */ + COSTS_N_INSNS (74), /* DI */ + COSTS_N_INSNS (74)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 17, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {4, 4, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {4, 4, 4}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {12, 12, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {8, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {8, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {8, 8, 8}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {8, 8, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 5, /* MMX or SSE register to integer */ + 32, /* size of l1 cache. */ + 512, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + /* Benchmarks shows large regressions on K8 sixtrack benchmark when this + value is increased to perhaps more appropriate value of 5. */ + 3, /* Branch cost */ + COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (8), /* cost of FMUL instruction. */ + COSTS_N_INSNS (20), /* cost of FDIV instruction. */ + COSTS_N_INSNS (8), /* cost of FABS instruction. */ + COSTS_N_INSNS (8), /* cost of FCHS instruction. */ + COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ + {DUMMY_STRINGOP_ALGS, + {libcall, {{32, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + {DUMMY_STRINGOP_ALGS, + {libcall, {{32, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +/* Generic32 should produce code tuned for PPro, Pentium4, Nocona, + Athlon and K8. */ +static const +struct processor_costs generic32_cost = { + COSTS_N_INSNS (1), /* cost of an add instruction */ + COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ + COSTS_N_INSNS (1), /* variable shift costs */ + COSTS_N_INSNS (1), /* constant shift costs */ + {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ + COSTS_N_INSNS (4), /* HI */ + COSTS_N_INSNS (3), /* SI */ + COSTS_N_INSNS (4), /* DI */ + COSTS_N_INSNS (2)}, /* other */ + 0, /* cost of multiply per each bit set */ + {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ + COSTS_N_INSNS (26), /* HI */ + COSTS_N_INSNS (42), /* SI */ + COSTS_N_INSNS (74), /* DI */ + COSTS_N_INSNS (74)}, /* other */ + COSTS_N_INSNS (1), /* cost of movsx */ + COSTS_N_INSNS (1), /* cost of movzx */ + 8, /* "large" insn */ + 17, /* MOVE_RATIO */ + 4, /* cost for loading QImode using movzbl */ + {4, 4, 4}, /* cost of loading integer registers + in QImode, HImode and SImode. + Relative to reg-reg move (2). */ + {4, 4, 4}, /* cost of storing integer registers */ + 4, /* cost of reg,reg fld/fst */ + {12, 12, 12}, /* cost of loading fp registers + in SFmode, DFmode and XFmode */ + {6, 6, 8}, /* cost of storing fp registers + in SFmode, DFmode and XFmode */ + 2, /* cost of moving MMX register */ + {8, 8}, /* cost of loading MMX registers + in SImode and DImode */ + {8, 8}, /* cost of storing MMX registers + in SImode and DImode */ + 2, /* cost of moving SSE register */ + {8, 8, 8}, /* cost of loading SSE registers + in SImode, DImode and TImode */ + {8, 8, 8}, /* cost of storing SSE registers + in SImode, DImode and TImode */ + 5, /* MMX or SSE register to integer */ + 32, /* size of l1 cache. */ + 256, /* size of l2 cache. */ + 64, /* size of prefetch block */ + 6, /* number of parallel prefetches */ + 3, /* Branch cost */ + COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ + COSTS_N_INSNS (8), /* cost of FMUL instruction. */ + COSTS_N_INSNS (20), /* cost of FDIV instruction. */ + COSTS_N_INSNS (8), /* cost of FABS instruction. */ + COSTS_N_INSNS (8), /* cost of FCHS instruction. */ + COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ + {{libcall, {{32, loop}, {8192, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + {{libcall, {{32, loop}, {8192, rep_prefix_4_byte}, {-1, libcall}}}, + DUMMY_STRINGOP_ALGS}, + 1, /* scalar_stmt_cost. */ + 1, /* scalar load_cost. */ + 1, /* scalar_store_cost. */ + 1, /* vec_stmt_cost. */ + 1, /* vec_to_scalar_cost. */ + 1, /* scalar_to_vec_cost. */ + 1, /* vec_align_load_cost. */ + 2, /* vec_unalign_load_cost. */ + 1, /* vec_store_cost. */ + 3, /* cond_taken_branch_cost. */ + 1, /* cond_not_taken_branch_cost. */ +}; + +const struct processor_costs *ix86_cost = &pentium_cost; + +/* Processor feature/optimization bitmasks. */ +#define m_386 (1<<PROCESSOR_I386) +#define m_486 (1<<PROCESSOR_I486) +#define m_PENT (1<<PROCESSOR_PENTIUM) +#define m_PPRO (1<<PROCESSOR_PENTIUMPRO) +#define m_PENT4 (1<<PROCESSOR_PENTIUM4) +#define m_NOCONA (1<<PROCESSOR_NOCONA) +#define m_CORE2_32 (1<<PROCESSOR_CORE2_32) +#define m_CORE2_64 (1<<PROCESSOR_CORE2_64) +#define m_COREI7_32 (1<<PROCESSOR_COREI7_32) +#define m_COREI7_64 (1<<PROCESSOR_COREI7_64) +#define m_COREI7 (m_COREI7_32 | m_COREI7_64) +#define m_CORE2I7_32 (m_CORE2_32 | m_COREI7_32) +#define m_CORE2I7_64 (m_CORE2_64 | m_COREI7_64) +#define m_CORE2I7 (m_CORE2I7_32 | m_CORE2I7_64) +#define m_ATOM (1<<PROCESSOR_ATOM) + +#define m_GEODE (1<<PROCESSOR_GEODE) +#define m_K6 (1<<PROCESSOR_K6) +#define m_K6_GEODE (m_K6 | m_GEODE) +#define m_K8 (1<<PROCESSOR_K8) +#define m_ATHLON (1<<PROCESSOR_ATHLON) +#define m_ATHLON_K8 (m_K8 | m_ATHLON) +#define m_AMDFAM10 (1<<PROCESSOR_AMDFAM10) +#define m_BDVER1 (1<<PROCESSOR_BDVER1) +#define m_BTVER1 (1<<PROCESSOR_BTVER1) +#define m_AMD_MULTIPLE (m_K8 | m_ATHLON | m_AMDFAM10 | m_BDVER1 | m_BTVER1) + +#define m_GENERIC32 (1<<PROCESSOR_GENERIC32) +#define m_GENERIC64 (1<<PROCESSOR_GENERIC64) + +/* Generic instruction choice should be common subset of supported CPUs + (PPro/PENT4/NOCONA/CORE2/Athlon/K8). */ +#define m_GENERIC (m_GENERIC32 | m_GENERIC64) + +/* Feature tests against the various tunings. */ +unsigned char ix86_tune_features[X86_TUNE_LAST]; + +/* Feature tests against the various tunings used to create ix86_tune_features + based on the processor mask. */ +static unsigned int initial_ix86_tune_features[X86_TUNE_LAST] = { + /* X86_TUNE_USE_LEAVE: Leave does not affect Nocona SPEC2000 results + negatively, so enabling for Generic64 seems like good code size + tradeoff. We can't enable it for 32bit generic because it does not + work well with PPro base chips. */ + m_386 | m_K6_GEODE | m_AMD_MULTIPLE | m_CORE2I7_64 | m_GENERIC64, + + /* X86_TUNE_PUSH_MEMORY */ + m_386 | m_K6_GEODE | m_AMD_MULTIPLE | m_PENT4 + | m_NOCONA | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_ZERO_EXTEND_WITH_AND */ + m_486 | m_PENT, + + /* X86_TUNE_UNROLL_STRLEN */ + m_486 | m_PENT | m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_K6 + | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_DEEP_BRANCH_PREDICTION */ + m_ATOM | m_PPRO | m_K6_GEODE | m_AMD_MULTIPLE | m_PENT4 + | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based + on simulation result. But after P4 was made, no performance benefit + was observed with branch hints. It also increases the code size. + As a result, icc never generates branch hints. */ + 0, + + /* X86_TUNE_DOUBLE_WITH_ADD */ + ~m_386, + + /* X86_TUNE_USE_SAHF */ + m_ATOM | m_PPRO | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER1 | m_BTVER1 + | m_PENT4 | m_NOCONA | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid + partial dependencies. */ + m_AMD_MULTIPLE | m_ATOM | m_PPRO | m_PENT4 | m_NOCONA + | m_CORE2I7 | m_GENERIC | m_GEODE /* m_386 | m_K6 */, + + /* X86_TUNE_PARTIAL_REG_STALL: We probably ought to watch for partial + register stalls on Generic32 compilation setting as well. However + in current implementation the partial register stalls are not eliminated + very well - they can be introduced via subregs synthesized by combine + and can happen in caller/callee saving sequences. Because this option + pays back little on PPro based chips and is in conflict with partial reg + dependencies used by Athlon/P4 based chips, it is better to leave it off + for generic32 for now. */ + m_PPRO, + + /* X86_TUNE_PARTIAL_FLAG_REG_STALL */ + m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_USE_HIMODE_FIOP */ + m_386 | m_486 | m_K6_GEODE, + + /* X86_TUNE_USE_SIMODE_FIOP */ + ~(m_PPRO | m_AMD_MULTIPLE | m_PENT | m_ATOM | m_CORE2I7 | m_GENERIC), + + /* X86_TUNE_USE_MOV0 */ + m_K6, + + /* X86_TUNE_USE_CLTD */ + ~(m_PENT | m_ATOM | m_K6 | m_CORE2I7 | m_GENERIC), + + /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */ + m_PENT4, + + /* X86_TUNE_SPLIT_LONG_MOVES */ + m_PPRO, + + /* X86_TUNE_READ_MODIFY_WRITE */ + ~m_PENT, + + /* X86_TUNE_READ_MODIFY */ + ~(m_PENT | m_PPRO), + + /* X86_TUNE_PROMOTE_QIMODE */ + m_K6_GEODE | m_PENT | m_ATOM | m_386 | m_486 | m_AMD_MULTIPLE + | m_CORE2I7 | m_GENERIC /* | m_PENT4 ? */, + + /* X86_TUNE_FAST_PREFIX */ + ~(m_PENT | m_486 | m_386), + + /* X86_TUNE_SINGLE_STRINGOP */ + m_386 | m_PENT4 | m_NOCONA, + + /* X86_TUNE_QIMODE_MATH */ + ~0, + + /* X86_TUNE_HIMODE_MATH: On PPro this flag is meant to avoid partial + register stalls. Just like X86_TUNE_PARTIAL_REG_STALL this option + might be considered for Generic32 if our scheme for avoiding partial + stalls was more effective. */ + ~m_PPRO, + + /* X86_TUNE_PROMOTE_QI_REGS */ + 0, + + /* X86_TUNE_PROMOTE_HI_REGS */ + m_PPRO, + + /* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred + over esp addition. */ + m_386 | m_486 | m_PENT | m_PPRO, + + /* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred + over esp addition. */ + m_PENT, + + /* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred + over esp subtraction. */ + m_386 | m_486 | m_PENT | m_K6_GEODE, + + /* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred + over esp subtraction. */ + m_PENT | m_K6_GEODE, + + /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred + for DFmode copies */ + ~(m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2I7 + | m_GENERIC | m_GEODE), + + /* X86_TUNE_PARTIAL_REG_DEPENDENCY */ + m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: In the Generic model we have a + conflict here in between PPro/Pentium4 based chips that thread 128bit + SSE registers as single units versus K8 based chips that divide SSE + registers to two 64bit halves. This knob promotes all store destinations + to be 128bit to allow register renaming on 128bit SSE units, but usually + results in one extra microop on 64bit SSE units. Experimental results + shows that disabling this option on P4 brings over 20% SPECfp regression, + while enabling it on K8 brings roughly 2.4% regression that can be partly + masked by careful scheduling of moves. */ + m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2I7 | m_GENERIC + | m_AMDFAM10 | m_BDVER1, + + /* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL */ + m_AMDFAM10 | m_BDVER1 | m_BTVER1 | m_COREI7, + + /* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL */ + m_BDVER1 | m_COREI7, + + /* X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL */ + m_BDVER1, + + /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies + are resolved on SSE register parts instead of whole registers, so we may + maintain just lower part of scalar values in proper format leaving the + upper part undefined. */ + m_ATHLON_K8, + + /* X86_TUNE_SSE_TYPELESS_STORES */ + m_AMD_MULTIPLE, + + /* X86_TUNE_SSE_LOAD0_BY_PXOR */ + m_PPRO | m_PENT4 | m_NOCONA, + + /* X86_TUNE_MEMORY_MISMATCH_STALL */ + m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_PROLOGUE_USING_MOVE */ + m_ATHLON_K8 | m_ATOM | m_PPRO | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_EPILOGUE_USING_MOVE */ + m_ATHLON_K8 | m_ATOM | m_PPRO | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_SHIFT1 */ + ~m_486, + + /* X86_TUNE_USE_FFREEP */ + m_AMD_MULTIPLE, + + /* X86_TUNE_INTER_UNIT_MOVES */ + ~(m_AMD_MULTIPLE | m_GENERIC), + + /* X86_TUNE_INTER_UNIT_CONVERSIONS */ + ~(m_AMDFAM10 | m_BDVER1), + + /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more + than 4 branch instructions in the 16 byte window. */ + m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_PENT4 | m_NOCONA | m_CORE2I7 + | m_GENERIC, + + /* X86_TUNE_SCHEDULE */ + m_PPRO | m_AMD_MULTIPLE | m_K6_GEODE | m_PENT | m_ATOM | m_CORE2I7 + | m_GENERIC, + + /* X86_TUNE_USE_BT */ + m_AMD_MULTIPLE | m_ATOM | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_USE_INCDEC */ + ~(m_PENT4 | m_NOCONA | m_CORE2I7 | m_GENERIC | m_ATOM), + + /* X86_TUNE_PAD_RETURNS */ + m_AMD_MULTIPLE | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_PAD_SHORT_FUNCTION: Pad short funtion. */ + m_ATOM, + + /* X86_TUNE_EXT_80387_CONSTANTS */ + m_K6_GEODE | m_ATHLON_K8 | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO + | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_SHORTEN_X87_SSE */ + ~m_K8, + + /* X86_TUNE_AVOID_VECTOR_DECODE */ + m_K8 | m_CORE2I7_64 | m_GENERIC64, + + /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode + and SImode multiply, but 386 and 486 do HImode multiply faster. */ + ~(m_386 | m_486), + + /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is + vector path on AMD machines. */ + m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER1 | m_BTVER1, + + /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD + machines. */ + m_K8 | m_CORE2I7_64 | m_GENERIC64 | m_AMDFAM10 | m_BDVER1 | m_BTVER1, + + /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR + than a MOV. */ + m_PENT, + + /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is, + but one byte longer. */ + m_PENT, + + /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory + operand that cannot be represented using a modRM byte. The XOR + replacement is long decoded, so this split helps here as well. */ + m_K6, + + /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion + from FP to FP. */ + m_AMDFAM10 | m_CORE2I7 | m_GENERIC, + + /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion + from integer to FP. */ + m_AMDFAM10, + + /* X86_TUNE_FUSE_CMP_AND_BRANCH: Fuse a compare or test instruction + with a subsequent conditional jump instruction into a single + compare-and-branch uop. */ + m_BDVER1, + + /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag + will impact LEA instruction selection. */ + m_ATOM, + + /* X86_TUNE_VECTORIZE_DOUBLE: Enable double precision vector + instructions. */ + ~m_ATOM, + + /* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for + the auto-vectorizer. */ + m_BDVER1, +}; + +/* Feature tests against the various architecture variations. */ +unsigned char ix86_arch_features[X86_ARCH_LAST]; + +/* Feature tests against the various architecture variations, used to create + ix86_arch_features based on the processor mask. */ +static unsigned int initial_ix86_arch_features[X86_ARCH_LAST] = { + /* X86_ARCH_CMOV: Conditional move was added for pentiumpro. */ + ~(m_386 | m_486 | m_PENT | m_K6), + + /* X86_ARCH_CMPXCHG: Compare and exchange was added for 80486. */ + ~m_386, + + /* X86_ARCH_CMPXCHG8B: Compare and exchange 8 bytes was added for pentium. */ + ~(m_386 | m_486), + + /* X86_ARCH_XADD: Exchange and add was added for 80486. */ + ~m_386, + + /* X86_ARCH_BSWAP: Byteswap was added for 80486. */ + ~m_386, +}; + +static const unsigned int x86_accumulate_outgoing_args + = m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2I7 + | m_GENERIC; + +static const unsigned int x86_arch_always_fancy_math_387 + = m_PENT | m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_PENT4 + | m_NOCONA | m_CORE2I7 | m_GENERIC; + +static const unsigned int x86_avx256_split_unaligned_load + = m_COREI7 | m_GENERIC; + +static const unsigned int x86_avx256_split_unaligned_store + = m_COREI7 | m_BDVER1 | m_GENERIC; + +static enum stringop_alg stringop_alg = no_stringop; + +/* In case the average insn count for single function invocation is + lower than this constant, emit fast (but longer) prologue and + epilogue code. */ +#define FAST_PROLOGUE_INSN_COUNT 20 + +/* Names for 8 (low), 8 (high), and 16-bit registers, respectively. */ +static const char *const qi_reg_name[] = QI_REGISTER_NAMES; +static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES; +static const char *const hi_reg_name[] = HI_REGISTER_NAMES; + +/* Array of the smallest class containing reg number REGNO, indexed by + REGNO. Used by REGNO_REG_CLASS in i386.h. */ + +enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] = +{ + /* ax, dx, cx, bx */ + AREG, DREG, CREG, BREG, + /* si, di, bp, sp */ + SIREG, DIREG, NON_Q_REGS, NON_Q_REGS, + /* FP registers */ + FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS, + FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, + /* arg pointer */ + NON_Q_REGS, + /* flags, fpsr, fpcr, frame */ + NO_REGS, NO_REGS, NO_REGS, NON_Q_REGS, + /* SSE registers */ + SSE_FIRST_REG, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, + SSE_REGS, SSE_REGS, + /* MMX registers */ + MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, + MMX_REGS, MMX_REGS, + /* REX registers */ + NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, + NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, + /* SSE REX registers */ + SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, + SSE_REGS, SSE_REGS, +}; + +/* The "default" register map used in 32bit mode. */ + +int const dbx_register_map[FIRST_PSEUDO_REGISTER] = +{ + 0, 2, 1, 3, 6, 7, 4, 5, /* general regs */ + 12, 13, 14, 15, 16, 17, 18, 19, /* fp regs */ + -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ + 21, 22, 23, 24, 25, 26, 27, 28, /* SSE */ + 29, 30, 31, 32, 33, 34, 35, 36, /* MMX */ + -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */ + -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */ +}; + +/* The "default" register map used in 64bit mode. */ + +int const dbx64_register_map[FIRST_PSEUDO_REGISTER] = +{ + 0, 1, 2, 3, 4, 5, 6, 7, /* general regs */ + 33, 34, 35, 36, 37, 38, 39, 40, /* fp regs */ + -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ + 17, 18, 19, 20, 21, 22, 23, 24, /* SSE */ + 41, 42, 43, 44, 45, 46, 47, 48, /* MMX */ + 8,9,10,11,12,13,14,15, /* extended integer registers */ + 25, 26, 27, 28, 29, 30, 31, 32, /* extended SSE registers */ +}; + +/* Define the register numbers to be used in Dwarf debugging information. + The SVR4 reference port C compiler uses the following register numbers + in its Dwarf output code: + 0 for %eax (gcc regno = 0) + 1 for %ecx (gcc regno = 2) + 2 for %edx (gcc regno = 1) + 3 for %ebx (gcc regno = 3) + 4 for %esp (gcc regno = 7) + 5 for %ebp (gcc regno = 6) + 6 for %esi (gcc regno = 4) + 7 for %edi (gcc regno = 5) + The following three DWARF register numbers are never generated by + the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4 + believes these numbers have these meanings. + 8 for %eip (no gcc equivalent) + 9 for %eflags (gcc regno = 17) + 10 for %trapno (no gcc equivalent) + It is not at all clear how we should number the FP stack registers + for the x86 architecture. If the version of SDB on x86/svr4 were + a bit less brain dead with respect to floating-point then we would + have a precedent to follow with respect to DWARF register numbers + for x86 FP registers, but the SDB on x86/svr4 is so completely + broken with respect to FP registers that it is hardly worth thinking + of it as something to strive for compatibility with. + The version of x86/svr4 SDB I have at the moment does (partially) + seem to believe that DWARF register number 11 is associated with + the x86 register %st(0), but that's about all. Higher DWARF + register numbers don't seem to be associated with anything in + particular, and even for DWARF regno 11, SDB only seems to under- + stand that it should say that a variable lives in %st(0) (when + asked via an `=' command) if we said it was in DWARF regno 11, + but SDB still prints garbage when asked for the value of the + variable in question (via a `/' command). + (Also note that the labels SDB prints for various FP stack regs + when doing an `x' command are all wrong.) + Note that these problems generally don't affect the native SVR4 + C compiler because it doesn't allow the use of -O with -g and + because when it is *not* optimizing, it allocates a memory + location for each floating-point variable, and the memory + location is what gets described in the DWARF AT_location + attribute for the variable in question. + Regardless of the severe mental illness of the x86/svr4 SDB, we + do something sensible here and we use the following DWARF + register numbers. Note that these are all stack-top-relative + numbers. + 11 for %st(0) (gcc regno = 8) + 12 for %st(1) (gcc regno = 9) + 13 for %st(2) (gcc regno = 10) + 14 for %st(3) (gcc regno = 11) + 15 for %st(4) (gcc regno = 12) + 16 for %st(5) (gcc regno = 13) + 17 for %st(6) (gcc regno = 14) + 18 for %st(7) (gcc regno = 15) +*/ +int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER] = +{ + 0, 2, 1, 3, 6, 7, 5, 4, /* general regs */ + 11, 12, 13, 14, 15, 16, 17, 18, /* fp regs */ + -1, 9, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ + 21, 22, 23, 24, 25, 26, 27, 28, /* SSE registers */ + 29, 30, 31, 32, 33, 34, 35, 36, /* MMX registers */ + -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */ + -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */ +}; + +/* Define parameter passing and return registers. */ + +static int const x86_64_int_parameter_registers[6] = +{ + DI_REG, SI_REG, DX_REG, CX_REG, R8_REG, R9_REG +}; + +static int const x86_64_ms_abi_int_parameter_registers[4] = +{ + CX_REG, DX_REG, R8_REG, R9_REG +}; + +static int const x86_64_int_return_registers[4] = +{ + AX_REG, DX_REG, DI_REG, SI_REG +}; + +/* Define the structure for the machine field in struct function. */ + +struct GTY(()) stack_local_entry { + unsigned short mode; + unsigned short n; + rtx rtl; + struct stack_local_entry *next; +}; + +/* Structure describing stack frame layout. + Stack grows downward: + + [arguments] + <- ARG_POINTER + saved pc + + saved static chain if ix86_static_chain_on_stack + + saved frame pointer if frame_pointer_needed + <- HARD_FRAME_POINTER + [saved regs] + <- regs_save_offset + [padding0] + + [saved SSE regs] + <- sse_regs_save_offset + [padding1] | + | <- FRAME_POINTER + [va_arg registers] | + | + [frame] | + | + [padding2] | = to_allocate + <- STACK_POINTER + */ +struct ix86_frame +{ + int nsseregs; + int nregs; + int va_arg_size; + int red_zone_size; + int outgoing_arguments_size; + HOST_WIDE_INT frame; + + /* The offsets relative to ARG_POINTER. */ + HOST_WIDE_INT frame_pointer_offset; + HOST_WIDE_INT hard_frame_pointer_offset; + HOST_WIDE_INT stack_pointer_offset; + HOST_WIDE_INT hfp_save_offset; + HOST_WIDE_INT reg_save_offset; + HOST_WIDE_INT sse_reg_save_offset; + + /* When save_regs_using_mov is set, emit prologue using + move instead of push instructions. */ + bool save_regs_using_mov; +}; + +/* Code model option. */ +enum cmodel ix86_cmodel; +/* Asm dialect. */ +enum asm_dialect ix86_asm_dialect = ASM_ATT; +/* TLS dialects. */ +enum tls_dialect ix86_tls_dialect = TLS_DIALECT_GNU; + +/* Which unit we are generating floating point math for. */ +enum fpmath_unit ix86_fpmath; + +/* Which cpu are we scheduling for. */ +enum attr_cpu ix86_schedule; + +/* Which cpu are we optimizing for. */ +enum processor_type ix86_tune; + +/* Which instruction set architecture to use. */ +enum processor_type ix86_arch; + +/* true if sse prefetch instruction is not NOOP. */ +int x86_prefetch_sse; + +/* ix86_regparm_string as a number */ +static int ix86_regparm; + +/* -mstackrealign option */ +static const char ix86_force_align_arg_pointer_string[] + = "force_align_arg_pointer"; + +static rtx (*ix86_gen_leave) (void); +static rtx (*ix86_gen_add3) (rtx, rtx, rtx); +static rtx (*ix86_gen_sub3) (rtx, rtx, rtx); +static rtx (*ix86_gen_sub3_carry) (rtx, rtx, rtx, rtx, rtx); +static rtx (*ix86_gen_one_cmpl2) (rtx, rtx); +static rtx (*ix86_gen_monitor) (rtx, rtx, rtx); +static rtx (*ix86_gen_andsp) (rtx, rtx, rtx); +static rtx (*ix86_gen_allocate_stack_worker) (rtx, rtx); +static rtx (*ix86_gen_adjust_stack_and_probe) (rtx, rtx, rtx); +static rtx (*ix86_gen_probe_stack_range) (rtx, rtx, rtx); + +/* Preferred alignment for stack boundary in bits. */ +unsigned int ix86_preferred_stack_boundary; + +/* Alignment for incoming stack boundary in bits specified at + command line. */ +static unsigned int ix86_user_incoming_stack_boundary; + +/* Default alignment for incoming stack boundary in bits. */ +static unsigned int ix86_default_incoming_stack_boundary; + +/* Alignment for incoming stack boundary in bits. */ +unsigned int ix86_incoming_stack_boundary; + +/* The abi used by target. */ +enum calling_abi ix86_abi; + +/* Values 1-5: see jump.c */ +int ix86_branch_cost; + +/* Calling abi specific va_list type nodes. */ +static GTY(()) tree sysv_va_list_type_node; +static GTY(()) tree ms_va_list_type_node; + +/* Variables which are this size or smaller are put in the data/bss + or ldata/lbss sections. */ + +int ix86_section_threshold = 65536; + +/* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */ +char internal_label_prefix[16]; +int internal_label_prefix_len; + +/* Fence to use after loop using movnt. */ +tree x86_mfence; + +/* Register class used for passing given 64bit part of the argument. + These represent classes as documented by the PS ABI, with the exception + of SSESF, SSEDF classes, that are basically SSE class, just gcc will + use SF or DFmode move instead of DImode to avoid reformatting penalties. + + Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves + whenever possible (upper half does contain padding). */ +enum x86_64_reg_class + { + X86_64_NO_CLASS, + X86_64_INTEGER_CLASS, + X86_64_INTEGERSI_CLASS, + X86_64_SSE_CLASS, + X86_64_SSESF_CLASS, + X86_64_SSEDF_CLASS, + X86_64_SSEUP_CLASS, + X86_64_X87_CLASS, + X86_64_X87UP_CLASS, + X86_64_COMPLEX_X87_CLASS, + X86_64_MEMORY_CLASS + }; + +#define MAX_CLASSES 4 + +/* Table of constants used by fldpi, fldln2, etc.... */ +static REAL_VALUE_TYPE ext_80387_constants_table [5]; +static bool ext_80387_constants_init = 0; + + +static struct machine_function * ix86_init_machine_status (void); +static rtx ix86_function_value (const_tree, const_tree, bool); +static bool ix86_function_value_regno_p (const unsigned int); +static unsigned int ix86_function_arg_boundary (enum machine_mode, + const_tree); +static rtx ix86_static_chain (const_tree, bool); +static int ix86_function_regparm (const_tree, const_tree); +static void ix86_compute_frame_layout (struct ix86_frame *); +static bool ix86_expand_vector_init_one_nonzero (bool, enum machine_mode, + rtx, rtx, int); +static void ix86_add_new_builtins (int); +static rtx ix86_expand_vec_perm_builtin (tree); +static tree ix86_canonical_va_list_type (tree); +static void predict_jump (int); +static unsigned int split_stack_prologue_scratch_regno (void); +static bool i386_asm_output_addr_const_extra (FILE *, rtx); + +enum ix86_function_specific_strings +{ + IX86_FUNCTION_SPECIFIC_ARCH, + IX86_FUNCTION_SPECIFIC_TUNE, + IX86_FUNCTION_SPECIFIC_FPMATH, + IX86_FUNCTION_SPECIFIC_MAX +}; + +static char *ix86_target_string (int, int, const char *, const char *, + const char *, bool); +static void ix86_debug_options (void) ATTRIBUTE_UNUSED; +static void ix86_function_specific_save (struct cl_target_option *); +static void ix86_function_specific_restore (struct cl_target_option *); +static void ix86_function_specific_print (FILE *, int, + struct cl_target_option *); +static bool ix86_valid_target_attribute_p (tree, tree, tree, int); +static bool ix86_valid_target_attribute_inner_p (tree, char *[]); +static bool ix86_can_inline_p (tree, tree); +static void ix86_set_current_function (tree); +static unsigned int ix86_minimum_incoming_stack_boundary (bool); + +static enum calling_abi ix86_function_abi (const_tree); + + +#ifndef SUBTARGET32_DEFAULT_CPU +#define SUBTARGET32_DEFAULT_CPU "i386" +#endif + +/* The svr4 ABI for the i386 says that records and unions are returned + in memory. */ +#ifndef DEFAULT_PCC_STRUCT_RETURN +#define DEFAULT_PCC_STRUCT_RETURN 1 +#endif + +/* Whether -mtune= or -march= were specified */ +static int ix86_tune_defaulted; +static int ix86_arch_specified; + +/* A mask of ix86_isa_flags that includes bit X if X + was set or cleared on the command line. */ +static int ix86_isa_flags_explicit; + +/* Define a set of ISAs which are available when a given ISA is + enabled. MMX and SSE ISAs are handled separately. */ + +#define OPTION_MASK_ISA_MMX_SET OPTION_MASK_ISA_MMX +#define OPTION_MASK_ISA_3DNOW_SET \ + (OPTION_MASK_ISA_3DNOW | OPTION_MASK_ISA_MMX_SET) + +#define OPTION_MASK_ISA_SSE_SET OPTION_MASK_ISA_SSE +#define OPTION_MASK_ISA_SSE2_SET \ + (OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE_SET) +#define OPTION_MASK_ISA_SSE3_SET \ + (OPTION_MASK_ISA_SSE3 | OPTION_MASK_ISA_SSE2_SET) +#define OPTION_MASK_ISA_SSSE3_SET \ + (OPTION_MASK_ISA_SSSE3 | OPTION_MASK_ISA_SSE3_SET) +#define OPTION_MASK_ISA_SSE4_1_SET \ + (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSSE3_SET) +#define OPTION_MASK_ISA_SSE4_2_SET \ + (OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_SSE4_1_SET) +#define OPTION_MASK_ISA_AVX_SET \ + (OPTION_MASK_ISA_AVX | OPTION_MASK_ISA_SSE4_2_SET) +#define OPTION_MASK_ISA_FMA_SET \ + (OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_AVX_SET) + +/* SSE4 includes both SSE4.1 and SSE4.2. -msse4 should be the same + as -msse4.2. */ +#define OPTION_MASK_ISA_SSE4_SET OPTION_MASK_ISA_SSE4_2_SET + +#define OPTION_MASK_ISA_SSE4A_SET \ + (OPTION_MASK_ISA_SSE4A | OPTION_MASK_ISA_SSE3_SET) +#define OPTION_MASK_ISA_FMA4_SET \ + (OPTION_MASK_ISA_FMA4 | OPTION_MASK_ISA_SSE4A_SET \ + | OPTION_MASK_ISA_AVX_SET) +#define OPTION_MASK_ISA_XOP_SET \ + (OPTION_MASK_ISA_XOP | OPTION_MASK_ISA_FMA4_SET) +#define OPTION_MASK_ISA_LWP_SET \ + OPTION_MASK_ISA_LWP + +/* AES and PCLMUL need SSE2 because they use xmm registers */ +#define OPTION_MASK_ISA_AES_SET \ + (OPTION_MASK_ISA_AES | OPTION_MASK_ISA_SSE2_SET) +#define OPTION_MASK_ISA_PCLMUL_SET \ + (OPTION_MASK_ISA_PCLMUL | OPTION_MASK_ISA_SSE2_SET) + +#define OPTION_MASK_ISA_ABM_SET \ + (OPTION_MASK_ISA_ABM | OPTION_MASK_ISA_POPCNT) + +#define OPTION_MASK_ISA_BMI_SET OPTION_MASK_ISA_BMI +#define OPTION_MASK_ISA_TBM_SET OPTION_MASK_ISA_TBM +#define OPTION_MASK_ISA_POPCNT_SET OPTION_MASK_ISA_POPCNT +#define OPTION_MASK_ISA_CX16_SET OPTION_MASK_ISA_CX16 +#define OPTION_MASK_ISA_SAHF_SET OPTION_MASK_ISA_SAHF +#define OPTION_MASK_ISA_MOVBE_SET OPTION_MASK_ISA_MOVBE +#define OPTION_MASK_ISA_CRC32_SET OPTION_MASK_ISA_CRC32 + +#define OPTION_MASK_ISA_FSGSBASE_SET OPTION_MASK_ISA_FSGSBASE +#define OPTION_MASK_ISA_RDRND_SET OPTION_MASK_ISA_RDRND +#define OPTION_MASK_ISA_F16C_SET \ + (OPTION_MASK_ISA_F16C | OPTION_MASK_ISA_AVX_SET) + +/* Define a set of ISAs which aren't available when a given ISA is + disabled. MMX and SSE ISAs are handled separately. */ + +#define OPTION_MASK_ISA_MMX_UNSET \ + (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_3DNOW_UNSET) +#define OPTION_MASK_ISA_3DNOW_UNSET \ + (OPTION_MASK_ISA_3DNOW | OPTION_MASK_ISA_3DNOW_A_UNSET) +#define OPTION_MASK_ISA_3DNOW_A_UNSET OPTION_MASK_ISA_3DNOW_A + +#define OPTION_MASK_ISA_SSE_UNSET \ + (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2_UNSET) +#define OPTION_MASK_ISA_SSE2_UNSET \ + (OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE3_UNSET) +#define OPTION_MASK_ISA_SSE3_UNSET \ + (OPTION_MASK_ISA_SSE3 \ + | OPTION_MASK_ISA_SSSE3_UNSET \ + | OPTION_MASK_ISA_SSE4A_UNSET ) +#define OPTION_MASK_ISA_SSSE3_UNSET \ + (OPTION_MASK_ISA_SSSE3 | OPTION_MASK_ISA_SSE4_1_UNSET) +#define OPTION_MASK_ISA_SSE4_1_UNSET \ + (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE4_2_UNSET) +#define OPTION_MASK_ISA_SSE4_2_UNSET \ + (OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_AVX_UNSET ) +#define OPTION_MASK_ISA_AVX_UNSET \ + (OPTION_MASK_ISA_AVX | OPTION_MASK_ISA_FMA_UNSET \ + | OPTION_MASK_ISA_FMA4_UNSET | OPTION_MASK_ISA_F16C_UNSET) +#define OPTION_MASK_ISA_FMA_UNSET OPTION_MASK_ISA_FMA + +/* SSE4 includes both SSE4.1 and SSE4.2. -mno-sse4 should the same + as -mno-sse4.1. */ +#define OPTION_MASK_ISA_SSE4_UNSET OPTION_MASK_ISA_SSE4_1_UNSET + +#define OPTION_MASK_ISA_SSE4A_UNSET \ + (OPTION_MASK_ISA_SSE4A | OPTION_MASK_ISA_FMA4_UNSET) + +#define OPTION_MASK_ISA_FMA4_UNSET \ + (OPTION_MASK_ISA_FMA4 | OPTION_MASK_ISA_XOP_UNSET) +#define OPTION_MASK_ISA_XOP_UNSET OPTION_MASK_ISA_XOP +#define OPTION_MASK_ISA_LWP_UNSET OPTION_MASK_ISA_LWP + +#define OPTION_MASK_ISA_AES_UNSET OPTION_MASK_ISA_AES +#define OPTION_MASK_ISA_PCLMUL_UNSET OPTION_MASK_ISA_PCLMUL +#define OPTION_MASK_ISA_ABM_UNSET OPTION_MASK_ISA_ABM +#define OPTION_MASK_ISA_BMI_UNSET OPTION_MASK_ISA_BMI +#define OPTION_MASK_ISA_TBM_UNSET OPTION_MASK_ISA_TBM +#define OPTION_MASK_ISA_POPCNT_UNSET OPTION_MASK_ISA_POPCNT +#define OPTION_MASK_ISA_CX16_UNSET OPTION_MASK_ISA_CX16 +#define OPTION_MASK_ISA_SAHF_UNSET OPTION_MASK_ISA_SAHF +#define OPTION_MASK_ISA_MOVBE_UNSET OPTION_MASK_ISA_MOVBE +#define OPTION_MASK_ISA_CRC32_UNSET OPTION_MASK_ISA_CRC32 + +#define OPTION_MASK_ISA_FSGSBASE_UNSET OPTION_MASK_ISA_FSGSBASE +#define OPTION_MASK_ISA_RDRND_UNSET OPTION_MASK_ISA_RDRND +#define OPTION_MASK_ISA_F16C_UNSET OPTION_MASK_ISA_F16C + +/* Vectorization library interface and handlers. */ +static tree (*ix86_veclib_handler) (enum built_in_function, tree, tree); + +static tree ix86_veclibabi_svml (enum built_in_function, tree, tree); +static tree ix86_veclibabi_acml (enum built_in_function, tree, tree); + +/* Processor target table, indexed by processor number */ +struct ptt +{ + const struct processor_costs *cost; /* Processor costs */ + const int align_loop; /* Default alignments. */ + const int align_loop_max_skip; + const int align_jump; + const int align_jump_max_skip; + const int align_func; +}; + +static const struct ptt processor_target_table[PROCESSOR_max] = +{ + {&i386_cost, 4, 3, 4, 3, 4}, + {&i486_cost, 16, 15, 16, 15, 16}, + {&pentium_cost, 16, 7, 16, 7, 16}, + {&pentiumpro_cost, 16, 15, 16, 10, 16}, + {&geode_cost, 0, 0, 0, 0, 0}, + {&k6_cost, 32, 7, 32, 7, 32}, + {&athlon_cost, 16, 7, 16, 7, 16}, + {&pentium4_cost, 0, 0, 0, 0, 0}, + {&k8_cost, 16, 7, 16, 7, 16}, + {&nocona_cost, 0, 0, 0, 0, 0}, + /* Core 2 32-bit. */ + {&generic32_cost, 16, 10, 16, 10, 16}, + /* Core 2 64-bit. */ + {&generic64_cost, 16, 10, 16, 10, 16}, + /* Core i7 32-bit. */ + {&generic32_cost, 16, 10, 16, 10, 16}, + /* Core i7 64-bit. */ + {&generic64_cost, 16, 10, 16, 10, 16}, + {&generic32_cost, 16, 7, 16, 7, 16}, + {&generic64_cost, 16, 10, 16, 10, 16}, + {&amdfam10_cost, 32, 24, 32, 7, 32}, + {&bdver1_cost, 32, 24, 32, 7, 32}, + {&btver1_cost, 32, 24, 32, 7, 32}, + {&atom_cost, 16, 7, 16, 7, 16} +}; + +static const char *const cpu_names[TARGET_CPU_DEFAULT_max] = +{ + "generic", + "i386", + "i486", + "pentium", + "pentium-mmx", + "pentiumpro", + "pentium2", + "pentium3", + "pentium4", + "pentium-m", + "prescott", + "nocona", + "core2", + "corei7", + "atom", + "geode", + "k6", + "k6-2", + "k6-3", + "athlon", + "athlon-4", + "k8", + "amdfam10", + "bdver1", + "btver1" +}; + +/* Return true if a red-zone is in use. */ + +static inline bool +ix86_using_red_zone (void) +{ + return TARGET_RED_ZONE && !TARGET_64BIT_MS_ABI; +} + +/* Implement TARGET_HANDLE_OPTION. */ + +static bool +ix86_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED, int value) +{ + switch (code) + { + case OPT_mmmx: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_MMX_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_MMX_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_MMX_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_MMX_UNSET; + } + return true; + + case OPT_m3dnow: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_3DNOW_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_3DNOW_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_3DNOW_UNSET; + } + return true; + + case OPT_m3dnowa: + return false; + + case OPT_msse: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE_UNSET; + } + return true; + + case OPT_msse2: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE2_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE2_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE2_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE2_UNSET; + } + return true; + + case OPT_msse3: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE3_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE3_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE3_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE3_UNSET; + } + return true; + + case OPT_mssse3: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSSE3_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSSE3_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSSE3_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSSE3_UNSET; + } + return true; + + case OPT_msse4_1: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_1_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_1_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_1_UNSET; + } + return true; + + case OPT_msse4_2: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_2_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_2_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_2_UNSET; + } + return true; + + case OPT_mavx: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_AVX_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_AVX_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_AVX_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_AVX_UNSET; + } + return true; + + case OPT_mfma: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_FMA_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_FMA_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA_UNSET; + } + return true; + + case OPT_msse4: + ix86_isa_flags |= OPTION_MASK_ISA_SSE4_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_SET; + return true; + + case OPT_mno_sse4: + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_UNSET; + return true; + + case OPT_msse4a: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SSE4A_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4A_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4A_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4A_UNSET; + } + return true; + + case OPT_mfma4: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_FMA4_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA4_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_FMA4_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA4_UNSET; + } + return true; + + case OPT_mxop: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_XOP_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_XOP_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_XOP_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_XOP_UNSET; + } + return true; + + case OPT_mlwp: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_LWP_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_LWP_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_LWP_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_LWP_UNSET; + } + return true; + + case OPT_mabm: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_ABM_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_ABM_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_ABM_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_ABM_UNSET; + } + return true; + + case OPT_mbmi: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_BMI_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_BMI_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_BMI_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_BMI_UNSET; + } + return true; + + case OPT_mtbm: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_TBM_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_TBM_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_TBM_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_TBM_UNSET; + } + return true; + + case OPT_mpopcnt: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_POPCNT_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_POPCNT_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_POPCNT_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_POPCNT_UNSET; + } + return true; + + case OPT_msahf: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_SAHF_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SAHF_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_SAHF_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_SAHF_UNSET; + } + return true; + + case OPT_mcx16: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_CX16_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_CX16_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_CX16_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_CX16_UNSET; + } + return true; + + case OPT_mmovbe: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_MOVBE_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_MOVBE_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_MOVBE_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_MOVBE_UNSET; + } + return true; + + case OPT_mcrc32: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_CRC32_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_CRC32_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_CRC32_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_CRC32_UNSET; + } + return true; + + case OPT_maes: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_AES_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_AES_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_AES_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_AES_UNSET; + } + return true; + + case OPT_mpclmul: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_PCLMUL_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_PCLMUL_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_PCLMUL_UNSET; + } + return true; + + case OPT_mfsgsbase: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_FSGSBASE_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FSGSBASE_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_FSGSBASE_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_FSGSBASE_UNSET; + } + return true; + + case OPT_mrdrnd: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_RDRND_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_RDRND_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_RDRND_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_RDRND_UNSET; + } + return true; + + case OPT_mf16c: + if (value) + { + ix86_isa_flags |= OPTION_MASK_ISA_F16C_SET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_F16C_SET; + } + else + { + ix86_isa_flags &= ~OPTION_MASK_ISA_F16C_UNSET; + ix86_isa_flags_explicit |= OPTION_MASK_ISA_F16C_UNSET; + } + return true; + + default: + return true; + } +} + +/* Return a string that documents the current -m options. The caller is + responsible for freeing the string. */ + +static char * +ix86_target_string (int isa, int flags, const char *arch, const char *tune, + const char *fpmath, bool add_nl_p) +{ + struct ix86_target_opts + { + const char *option; /* option string */ + int mask; /* isa mask options */ + }; + + /* This table is ordered so that options like -msse4.2 that imply + preceding options while match those first. */ + static struct ix86_target_opts isa_opts[] = + { + { "-m64", OPTION_MASK_ISA_64BIT }, + { "-mfma4", OPTION_MASK_ISA_FMA4 }, + { "-mfma", OPTION_MASK_ISA_FMA }, + { "-mxop", OPTION_MASK_ISA_XOP }, + { "-mlwp", OPTION_MASK_ISA_LWP }, + { "-msse4a", OPTION_MASK_ISA_SSE4A }, + { "-msse4.2", OPTION_MASK_ISA_SSE4_2 }, + { "-msse4.1", OPTION_MASK_ISA_SSE4_1 }, + { "-mssse3", OPTION_MASK_ISA_SSSE3 }, + { "-msse3", OPTION_MASK_ISA_SSE3 }, + { "-msse2", OPTION_MASK_ISA_SSE2 }, + { "-msse", OPTION_MASK_ISA_SSE }, + { "-m3dnow", OPTION_MASK_ISA_3DNOW }, + { "-m3dnowa", OPTION_MASK_ISA_3DNOW_A }, + { "-mmmx", OPTION_MASK_ISA_MMX }, + { "-mabm", OPTION_MASK_ISA_ABM }, + { "-mbmi", OPTION_MASK_ISA_BMI }, + { "-mtbm", OPTION_MASK_ISA_TBM }, + { "-mpopcnt", OPTION_MASK_ISA_POPCNT }, + { "-mmovbe", OPTION_MASK_ISA_MOVBE }, + { "-mcrc32", OPTION_MASK_ISA_CRC32 }, + { "-maes", OPTION_MASK_ISA_AES }, + { "-mpclmul", OPTION_MASK_ISA_PCLMUL }, + { "-mfsgsbase", OPTION_MASK_ISA_FSGSBASE }, + { "-mrdrnd", OPTION_MASK_ISA_RDRND }, + { "-mf16c", OPTION_MASK_ISA_F16C }, + }; + + /* Flag options. */ + static struct ix86_target_opts flag_opts[] = + { + { "-m128bit-long-double", MASK_128BIT_LONG_DOUBLE }, + { "-m80387", MASK_80387 }, + { "-maccumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS }, + { "-malign-double", MASK_ALIGN_DOUBLE }, + { "-mcld", MASK_CLD }, + { "-mfp-ret-in-387", MASK_FLOAT_RETURNS }, + { "-mieee-fp", MASK_IEEE_FP }, + { "-minline-all-stringops", MASK_INLINE_ALL_STRINGOPS }, + { "-minline-stringops-dynamically", MASK_INLINE_STRINGOPS_DYNAMICALLY }, + { "-mms-bitfields", MASK_MS_BITFIELD_LAYOUT }, + { "-mno-align-stringops", MASK_NO_ALIGN_STRINGOPS }, + { "-mno-fancy-math-387", MASK_NO_FANCY_MATH_387 }, + { "-mno-push-args", MASK_NO_PUSH_ARGS }, + { "-mno-red-zone", MASK_NO_RED_ZONE }, + { "-momit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, + { "-mrecip", MASK_RECIP }, + { "-mrtd", MASK_RTD }, + { "-msseregparm", MASK_SSEREGPARM }, + { "-mstack-arg-probe", MASK_STACK_PROBE }, + { "-mtls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS }, + { "-mvect8-ret-in-mem", MASK_VECT8_RETURNS }, + { "-m8bit-idiv", MASK_USE_8BIT_IDIV }, + { "-mvzeroupper", MASK_VZEROUPPER }, + { "-mavx256-split-unaligned-load", MASK_AVX256_SPLIT_UNALIGNED_LOAD}, + { "-mavx256-split-unaligned-store", MASK_AVX256_SPLIT_UNALIGNED_STORE}, + { "-mprefer-avx128", MASK_PREFER_AVX128}, + }; + + const char *opts[ARRAY_SIZE (isa_opts) + ARRAY_SIZE (flag_opts) + 6][2]; + + char isa_other[40]; + char target_other[40]; + unsigned num = 0; + unsigned i, j; + char *ret; + char *ptr; + size_t len; + size_t line_len; + size_t sep_len; + + memset (opts, '\0', sizeof (opts)); + + /* Add -march= option. */ + if (arch) + { + opts[num][0] = "-march="; + opts[num++][1] = arch; + } + + /* Add -mtune= option. */ + if (tune) + { + opts[num][0] = "-mtune="; + opts[num++][1] = tune; + } + + /* Pick out the options in isa options. */ + for (i = 0; i < ARRAY_SIZE (isa_opts); i++) + { + if ((isa & isa_opts[i].mask) != 0) + { + opts[num++][0] = isa_opts[i].option; + isa &= ~ isa_opts[i].mask; + } + } + + if (isa && add_nl_p) + { + opts[num++][0] = isa_other; + sprintf (isa_other, "(other isa: %#x)", isa); + } + + /* Add flag options. */ + for (i = 0; i < ARRAY_SIZE (flag_opts); i++) + { + if ((flags & flag_opts[i].mask) != 0) + { + opts[num++][0] = flag_opts[i].option; + flags &= ~ flag_opts[i].mask; + } + } + + if (flags && add_nl_p) + { + opts[num++][0] = target_other; + sprintf (target_other, "(other flags: %#x)", flags); + } + + /* Add -fpmath= option. */ + if (fpmath) + { + opts[num][0] = "-mfpmath="; + opts[num++][1] = fpmath; + } + + /* Any options? */ + if (num == 0) + return NULL; + + gcc_assert (num < ARRAY_SIZE (opts)); + + /* Size the string. */ + len = 0; + sep_len = (add_nl_p) ? 3 : 1; + for (i = 0; i < num; i++) + { + len += sep_len; + for (j = 0; j < 2; j++) + if (opts[i][j]) + len += strlen (opts[i][j]); + } + + /* Build the string. */ + ret = ptr = (char *) xmalloc (len); + line_len = 0; + + for (i = 0; i < num; i++) + { + size_t len2[2]; + + for (j = 0; j < 2; j++) + len2[j] = (opts[i][j]) ? strlen (opts[i][j]) : 0; + + if (i != 0) + { + *ptr++ = ' '; + line_len++; + + if (add_nl_p && line_len + len2[0] + len2[1] > 70) + { + *ptr++ = '\\'; + *ptr++ = '\n'; + line_len = 0; + } + } + + for (j = 0; j < 2; j++) + if (opts[i][j]) + { + memcpy (ptr, opts[i][j], len2[j]); + ptr += len2[j]; + line_len += len2[j]; + } + } + + *ptr = '\0'; + gcc_assert (ret + len >= ptr); + + return ret; +} + +/* Return TRUE if software prefetching is beneficial for the + given CPU. */ + +static bool +software_prefetching_beneficial_p (void) +{ + switch (ix86_tune) + { + case PROCESSOR_GEODE: + case PROCESSOR_K6: + case PROCESSOR_ATHLON: + case PROCESSOR_K8: + case PROCESSOR_AMDFAM10: + case PROCESSOR_BTVER1: + return true; + + default: + return false; + } +} + +/* Return true, if profiling code should be emitted before + prologue. Otherwise it returns false. + Note: For x86 with "hotfix" it is sorried. */ +static bool +ix86_profile_before_prologue (void) +{ + return flag_fentry != 0; +} + +/* Function that is callable from the debugger to print the current + options. */ +void +ix86_debug_options (void) +{ + char *opts = ix86_target_string (ix86_isa_flags, target_flags, + ix86_arch_string, ix86_tune_string, + ix86_fpmath_string, true); + + if (opts) + { + fprintf (stderr, "%s\n\n", opts); + free (opts); + } + else + fputs ("<no options>\n\n", stderr); + + return; +} + +/* Override various settings based on options. If MAIN_ARGS_P, the + options are from the command line, otherwise they are from + attributes. */ + +static void +ix86_option_override_internal (bool main_args_p) +{ + int i; + unsigned int ix86_arch_mask, ix86_tune_mask; + const bool ix86_tune_specified = (ix86_tune_string != NULL); + const char *prefix; + const char *suffix; + const char *sw; + + /* Comes from final.c -- no real reason to change it. */ +#define MAX_CODE_ALIGN 16 + + enum pta_flags + { + PTA_SSE = 1 << 0, + PTA_SSE2 = 1 << 1, + PTA_SSE3 = 1 << 2, + PTA_MMX = 1 << 3, + PTA_PREFETCH_SSE = 1 << 4, + PTA_3DNOW = 1 << 5, + PTA_3DNOW_A = 1 << 6, + PTA_64BIT = 1 << 7, + PTA_SSSE3 = 1 << 8, + PTA_CX16 = 1 << 9, + PTA_POPCNT = 1 << 10, + PTA_ABM = 1 << 11, + PTA_SSE4A = 1 << 12, + PTA_NO_SAHF = 1 << 13, + PTA_SSE4_1 = 1 << 14, + PTA_SSE4_2 = 1 << 15, + PTA_AES = 1 << 16, + PTA_PCLMUL = 1 << 17, + PTA_AVX = 1 << 18, + PTA_FMA = 1 << 19, + PTA_MOVBE = 1 << 20, + PTA_FMA4 = 1 << 21, + PTA_XOP = 1 << 22, + PTA_LWP = 1 << 23, + PTA_FSGSBASE = 1 << 24, + PTA_RDRND = 1 << 25, + PTA_F16C = 1 << 26, + PTA_BMI = 1 << 27, + PTA_TBM = 1 << 28 + /* if this reaches 32, need to widen struct pta flags below */ + }; + + static struct pta + { + const char *const name; /* processor name or nickname. */ + const enum processor_type processor; + const enum attr_cpu schedule; + const unsigned /*enum pta_flags*/ flags; + } + const processor_alias_table[] = + { + {"i386", PROCESSOR_I386, CPU_NONE, 0}, + {"i486", PROCESSOR_I486, CPU_NONE, 0}, + {"i586", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, + {"pentium", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, + {"pentium-mmx", PROCESSOR_PENTIUM, CPU_PENTIUM, PTA_MMX}, + {"winchip-c6", PROCESSOR_I486, CPU_NONE, PTA_MMX}, + {"winchip2", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW}, + {"c3", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW}, + {"c3-2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE}, + {"i686", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, + {"pentiumpro", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, + {"pentium2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX}, + {"pentium3", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, + PTA_MMX | PTA_SSE}, + {"pentium3m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, + PTA_MMX | PTA_SSE}, + {"pentium-m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, + PTA_MMX | PTA_SSE | PTA_SSE2}, + {"pentium4", PROCESSOR_PENTIUM4, CPU_NONE, + PTA_MMX |PTA_SSE | PTA_SSE2}, + {"pentium4m", PROCESSOR_PENTIUM4, CPU_NONE, + PTA_MMX | PTA_SSE | PTA_SSE2}, + {"prescott", PROCESSOR_NOCONA, CPU_NONE, + PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3}, + {"nocona", PROCESSOR_NOCONA, CPU_NONE, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_CX16 | PTA_NO_SAHF}, + {"core2", PROCESSOR_CORE2_64, CPU_CORE2, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_CX16}, + {"corei7", PROCESSOR_COREI7_64, CPU_COREI7, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_CX16}, + {"corei7-avx", PROCESSOR_COREI7_64, CPU_COREI7, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AVX + | PTA_CX16 | PTA_POPCNT | PTA_AES | PTA_PCLMUL}, + {"core-avx-i", PROCESSOR_COREI7_64, CPU_COREI7, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AVX + | PTA_CX16 | PTA_POPCNT | PTA_AES | PTA_PCLMUL | PTA_FSGSBASE + | PTA_RDRND | PTA_F16C}, + {"atom", PROCESSOR_ATOM, CPU_ATOM, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_CX16 | PTA_MOVBE}, + {"geode", PROCESSOR_GEODE, CPU_GEODE, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A |PTA_PREFETCH_SSE}, + {"k6", PROCESSOR_K6, CPU_K6, PTA_MMX}, + {"k6-2", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW}, + {"k6-3", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW}, + {"athlon", PROCESSOR_ATHLON, CPU_ATHLON, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE}, + {"athlon-tbird", PROCESSOR_ATHLON, CPU_ATHLON, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE}, + {"athlon-4", PROCESSOR_ATHLON, CPU_ATHLON, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, + {"athlon-xp", PROCESSOR_ATHLON, CPU_ATHLON, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, + {"athlon-mp", PROCESSOR_ATHLON, CPU_ATHLON, + PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, + {"x86-64", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, + {"k8", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_NO_SAHF}, + {"k8-sse3", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, + {"opteron", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_NO_SAHF}, + {"opteron-sse3", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, + {"athlon64", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_NO_SAHF}, + {"athlon64-sse3", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, + {"athlon-fx", PROCESSOR_K8, CPU_K8, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_NO_SAHF}, + {"amdfam10", PROCESSOR_AMDFAM10, CPU_AMDFAM10, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM}, + {"barcelona", PROCESSOR_AMDFAM10, CPU_AMDFAM10, + PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE + | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM}, + {"bdver1", PROCESSOR_BDVER1, CPU_BDVER1, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1 + | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4 + | PTA_XOP | PTA_LWP}, + {"btver1", PROCESSOR_BTVER1, CPU_GENERIC64, + PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 + | PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16}, + {"generic32", PROCESSOR_GENERIC32, CPU_PENTIUMPRO, + 0 /* flags are only used for -march switch. */ }, + {"generic64", PROCESSOR_GENERIC64, CPU_GENERIC64, + PTA_64BIT /* flags are only used for -march switch. */ }, + }; + + int const pta_size = ARRAY_SIZE (processor_alias_table); + + /* Set up prefix/suffix so the error messages refer to either the command + line argument, or the attribute(target). */ + if (main_args_p) + { + prefix = "-m"; + suffix = ""; + sw = "switch"; + } + else + { + prefix = "option(\""; + suffix = "\")"; + sw = "attribute"; + } + +#ifdef SUBTARGET_OVERRIDE_OPTIONS + SUBTARGET_OVERRIDE_OPTIONS; +#endif + +#ifdef SUBSUBTARGET_OVERRIDE_OPTIONS + SUBSUBTARGET_OVERRIDE_OPTIONS; +#endif + + /* -fPIC is the default for x86_64. */ + if (TARGET_MACHO && TARGET_64BIT) + flag_pic = 2; + + /* Need to check -mtune=generic first. */ + if (ix86_tune_string) + { + if (!strcmp (ix86_tune_string, "generic") + || !strcmp (ix86_tune_string, "i686") + /* As special support for cross compilers we read -mtune=native + as -mtune=generic. With native compilers we won't see the + -mtune=native, as it was changed by the driver. */ + || !strcmp (ix86_tune_string, "native")) + { + if (TARGET_64BIT) + ix86_tune_string = "generic64"; + else + ix86_tune_string = "generic32"; + } + /* If this call is for setting the option attribute, allow the + generic32/generic64 that was previously set. */ + else if (!main_args_p + && (!strcmp (ix86_tune_string, "generic32") + || !strcmp (ix86_tune_string, "generic64"))) + ; + else if (!strncmp (ix86_tune_string, "generic", 7)) + error ("bad value (%s) for %stune=%s %s", + ix86_tune_string, prefix, suffix, sw); + else if (!strcmp (ix86_tune_string, "x86-64")) + warning (OPT_Wdeprecated, "%stune=x86-64%s is deprecated; use " + "%stune=k8%s or %stune=generic%s instead as appropriate", + prefix, suffix, prefix, suffix, prefix, suffix); + } + else + { + if (ix86_arch_string) + ix86_tune_string = ix86_arch_string; + if (!ix86_tune_string) + { + ix86_tune_string = cpu_names[TARGET_CPU_DEFAULT]; + ix86_tune_defaulted = 1; + } + + /* ix86_tune_string is set to ix86_arch_string or defaulted. We + need to use a sensible tune option. */ + if (!strcmp (ix86_tune_string, "generic") + || !strcmp (ix86_tune_string, "x86-64") + || !strcmp (ix86_tune_string, "i686")) + { + if (TARGET_64BIT) + ix86_tune_string = "generic64"; + else + ix86_tune_string = "generic32"; + } + } + + if (ix86_stringop_string) + { + if (!strcmp (ix86_stringop_string, "rep_byte")) + stringop_alg = rep_prefix_1_byte; + else if (!strcmp (ix86_stringop_string, "libcall")) + stringop_alg = libcall; + else if (!strcmp (ix86_stringop_string, "rep_4byte")) + stringop_alg = rep_prefix_4_byte; + else if (!strcmp (ix86_stringop_string, "rep_8byte") + && TARGET_64BIT) + /* rep; movq isn't available in 32-bit code. */ + stringop_alg = rep_prefix_8_byte; + else if (!strcmp (ix86_stringop_string, "byte_loop")) + stringop_alg = loop_1_byte; + else if (!strcmp (ix86_stringop_string, "loop")) + stringop_alg = loop; + else if (!strcmp (ix86_stringop_string, "unrolled_loop")) + stringop_alg = unrolled_loop; + else + error ("bad value (%s) for %sstringop-strategy=%s %s", + ix86_stringop_string, prefix, suffix, sw); + } + + if (!ix86_arch_string) + ix86_arch_string = TARGET_64BIT ? "x86-64" : SUBTARGET32_DEFAULT_CPU; + else + ix86_arch_specified = 1; + + /* Validate -mabi= value. */ + if (ix86_abi_string) + { + if (strcmp (ix86_abi_string, "sysv") == 0) + ix86_abi = SYSV_ABI; + else if (strcmp (ix86_abi_string, "ms") == 0) + ix86_abi = MS_ABI; + else + error ("unknown ABI (%s) for %sabi=%s %s", + ix86_abi_string, prefix, suffix, sw); + } + else + ix86_abi = DEFAULT_ABI; + + if (ix86_cmodel_string != 0) + { + if (!strcmp (ix86_cmodel_string, "small")) + ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; + else if (!strcmp (ix86_cmodel_string, "medium")) + ix86_cmodel = flag_pic ? CM_MEDIUM_PIC : CM_MEDIUM; + else if (!strcmp (ix86_cmodel_string, "large")) + ix86_cmodel = flag_pic ? CM_LARGE_PIC : CM_LARGE; + else if (flag_pic) + error ("code model %s does not support PIC mode", ix86_cmodel_string); + else if (!strcmp (ix86_cmodel_string, "32")) + ix86_cmodel = CM_32; + else if (!strcmp (ix86_cmodel_string, "kernel") && !flag_pic) + ix86_cmodel = CM_KERNEL; + else + error ("bad value (%s) for %scmodel=%s %s", + ix86_cmodel_string, prefix, suffix, sw); + } + else + { + /* For TARGET_64BIT and MS_ABI, force pic on, in order to enable the + use of rip-relative addressing. This eliminates fixups that + would otherwise be needed if this object is to be placed in a + DLL, and is essentially just as efficient as direct addressing. */ + if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) + ix86_cmodel = CM_SMALL_PIC, flag_pic = 1; + else if (TARGET_64BIT) + ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; + else + ix86_cmodel = CM_32; + } + if (ix86_asm_string != 0) + { + if (! TARGET_MACHO + && !strcmp (ix86_asm_string, "intel")) + ix86_asm_dialect = ASM_INTEL; + else if (!strcmp (ix86_asm_string, "att")) + ix86_asm_dialect = ASM_ATT; + else + error ("bad value (%s) for %sasm=%s %s", + ix86_asm_string, prefix, suffix, sw); + } + if ((TARGET_64BIT == 0) != (ix86_cmodel == CM_32)) + error ("code model %qs not supported in the %s bit mode", + ix86_cmodel_string, TARGET_64BIT ? "64" : "32"); + if ((TARGET_64BIT != 0) != ((ix86_isa_flags & OPTION_MASK_ISA_64BIT) != 0)) + sorry ("%i-bit mode not compiled in", + (ix86_isa_flags & OPTION_MASK_ISA_64BIT) ? 64 : 32); + + for (i = 0; i < pta_size; i++) + if (! strcmp (ix86_arch_string, processor_alias_table[i].name)) + { + ix86_schedule = processor_alias_table[i].schedule; + ix86_arch = processor_alias_table[i].processor; + /* Default cpu tuning to the architecture. */ + ix86_tune = ix86_arch; + + if (TARGET_64BIT && !(processor_alias_table[i].flags & PTA_64BIT)) + error ("CPU you selected does not support x86-64 " + "instruction set"); + + if (processor_alias_table[i].flags & PTA_MMX + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_MMX)) + ix86_isa_flags |= OPTION_MASK_ISA_MMX; + if (processor_alias_table[i].flags & PTA_3DNOW + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW)) + ix86_isa_flags |= OPTION_MASK_ISA_3DNOW; + if (processor_alias_table[i].flags & PTA_3DNOW_A + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW_A)) + ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_A; + if (processor_alias_table[i].flags & PTA_SSE + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE; + if (processor_alias_table[i].flags & PTA_SSE2 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE2)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE2; + if (processor_alias_table[i].flags & PTA_SSE3 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE3)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE3; + if (processor_alias_table[i].flags & PTA_SSSE3 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSSE3)) + ix86_isa_flags |= OPTION_MASK_ISA_SSSE3; + if (processor_alias_table[i].flags & PTA_SSE4_1 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_1)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1; + if (processor_alias_table[i].flags & PTA_SSE4_2 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_2)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2; + if (processor_alias_table[i].flags & PTA_AVX + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX)) + ix86_isa_flags |= OPTION_MASK_ISA_AVX; + if (processor_alias_table[i].flags & PTA_FMA + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA)) + ix86_isa_flags |= OPTION_MASK_ISA_FMA; + if (processor_alias_table[i].flags & PTA_SSE4A + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4A)) + ix86_isa_flags |= OPTION_MASK_ISA_SSE4A; + if (processor_alias_table[i].flags & PTA_FMA4 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA4)) + ix86_isa_flags |= OPTION_MASK_ISA_FMA4; + if (processor_alias_table[i].flags & PTA_XOP + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_XOP)) + ix86_isa_flags |= OPTION_MASK_ISA_XOP; + if (processor_alias_table[i].flags & PTA_LWP + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_LWP)) + ix86_isa_flags |= OPTION_MASK_ISA_LWP; + if (processor_alias_table[i].flags & PTA_ABM + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_ABM)) + ix86_isa_flags |= OPTION_MASK_ISA_ABM; + if (processor_alias_table[i].flags & PTA_BMI + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_BMI)) + ix86_isa_flags |= OPTION_MASK_ISA_BMI; + if (processor_alias_table[i].flags & PTA_TBM + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_TBM)) + ix86_isa_flags |= OPTION_MASK_ISA_TBM; + if (processor_alias_table[i].flags & PTA_CX16 + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_CX16)) + ix86_isa_flags |= OPTION_MASK_ISA_CX16; + if (processor_alias_table[i].flags & (PTA_POPCNT | PTA_ABM) + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_POPCNT)) + ix86_isa_flags |= OPTION_MASK_ISA_POPCNT; + if (!(TARGET_64BIT && (processor_alias_table[i].flags & PTA_NO_SAHF)) + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SAHF)) + ix86_isa_flags |= OPTION_MASK_ISA_SAHF; + if (processor_alias_table[i].flags & PTA_MOVBE + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_MOVBE)) + ix86_isa_flags |= OPTION_MASK_ISA_MOVBE; + if (processor_alias_table[i].flags & PTA_AES + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_AES)) + ix86_isa_flags |= OPTION_MASK_ISA_AES; + if (processor_alias_table[i].flags & PTA_PCLMUL + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_PCLMUL)) + ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL; + if (processor_alias_table[i].flags & PTA_FSGSBASE + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_FSGSBASE)) + ix86_isa_flags |= OPTION_MASK_ISA_FSGSBASE; + if (processor_alias_table[i].flags & PTA_RDRND + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_RDRND)) + ix86_isa_flags |= OPTION_MASK_ISA_RDRND; + if (processor_alias_table[i].flags & PTA_F16C + && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_F16C)) + ix86_isa_flags |= OPTION_MASK_ISA_F16C; + if (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE)) + x86_prefetch_sse = true; + + break; + } + + if (!strcmp (ix86_arch_string, "generic")) + error ("generic CPU can be used only for %stune=%s %s", + prefix, suffix, sw); + else if (!strncmp (ix86_arch_string, "generic", 7) || i == pta_size) + error ("bad value (%s) for %sarch=%s %s", + ix86_arch_string, prefix, suffix, sw); + + ix86_arch_mask = 1u << ix86_arch; + for (i = 0; i < X86_ARCH_LAST; ++i) + ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask); + + for (i = 0; i < pta_size; i++) + if (! strcmp (ix86_tune_string, processor_alias_table[i].name)) + { + ix86_schedule = processor_alias_table[i].schedule; + ix86_tune = processor_alias_table[i].processor; + if (TARGET_64BIT) + { + if (!(processor_alias_table[i].flags & PTA_64BIT)) + { + if (ix86_tune_defaulted) + { + ix86_tune_string = "x86-64"; + for (i = 0; i < pta_size; i++) + if (! strcmp (ix86_tune_string, + processor_alias_table[i].name)) + break; + ix86_schedule = processor_alias_table[i].schedule; + ix86_tune = processor_alias_table[i].processor; + } + else + error ("CPU you selected does not support x86-64 " + "instruction set"); + } + } + else + { + /* Adjust tuning when compiling for 32-bit ABI. */ + switch (ix86_tune) + { + case PROCESSOR_GENERIC64: + ix86_tune = PROCESSOR_GENERIC32; + ix86_schedule = CPU_PENTIUMPRO; + break; + + case PROCESSOR_CORE2_64: + ix86_tune = PROCESSOR_CORE2_32; + break; + + case PROCESSOR_COREI7_64: + ix86_tune = PROCESSOR_COREI7_32; + break; + + default: + break; + } + } + /* Intel CPUs have always interpreted SSE prefetch instructions as + NOPs; so, we can enable SSE prefetch instructions even when + -mtune (rather than -march) points us to a processor that has them. + However, the VIA C3 gives a SIGILL, so we only do that for i686 and + higher processors. */ + if (TARGET_CMOV + && (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE))) + x86_prefetch_sse = true; + break; + } + + if (ix86_tune_specified && i == pta_size) + error ("bad value (%s) for %stune=%s %s", + ix86_tune_string, prefix, suffix, sw); + + ix86_tune_mask = 1u << ix86_tune; + for (i = 0; i < X86_TUNE_LAST; ++i) + ix86_tune_features[i] = !!(initial_ix86_tune_features[i] & ix86_tune_mask); + +#ifndef USE_IX86_FRAME_POINTER +#define USE_IX86_FRAME_POINTER 0 +#endif + +#ifndef USE_X86_64_FRAME_POINTER +#define USE_X86_64_FRAME_POINTER 0 +#endif + + /* Set the default values for switches whose default depends on TARGET_64BIT + in case they weren't overwritten by command line options. */ + if (TARGET_64BIT) + { + if (optimize > 1 && !global_options_set.x_flag_zee) + flag_zee = 1; + if (optimize >= 1 && !global_options_set.x_flag_omit_frame_pointer) + flag_omit_frame_pointer = !USE_X86_64_FRAME_POINTER; + if (flag_asynchronous_unwind_tables == 2) + flag_unwind_tables = flag_asynchronous_unwind_tables = 1; + if (flag_pcc_struct_return == 2) + flag_pcc_struct_return = 0; + } + else + { + if (optimize >= 1 && !global_options_set.x_flag_omit_frame_pointer) + flag_omit_frame_pointer = !(USE_IX86_FRAME_POINTER || optimize_size); + if (flag_asynchronous_unwind_tables == 2) + flag_asynchronous_unwind_tables = !USE_IX86_FRAME_POINTER; + if (flag_pcc_struct_return == 2) + flag_pcc_struct_return = DEFAULT_PCC_STRUCT_RETURN; + } + + if (optimize_size) + ix86_cost = &ix86_size_cost; + else + ix86_cost = processor_target_table[ix86_tune].cost; + + /* Arrange to set up i386_stack_locals for all functions. */ + init_machine_status = ix86_init_machine_status; + + /* Validate -mregparm= value. */ + if (ix86_regparm_string) + { + if (TARGET_64BIT) + warning (0, "%sregparm%s is ignored in 64-bit mode", prefix, suffix); + i = atoi (ix86_regparm_string); + if (i < 0 || i > REGPARM_MAX) + error ("%sregparm=%d%s is not between 0 and %d", + prefix, i, suffix, REGPARM_MAX); + else + ix86_regparm = i; + } + if (TARGET_64BIT) + ix86_regparm = REGPARM_MAX; + + /* If the user has provided any of the -malign-* options, + warn and use that value only if -falign-* is not set. + Remove this code in GCC 3.2 or later. */ + if (ix86_align_loops_string) + { + warning (0, "%salign-loops%s is obsolete, use -falign-loops%s", + prefix, suffix, suffix); + if (align_loops == 0) + { + i = atoi (ix86_align_loops_string); + if (i < 0 || i > MAX_CODE_ALIGN) + error ("%salign-loops=%d%s is not between 0 and %d", + prefix, i, suffix, MAX_CODE_ALIGN); + else + align_loops = 1 << i; + } + } + + if (ix86_align_jumps_string) + { + warning (0, "%salign-jumps%s is obsolete, use -falign-jumps%s", + prefix, suffix, suffix); + if (align_jumps == 0) + { + i = atoi (ix86_align_jumps_string); + if (i < 0 || i > MAX_CODE_ALIGN) + error ("%salign-loops=%d%s is not between 0 and %d", + prefix, i, suffix, MAX_CODE_ALIGN); + else + align_jumps = 1 << i; + } + } + + if (ix86_align_funcs_string) + { + warning (0, "%salign-functions%s is obsolete, use -falign-functions%s", + prefix, suffix, suffix); + if (align_functions == 0) + { + i = atoi (ix86_align_funcs_string); + if (i < 0 || i > MAX_CODE_ALIGN) + error ("%salign-loops=%d%s is not between 0 and %d", + prefix, i, suffix, MAX_CODE_ALIGN); + else + align_functions = 1 << i; + } + } + + /* Default align_* from the processor table. */ + if (align_loops == 0) + { + align_loops = processor_target_table[ix86_tune].align_loop; + align_loops_max_skip = processor_target_table[ix86_tune].align_loop_max_skip; + } + if (align_jumps == 0) + { + align_jumps = processor_target_table[ix86_tune].align_jump; + align_jumps_max_skip = processor_target_table[ix86_tune].align_jump_max_skip; + } + if (align_functions == 0) + { + align_functions = processor_target_table[ix86_tune].align_func; + } + + /* Validate -mbranch-cost= value, or provide default. */ + ix86_branch_cost = ix86_cost->branch_cost; + if (ix86_branch_cost_string) + { + i = atoi (ix86_branch_cost_string); + if (i < 0 || i > 5) + error ("%sbranch-cost=%d%s is not between 0 and 5", prefix, i, suffix); + else + ix86_branch_cost = i; + } + if (ix86_section_threshold_string) + { + i = atoi (ix86_section_threshold_string); + if (i < 0) + error ("%slarge-data-threshold=%d%s is negative", prefix, i, suffix); + else + ix86_section_threshold = i; + } + + if (ix86_tls_dialect_string) + { + if (strcmp (ix86_tls_dialect_string, "gnu") == 0) + ix86_tls_dialect = TLS_DIALECT_GNU; + else if (strcmp (ix86_tls_dialect_string, "gnu2") == 0) + ix86_tls_dialect = TLS_DIALECT_GNU2; + else + error ("bad value (%s) for %stls-dialect=%s %s", + ix86_tls_dialect_string, prefix, suffix, sw); + } + + if (ix87_precision_string) + { + i = atoi (ix87_precision_string); + if (i != 32 && i != 64 && i != 80) + error ("pc%d is not valid precision setting (32, 64 or 80)", i); + } + + if (TARGET_64BIT) + { + target_flags |= TARGET_SUBTARGET64_DEFAULT & ~target_flags_explicit; + + /* Enable by default the SSE and MMX builtins. Do allow the user to + explicitly disable any of these. In particular, disabling SSE and + MMX for kernel code is extremely useful. */ + if (!ix86_arch_specified) + ix86_isa_flags + |= ((OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_MMX + | TARGET_SUBTARGET64_ISA_DEFAULT) & ~ix86_isa_flags_explicit); + + if (TARGET_RTD) + warning (0, "%srtd%s is ignored in 64bit mode", prefix, suffix); + } + else + { + target_flags |= TARGET_SUBTARGET32_DEFAULT & ~target_flags_explicit; + + if (!ix86_arch_specified) + ix86_isa_flags + |= TARGET_SUBTARGET32_ISA_DEFAULT & ~ix86_isa_flags_explicit; + + /* i386 ABI does not specify red zone. It still makes sense to use it + when programmer takes care to stack from being destroyed. */ + if (!(target_flags_explicit & MASK_NO_RED_ZONE)) + target_flags |= MASK_NO_RED_ZONE; + } + + /* Keep nonleaf frame pointers. */ + if (flag_omit_frame_pointer) + target_flags &= ~MASK_OMIT_LEAF_FRAME_POINTER; + else if (TARGET_OMIT_LEAF_FRAME_POINTER) + flag_omit_frame_pointer = 1; + + /* If we're doing fast math, we don't care about comparison order + wrt NaNs. This lets us use a shorter comparison sequence. */ + if (flag_finite_math_only) + target_flags &= ~MASK_IEEE_FP; + + /* If the architecture always has an FPU, turn off NO_FANCY_MATH_387, + since the insns won't need emulation. */ + if (x86_arch_always_fancy_math_387 & ix86_arch_mask) + target_flags &= ~MASK_NO_FANCY_MATH_387; + + /* Likewise, if the target doesn't have a 387, or we've specified + software floating point, don't use 387 inline intrinsics. */ + if (!TARGET_80387) + target_flags |= MASK_NO_FANCY_MATH_387; + + /* Turn on MMX builtins for -msse. */ + if (TARGET_SSE) + { + ix86_isa_flags |= OPTION_MASK_ISA_MMX & ~ix86_isa_flags_explicit; + x86_prefetch_sse = true; + } + + /* Turn on popcnt instruction for -msse4.2 or -mabm. */ + if (TARGET_SSE4_2 || TARGET_ABM) + ix86_isa_flags |= OPTION_MASK_ISA_POPCNT & ~ix86_isa_flags_explicit; + + /* Validate -mpreferred-stack-boundary= value or default it to + PREFERRED_STACK_BOUNDARY_DEFAULT. */ + ix86_preferred_stack_boundary = PREFERRED_STACK_BOUNDARY_DEFAULT; + if (ix86_preferred_stack_boundary_string) + { + int min = (TARGET_64BIT ? 4 : 2); + int max = (TARGET_SEH ? 4 : 12); + + i = atoi (ix86_preferred_stack_boundary_string); + if (i < min || i > max) + { + if (min == max) + error ("%spreferred-stack-boundary%s is not supported " + "for this target", prefix, suffix); + else + error ("%spreferred-stack-boundary=%d%s is not between %d and %d", + prefix, i, suffix, min, max); + } + else + ix86_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT; + } + + /* Set the default value for -mstackrealign. */ + if (ix86_force_align_arg_pointer == -1) + ix86_force_align_arg_pointer = STACK_REALIGN_DEFAULT; + + ix86_default_incoming_stack_boundary = PREFERRED_STACK_BOUNDARY; + + /* Validate -mincoming-stack-boundary= value or default it to + MIN_STACK_BOUNDARY/PREFERRED_STACK_BOUNDARY. */ + ix86_incoming_stack_boundary = ix86_default_incoming_stack_boundary; + if (ix86_incoming_stack_boundary_string) + { + i = atoi (ix86_incoming_stack_boundary_string); + if (i < (TARGET_64BIT ? 4 : 2) || i > 12) + error ("-mincoming-stack-boundary=%d is not between %d and 12", + i, TARGET_64BIT ? 4 : 2); + else + { + ix86_user_incoming_stack_boundary = (1 << i) * BITS_PER_UNIT; + ix86_incoming_stack_boundary + = ix86_user_incoming_stack_boundary; + } + } + + /* Accept -msseregparm only if at least SSE support is enabled. */ + if (TARGET_SSEREGPARM + && ! TARGET_SSE) + error ("%ssseregparm%s used without SSE enabled", prefix, suffix); + + ix86_fpmath = TARGET_FPMATH_DEFAULT; + if (ix86_fpmath_string != 0) + { + if (! strcmp (ix86_fpmath_string, "387")) + ix86_fpmath = FPMATH_387; + else if (! strcmp (ix86_fpmath_string, "sse")) + { + if (!TARGET_SSE) + { + warning (0, "SSE instruction set disabled, using 387 arithmetics"); + ix86_fpmath = FPMATH_387; + } + else + ix86_fpmath = FPMATH_SSE; + } + else if (! strcmp (ix86_fpmath_string, "387,sse") + || ! strcmp (ix86_fpmath_string, "387+sse") + || ! strcmp (ix86_fpmath_string, "sse,387") + || ! strcmp (ix86_fpmath_string, "sse+387") + || ! strcmp (ix86_fpmath_string, "both")) + { + if (!TARGET_SSE) + { + warning (0, "SSE instruction set disabled, using 387 arithmetics"); + ix86_fpmath = FPMATH_387; + } + else if (!TARGET_80387) + { + warning (0, "387 instruction set disabled, using SSE arithmetics"); + ix86_fpmath = FPMATH_SSE; + } + else + ix86_fpmath = (enum fpmath_unit) (FPMATH_SSE | FPMATH_387); + } + else + error ("bad value (%s) for %sfpmath=%s %s", + ix86_fpmath_string, prefix, suffix, sw); + } + + /* If the i387 is disabled, then do not return values in it. */ + if (!TARGET_80387) + target_flags &= ~MASK_FLOAT_RETURNS; + + /* Use external vectorized library in vectorizing intrinsics. */ + if (ix86_veclibabi_string) + { + if (strcmp (ix86_veclibabi_string, "svml") == 0) + ix86_veclib_handler = ix86_veclibabi_svml; + else if (strcmp (ix86_veclibabi_string, "acml") == 0) + ix86_veclib_handler = ix86_veclibabi_acml; + else + error ("unknown vectorization library ABI type (%s) for " + "%sveclibabi=%s %s", ix86_veclibabi_string, + prefix, suffix, sw); + } + + if ((!USE_IX86_FRAME_POINTER + || (x86_accumulate_outgoing_args & ix86_tune_mask)) + && !(target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) + && !optimize_size) + target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; + + /* ??? Unwind info is not correct around the CFG unless either a frame + pointer is present or M_A_O_A is set. Fixing this requires rewriting + unwind info generation to be aware of the CFG and propagating states + around edges. */ + if ((flag_unwind_tables || flag_asynchronous_unwind_tables + || flag_exceptions || flag_non_call_exceptions) + && flag_omit_frame_pointer + && !(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) + { + if (target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) + warning (0, "unwind tables currently require either a frame pointer " + "or %saccumulate-outgoing-args%s for correctness", + prefix, suffix); + target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; + } + + /* If stack probes are required, the space used for large function + arguments on the stack must also be probed, so enable + -maccumulate-outgoing-args so this happens in the prologue. */ + if (TARGET_STACK_PROBE + && !(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) + { + if (target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) + warning (0, "stack probing requires %saccumulate-outgoing-args%s " + "for correctness", prefix, suffix); + target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; + } + + /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */ + { + char *p; + ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0); + p = strchr (internal_label_prefix, 'X'); + internal_label_prefix_len = p - internal_label_prefix; + *p = '\0'; + } + + /* When scheduling description is not available, disable scheduler pass + so it won't slow down the compilation and make x87 code slower. */ + if (!TARGET_SCHEDULE) + flag_schedule_insns_after_reload = flag_schedule_insns = 0; + + maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES, + ix86_cost->simultaneous_prefetches, + global_options.x_param_values, + global_options_set.x_param_values); + maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, ix86_cost->prefetch_block, + global_options.x_param_values, + global_options_set.x_param_values); + maybe_set_param_value (PARAM_L1_CACHE_SIZE, ix86_cost->l1_cache_size, + global_options.x_param_values, + global_options_set.x_param_values); + maybe_set_param_value (PARAM_L2_CACHE_SIZE, ix86_cost->l2_cache_size, + global_options.x_param_values, + global_options_set.x_param_values); + + /* Enable sw prefetching at -O3 for CPUS that prefetching is helpful. */ + if (flag_prefetch_loop_arrays < 0 + && HAVE_prefetch + && optimize >= 3 + && software_prefetching_beneficial_p ()) + flag_prefetch_loop_arrays = 1; + + /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0) + can be optimized to ap = __builtin_next_arg (0). */ + if (!TARGET_64BIT && !flag_split_stack) + targetm.expand_builtin_va_start = NULL; + + if (TARGET_64BIT) + { + ix86_gen_leave = gen_leave_rex64; + ix86_gen_add3 = gen_adddi3; + ix86_gen_sub3 = gen_subdi3; + ix86_gen_sub3_carry = gen_subdi3_carry; + ix86_gen_one_cmpl2 = gen_one_cmpldi2; + ix86_gen_monitor = gen_sse3_monitor64; + ix86_gen_andsp = gen_anddi3; + ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_di; + ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probedi; + ix86_gen_probe_stack_range = gen_probe_stack_rangedi; + } + else + { + ix86_gen_leave = gen_leave; + ix86_gen_add3 = gen_addsi3; + ix86_gen_sub3 = gen_subsi3; + ix86_gen_sub3_carry = gen_subsi3_carry; + ix86_gen_one_cmpl2 = gen_one_cmplsi2; + ix86_gen_monitor = gen_sse3_monitor; + ix86_gen_andsp = gen_andsi3; + ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_si; + ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probesi; + ix86_gen_probe_stack_range = gen_probe_stack_rangesi; + } + +#ifdef USE_IX86_CLD + /* Use -mcld by default for 32-bit code if configured with --enable-cld. */ + if (!TARGET_64BIT) + target_flags |= MASK_CLD & ~target_flags_explicit; +#endif + + if (!TARGET_64BIT && flag_pic) + { + if (flag_fentry > 0) + sorry ("-mfentry isn%'t supported for 32-bit in combination " + "with -fpic"); + flag_fentry = 0; + } + else if (TARGET_SEH) + { + if (flag_fentry == 0) + sorry ("-mno-fentry isn%'t compatible with SEH"); + flag_fentry = 1; + } + else if (flag_fentry < 0) + { +#if defined(PROFILE_BEFORE_PROLOGUE) + flag_fentry = 1; +#else + flag_fentry = 0; +#endif + } + + /* Save the initial options in case the user does function specific options */ + if (main_args_p) + target_option_default_node = target_option_current_node + = build_target_option_node (); + + if (TARGET_AVX) + { + /* When not optimize for size, enable vzeroupper optimization for + TARGET_AVX with -fexpensive-optimizations and split 32-byte + AVX unaligned load/store. */ + if (!optimize_size) + { + if (flag_expensive_optimizations + && !(target_flags_explicit & MASK_VZEROUPPER)) + target_flags |= MASK_VZEROUPPER; + if ((x86_avx256_split_unaligned_load & ix86_tune_mask) + && !(target_flags_explicit & MASK_AVX256_SPLIT_UNALIGNED_LOAD)) + target_flags |= MASK_AVX256_SPLIT_UNALIGNED_LOAD; + if ((x86_avx256_split_unaligned_store & ix86_tune_mask) + && !(target_flags_explicit & MASK_AVX256_SPLIT_UNALIGNED_STORE)) + target_flags |= MASK_AVX256_SPLIT_UNALIGNED_STORE; + /* Enable 128-bit AVX instruction generation for the auto-vectorizer. */ + if (TARGET_AVX128_OPTIMAL && !(target_flags_explicit & MASK_PREFER_AVX128)) + target_flags |= MASK_PREFER_AVX128; + } + } + else + { + /* Disable vzeroupper pass if TARGET_AVX is disabled. */ + target_flags &= ~MASK_VZEROUPPER; + } +} + +/* Return TRUE if VAL is passed in register with 256bit AVX modes. */ + +static bool +function_pass_avx256_p (const_rtx val) +{ + if (!val) + return false; + + if (REG_P (val) && VALID_AVX256_REG_MODE (GET_MODE (val))) + return true; + + if (GET_CODE (val) == PARALLEL) + { + int i; + rtx r; + + for (i = XVECLEN (val, 0) - 1; i >= 0; i--) + { + r = XVECEXP (val, 0, i); + if (GET_CODE (r) == EXPR_LIST + && XEXP (r, 0) + && REG_P (XEXP (r, 0)) + && (GET_MODE (XEXP (r, 0)) == OImode + || VALID_AVX256_REG_MODE (GET_MODE (XEXP (r, 0))))) + return true; + } + } + + return false; +} + +/* Implement the TARGET_OPTION_OVERRIDE hook. */ + +static void +ix86_option_override (void) +{ + ix86_option_override_internal (true); +} + +/* Update register usage after having seen the compiler flags. */ + +static void +ix86_conditional_register_usage (void) +{ + int i; + unsigned int j; + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (fixed_regs[i] > 1) + fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); + if (call_used_regs[i] > 1) + call_used_regs[i] = (call_used_regs[i] == (TARGET_64BIT ? 3 : 2)); + } + + /* The PIC register, if it exists, is fixed. */ + j = PIC_OFFSET_TABLE_REGNUM; + if (j != INVALID_REGNUM) + fixed_regs[j] = call_used_regs[j] = 1; + + /* The MS_ABI changes the set of call-used registers. */ + if (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) + { + call_used_regs[SI_REG] = 0; + call_used_regs[DI_REG] = 0; + call_used_regs[XMM6_REG] = 0; + call_used_regs[XMM7_REG] = 0; + for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) + call_used_regs[i] = 0; + } + + /* The default setting of CLOBBERED_REGS is for 32-bit; add in the + other call-clobbered regs for 64-bit. */ + if (TARGET_64BIT) + { + CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i) + && call_used_regs[i]) + SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i); + } + + /* If MMX is disabled, squash the registers. */ + if (! TARGET_MMX) + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) + fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; + + /* If SSE is disabled, squash the registers. */ + if (! TARGET_SSE) + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) + fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; + + /* If the FPU is disabled, squash the registers. */ + if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) + fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; + + /* If 32-bit, squash the 64-bit registers. */ + if (! TARGET_64BIT) + { + for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) + reg_names[i] = ""; + for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) + reg_names[i] = ""; + } +} + + +/* Save the current options */ + +static void +ix86_function_specific_save (struct cl_target_option *ptr) +{ + ptr->arch = ix86_arch; + ptr->schedule = ix86_schedule; + ptr->tune = ix86_tune; + ptr->fpmath = ix86_fpmath; + ptr->branch_cost = ix86_branch_cost; + ptr->tune_defaulted = ix86_tune_defaulted; + ptr->arch_specified = ix86_arch_specified; + ptr->ix86_isa_flags_explicit = ix86_isa_flags_explicit; + ptr->ix86_target_flags_explicit = target_flags_explicit; + + /* The fields are char but the variables are not; make sure the + values fit in the fields. */ + gcc_assert (ptr->arch == ix86_arch); + gcc_assert (ptr->schedule == ix86_schedule); + gcc_assert (ptr->tune == ix86_tune); + gcc_assert (ptr->fpmath == ix86_fpmath); + gcc_assert (ptr->branch_cost == ix86_branch_cost); +} + +/* Restore the current options */ + +static void +ix86_function_specific_restore (struct cl_target_option *ptr) +{ + enum processor_type old_tune = ix86_tune; + enum processor_type old_arch = ix86_arch; + unsigned int ix86_arch_mask, ix86_tune_mask; + int i; + + ix86_arch = (enum processor_type) ptr->arch; + ix86_schedule = (enum attr_cpu) ptr->schedule; + ix86_tune = (enum processor_type) ptr->tune; + ix86_fpmath = (enum fpmath_unit) ptr->fpmath; + ix86_branch_cost = ptr->branch_cost; + ix86_tune_defaulted = ptr->tune_defaulted; + ix86_arch_specified = ptr->arch_specified; + ix86_isa_flags_explicit = ptr->ix86_isa_flags_explicit; + target_flags_explicit = ptr->ix86_target_flags_explicit; + + /* Recreate the arch feature tests if the arch changed */ + if (old_arch != ix86_arch) + { + ix86_arch_mask = 1u << ix86_arch; + for (i = 0; i < X86_ARCH_LAST; ++i) + ix86_arch_features[i] + = !!(initial_ix86_arch_features[i] & ix86_arch_mask); + } + + /* Recreate the tune optimization tests */ + if (old_tune != ix86_tune) + { + ix86_tune_mask = 1u << ix86_tune; + for (i = 0; i < X86_TUNE_LAST; ++i) + ix86_tune_features[i] + = !!(initial_ix86_tune_features[i] & ix86_tune_mask); + } +} + +/* Print the current options */ + +static void +ix86_function_specific_print (FILE *file, int indent, + struct cl_target_option *ptr) +{ + char *target_string + = ix86_target_string (ptr->x_ix86_isa_flags, ptr->x_target_flags, + NULL, NULL, NULL, false); + + fprintf (file, "%*sarch = %d (%s)\n", + indent, "", + ptr->arch, + ((ptr->arch < TARGET_CPU_DEFAULT_max) + ? cpu_names[ptr->arch] + : "<unknown>")); + + fprintf (file, "%*stune = %d (%s)\n", + indent, "", + ptr->tune, + ((ptr->tune < TARGET_CPU_DEFAULT_max) + ? cpu_names[ptr->tune] + : "<unknown>")); + + fprintf (file, "%*sfpmath = %d%s%s\n", indent, "", ptr->fpmath, + (ptr->fpmath & FPMATH_387) ? ", 387" : "", + (ptr->fpmath & FPMATH_SSE) ? ", sse" : ""); + fprintf (file, "%*sbranch_cost = %d\n", indent, "", ptr->branch_cost); + + if (target_string) + { + fprintf (file, "%*s%s\n", indent, "", target_string); + free (target_string); + } +} + + +/* Inner function to process the attribute((target(...))), take an argument and + set the current options from the argument. If we have a list, recursively go + over the list. */ + +static bool +ix86_valid_target_attribute_inner_p (tree args, char *p_strings[]) +{ + char *next_optstr; + bool ret = true; + +#define IX86_ATTR_ISA(S,O) { S, sizeof (S)-1, ix86_opt_isa, O, 0 } +#define IX86_ATTR_STR(S,O) { S, sizeof (S)-1, ix86_opt_str, O, 0 } +#define IX86_ATTR_YES(S,O,M) { S, sizeof (S)-1, ix86_opt_yes, O, M } +#define IX86_ATTR_NO(S,O,M) { S, sizeof (S)-1, ix86_opt_no, O, M } + + enum ix86_opt_type + { + ix86_opt_unknown, + ix86_opt_yes, + ix86_opt_no, + ix86_opt_str, + ix86_opt_isa + }; + + static const struct + { + const char *string; + size_t len; + enum ix86_opt_type type; + int opt; + int mask; + } attrs[] = { + /* isa options */ + IX86_ATTR_ISA ("3dnow", OPT_m3dnow), + IX86_ATTR_ISA ("abm", OPT_mabm), + IX86_ATTR_ISA ("bmi", OPT_mbmi), + IX86_ATTR_ISA ("tbm", OPT_mtbm), + IX86_ATTR_ISA ("aes", OPT_maes), + IX86_ATTR_ISA ("avx", OPT_mavx), + IX86_ATTR_ISA ("mmx", OPT_mmmx), + IX86_ATTR_ISA ("pclmul", OPT_mpclmul), + IX86_ATTR_ISA ("popcnt", OPT_mpopcnt), + IX86_ATTR_ISA ("sse", OPT_msse), + IX86_ATTR_ISA ("sse2", OPT_msse2), + IX86_ATTR_ISA ("sse3", OPT_msse3), + IX86_ATTR_ISA ("sse4", OPT_msse4), + IX86_ATTR_ISA ("sse4.1", OPT_msse4_1), + IX86_ATTR_ISA ("sse4.2", OPT_msse4_2), + IX86_ATTR_ISA ("sse4a", OPT_msse4a), + IX86_ATTR_ISA ("ssse3", OPT_mssse3), + IX86_ATTR_ISA ("fma4", OPT_mfma4), + IX86_ATTR_ISA ("xop", OPT_mxop), + IX86_ATTR_ISA ("lwp", OPT_mlwp), + IX86_ATTR_ISA ("fsgsbase", OPT_mfsgsbase), + IX86_ATTR_ISA ("rdrnd", OPT_mrdrnd), + IX86_ATTR_ISA ("f16c", OPT_mf16c), + + /* string options */ + IX86_ATTR_STR ("arch=", IX86_FUNCTION_SPECIFIC_ARCH), + IX86_ATTR_STR ("fpmath=", IX86_FUNCTION_SPECIFIC_FPMATH), + IX86_ATTR_STR ("tune=", IX86_FUNCTION_SPECIFIC_TUNE), + + /* flag options */ + IX86_ATTR_YES ("cld", + OPT_mcld, + MASK_CLD), + + IX86_ATTR_NO ("fancy-math-387", + OPT_mfancy_math_387, + MASK_NO_FANCY_MATH_387), + + IX86_ATTR_YES ("ieee-fp", + OPT_mieee_fp, + MASK_IEEE_FP), + + IX86_ATTR_YES ("inline-all-stringops", + OPT_minline_all_stringops, + MASK_INLINE_ALL_STRINGOPS), + + IX86_ATTR_YES ("inline-stringops-dynamically", + OPT_minline_stringops_dynamically, + MASK_INLINE_STRINGOPS_DYNAMICALLY), + + IX86_ATTR_NO ("align-stringops", + OPT_mno_align_stringops, + MASK_NO_ALIGN_STRINGOPS), + + IX86_ATTR_YES ("recip", + OPT_mrecip, + MASK_RECIP), + + }; + + /* If this is a list, recurse to get the options. */ + if (TREE_CODE (args) == TREE_LIST) + { + bool ret = true; + + for (; args; args = TREE_CHAIN (args)) + if (TREE_VALUE (args) + && !ix86_valid_target_attribute_inner_p (TREE_VALUE (args), p_strings)) + ret = false; + + return ret; + } + + else if (TREE_CODE (args) != STRING_CST) + gcc_unreachable (); + + /* Handle multiple arguments separated by commas. */ + next_optstr = ASTRDUP (TREE_STRING_POINTER (args)); + + while (next_optstr && *next_optstr != '\0') + { + char *p = next_optstr; + char *orig_p = p; + char *comma = strchr (next_optstr, ','); + const char *opt_string; + size_t len, opt_len; + int opt; + bool opt_set_p; + char ch; + unsigned i; + enum ix86_opt_type type = ix86_opt_unknown; + int mask = 0; + + if (comma) + { + *comma = '\0'; + len = comma - next_optstr; + next_optstr = comma + 1; + } + else + { + len = strlen (p); + next_optstr = NULL; + } + + /* Recognize no-xxx. */ + if (len > 3 && p[0] == 'n' && p[1] == 'o' && p[2] == '-') + { + opt_set_p = false; + p += 3; + len -= 3; + } + else + opt_set_p = true; + + /* Find the option. */ + ch = *p; + opt = N_OPTS; + for (i = 0; i < ARRAY_SIZE (attrs); i++) + { + type = attrs[i].type; + opt_len = attrs[i].len; + if (ch == attrs[i].string[0] + && ((type != ix86_opt_str) ? len == opt_len : len > opt_len) + && memcmp (p, attrs[i].string, opt_len) == 0) + { + opt = attrs[i].opt; + mask = attrs[i].mask; + opt_string = attrs[i].string; + break; + } + } + + /* Process the option. */ + if (opt == N_OPTS) + { + error ("attribute(target(\"%s\")) is unknown", orig_p); + ret = false; + } + + else if (type == ix86_opt_isa) + ix86_handle_option (opt, p, opt_set_p); + + else if (type == ix86_opt_yes || type == ix86_opt_no) + { + if (type == ix86_opt_no) + opt_set_p = !opt_set_p; + + if (opt_set_p) + target_flags |= mask; + else + target_flags &= ~mask; + } + + else if (type == ix86_opt_str) + { + if (p_strings[opt]) + { + error ("option(\"%s\") was already specified", opt_string); + ret = false; + } + else + p_strings[opt] = xstrdup (p + opt_len); + } + + else + gcc_unreachable (); + } + + return ret; +} + +/* Return a TARGET_OPTION_NODE tree of the target options listed or NULL. */ + +tree +ix86_valid_target_attribute_tree (tree args) +{ + const char *orig_arch_string = ix86_arch_string; + const char *orig_tune_string = ix86_tune_string; + const char *orig_fpmath_string = ix86_fpmath_string; + int orig_tune_defaulted = ix86_tune_defaulted; + int orig_arch_specified = ix86_arch_specified; + char *option_strings[IX86_FUNCTION_SPECIFIC_MAX] = { NULL, NULL, NULL }; + tree t = NULL_TREE; + int i; + struct cl_target_option *def + = TREE_TARGET_OPTION (target_option_default_node); + + /* Process each of the options on the chain. */ + if (! ix86_valid_target_attribute_inner_p (args, option_strings)) + return NULL_TREE; + + /* If the changed options are different from the default, rerun + ix86_option_override_internal, and then save the options away. + The string options are are attribute options, and will be undone + when we copy the save structure. */ + if (ix86_isa_flags != def->x_ix86_isa_flags + || target_flags != def->x_target_flags + || option_strings[IX86_FUNCTION_SPECIFIC_ARCH] + || option_strings[IX86_FUNCTION_SPECIFIC_TUNE] + || option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]) + { + /* If we are using the default tune= or arch=, undo the string assigned, + and use the default. */ + if (option_strings[IX86_FUNCTION_SPECIFIC_ARCH]) + ix86_arch_string = option_strings[IX86_FUNCTION_SPECIFIC_ARCH]; + else if (!orig_arch_specified) + ix86_arch_string = NULL; + + if (option_strings[IX86_FUNCTION_SPECIFIC_TUNE]) + ix86_tune_string = option_strings[IX86_FUNCTION_SPECIFIC_TUNE]; + else if (orig_tune_defaulted) + ix86_tune_string = NULL; + + /* If fpmath= is not set, and we now have sse2 on 32-bit, use it. */ + if (option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]) + ix86_fpmath_string = option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]; + else if (!TARGET_64BIT && TARGET_SSE) + ix86_fpmath_string = "sse,387"; + + /* Do any overrides, such as arch=xxx, or tune=xxx support. */ + ix86_option_override_internal (false); + + /* Add any builtin functions with the new isa if any. */ + ix86_add_new_builtins (ix86_isa_flags); + + /* Save the current options unless we are validating options for + #pragma. */ + t = build_target_option_node (); + + ix86_arch_string = orig_arch_string; + ix86_tune_string = orig_tune_string; + ix86_fpmath_string = orig_fpmath_string; + + /* Free up memory allocated to hold the strings */ + for (i = 0; i < IX86_FUNCTION_SPECIFIC_MAX; i++) + if (option_strings[i]) + free (option_strings[i]); + } + + return t; +} + +/* Hook to validate attribute((target("string"))). */ + +static bool +ix86_valid_target_attribute_p (tree fndecl, + tree ARG_UNUSED (name), + tree args, + int ARG_UNUSED (flags)) +{ + struct cl_target_option cur_target; + bool ret = true; + tree old_optimize = build_optimization_node (); + tree new_target, new_optimize; + tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); + + /* If the function changed the optimization levels as well as setting target + options, start with the optimizations specified. */ + if (func_optimize && func_optimize != old_optimize) + cl_optimization_restore (&global_options, + TREE_OPTIMIZATION (func_optimize)); + + /* The target attributes may also change some optimization flags, so update + the optimization options if necessary. */ + cl_target_option_save (&cur_target, &global_options); + new_target = ix86_valid_target_attribute_tree (args); + new_optimize = build_optimization_node (); + + if (!new_target) + ret = false; + + else if (fndecl) + { + DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target; + + if (old_optimize != new_optimize) + DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize; + } + + cl_target_option_restore (&global_options, &cur_target); + + if (old_optimize != new_optimize) + cl_optimization_restore (&global_options, + TREE_OPTIMIZATION (old_optimize)); + + return ret; +} + + +/* Hook to determine if one function can safely inline another. */ + +static bool +ix86_can_inline_p (tree caller, tree callee) +{ + bool ret = false; + tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); + tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); + + /* If callee has no option attributes, then it is ok to inline. */ + if (!callee_tree) + ret = true; + + /* If caller has no option attributes, but callee does then it is not ok to + inline. */ + else if (!caller_tree) + ret = false; + + else + { + struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree); + struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree); + + /* Callee's isa options should a subset of the caller's, i.e. a SSE4 function + can inline a SSE2 function but a SSE2 function can't inline a SSE4 + function. */ + if ((caller_opts->x_ix86_isa_flags & callee_opts->x_ix86_isa_flags) + != callee_opts->x_ix86_isa_flags) + ret = false; + + /* See if we have the same non-isa options. */ + else if (caller_opts->x_target_flags != callee_opts->x_target_flags) + ret = false; + + /* See if arch, tune, etc. are the same. */ + else if (caller_opts->arch != callee_opts->arch) + ret = false; + + else if (caller_opts->tune != callee_opts->tune) + ret = false; + + else if (caller_opts->fpmath != callee_opts->fpmath) + ret = false; + + else if (caller_opts->branch_cost != callee_opts->branch_cost) + ret = false; + + else + ret = true; + } + + return ret; +} + + +/* Remember the last target of ix86_set_current_function. */ +static GTY(()) tree ix86_previous_fndecl; + +/* Establish appropriate back-end context for processing the function + FNDECL. The argument might be NULL to indicate processing at top + level, outside of any function scope. */ +static void +ix86_set_current_function (tree fndecl) +{ + /* Only change the context if the function changes. This hook is called + several times in the course of compiling a function, and we don't want to + slow things down too much or call target_reinit when it isn't safe. */ + if (fndecl && fndecl != ix86_previous_fndecl) + { + tree old_tree = (ix86_previous_fndecl + ? DECL_FUNCTION_SPECIFIC_TARGET (ix86_previous_fndecl) + : NULL_TREE); + + tree new_tree = (fndecl + ? DECL_FUNCTION_SPECIFIC_TARGET (fndecl) + : NULL_TREE); + + ix86_previous_fndecl = fndecl; + if (old_tree == new_tree) + ; + + else if (new_tree) + { + cl_target_option_restore (&global_options, + TREE_TARGET_OPTION (new_tree)); + target_reinit (); + } + + else if (old_tree) + { + struct cl_target_option *def + = TREE_TARGET_OPTION (target_option_current_node); + + cl_target_option_restore (&global_options, def); + target_reinit (); + } + } +} + + +/* Return true if this goes in large data/bss. */ + +static bool +ix86_in_large_data_p (tree exp) +{ + if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC) + return false; + + /* Functions are never large data. */ + if (TREE_CODE (exp) == FUNCTION_DECL) + return false; + + if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp)) + { + const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp)); + if (strcmp (section, ".ldata") == 0 + || strcmp (section, ".lbss") == 0) + return true; + return false; + } + else + { + HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); + + /* If this is an incomplete type with size 0, then we can't put it + in data because it might be too big when completed. */ + if (!size || size > ix86_section_threshold) + return true; + } + + return false; +} + +/* Switch to the appropriate section for output of DECL. + DECL is either a `VAR_DECL' node or a constant of some sort. + RELOC indicates whether forming the initial value of DECL requires + link-time relocations. */ + +static section * x86_64_elf_select_section (tree, int, unsigned HOST_WIDE_INT) + ATTRIBUTE_UNUSED; + +static section * +x86_64_elf_select_section (tree decl, int reloc, + unsigned HOST_WIDE_INT align) +{ + if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) + && ix86_in_large_data_p (decl)) + { + const char *sname = NULL; + unsigned int flags = SECTION_WRITE; + switch (categorize_decl_for_section (decl, reloc)) + { + case SECCAT_DATA: + sname = ".ldata"; + break; + case SECCAT_DATA_REL: + sname = ".ldata.rel"; + break; + case SECCAT_DATA_REL_LOCAL: + sname = ".ldata.rel.local"; + break; + case SECCAT_DATA_REL_RO: + sname = ".ldata.rel.ro"; + break; + case SECCAT_DATA_REL_RO_LOCAL: + sname = ".ldata.rel.ro.local"; + break; + case SECCAT_BSS: + sname = ".lbss"; + flags |= SECTION_BSS; + break; + case SECCAT_RODATA: + case SECCAT_RODATA_MERGE_STR: + case SECCAT_RODATA_MERGE_STR_INIT: + case SECCAT_RODATA_MERGE_CONST: + sname = ".lrodata"; + flags = 0; + break; + case SECCAT_SRODATA: + case SECCAT_SDATA: + case SECCAT_SBSS: + gcc_unreachable (); + case SECCAT_TEXT: + case SECCAT_TDATA: + case SECCAT_TBSS: + /* We don't split these for medium model. Place them into + default sections and hope for best. */ + break; + } + if (sname) + { + /* We might get called with string constants, but get_named_section + doesn't like them as they are not DECLs. Also, we need to set + flags in that case. */ + if (!DECL_P (decl)) + return get_section (sname, flags, NULL); + return get_named_section (decl, sname, reloc); + } + } + return default_elf_select_section (decl, reloc, align); +} + +/* Build up a unique section name, expressed as a + STRING_CST node, and assign it to DECL_SECTION_NAME (decl). + RELOC indicates whether the initial value of EXP requires + link-time relocations. */ + +static void ATTRIBUTE_UNUSED +x86_64_elf_unique_section (tree decl, int reloc) +{ + if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) + && ix86_in_large_data_p (decl)) + { + const char *prefix = NULL; + /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */ + bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP; + + switch (categorize_decl_for_section (decl, reloc)) + { + case SECCAT_DATA: + case SECCAT_DATA_REL: + case SECCAT_DATA_REL_LOCAL: + case SECCAT_DATA_REL_RO: + case SECCAT_DATA_REL_RO_LOCAL: + prefix = one_only ? ".ld" : ".ldata"; + break; + case SECCAT_BSS: + prefix = one_only ? ".lb" : ".lbss"; + break; + case SECCAT_RODATA: + case SECCAT_RODATA_MERGE_STR: + case SECCAT_RODATA_MERGE_STR_INIT: + case SECCAT_RODATA_MERGE_CONST: + prefix = one_only ? ".lr" : ".lrodata"; + break; + case SECCAT_SRODATA: + case SECCAT_SDATA: + case SECCAT_SBSS: + gcc_unreachable (); + case SECCAT_TEXT: + case SECCAT_TDATA: + case SECCAT_TBSS: + /* We don't split these for medium model. Place them into + default sections and hope for best. */ + break; + } + if (prefix) + { + const char *name, *linkonce; + char *string; + + name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); + name = targetm.strip_name_encoding (name); + + /* If we're using one_only, then there needs to be a .gnu.linkonce + prefix to the section name. */ + linkonce = one_only ? ".gnu.linkonce" : ""; + + string = ACONCAT ((linkonce, prefix, ".", name, NULL)); + + DECL_SECTION_NAME (decl) = build_string (strlen (string), string); + return; + } + } + default_unique_section (decl, reloc); +} + +#ifdef COMMON_ASM_OP +/* This says how to output assembler code to declare an + uninitialized external linkage data object. + + For medium model x86-64 we need to use .largecomm opcode for + large objects. */ +void +x86_elf_aligned_common (FILE *file, + const char *name, unsigned HOST_WIDE_INT size, + int align) +{ + if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) + && size > (unsigned int)ix86_section_threshold) + fputs (".largecomm\t", file); + else + fputs (COMMON_ASM_OP, file); + assemble_name (file, name); + fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n", + size, align / BITS_PER_UNIT); +} +#endif + +/* Utility function for targets to use in implementing + ASM_OUTPUT_ALIGNED_BSS. */ + +void +x86_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED, + const char *name, unsigned HOST_WIDE_INT size, + int align) +{ + if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) + && size > (unsigned int)ix86_section_threshold) + switch_to_section (get_named_section (decl, ".lbss", 0)); + else + switch_to_section (bss_section); + ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); +#ifdef ASM_DECLARE_OBJECT_NAME + last_assemble_variable_decl = decl; + ASM_DECLARE_OBJECT_NAME (file, name, decl); +#else + /* Standard thing is just output label for the object. */ + ASM_OUTPUT_LABEL (file, name); +#endif /* ASM_DECLARE_OBJECT_NAME */ + ASM_OUTPUT_SKIP (file, size ? size : 1); +} + +static const struct default_options ix86_option_optimization_table[] = + { + /* Turn off -fschedule-insns by default. It tends to make the + problem with not enough registers even worse. */ +#ifdef INSN_SCHEDULING + { OPT_LEVELS_ALL, OPT_fschedule_insns, NULL, 0 }, +#endif + +#ifdef SUBTARGET_OPTIMIZATION_OPTIONS + SUBTARGET_OPTIMIZATION_OPTIONS, +#endif + { OPT_LEVELS_NONE, 0, NULL, 0 } + }; + +/* Implement TARGET_OPTION_INIT_STRUCT. */ + +static void +ix86_option_init_struct (struct gcc_options *opts) +{ + if (TARGET_MACHO) + /* The Darwin libraries never set errno, so we might as well + avoid calling them when that's the only reason we would. */ + opts->x_flag_errno_math = 0; + + opts->x_flag_pcc_struct_return = 2; + opts->x_flag_asynchronous_unwind_tables = 2; + opts->x_flag_vect_cost_model = 1; +} + +/* Decide whether we must probe the stack before any space allocation + on this target. It's essentially TARGET_STACK_PROBE except when + -fstack-check causes the stack to be already probed differently. */ + +bool +ix86_target_stack_probe (void) +{ + /* Do not probe the stack twice if static stack checking is enabled. */ + if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) + return false; + + return TARGET_STACK_PROBE; +} + +/* Decide whether we can make a sibling call to a function. DECL is the + declaration of the function being targeted by the call and EXP is the + CALL_EXPR representing the call. */ + +static bool +ix86_function_ok_for_sibcall (tree decl, tree exp) +{ + tree type, decl_or_type; + rtx a, b; + + /* If we are generating position-independent code, we cannot sibcall + optimize any indirect call, or a direct call to a global function, + as the PLT requires %ebx be live. (Darwin does not have a PLT.) */ + if (!TARGET_MACHO + && !TARGET_64BIT + && flag_pic + && (!decl || !targetm.binds_local_p (decl))) + return false; + + /* If we need to align the outgoing stack, then sibcalling would + unalign the stack, which may break the called function. */ + if (ix86_minimum_incoming_stack_boundary (true) + < PREFERRED_STACK_BOUNDARY) + return false; + + if (decl) + { + decl_or_type = decl; + type = TREE_TYPE (decl); + } + else + { + /* We're looking at the CALL_EXPR, we need the type of the function. */ + type = CALL_EXPR_FN (exp); /* pointer expression */ + type = TREE_TYPE (type); /* pointer type */ + type = TREE_TYPE (type); /* function type */ + decl_or_type = type; + } + + /* Check that the return value locations are the same. Like + if we are returning floats on the 80387 register stack, we cannot + make a sibcall from a function that doesn't return a float to a + function that does or, conversely, from a function that does return + a float to a function that doesn't; the necessary stack adjustment + would not be executed. This is also the place we notice + differences in the return value ABI. Note that it is ok for one + of the functions to have void return type as long as the return + value of the other is passed in a register. */ + a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false); + b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)), + cfun->decl, false); + if (STACK_REG_P (a) || STACK_REG_P (b)) + { + if (!rtx_equal_p (a, b)) + return false; + } + else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl)))) + { + /* Disable sibcall if we need to generate vzeroupper after + callee returns. */ + if (TARGET_VZEROUPPER + && cfun->machine->callee_return_avx256_p + && !cfun->machine->caller_return_avx256_p) + return false; + } + else if (!rtx_equal_p (a, b)) + return false; + + if (TARGET_64BIT) + { + /* The SYSV ABI has more call-clobbered registers; + disallow sibcalls from MS to SYSV. */ + if (cfun->machine->call_abi == MS_ABI + && ix86_function_type_abi (type) == SYSV_ABI) + return false; + } + else + { + /* If this call is indirect, we'll need to be able to use a + call-clobbered register for the address of the target function. + Make sure that all such registers are not used for passing + parameters. Note that DLLIMPORT functions are indirect. */ + if (!decl + || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl))) + { + if (ix86_function_regparm (type, NULL) >= 3) + { + /* ??? Need to count the actual number of registers to be used, + not the possible number of registers. Fix later. */ + return false; + } + } + } + + /* Otherwise okay. That also includes certain types of indirect calls. */ + return true; +} + +/* Handle "cdecl", "stdcall", "fastcall", "regparm", "thiscall", + and "sseregparm" calling convention attributes; + arguments as in struct attribute_spec.handler. */ + +static tree +ix86_handle_cconv_attribute (tree *node, tree name, + tree args, + int flags ATTRIBUTE_UNUSED, + bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_TYPE + && TREE_CODE (*node) != METHOD_TYPE + && TREE_CODE (*node) != FIELD_DECL + && TREE_CODE (*node) != TYPE_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + return NULL_TREE; + } + + /* Can combine regparm with all attributes but fastcall. */ + if (is_attribute_p ("regparm", name)) + { + tree cst; + + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and regparm attributes are not compatible"); + } + + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) + { + error ("regparam and thiscall attributes are not compatible"); + } + + cst = TREE_VALUE (args); + if (TREE_CODE (cst) != INTEGER_CST) + { + warning (OPT_Wattributes, + "%qE attribute requires an integer constant argument", + name); + *no_add_attrs = true; + } + else if (compare_tree_int (cst, REGPARM_MAX) > 0) + { + warning (OPT_Wattributes, "argument to %qE attribute larger than %d", + name, REGPARM_MAX); + *no_add_attrs = true; + } + + return NULL_TREE; + } + + if (TARGET_64BIT) + { + /* Do not warn when emulating the MS ABI. */ + if ((TREE_CODE (*node) != FUNCTION_TYPE + && TREE_CODE (*node) != METHOD_TYPE) + || ix86_function_type_abi (*node) != MS_ABI) + warning (OPT_Wattributes, "%qE attribute ignored", + name); + *no_add_attrs = true; + return NULL_TREE; + } + + /* Can combine fastcall with stdcall (redundant) and sseregparm. */ + if (is_attribute_p ("fastcall", name)) + { + if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and cdecl attributes are not compatible"); + } + if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and stdcall attributes are not compatible"); + } + if (lookup_attribute ("regparm", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and regparm attributes are not compatible"); + } + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and thiscall attributes are not compatible"); + } + } + + /* Can combine stdcall with fastcall (redundant), regparm and + sseregparm. */ + else if (is_attribute_p ("stdcall", name)) + { + if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) + { + error ("stdcall and cdecl attributes are not compatible"); + } + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) + { + error ("stdcall and fastcall attributes are not compatible"); + } + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) + { + error ("stdcall and thiscall attributes are not compatible"); + } + } + + /* Can combine cdecl with regparm and sseregparm. */ + else if (is_attribute_p ("cdecl", name)) + { + if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) + { + error ("stdcall and cdecl attributes are not compatible"); + } + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and cdecl attributes are not compatible"); + } + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) + { + error ("cdecl and thiscall attributes are not compatible"); + } + } + else if (is_attribute_p ("thiscall", name)) + { + if (TREE_CODE (*node) != METHOD_TYPE && pedantic) + warning (OPT_Wattributes, "%qE attribute is used for none class-method", + name); + if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) + { + error ("stdcall and thiscall attributes are not compatible"); + } + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) + { + error ("fastcall and thiscall attributes are not compatible"); + } + if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) + { + error ("cdecl and thiscall attributes are not compatible"); + } + } + + /* Can combine sseregparm with all attributes. */ + + return NULL_TREE; +} + +/* Return 0 if the attributes for two types are incompatible, 1 if they + are compatible, and 2 if they are nearly compatible (which causes a + warning to be generated). */ + +static int +ix86_comp_type_attributes (const_tree type1, const_tree type2) +{ + /* Check for mismatch of non-default calling convention. */ + const char *const rtdstr = TARGET_RTD ? "cdecl" : "stdcall"; + + if (TREE_CODE (type1) != FUNCTION_TYPE + && TREE_CODE (type1) != METHOD_TYPE) + return 1; + + /* Check for mismatched fastcall/regparm types. */ + if ((!lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type1)) + != !lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type2))) + || (ix86_function_regparm (type1, NULL) + != ix86_function_regparm (type2, NULL))) + return 0; + + /* Check for mismatched sseregparm types. */ + if (!lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type1)) + != !lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type2))) + return 0; + + /* Check for mismatched thiscall types. */ + if (!lookup_attribute ("thiscall", TYPE_ATTRIBUTES (type1)) + != !lookup_attribute ("thiscall", TYPE_ATTRIBUTES (type2))) + return 0; + + /* Check for mismatched return types (cdecl vs stdcall). */ + if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1)) + != !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2))) + return 0; + + return 1; +} + +/* Return the regparm value for a function with the indicated TYPE and DECL. + DECL may be NULL when calling function indirectly + or considering a libcall. */ + +static int +ix86_function_regparm (const_tree type, const_tree decl) +{ + tree attr; + int regparm; + + if (TARGET_64BIT) + return (ix86_function_type_abi (type) == SYSV_ABI + ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); + + regparm = ix86_regparm; + attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type)); + if (attr) + { + regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); + return regparm; + } + + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) + return 2; + + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (type))) + return 1; + + /* Use register calling convention for local functions when possible. */ + if (decl + && TREE_CODE (decl) == FUNCTION_DECL + && optimize + && !(profile_flag && !flag_fentry)) + { + /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ + struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE (decl)); + if (i && i->local && i->can_change_signature) + { + int local_regparm, globals = 0, regno; + + /* Make sure no regparm register is taken by a + fixed register variable. */ + for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++) + if (fixed_regs[local_regparm]) + break; + + /* We don't want to use regparm(3) for nested functions as + these use a static chain pointer in the third argument. */ + if (local_regparm == 3 && DECL_STATIC_CHAIN (decl)) + local_regparm = 2; + + /* In 32-bit mode save a register for the split stack. */ + if (!TARGET_64BIT && local_regparm == 3 && flag_split_stack) + local_regparm = 2; + + /* Each fixed register usage increases register pressure, + so less registers should be used for argument passing. + This functionality can be overriden by an explicit + regparm value. */ + for (regno = 0; regno <= DI_REG; regno++) + if (fixed_regs[regno]) + globals++; + + local_regparm + = globals < local_regparm ? local_regparm - globals : 0; + + if (local_regparm > regparm) + regparm = local_regparm; + } + } + + return regparm; +} + +/* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and + DFmode (2) arguments in SSE registers for a function with the + indicated TYPE and DECL. DECL may be NULL when calling function + indirectly or considering a libcall. Otherwise return 0. */ + +static int +ix86_function_sseregparm (const_tree type, const_tree decl, bool warn) +{ + gcc_assert (!TARGET_64BIT); + + /* Use SSE registers to pass SFmode and DFmode arguments if requested + by the sseregparm attribute. */ + if (TARGET_SSEREGPARM + || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type)))) + { + if (!TARGET_SSE) + { + if (warn) + { + if (decl) + error ("calling %qD with attribute sseregparm without " + "SSE/SSE2 enabled", decl); + else + error ("calling %qT with attribute sseregparm without " + "SSE/SSE2 enabled", type); + } + return 0; + } + + return 2; + } + + /* For local functions, pass up to SSE_REGPARM_MAX SFmode + (and DFmode for SSE2) arguments in SSE registers. */ + if (decl && TARGET_SSE_MATH && optimize + && !(profile_flag && !flag_fentry)) + { + /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ + struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl)); + if (i && i->local && i->can_change_signature) + return TARGET_SSE2 ? 2 : 1; + } + + return 0; +} + +/* Return true if EAX is live at the start of the function. Used by + ix86_expand_prologue to determine if we need special help before + calling allocate_stack_worker. */ + +static bool +ix86_eax_live_at_start_p (void) +{ + /* Cheat. Don't bother working forward from ix86_function_regparm + to the function type to whether an actual argument is located in + eax. Instead just look at cfg info, which is still close enough + to correct at this point. This gives false positives for broken + functions that might use uninitialized data that happens to be + allocated in eax, but who cares? */ + return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), 0); +} + +static bool +ix86_keep_aggregate_return_pointer (tree fntype) +{ + tree attr; + + attr = lookup_attribute ("callee_pop_aggregate_return", + TYPE_ATTRIBUTES (fntype)); + if (attr) + return (TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))) == 0); + + return KEEP_AGGREGATE_RETURN_POINTER != 0; +} + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the 80386, the RTD insn may be used to pop them if the number + of args is fixed, but if the number is variable then the caller + must pop them all. RTD can't be used for library calls now + because the library is compiled with the Unix compiler. + Use of RTD is a selectable option, since it is incompatible with + standard Unix calling sequences. If the option is not selected, + the caller must always pop the args. + + The attribute stdcall is equivalent to RTD on a per module basis. */ + +static int +ix86_return_pops_args (tree fundecl, tree funtype, int size) +{ + int rtd; + + /* None of the 64-bit ABIs pop arguments. */ + if (TARGET_64BIT) + return 0; + + rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE); + + /* Cdecl functions override -mrtd, and never pop the stack. */ + if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) + { + /* Stdcall and fastcall functions will pop the stack if not + variable args. */ + if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)) + || lookup_attribute ("fastcall", TYPE_ATTRIBUTES (funtype)) + || lookup_attribute ("thiscall", TYPE_ATTRIBUTES (funtype))) + rtd = 1; + + if (rtd && ! stdarg_p (funtype)) + return size; + } + + /* Lose any fake structure return argument if it is passed on the stack. */ + if (aggregate_value_p (TREE_TYPE (funtype), fundecl) + && !ix86_keep_aggregate_return_pointer (funtype)) + { + int nregs = ix86_function_regparm (funtype, fundecl); + if (nregs == 0) + return GET_MODE_SIZE (Pmode); + } + + return 0; +} + +/* Argument support functions. */ + +/* Return true when register may be used to pass function parameters. */ +bool +ix86_function_arg_regno_p (int regno) +{ + int i; + const int *parm_regs; + + if (!TARGET_64BIT) + { + if (TARGET_MACHO) + return (regno < REGPARM_MAX + || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno])); + else + return (regno < REGPARM_MAX + || (TARGET_MMX && MMX_REGNO_P (regno) + && (regno < FIRST_MMX_REG + MMX_REGPARM_MAX)) + || (TARGET_SSE && SSE_REGNO_P (regno) + && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX))); + } + + if (TARGET_MACHO) + { + if (SSE_REGNO_P (regno) && TARGET_SSE) + return true; + } + else + { + if (TARGET_SSE && SSE_REGNO_P (regno) + && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX)) + return true; + } + + /* TODO: The function should depend on current function ABI but + builtins.c would need updating then. Therefore we use the + default ABI. */ + + /* RAX is used as hidden argument to va_arg functions. */ + if (ix86_abi == SYSV_ABI && regno == AX_REG) + return true; + + if (ix86_abi == MS_ABI) + parm_regs = x86_64_ms_abi_int_parameter_registers; + else + parm_regs = x86_64_int_parameter_registers; + for (i = 0; i < (ix86_abi == MS_ABI + ? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++) + if (regno == parm_regs[i]) + return true; + return false; +} + +/* Return if we do not know how to pass TYPE solely in registers. */ + +static bool +ix86_must_pass_in_stack (enum machine_mode mode, const_tree type) +{ + if (must_pass_in_stack_var_size_or_pad (mode, type)) + return true; + + /* For 32-bit, we want TImode aggregates to go on the stack. But watch out! + The layout_type routine is crafty and tries to trick us into passing + currently unsupported vector types on the stack by using TImode. */ + return (!TARGET_64BIT && mode == TImode + && type && TREE_CODE (type) != VECTOR_TYPE); +} + +/* It returns the size, in bytes, of the area reserved for arguments passed + in registers for the function represented by fndecl dependent to the used + abi format. */ +int +ix86_reg_parm_stack_space (const_tree fndecl) +{ + enum calling_abi call_abi = SYSV_ABI; + if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL) + call_abi = ix86_function_abi (fndecl); + else + call_abi = ix86_function_type_abi (fndecl); + if (call_abi == MS_ABI) + return 32; + return 0; +} + +/* Returns value SYSV_ABI, MS_ABI dependent on fntype, specifying the + call abi used. */ +enum calling_abi +ix86_function_type_abi (const_tree fntype) +{ + if (TARGET_64BIT && fntype != NULL) + { + enum calling_abi abi = ix86_abi; + if (abi == SYSV_ABI) + { + if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype))) + abi = MS_ABI; + } + else if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype))) + abi = SYSV_ABI; + return abi; + } + return ix86_abi; +} + +static bool +ix86_function_ms_hook_prologue (const_tree fn) +{ + if (fn && lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fn))) + { + if (decl_function_context (fn) != NULL_TREE) + error_at (DECL_SOURCE_LOCATION (fn), + "ms_hook_prologue is not compatible with nested function"); + else + return true; + } + return false; +} + +static enum calling_abi +ix86_function_abi (const_tree fndecl) +{ + if (! fndecl) + return ix86_abi; + return ix86_function_type_abi (TREE_TYPE (fndecl)); +} + +/* Returns value SYSV_ABI, MS_ABI dependent on cfun, specifying the + call abi used. */ +enum calling_abi +ix86_cfun_abi (void) +{ + if (! cfun || ! TARGET_64BIT) + return ix86_abi; + return cfun->machine->call_abi; +} + +/* Write the extra assembler code needed to declare a function properly. */ + +void +ix86_asm_output_function_label (FILE *asm_out_file, const char *fname, + tree decl) +{ + bool is_ms_hook = ix86_function_ms_hook_prologue (decl); + + if (is_ms_hook) + { + int i, filler_count = (TARGET_64BIT ? 32 : 16); + unsigned int filler_cc = 0xcccccccc; + + for (i = 0; i < filler_count; i += 4) + fprintf (asm_out_file, ASM_LONG " %#x\n", filler_cc); + } + +#ifdef SUBTARGET_ASM_UNWIND_INIT + SUBTARGET_ASM_UNWIND_INIT (asm_out_file); +#endif + + ASM_OUTPUT_LABEL (asm_out_file, fname); + + /* Output magic byte marker, if hot-patch attribute is set. */ + if (is_ms_hook) + { + if (TARGET_64BIT) + { + /* leaq [%rsp + 0], %rsp */ + asm_fprintf (asm_out_file, ASM_BYTE + "0x48, 0x8d, 0xa4, 0x24, 0x00, 0x00, 0x00, 0x00\n"); + } + else + { + /* movl.s %edi, %edi + push %ebp + movl.s %esp, %ebp */ + asm_fprintf (asm_out_file, ASM_BYTE + "0x8b, 0xff, 0x55, 0x8b, 0xec\n"); + } + } +} + +/* regclass.c */ +extern void init_regs (void); + +/* Implementation of call abi switching target hook. Specific to FNDECL + the specific call register sets are set. See also + ix86_conditional_register_usage for more details. */ +void +ix86_call_abi_override (const_tree fndecl) +{ + if (fndecl == NULL_TREE) + cfun->machine->call_abi = ix86_abi; + else + cfun->machine->call_abi = ix86_function_type_abi (TREE_TYPE (fndecl)); +} + +/* MS and SYSV ABI have different set of call used registers. Avoid expensive + re-initialization of init_regs each time we switch function context since + this is needed only during RTL expansion. */ +static void +ix86_maybe_switch_abi (void) +{ + if (TARGET_64BIT && + call_used_regs[SI_REG] == (cfun->machine->call_abi == MS_ABI)) + reinit_regs (); +} + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +void +init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */ + tree fntype, /* tree ptr for function decl */ + rtx libname, /* SYMBOL_REF of library name or 0 */ + tree fndecl, + int caller) +{ + struct cgraph_local_info *i; + tree fnret_type; + + memset (cum, 0, sizeof (*cum)); + + /* Initialize for the current callee. */ + if (caller) + { + cfun->machine->callee_pass_avx256_p = false; + cfun->machine->callee_return_avx256_p = false; + } + + if (fndecl) + { + i = cgraph_local_info (fndecl); + cum->call_abi = ix86_function_abi (fndecl); + fnret_type = TREE_TYPE (TREE_TYPE (fndecl)); + } + else + { + i = NULL; + cum->call_abi = ix86_function_type_abi (fntype); + if (fntype) + fnret_type = TREE_TYPE (fntype); + else + fnret_type = NULL; + } + + if (TARGET_VZEROUPPER && fnret_type) + { + rtx fnret_value = ix86_function_value (fnret_type, fntype, + false); + if (function_pass_avx256_p (fnret_value)) + { + /* The return value of this function uses 256bit AVX modes. */ + if (caller) + { + cfun->machine->callee_return_avx256_p = true; + cum->callee_return_avx256_p = true; + } + else + cfun->machine->caller_return_avx256_p = true; + } + } + + cum->caller = caller; + + /* Set up the number of registers to use for passing arguments. */ + + if (cum->call_abi == MS_ABI && !ACCUMULATE_OUTGOING_ARGS) + sorry ("ms_abi attribute requires -maccumulate-outgoing-args " + "or subtarget optimization implying it"); + cum->nregs = ix86_regparm; + if (TARGET_64BIT) + { + cum->nregs = (cum->call_abi == SYSV_ABI + ? X86_64_REGPARM_MAX + : X86_64_MS_REGPARM_MAX); + } + if (TARGET_SSE) + { + cum->sse_nregs = SSE_REGPARM_MAX; + if (TARGET_64BIT) + { + cum->sse_nregs = (cum->call_abi == SYSV_ABI + ? X86_64_SSE_REGPARM_MAX + : X86_64_MS_SSE_REGPARM_MAX); + } + } + if (TARGET_MMX) + cum->mmx_nregs = MMX_REGPARM_MAX; + cum->warn_avx = true; + cum->warn_sse = true; + cum->warn_mmx = true; + + /* Because type might mismatch in between caller and callee, we need to + use actual type of function for local calls. + FIXME: cgraph_analyze can be told to actually record if function uses + va_start so for local functions maybe_vaarg can be made aggressive + helping K&R code. + FIXME: once typesytem is fixed, we won't need this code anymore. */ + if (i && i->local && i->can_change_signature) + fntype = TREE_TYPE (fndecl); + cum->maybe_vaarg = (fntype + ? (!prototype_p (fntype) || stdarg_p (fntype)) + : !libname); + + if (!TARGET_64BIT) + { + /* If there are variable arguments, then we won't pass anything + in registers in 32-bit mode. */ + if (stdarg_p (fntype)) + { + cum->nregs = 0; + cum->sse_nregs = 0; + cum->mmx_nregs = 0; + cum->warn_avx = 0; + cum->warn_sse = 0; + cum->warn_mmx = 0; + return; + } + + /* Use ecx and edx registers if function has fastcall attribute, + else look for regparm information. */ + if (fntype) + { + if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype))) + { + cum->nregs = 1; + cum->fastcall = 1; /* Same first register as in fastcall. */ + } + else if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype))) + { + cum->nregs = 2; + cum->fastcall = 1; + } + else + cum->nregs = ix86_function_regparm (fntype, fndecl); + } + + /* Set up the number of SSE registers used for passing SFmode + and DFmode arguments. Warn for mismatching ABI. */ + cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true); + } +} + +/* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE. + But in the case of vector types, it is some vector mode. + + When we have only some of our vector isa extensions enabled, then there + are some modes for which vector_mode_supported_p is false. For these + modes, the generic vector support in gcc will choose some non-vector mode + in order to implement the type. By computing the natural mode, we'll + select the proper ABI location for the operand and not depend on whatever + the middle-end decides to do with these vector types. + + The midde-end can't deal with the vector types > 16 bytes. In this + case, we return the original mode and warn ABI change if CUM isn't + NULL. */ + +static enum machine_mode +type_natural_mode (const_tree type, const CUMULATIVE_ARGS *cum) +{ + enum machine_mode mode = TYPE_MODE (type); + + if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode)) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + if ((size == 8 || size == 16 || size == 32) + /* ??? Generic code allows us to create width 1 vectors. Ignore. */ + && TYPE_VECTOR_SUBPARTS (type) > 1) + { + enum machine_mode innermode = TYPE_MODE (TREE_TYPE (type)); + + if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) + mode = MIN_MODE_VECTOR_FLOAT; + else + mode = MIN_MODE_VECTOR_INT; + + /* Get the mode which has this inner mode and number of units. */ + for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) + if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type) + && GET_MODE_INNER (mode) == innermode) + { + if (size == 32 && !TARGET_AVX) + { + static bool warnedavx; + + if (cum + && !warnedavx + && cum->warn_avx) + { + warnedavx = true; + warning (0, "AVX vector argument without AVX " + "enabled changes the ABI"); + } + return TYPE_MODE (type); + } + else + return mode; + } + + gcc_unreachable (); + } + } + + return mode; +} + +/* We want to pass a value in REGNO whose "natural" mode is MODE. However, + this may not agree with the mode that the type system has chosen for the + register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can + go ahead and use it. Otherwise we have to build a PARALLEL instead. */ + +static rtx +gen_reg_or_parallel (enum machine_mode mode, enum machine_mode orig_mode, + unsigned int regno) +{ + rtx tmp; + + if (orig_mode != BLKmode) + tmp = gen_rtx_REG (orig_mode, regno); + else + { + tmp = gen_rtx_REG (mode, regno); + tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx); + tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp)); + } + + return tmp; +} + +/* x86-64 register passing implementation. See x86-64 ABI for details. Goal + of this code is to classify each 8bytes of incoming argument by the register + class and assign registers accordingly. */ + +/* Return the union class of CLASS1 and CLASS2. + See the x86-64 PS ABI for details. */ + +static enum x86_64_reg_class +merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) +{ + /* Rule #1: If both classes are equal, this is the resulting class. */ + if (class1 == class2) + return class1; + + /* Rule #2: If one of the classes is NO_CLASS, the resulting class is + the other class. */ + if (class1 == X86_64_NO_CLASS) + return class2; + if (class2 == X86_64_NO_CLASS) + return class1; + + /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ + if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) + return X86_64_MEMORY_CLASS; + + /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ + if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) + || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) + return X86_64_INTEGERSI_CLASS; + if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS + || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) + return X86_64_INTEGER_CLASS; + + /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, + MEMORY is used. */ + if (class1 == X86_64_X87_CLASS + || class1 == X86_64_X87UP_CLASS + || class1 == X86_64_COMPLEX_X87_CLASS + || class2 == X86_64_X87_CLASS + || class2 == X86_64_X87UP_CLASS + || class2 == X86_64_COMPLEX_X87_CLASS) + return X86_64_MEMORY_CLASS; + + /* Rule #6: Otherwise class SSE is used. */ + return X86_64_SSE_CLASS; +} + +/* Classify the argument of type TYPE and mode MODE. + CLASSES will be filled by the register class used to pass each word + of the operand. The number of words is returned. In case the parameter + should be passed in memory, 0 is returned. As a special case for zero + sized containers, classes[0] will be NO_CLASS and 1 is returned. + + BIT_OFFSET is used internally for handling records and specifies offset + of the offset in bits modulo 256 to avoid overflow cases. + + See the x86-64 PS ABI for details. +*/ + +static int +classify_argument (enum machine_mode mode, const_tree type, + enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) +{ + HOST_WIDE_INT bytes = + (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); + int words = (bytes + (bit_offset % 64) / 8 + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + + /* Variable sized entities are always passed/returned in memory. */ + if (bytes < 0) + return 0; + + if (mode != VOIDmode + && targetm.calls.must_pass_in_stack (mode, type)) + return 0; + + if (type && AGGREGATE_TYPE_P (type)) + { + int i; + tree field; + enum x86_64_reg_class subclasses[MAX_CLASSES]; + + /* On x86-64 we pass structures larger than 32 bytes on the stack. */ + if (bytes > 32) + return 0; + + for (i = 0; i < words; i++) + classes[i] = X86_64_NO_CLASS; + + /* Zero sized arrays or structures are NO_CLASS. We return 0 to + signalize memory class, so handle it as special case. */ + if (!words) + { + classes[0] = X86_64_NO_CLASS; + return 1; + } + + /* Classify each field of record and merge classes. */ + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + /* And now merge the fields of structure. */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL) + { + int num; + + if (TREE_TYPE (field) == error_mark_node) + continue; + + /* Bitfields are always classified as integer. Handle them + early, since later code would consider them to be + misaligned integers. */ + if (DECL_BIT_FIELD (field)) + { + for (i = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; + i < ((int_bit_position (field) + (bit_offset % 64)) + + tree_low_cst (DECL_SIZE (field), 0) + + 63) / 8 / 8; i++) + classes[i] = + merge_classes (X86_64_INTEGER_CLASS, + classes[i]); + } + else + { + int pos; + + type = TREE_TYPE (field); + + /* Flexible array member is ignored. */ + if (TYPE_MODE (type) == BLKmode + && TREE_CODE (type) == ARRAY_TYPE + && TYPE_SIZE (type) == NULL_TREE + && TYPE_DOMAIN (type) != NULL_TREE + && (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) + == NULL_TREE)) + { + static bool warned; + + if (!warned && warn_psabi) + { + warned = true; + inform (input_location, + "the ABI of passing struct with" + " a flexible array member has" + " changed in GCC 4.4"); + } + continue; + } + num = classify_argument (TYPE_MODE (type), type, + subclasses, + (int_bit_position (field) + + bit_offset) % 256); + if (!num) + return 0; + pos = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; + for (i = 0; i < num && (i + pos) < words; i++) + classes[i + pos] = + merge_classes (subclasses[i], classes[i + pos]); + } + } + } + break; + + case ARRAY_TYPE: + /* Arrays are handled as small records. */ + { + int num; + num = classify_argument (TYPE_MODE (TREE_TYPE (type)), + TREE_TYPE (type), subclasses, bit_offset); + if (!num) + return 0; + + /* The partial classes are now full classes. */ + if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) + subclasses[0] = X86_64_SSE_CLASS; + if (subclasses[0] == X86_64_INTEGERSI_CLASS + && !((bit_offset % 64) == 0 && bytes == 4)) + subclasses[0] = X86_64_INTEGER_CLASS; + + for (i = 0; i < words; i++) + classes[i] = subclasses[i % num]; + + break; + } + case UNION_TYPE: + case QUAL_UNION_TYPE: + /* Unions are similar to RECORD_TYPE but offset is always 0. + */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL) + { + int num; + + if (TREE_TYPE (field) == error_mark_node) + continue; + + num = classify_argument (TYPE_MODE (TREE_TYPE (field)), + TREE_TYPE (field), subclasses, + bit_offset); + if (!num) + return 0; + for (i = 0; i < num; i++) + classes[i] = merge_classes (subclasses[i], classes[i]); + } + } + break; + + default: + gcc_unreachable (); + } + + if (words > 2) + { + /* When size > 16 bytes, if the first one isn't + X86_64_SSE_CLASS or any other ones aren't + X86_64_SSEUP_CLASS, everything should be passed in + memory. */ + if (classes[0] != X86_64_SSE_CLASS) + return 0; + + for (i = 1; i < words; i++) + if (classes[i] != X86_64_SSEUP_CLASS) + return 0; + } + + /* Final merger cleanup. */ + for (i = 0; i < words; i++) + { + /* If one class is MEMORY, everything should be passed in + memory. */ + if (classes[i] == X86_64_MEMORY_CLASS) + return 0; + + /* The X86_64_SSEUP_CLASS should be always preceded by + X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ + if (classes[i] == X86_64_SSEUP_CLASS + && classes[i - 1] != X86_64_SSE_CLASS + && classes[i - 1] != X86_64_SSEUP_CLASS) + { + /* The first one should never be X86_64_SSEUP_CLASS. */ + gcc_assert (i != 0); + classes[i] = X86_64_SSE_CLASS; + } + + /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, + everything should be passed in memory. */ + if (classes[i] == X86_64_X87UP_CLASS + && (classes[i - 1] != X86_64_X87_CLASS)) + { + static bool warned; + + /* The first one should never be X86_64_X87UP_CLASS. */ + gcc_assert (i != 0); + if (!warned && warn_psabi) + { + warned = true; + inform (input_location, + "the ABI of passing union with long double" + " has changed in GCC 4.4"); + } + return 0; + } + } + return words; + } + + /* Compute alignment needed. We align all types to natural boundaries with + exception of XFmode that is aligned to 64bits. */ + if (mode != VOIDmode && mode != BLKmode) + { + int mode_alignment = GET_MODE_BITSIZE (mode); + + if (mode == XFmode) + mode_alignment = 128; + else if (mode == XCmode) + mode_alignment = 256; + if (COMPLEX_MODE_P (mode)) + mode_alignment /= 2; + /* Misaligned fields are always returned in memory. */ + if (bit_offset % mode_alignment) + return 0; + } + + /* for V1xx modes, just use the base mode */ + if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode + && GET_MODE_SIZE (GET_MODE_INNER (mode)) == bytes) + mode = GET_MODE_INNER (mode); + + /* Classification of atomic types. */ + switch (mode) + { + case SDmode: + case DDmode: + classes[0] = X86_64_SSE_CLASS; + return 1; + case TDmode: + classes[0] = X86_64_SSE_CLASS; + classes[1] = X86_64_SSEUP_CLASS; + return 2; + case DImode: + case SImode: + case HImode: + case QImode: + case CSImode: + case CHImode: + case CQImode: + { + int size = (bit_offset % 64)+ (int) GET_MODE_BITSIZE (mode); + + if (size <= 32) + { + classes[0] = X86_64_INTEGERSI_CLASS; + return 1; + } + else if (size <= 64) + { + classes[0] = X86_64_INTEGER_CLASS; + return 1; + } + else if (size <= 64+32) + { + classes[0] = X86_64_INTEGER_CLASS; + classes[1] = X86_64_INTEGERSI_CLASS; + return 2; + } + else if (size <= 64+64) + { + classes[0] = classes[1] = X86_64_INTEGER_CLASS; + return 2; + } + else + gcc_unreachable (); + } + case CDImode: + case TImode: + classes[0] = classes[1] = X86_64_INTEGER_CLASS; + return 2; + case COImode: + case OImode: + /* OImode shouldn't be used directly. */ + gcc_unreachable (); + case CTImode: + return 0; + case SFmode: + if (!(bit_offset % 64)) + classes[0] = X86_64_SSESF_CLASS; + else + classes[0] = X86_64_SSE_CLASS; + return 1; + case DFmode: + classes[0] = X86_64_SSEDF_CLASS; + return 1; + case XFmode: + classes[0] = X86_64_X87_CLASS; + classes[1] = X86_64_X87UP_CLASS; + return 2; + case TFmode: + classes[0] = X86_64_SSE_CLASS; + classes[1] = X86_64_SSEUP_CLASS; + return 2; + case SCmode: + classes[0] = X86_64_SSE_CLASS; + if (!(bit_offset % 64)) + return 1; + else + { + static bool warned; + + if (!warned && warn_psabi) + { + warned = true; + inform (input_location, + "the ABI of passing structure with complex float" + " member has changed in GCC 4.4"); + } + classes[1] = X86_64_SSESF_CLASS; + return 2; + } + case DCmode: + classes[0] = X86_64_SSEDF_CLASS; + classes[1] = X86_64_SSEDF_CLASS; + return 2; + case XCmode: + classes[0] = X86_64_COMPLEX_X87_CLASS; + return 1; + case TCmode: + /* This modes is larger than 16 bytes. */ + return 0; + case V8SFmode: + case V8SImode: + case V32QImode: + case V16HImode: + case V4DFmode: + case V4DImode: + classes[0] = X86_64_SSE_CLASS; + classes[1] = X86_64_SSEUP_CLASS; + classes[2] = X86_64_SSEUP_CLASS; + classes[3] = X86_64_SSEUP_CLASS; + return 4; + case V4SFmode: + case V4SImode: + case V16QImode: + case V8HImode: + case V2DFmode: + case V2DImode: + classes[0] = X86_64_SSE_CLASS; + classes[1] = X86_64_SSEUP_CLASS; + return 2; + case V1TImode: + case V1DImode: + case V2SFmode: + case V2SImode: + case V4HImode: + case V8QImode: + classes[0] = X86_64_SSE_CLASS; + return 1; + case BLKmode: + case VOIDmode: + return 0; + default: + gcc_assert (VECTOR_MODE_P (mode)); + + if (bytes > 16) + return 0; + + gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT); + + if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) + classes[0] = X86_64_INTEGERSI_CLASS; + else + classes[0] = X86_64_INTEGER_CLASS; + classes[1] = X86_64_INTEGER_CLASS; + return 1 + (bytes > 8); + } +} + +/* Examine the argument and return set number of register required in each + class. Return 0 iff parameter should be passed in memory. */ +static int +examine_argument (enum machine_mode mode, const_tree type, int in_return, + int *int_nregs, int *sse_nregs) +{ + enum x86_64_reg_class regclass[MAX_CLASSES]; + int n = classify_argument (mode, type, regclass, 0); + + *int_nregs = 0; + *sse_nregs = 0; + if (!n) + return 0; + for (n--; n >= 0; n--) + switch (regclass[n]) + { + case X86_64_INTEGER_CLASS: + case X86_64_INTEGERSI_CLASS: + (*int_nregs)++; + break; + case X86_64_SSE_CLASS: + case X86_64_SSESF_CLASS: + case X86_64_SSEDF_CLASS: + (*sse_nregs)++; + break; + case X86_64_NO_CLASS: + case X86_64_SSEUP_CLASS: + break; + case X86_64_X87_CLASS: + case X86_64_X87UP_CLASS: + if (!in_return) + return 0; + break; + case X86_64_COMPLEX_X87_CLASS: + return in_return ? 2 : 0; + case X86_64_MEMORY_CLASS: + gcc_unreachable (); + } + return 1; +} + +/* Construct container for the argument used by GCC interface. See + FUNCTION_ARG for the detailed description. */ + +static rtx +construct_container (enum machine_mode mode, enum machine_mode orig_mode, + const_tree type, int in_return, int nintregs, int nsseregs, + const int *intreg, int sse_regno) +{ + /* The following variables hold the static issued_error state. */ + static bool issued_sse_arg_error; + static bool issued_sse_ret_error; + static bool issued_x87_ret_error; + + enum machine_mode tmpmode; + int bytes = + (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); + enum x86_64_reg_class regclass[MAX_CLASSES]; + int n; + int i; + int nexps = 0; + int needed_sseregs, needed_intregs; + rtx exp[MAX_CLASSES]; + rtx ret; + + n = classify_argument (mode, type, regclass, 0); + if (!n) + return NULL; + if (!examine_argument (mode, type, in_return, &needed_intregs, + &needed_sseregs)) + return NULL; + if (needed_intregs > nintregs || needed_sseregs > nsseregs) + return NULL; + + /* We allowed the user to turn off SSE for kernel mode. Don't crash if + some less clueful developer tries to use floating-point anyway. */ + if (needed_sseregs && !TARGET_SSE) + { + if (in_return) + { + if (!issued_sse_ret_error) + { + error ("SSE register return with SSE disabled"); + issued_sse_ret_error = true; + } + } + else if (!issued_sse_arg_error) + { + error ("SSE register argument with SSE disabled"); + issued_sse_arg_error = true; + } + return NULL; + } + + /* Likewise, error if the ABI requires us to return values in the + x87 registers and the user specified -mno-80387. */ + if (!TARGET_80387 && in_return) + for (i = 0; i < n; i++) + if (regclass[i] == X86_64_X87_CLASS + || regclass[i] == X86_64_X87UP_CLASS + || regclass[i] == X86_64_COMPLEX_X87_CLASS) + { + if (!issued_x87_ret_error) + { + error ("x87 register return with x87 disabled"); + issued_x87_ret_error = true; + } + return NULL; + } + + /* First construct simple cases. Avoid SCmode, since we want to use + single register to pass this type. */ + if (n == 1 && mode != SCmode) + switch (regclass[0]) + { + case X86_64_INTEGER_CLASS: + case X86_64_INTEGERSI_CLASS: + return gen_rtx_REG (mode, intreg[0]); + case X86_64_SSE_CLASS: + case X86_64_SSESF_CLASS: + case X86_64_SSEDF_CLASS: + if (mode != BLKmode) + return gen_reg_or_parallel (mode, orig_mode, + SSE_REGNO (sse_regno)); + break; + case X86_64_X87_CLASS: + case X86_64_COMPLEX_X87_CLASS: + return gen_rtx_REG (mode, FIRST_STACK_REG); + case X86_64_NO_CLASS: + /* Zero sized array, struct or class. */ + return NULL; + default: + gcc_unreachable (); + } + if (n == 2 && regclass[0] == X86_64_SSE_CLASS + && regclass[1] == X86_64_SSEUP_CLASS && mode != BLKmode) + return gen_rtx_REG (mode, SSE_REGNO (sse_regno)); + if (n == 4 + && regclass[0] == X86_64_SSE_CLASS + && regclass[1] == X86_64_SSEUP_CLASS + && regclass[2] == X86_64_SSEUP_CLASS + && regclass[3] == X86_64_SSEUP_CLASS + && mode != BLKmode) + return gen_rtx_REG (mode, SSE_REGNO (sse_regno)); + + if (n == 2 + && regclass[0] == X86_64_X87_CLASS && regclass[1] == X86_64_X87UP_CLASS) + return gen_rtx_REG (XFmode, FIRST_STACK_REG); + if (n == 2 && regclass[0] == X86_64_INTEGER_CLASS + && regclass[1] == X86_64_INTEGER_CLASS + && (mode == CDImode || mode == TImode || mode == TFmode) + && intreg[0] + 1 == intreg[1]) + return gen_rtx_REG (mode, intreg[0]); + + /* Otherwise figure out the entries of the PARALLEL. */ + for (i = 0; i < n; i++) + { + int pos; + + switch (regclass[i]) + { + case X86_64_NO_CLASS: + break; + case X86_64_INTEGER_CLASS: + case X86_64_INTEGERSI_CLASS: + /* Merge TImodes on aligned occasions here too. */ + if (i * 8 + 8 > bytes) + tmpmode = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0); + else if (regclass[i] == X86_64_INTEGERSI_CLASS) + tmpmode = SImode; + else + tmpmode = DImode; + /* We've requested 24 bytes we don't have mode for. Use DImode. */ + if (tmpmode == BLKmode) + tmpmode = DImode; + exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (tmpmode, *intreg), + GEN_INT (i*8)); + intreg++; + break; + case X86_64_SSESF_CLASS: + exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (SFmode, + SSE_REGNO (sse_regno)), + GEN_INT (i*8)); + sse_regno++; + break; + case X86_64_SSEDF_CLASS: + exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (DFmode, + SSE_REGNO (sse_regno)), + GEN_INT (i*8)); + sse_regno++; + break; + case X86_64_SSE_CLASS: + pos = i; + switch (n) + { + case 1: + tmpmode = DImode; + break; + case 2: + if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS) + { + tmpmode = TImode; + i++; + } + else + tmpmode = DImode; + break; + case 4: + gcc_assert (i == 0 + && regclass[1] == X86_64_SSEUP_CLASS + && regclass[2] == X86_64_SSEUP_CLASS + && regclass[3] == X86_64_SSEUP_CLASS); + tmpmode = OImode; + i += 3; + break; + default: + gcc_unreachable (); + } + exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (tmpmode, + SSE_REGNO (sse_regno)), + GEN_INT (pos*8)); + sse_regno++; + break; + default: + gcc_unreachable (); + } + } + + /* Empty aligned struct, union or class. */ + if (nexps == 0) + return NULL; + + ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps)); + for (i = 0; i < nexps; i++) + XVECEXP (ret, 0, i) = exp [i]; + return ret; +} + +/* Update the data in CUM to advance over an argument of mode MODE + and data type TYPE. (TYPE is null for libcalls where that information + may not be available.) */ + +static void +function_arg_advance_32 (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, HOST_WIDE_INT bytes, + HOST_WIDE_INT words) +{ + switch (mode) + { + default: + break; + + case BLKmode: + if (bytes < 0) + break; + /* FALLTHRU */ + + case DImode: + case SImode: + case HImode: + case QImode: + cum->words += words; + cum->nregs -= words; + cum->regno += words; + + if (cum->nregs <= 0) + { + cum->nregs = 0; + cum->regno = 0; + } + break; + + case OImode: + /* OImode shouldn't be used directly. */ + gcc_unreachable (); + + case DFmode: + if (cum->float_in_sse < 2) + break; + case SFmode: + if (cum->float_in_sse < 1) + break; + /* FALLTHRU */ + + case V8SFmode: + case V8SImode: + case V32QImode: + case V16HImode: + case V4DFmode: + case V4DImode: + case TImode: + case V16QImode: + case V8HImode: + case V4SImode: + case V2DImode: + case V4SFmode: + case V2DFmode: + if (!type || !AGGREGATE_TYPE_P (type)) + { + cum->sse_words += words; + cum->sse_nregs -= 1; + cum->sse_regno += 1; + if (cum->sse_nregs <= 0) + { + cum->sse_nregs = 0; + cum->sse_regno = 0; + } + } + break; + + case V8QImode: + case V4HImode: + case V2SImode: + case V2SFmode: + case V1TImode: + case V1DImode: + if (!type || !AGGREGATE_TYPE_P (type)) + { + cum->mmx_words += words; + cum->mmx_nregs -= 1; + cum->mmx_regno += 1; + if (cum->mmx_nregs <= 0) + { + cum->mmx_nregs = 0; + cum->mmx_regno = 0; + } + } + break; + } +} + +static void +function_arg_advance_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, HOST_WIDE_INT words, bool named) +{ + int int_nregs, sse_nregs; + + /* Unnamed 256bit vector mode parameters are passed on stack. */ + if (!named && VALID_AVX256_REG_MODE (mode)) + return; + + if (examine_argument (mode, type, 0, &int_nregs, &sse_nregs) + && sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs) + { + cum->nregs -= int_nregs; + cum->sse_nregs -= sse_nregs; + cum->regno += int_nregs; + cum->sse_regno += sse_nregs; + } + else + { + int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD; + cum->words = (cum->words + align - 1) & ~(align - 1); + cum->words += words; + } +} + +static void +function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes, + HOST_WIDE_INT words) +{ + /* Otherwise, this should be passed indirect. */ + gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8); + + cum->words += words; + if (cum->nregs > 0) + { + cum->nregs -= 1; + cum->regno += 1; + } +} + +/* Update the data in CUM to advance over an argument of mode MODE and + data type TYPE. (TYPE is null for libcalls where that information + may not be available.) */ + +static void +ix86_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named) +{ + HOST_WIDE_INT bytes, words; + + if (mode == BLKmode) + bytes = int_size_in_bytes (type); + else + bytes = GET_MODE_SIZE (mode); + words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + + if (type) + mode = type_natural_mode (type, NULL); + + if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) + function_arg_advance_ms_64 (cum, bytes, words); + else if (TARGET_64BIT) + function_arg_advance_64 (cum, mode, type, words, named); + else + function_arg_advance_32 (cum, mode, type, bytes, words); +} + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + +static rtx +function_arg_32 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, + enum machine_mode orig_mode, const_tree type, + HOST_WIDE_INT bytes, HOST_WIDE_INT words) +{ + static bool warnedsse, warnedmmx; + + /* Avoid the AL settings for the Unix64 ABI. */ + if (mode == VOIDmode) + return constm1_rtx; + + switch (mode) + { + default: + break; + + case BLKmode: + if (bytes < 0) + break; + /* FALLTHRU */ + case DImode: + case SImode: + case HImode: + case QImode: + if (words <= cum->nregs) + { + int regno = cum->regno; + + /* Fastcall allocates the first two DWORD (SImode) or + smaller arguments to ECX and EDX if it isn't an + aggregate type . */ + if (cum->fastcall) + { + if (mode == BLKmode + || mode == DImode + || (type && AGGREGATE_TYPE_P (type))) + break; + + /* ECX not EAX is the first allocated register. */ + if (regno == AX_REG) + regno = CX_REG; + } + return gen_rtx_REG (mode, regno); + } + break; + + case DFmode: + if (cum->float_in_sse < 2) + break; + case SFmode: + if (cum->float_in_sse < 1) + break; + /* FALLTHRU */ + case TImode: + /* In 32bit, we pass TImode in xmm registers. */ + case V16QImode: + case V8HImode: + case V4SImode: + case V2DImode: + case V4SFmode: + case V2DFmode: + if (!type || !AGGREGATE_TYPE_P (type)) + { + if (!TARGET_SSE && !warnedsse && cum->warn_sse) + { + warnedsse = true; + warning (0, "SSE vector argument without SSE enabled " + "changes the ABI"); + } + if (cum->sse_nregs) + return gen_reg_or_parallel (mode, orig_mode, + cum->sse_regno + FIRST_SSE_REG); + } + break; + + case OImode: + /* OImode shouldn't be used directly. */ + gcc_unreachable (); + + case V8SFmode: + case V8SImode: + case V32QImode: + case V16HImode: + case V4DFmode: + case V4DImode: + if (!type || !AGGREGATE_TYPE_P (type)) + { + if (cum->sse_nregs) + return gen_reg_or_parallel (mode, orig_mode, + cum->sse_regno + FIRST_SSE_REG); + } + break; + + case V8QImode: + case V4HImode: + case V2SImode: + case V2SFmode: + case V1TImode: + case V1DImode: + if (!type || !AGGREGATE_TYPE_P (type)) + { + if (!TARGET_MMX && !warnedmmx && cum->warn_mmx) + { + warnedmmx = true; + warning (0, "MMX vector argument without MMX enabled " + "changes the ABI"); + } + if (cum->mmx_nregs) + return gen_reg_or_parallel (mode, orig_mode, + cum->mmx_regno + FIRST_MMX_REG); + } + break; + } + + return NULL_RTX; +} + +static rtx +function_arg_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, + enum machine_mode orig_mode, const_tree type, bool named) +{ + /* Handle a hidden AL argument containing number of registers + for varargs x86-64 functions. */ + if (mode == VOIDmode) + return GEN_INT (cum->maybe_vaarg + ? (cum->sse_nregs < 0 + ? X86_64_SSE_REGPARM_MAX + : cum->sse_regno) + : -1); + + switch (mode) + { + default: + break; + + case V8SFmode: + case V8SImode: + case V32QImode: + case V16HImode: + case V4DFmode: + case V4DImode: + /* Unnamed 256bit vector mode parameters are passed on stack. */ + if (!named) + return NULL; + break; + } + + return construct_container (mode, orig_mode, type, 0, cum->nregs, + cum->sse_nregs, + &x86_64_int_parameter_registers [cum->regno], + cum->sse_regno); +} + +static rtx +function_arg_ms_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, + enum machine_mode orig_mode, bool named, + HOST_WIDE_INT bytes) +{ + unsigned int regno; + + /* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call. + We use value of -2 to specify that current function call is MSABI. */ + if (mode == VOIDmode) + return GEN_INT (-2); + + /* If we've run out of registers, it goes on the stack. */ + if (cum->nregs == 0) + return NULL_RTX; + + regno = x86_64_ms_abi_int_parameter_registers[cum->regno]; + + /* Only floating point modes are passed in anything but integer regs. */ + if (TARGET_SSE && (mode == SFmode || mode == DFmode)) + { + if (named) + regno = cum->regno + FIRST_SSE_REG; + else + { + rtx t1, t2; + + /* Unnamed floating parameters are passed in both the + SSE and integer registers. */ + t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG); + t2 = gen_rtx_REG (mode, regno); + t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx); + t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx); + return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2)); + } + } + /* Handle aggregated types passed in register. */ + if (orig_mode == BLKmode) + { + if (bytes > 0 && bytes <= 8) + mode = (bytes > 4 ? DImode : SImode); + if (mode == BLKmode) + mode = DImode; + } + + return gen_reg_or_parallel (mode, orig_mode, regno); +} + +/* Return where to put the arguments to a function. + Return zero to push the argument on the stack, or a hard register in which to store the argument. + + MODE is the argument's machine mode. TYPE is the data type of the + argument. It is null for libcalls where that information may not be + available. CUM gives information about the preceding args and about + the function being called. NAMED is nonzero if this argument is a + named parameter (otherwise it is an extra parameter matching an + ellipsis). */ + +static rtx +ix86_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode omode, + const_tree type, bool named) +{ + enum machine_mode mode = omode; + HOST_WIDE_INT bytes, words; + rtx arg; + + if (mode == BLKmode) + bytes = int_size_in_bytes (type); + else + bytes = GET_MODE_SIZE (mode); + words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + + /* To simplify the code below, represent vector types with a vector mode + even if MMX/SSE are not active. */ + if (type && TREE_CODE (type) == VECTOR_TYPE) + mode = type_natural_mode (type, cum); + + if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) + arg = function_arg_ms_64 (cum, mode, omode, named, bytes); + else if (TARGET_64BIT) + arg = function_arg_64 (cum, mode, omode, type, named); + else + arg = function_arg_32 (cum, mode, omode, type, bytes, words); + + if (TARGET_VZEROUPPER && function_pass_avx256_p (arg)) + { + /* This argument uses 256bit AVX modes. */ + if (cum->caller) + cum->callee_pass_avx256_p = true; + else + cfun->machine->caller_pass_avx256_p = true; + } + + if (cum->caller && mode == VOIDmode) + { + /* This function is called with MODE == VOIDmode immediately + before the call instruction is emitted. We copy callee 256bit + AVX info from the current CUM here. */ + cfun->machine->callee_return_avx256_p = cum->callee_return_avx256_p; + cfun->machine->callee_pass_avx256_p = cum->callee_pass_avx256_p; + } + + return arg; +} + +/* A C expression that indicates when an argument must be passed by + reference. If nonzero for an argument, a copy of that argument is + made in memory and a pointer to the argument is passed instead of + the argument itself. The pointer is passed in whatever way is + appropriate for passing a pointer to that type. */ + +static bool +ix86_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + const_tree type, bool named ATTRIBUTE_UNUSED) +{ + /* See Windows x64 Software Convention. */ + if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) + { + int msize = (int) GET_MODE_SIZE (mode); + if (type) + { + /* Arrays are passed by reference. */ + if (TREE_CODE (type) == ARRAY_TYPE) + return true; + + if (AGGREGATE_TYPE_P (type)) + { + /* Structs/unions of sizes other than 8, 16, 32, or 64 bits + are passed by reference. */ + msize = int_size_in_bytes (type); + } + } + + /* __m128 is passed by reference. */ + switch (msize) { + case 1: case 2: case 4: case 8: + break; + default: + return true; + } + } + else if (TARGET_64BIT && type && int_size_in_bytes (type) == -1) + return 1; + + return 0; +} + +/* Return true when TYPE should be 128bit aligned for 32bit argument + passing ABI. XXX: This function is obsolete and is only used for + checking psABI compatibility with previous versions of GCC. */ + +static bool +ix86_compat_aligned_value_p (const_tree type) +{ + enum machine_mode mode = TYPE_MODE (type); + if (((TARGET_SSE && SSE_REG_MODE_P (mode)) + || mode == TDmode + || mode == TFmode + || mode == TCmode) + && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128)) + return true; + if (TYPE_ALIGN (type) < 128) + return false; + + if (AGGREGATE_TYPE_P (type)) + { + /* Walk the aggregates recursively. */ + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree field; + + /* Walk all the structure fields. */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL + && ix86_compat_aligned_value_p (TREE_TYPE (field))) + return true; + } + break; + } + + case ARRAY_TYPE: + /* Just for use if some languages passes arrays by value. */ + if (ix86_compat_aligned_value_p (TREE_TYPE (type))) + return true; + break; + + default: + gcc_unreachable (); + } + } + return false; +} + +/* Return the alignment boundary for MODE and TYPE with alignment ALIGN. + XXX: This function is obsolete and is only used for checking psABI + compatibility with previous versions of GCC. */ + +static unsigned int +ix86_compat_function_arg_boundary (enum machine_mode mode, + const_tree type, unsigned int align) +{ + /* In 32bit, only _Decimal128 and __float128 are aligned to their + natural boundaries. */ + if (!TARGET_64BIT && mode != TDmode && mode != TFmode) + { + /* i386 ABI defines all arguments to be 4 byte aligned. We have to + make an exception for SSE modes since these require 128bit + alignment. + + The handling here differs from field_alignment. ICC aligns MMX + arguments to 4 byte boundaries, while structure fields are aligned + to 8 byte boundaries. */ + if (!type) + { + if (!(TARGET_SSE && SSE_REG_MODE_P (mode))) + align = PARM_BOUNDARY; + } + else + { + if (!ix86_compat_aligned_value_p (type)) + align = PARM_BOUNDARY; + } + } + if (align > BIGGEST_ALIGNMENT) + align = BIGGEST_ALIGNMENT; + return align; +} + +/* Return true when TYPE should be 128bit aligned for 32bit argument + passing ABI. */ + +static bool +ix86_contains_aligned_value_p (const_tree type) +{ + enum machine_mode mode = TYPE_MODE (type); + + if (mode == XFmode || mode == XCmode) + return false; + + if (TYPE_ALIGN (type) < 128) + return false; + + if (AGGREGATE_TYPE_P (type)) + { + /* Walk the aggregates recursively. */ + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree field; + + /* Walk all the structure fields. */ + for (field = TYPE_FIELDS (type); + field; + field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL + && ix86_contains_aligned_value_p (TREE_TYPE (field))) + return true; + } + break; + } + + case ARRAY_TYPE: + /* Just for use if some languages passes arrays by value. */ + if (ix86_contains_aligned_value_p (TREE_TYPE (type))) + return true; + break; + + default: + gcc_unreachable (); + } + } + else + return TYPE_ALIGN (type) >= 128; + + return false; +} + +/* Gives the alignment boundary, in bits, of an argument with the + specified mode and type. */ + +static unsigned int +ix86_function_arg_boundary (enum machine_mode mode, const_tree type) +{ + unsigned int align; + if (type) + { + /* Since the main variant type is used for call, we convert it to + the main variant type. */ + type = TYPE_MAIN_VARIANT (type); + align = TYPE_ALIGN (type); + } + else + align = GET_MODE_ALIGNMENT (mode); + if (align < PARM_BOUNDARY) + align = PARM_BOUNDARY; + else + { + static bool warned; + unsigned int saved_align = align; + + if (!TARGET_64BIT) + { + /* i386 ABI defines XFmode arguments to be 4 byte aligned. */ + if (!type) + { + if (mode == XFmode || mode == XCmode) + align = PARM_BOUNDARY; + } + else if (!ix86_contains_aligned_value_p (type)) + align = PARM_BOUNDARY; + + if (align < 128) + align = PARM_BOUNDARY; + } + + if (warn_psabi + && !warned + && align != ix86_compat_function_arg_boundary (mode, type, + saved_align)) + { + warned = true; + inform (input_location, + "The ABI for passing parameters with %d-byte" + " alignment has changed in GCC 4.6", + align / BITS_PER_UNIT); + } + } + + return align; +} + +/* Return true if N is a possible register number of function value. */ + +static bool +ix86_function_value_regno_p (const unsigned int regno) +{ + switch (regno) + { + case 0: + return true; + + case FIRST_FLOAT_REG: + /* TODO: The function should depend on current function ABI but + builtins.c would need updating then. Therefore we use the + default ABI. */ + if (TARGET_64BIT && ix86_abi == MS_ABI) + return false; + return TARGET_FLOAT_RETURNS_IN_80387; + + case FIRST_SSE_REG: + return TARGET_SSE; + + case FIRST_MMX_REG: + if (TARGET_MACHO || TARGET_64BIT) + return false; + return TARGET_MMX; + } + + return false; +} + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ + +static rtx +function_value_32 (enum machine_mode orig_mode, enum machine_mode mode, + const_tree fntype, const_tree fn) +{ + unsigned int regno; + + /* 8-byte vector modes in %mm0. See ix86_return_in_memory for where + we normally prevent this case when mmx is not available. However + some ABIs may require the result to be returned like DImode. */ + if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) + regno = TARGET_MMX ? FIRST_MMX_REG : 0; + + /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where + we prevent this case when sse is not available. However some ABIs + may require the result to be returned like integer TImode. */ + else if (mode == TImode + || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) + regno = TARGET_SSE ? FIRST_SSE_REG : 0; + + /* 32-byte vector modes in %ymm0. */ + else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32) + regno = TARGET_AVX ? FIRST_SSE_REG : 0; + + /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */ + else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387) + regno = FIRST_FLOAT_REG; + else + /* Most things go in %eax. */ + regno = AX_REG; + + /* Override FP return register with %xmm0 for local functions when + SSE math is enabled or for functions with sseregparm attribute. */ + if ((fn || fntype) && (mode == SFmode || mode == DFmode)) + { + int sse_level = ix86_function_sseregparm (fntype, fn, false); + if ((sse_level >= 1 && mode == SFmode) + || (sse_level == 2 && mode == DFmode)) + regno = FIRST_SSE_REG; + } + + /* OImode shouldn't be used directly. */ + gcc_assert (mode != OImode); + + return gen_rtx_REG (orig_mode, regno); +} + +static rtx +function_value_64 (enum machine_mode orig_mode, enum machine_mode mode, + const_tree valtype) +{ + rtx ret; + + /* Handle libcalls, which don't provide a type node. */ + if (valtype == NULL) + { + switch (mode) + { + case SFmode: + case SCmode: + case DFmode: + case DCmode: + case TFmode: + case SDmode: + case DDmode: + case TDmode: + return gen_rtx_REG (mode, FIRST_SSE_REG); + case XFmode: + case XCmode: + return gen_rtx_REG (mode, FIRST_FLOAT_REG); + case TCmode: + return NULL; + default: + return gen_rtx_REG (mode, AX_REG); + } + } + + ret = construct_container (mode, orig_mode, valtype, 1, + X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, + x86_64_int_return_registers, 0); + + /* For zero sized structures, construct_container returns NULL, but we + need to keep rest of compiler happy by returning meaningful value. */ + if (!ret) + ret = gen_rtx_REG (orig_mode, AX_REG); + + return ret; +} + +static rtx +function_value_ms_64 (enum machine_mode orig_mode, enum machine_mode mode) +{ + unsigned int regno = AX_REG; + + if (TARGET_SSE) + { + switch (GET_MODE_SIZE (mode)) + { + case 16: + if((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) + && !COMPLEX_MODE_P (mode)) + regno = FIRST_SSE_REG; + break; + case 8: + case 4: + if (mode == SFmode || mode == DFmode) + regno = FIRST_SSE_REG; + break; + default: + break; + } + } + return gen_rtx_REG (orig_mode, regno); +} + +static rtx +ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl, + enum machine_mode orig_mode, enum machine_mode mode) +{ + const_tree fn, fntype; + + fn = NULL_TREE; + if (fntype_or_decl && DECL_P (fntype_or_decl)) + fn = fntype_or_decl; + fntype = fn ? TREE_TYPE (fn) : fntype_or_decl; + + if (TARGET_64BIT && ix86_function_type_abi (fntype) == MS_ABI) + return function_value_ms_64 (orig_mode, mode); + else if (TARGET_64BIT) + return function_value_64 (orig_mode, mode, valtype); + else + return function_value_32 (orig_mode, mode, fntype, fn); +} + +static rtx +ix86_function_value (const_tree valtype, const_tree fntype_or_decl, + bool outgoing ATTRIBUTE_UNUSED) +{ + enum machine_mode mode, orig_mode; + + orig_mode = TYPE_MODE (valtype); + mode = type_natural_mode (valtype, NULL); + return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode); +} + +rtx +ix86_libcall_value (enum machine_mode mode) +{ + return ix86_function_value_1 (NULL, NULL, mode, mode); +} + +/* Return true iff type is returned in memory. */ + +static bool ATTRIBUTE_UNUSED +return_in_memory_32 (const_tree type, enum machine_mode mode) +{ + HOST_WIDE_INT size; + + if (mode == BLKmode) + return true; + + size = int_size_in_bytes (type); + + if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8) + return false; + + if (VECTOR_MODE_P (mode) || mode == TImode) + { + /* User-created vectors small enough to fit in EAX. */ + if (size < 8) + return false; + + /* MMX/3dNow values are returned in MM0, + except when it doesn't exits or the ABI prescribes otherwise. */ + if (size == 8) + return !TARGET_MMX || TARGET_VECT8_RETURNS; + + /* SSE values are returned in XMM0, except when it doesn't exist. */ + if (size == 16) + return !TARGET_SSE; + + /* AVX values are returned in YMM0, except when it doesn't exist. */ + if (size == 32) + return !TARGET_AVX; + } + + if (mode == XFmode) + return false; + + if (size > 12) + return true; + + /* OImode shouldn't be used directly. */ + gcc_assert (mode != OImode); + + return false; +} + +static bool ATTRIBUTE_UNUSED +return_in_memory_64 (const_tree type, enum machine_mode mode) +{ + int needed_intregs, needed_sseregs; + return !examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs); +} + +static bool ATTRIBUTE_UNUSED +return_in_memory_ms_64 (const_tree type, enum machine_mode mode) +{ + HOST_WIDE_INT size = int_size_in_bytes (type); + + /* __m128 is returned in xmm0. */ + if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) + && !COMPLEX_MODE_P (mode) && (GET_MODE_SIZE (mode) == 16 || size == 16)) + return false; + + /* Otherwise, the size must be exactly in [1248]. */ + return size != 1 && size != 2 && size != 4 && size != 8; +} + +static bool +ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) +{ +#ifdef SUBTARGET_RETURN_IN_MEMORY + return SUBTARGET_RETURN_IN_MEMORY (type, fntype); +#else + const enum machine_mode mode = type_natural_mode (type, NULL); + + if (TARGET_64BIT) + { + if (ix86_function_type_abi (fntype) == MS_ABI) + return return_in_memory_ms_64 (type, mode); + else + return return_in_memory_64 (type, mode); + } + else + return return_in_memory_32 (type, mode); +#endif +} + +/* When returning SSE vector types, we have a choice of either + (1) being abi incompatible with a -march switch, or + (2) generating an error. + Given no good solution, I think the safest thing is one warning. + The user won't be able to use -Werror, but.... + + Choose the STRUCT_VALUE_RTX hook because that's (at present) only + called in response to actually generating a caller or callee that + uses such a type. As opposed to TARGET_RETURN_IN_MEMORY, which is called + via aggregate_value_p for general type probing from tree-ssa. */ + +static rtx +ix86_struct_value_rtx (tree type, int incoming ATTRIBUTE_UNUSED) +{ + static bool warnedsse, warnedmmx; + + if (!TARGET_64BIT && type) + { + /* Look at the return type of the function, not the function type. */ + enum machine_mode mode = TYPE_MODE (TREE_TYPE (type)); + + if (!TARGET_SSE && !warnedsse) + { + if (mode == TImode + || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) + { + warnedsse = true; + warning (0, "SSE vector return without SSE enabled " + "changes the ABI"); + } + } + + if (!TARGET_MMX && !warnedmmx) + { + if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) + { + warnedmmx = true; + warning (0, "MMX vector return without MMX enabled " + "changes the ABI"); + } + } + } + + return NULL; +} + + +/* Create the va_list data type. */ + +/* Returns the calling convention specific va_list date type. + The argument ABI can be DEFAULT_ABI, MS_ABI, or SYSV_ABI. */ + +static tree +ix86_build_builtin_va_list_abi (enum calling_abi abi) +{ + tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; + + /* For i386 we use plain pointer to argument area. */ + if (!TARGET_64BIT || abi == MS_ABI) + return build_pointer_type (char_type_node); + + record = lang_hooks.types.make_type (RECORD_TYPE); + type_decl = build_decl (BUILTINS_LOCATION, + TYPE_DECL, get_identifier ("__va_list_tag"), record); + + f_gpr = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("gp_offset"), + unsigned_type_node); + f_fpr = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("fp_offset"), + unsigned_type_node); + f_ovf = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("overflow_arg_area"), + ptr_type_node); + f_sav = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("reg_save_area"), + ptr_type_node); + + va_list_gpr_counter_field = f_gpr; + va_list_fpr_counter_field = f_fpr; + + DECL_FIELD_CONTEXT (f_gpr) = record; + DECL_FIELD_CONTEXT (f_fpr) = record; + DECL_FIELD_CONTEXT (f_ovf) = record; + DECL_FIELD_CONTEXT (f_sav) = record; + + TYPE_STUB_DECL (record) = type_decl; + TYPE_NAME (record) = type_decl; + TYPE_FIELDS (record) = f_gpr; + DECL_CHAIN (f_gpr) = f_fpr; + DECL_CHAIN (f_fpr) = f_ovf; + DECL_CHAIN (f_ovf) = f_sav; + + layout_type (record); + + /* The correct type is an array type of one element. */ + return build_array_type (record, build_index_type (size_zero_node)); +} + +/* Setup the builtin va_list data type and for 64-bit the additional + calling convention specific va_list data types. */ + +static tree +ix86_build_builtin_va_list (void) +{ + tree ret = ix86_build_builtin_va_list_abi (ix86_abi); + + /* Initialize abi specific va_list builtin types. */ + if (TARGET_64BIT) + { + tree t; + if (ix86_abi == MS_ABI) + { + t = ix86_build_builtin_va_list_abi (SYSV_ABI); + if (TREE_CODE (t) != RECORD_TYPE) + t = build_variant_type_copy (t); + sysv_va_list_type_node = t; + } + else + { + t = ret; + if (TREE_CODE (t) != RECORD_TYPE) + t = build_variant_type_copy (t); + sysv_va_list_type_node = t; + } + if (ix86_abi != MS_ABI) + { + t = ix86_build_builtin_va_list_abi (MS_ABI); + if (TREE_CODE (t) != RECORD_TYPE) + t = build_variant_type_copy (t); + ms_va_list_type_node = t; + } + else + { + t = ret; + if (TREE_CODE (t) != RECORD_TYPE) + t = build_variant_type_copy (t); + ms_va_list_type_node = t; + } + } + + return ret; +} + +/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ + +static void +setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum) +{ + rtx save_area, mem; + alias_set_type set; + int i, max; + + /* GPR size of varargs save area. */ + if (cfun->va_list_gpr_size) + ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD; + else + ix86_varargs_gpr_size = 0; + + /* FPR size of varargs save area. We don't need it if we don't pass + anything in SSE registers. */ + if (TARGET_SSE && cfun->va_list_fpr_size) + ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16; + else + ix86_varargs_fpr_size = 0; + + if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size) + return; + + save_area = frame_pointer_rtx; + set = get_varargs_alias_set (); + + max = cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD; + if (max > X86_64_REGPARM_MAX) + max = X86_64_REGPARM_MAX; + + for (i = cum->regno; i < max; i++) + { + mem = gen_rtx_MEM (Pmode, + plus_constant (save_area, i * UNITS_PER_WORD)); + MEM_NOTRAP_P (mem) = 1; + set_mem_alias_set (mem, set); + emit_move_insn (mem, gen_rtx_REG (Pmode, + x86_64_int_parameter_registers[i])); + } + + if (ix86_varargs_fpr_size) + { + enum machine_mode smode; + rtx label, test; + + /* Now emit code to save SSE registers. The AX parameter contains number + of SSE parameter registers used to call this function, though all we + actually check here is the zero/non-zero status. */ + + label = gen_label_rtx (); + test = gen_rtx_EQ (VOIDmode, gen_rtx_REG (QImode, AX_REG), const0_rtx); + emit_jump_insn (gen_cbranchqi4 (test, XEXP (test, 0), XEXP (test, 1), + label)); + + /* ??? If !TARGET_SSE_TYPELESS_STORES, would we perform better if + we used movdqa (i.e. TImode) instead? Perhaps even better would + be if we could determine the real mode of the data, via a hook + into pass_stdarg. Ignore all that for now. */ + smode = V4SFmode; + if (crtl->stack_alignment_needed < GET_MODE_ALIGNMENT (smode)) + crtl->stack_alignment_needed = GET_MODE_ALIGNMENT (smode); + + max = cum->sse_regno + cfun->va_list_fpr_size / 16; + if (max > X86_64_SSE_REGPARM_MAX) + max = X86_64_SSE_REGPARM_MAX; + + for (i = cum->sse_regno; i < max; ++i) + { + mem = plus_constant (save_area, i * 16 + ix86_varargs_gpr_size); + mem = gen_rtx_MEM (smode, mem); + MEM_NOTRAP_P (mem) = 1; + set_mem_alias_set (mem, set); + set_mem_align (mem, GET_MODE_ALIGNMENT (smode)); + + emit_move_insn (mem, gen_rtx_REG (smode, SSE_REGNO (i))); + } + + emit_label (label); + } +} + +static void +setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum) +{ + alias_set_type set = get_varargs_alias_set (); + int i; + + for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++) + { + rtx reg, mem; + + mem = gen_rtx_MEM (Pmode, + plus_constant (virtual_incoming_args_rtx, + i * UNITS_PER_WORD)); + MEM_NOTRAP_P (mem) = 1; + set_mem_alias_set (mem, set); + + reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]); + emit_move_insn (mem, reg); + } +} + +static void +ix86_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode, + tree type, int *pretend_size ATTRIBUTE_UNUSED, + int no_rtl) +{ + CUMULATIVE_ARGS next_cum; + tree fntype; + + /* This argument doesn't appear to be used anymore. Which is good, + because the old code here didn't suppress rtl generation. */ + gcc_assert (!no_rtl); + + if (!TARGET_64BIT) + return; + + fntype = TREE_TYPE (current_function_decl); + + /* For varargs, we do not want to skip the dummy va_dcl argument. + For stdargs, we do want to skip the last named argument. */ + next_cum = *cum; + if (stdarg_p (fntype)) + ix86_function_arg_advance (&next_cum, mode, type, true); + + if (cum->call_abi == MS_ABI) + setup_incoming_varargs_ms_64 (&next_cum); + else + setup_incoming_varargs_64 (&next_cum); +} + +/* Checks if TYPE is of kind va_list char *. */ + +static bool +is_va_list_char_pointer (tree type) +{ + tree canonic; + + /* For 32-bit it is always true. */ + if (!TARGET_64BIT) + return true; + canonic = ix86_canonical_va_list_type (type); + return (canonic == ms_va_list_type_node + || (ix86_abi == MS_ABI && canonic == va_list_type_node)); +} + +/* Implement va_start. */ + +static void +ix86_va_start (tree valist, rtx nextarg) +{ + HOST_WIDE_INT words, n_gpr, n_fpr; + tree f_gpr, f_fpr, f_ovf, f_sav; + tree gpr, fpr, ovf, sav, t; + tree type; + rtx ovf_rtx; + + if (flag_split_stack + && cfun->machine->split_stack_varargs_pointer == NULL_RTX) + { + unsigned int scratch_regno; + + /* When we are splitting the stack, we can't refer to the stack + arguments using internal_arg_pointer, because they may be on + the old stack. The split stack prologue will arrange to + leave a pointer to the old stack arguments in a scratch + register, which we here copy to a pseudo-register. The split + stack prologue can't set the pseudo-register directly because + it (the prologue) runs before any registers have been saved. */ + + scratch_regno = split_stack_prologue_scratch_regno (); + if (scratch_regno != INVALID_REGNUM) + { + rtx reg, seq; + + reg = gen_reg_rtx (Pmode); + cfun->machine->split_stack_varargs_pointer = reg; + + start_sequence (); + emit_move_insn (reg, gen_rtx_REG (Pmode, scratch_regno)); + seq = get_insns (); + end_sequence (); + + push_topmost_sequence (); + emit_insn_after (seq, entry_of_function ()); + pop_topmost_sequence (); + } + } + + /* Only 64bit target needs something special. */ + if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) + { + if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) + std_expand_builtin_va_start (valist, nextarg); + else + { + rtx va_r, next; + + va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE); + next = expand_binop (ptr_mode, add_optab, + cfun->machine->split_stack_varargs_pointer, + crtl->args.arg_offset_rtx, + NULL_RTX, 0, OPTAB_LIB_WIDEN); + convert_move (va_r, next, 0); + } + return; + } + + f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); + f_fpr = DECL_CHAIN (f_gpr); + f_ovf = DECL_CHAIN (f_fpr); + f_sav = DECL_CHAIN (f_ovf); + + valist = build_simple_mem_ref (valist); + TREE_TYPE (valist) = TREE_TYPE (sysv_va_list_type_node); + /* The following should be folded into the MEM_REF offset. */ + gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), unshare_expr (valist), + f_gpr, NULL_TREE); + fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist), + f_fpr, NULL_TREE); + ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist), + f_ovf, NULL_TREE); + sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist), + f_sav, NULL_TREE); + + /* Count number of gp and fp argument registers used. */ + words = crtl->args.info.words; + n_gpr = crtl->args.info.regno; + n_fpr = crtl->args.info.sse_regno; + + if (cfun->va_list_gpr_size) + { + type = TREE_TYPE (gpr); + t = build2 (MODIFY_EXPR, type, + gpr, build_int_cst (type, n_gpr * 8)); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + } + + if (TARGET_SSE && cfun->va_list_fpr_size) + { + type = TREE_TYPE (fpr); + t = build2 (MODIFY_EXPR, type, fpr, + build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX)); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + } + + /* Find the overflow area. */ + type = TREE_TYPE (ovf); + if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) + ovf_rtx = crtl->args.internal_arg_pointer; + else + ovf_rtx = cfun->machine->split_stack_varargs_pointer; + t = make_tree (type, ovf_rtx); + if (words != 0) + t = build2 (POINTER_PLUS_EXPR, type, t, + size_int (words * UNITS_PER_WORD)); + t = build2 (MODIFY_EXPR, type, ovf, t); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + if (ix86_varargs_gpr_size || ix86_varargs_fpr_size) + { + /* Find the register save area. + Prologue of the function save it right above stack frame. */ + type = TREE_TYPE (sav); + t = make_tree (type, frame_pointer_rtx); + if (!ix86_varargs_gpr_size) + t = build2 (POINTER_PLUS_EXPR, type, t, + size_int (-8 * X86_64_REGPARM_MAX)); + t = build2 (MODIFY_EXPR, type, sav, t); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + } +} + +/* Implement va_arg. */ + +static tree +ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, + gimple_seq *post_p) +{ + static const int intreg[6] = { 0, 1, 2, 3, 4, 5 }; + tree f_gpr, f_fpr, f_ovf, f_sav; + tree gpr, fpr, ovf, sav, t; + int size, rsize; + tree lab_false, lab_over = NULL_TREE; + tree addr, t2; + rtx container; + int indirect_p = 0; + tree ptrtype; + enum machine_mode nat_mode; + unsigned int arg_boundary; + + /* Only 64bit target needs something special. */ + if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) + return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); + + f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); + f_fpr = DECL_CHAIN (f_gpr); + f_ovf = DECL_CHAIN (f_fpr); + f_sav = DECL_CHAIN (f_ovf); + + gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), + build_va_arg_indirect_ref (valist), f_gpr, NULL_TREE); + valist = build_va_arg_indirect_ref (valist); + fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); + ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); + sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); + + indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); + if (indirect_p) + type = build_pointer_type (type); + size = int_size_in_bytes (type); + rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + + nat_mode = type_natural_mode (type, NULL); + switch (nat_mode) + { + case V8SFmode: + case V8SImode: + case V32QImode: + case V16HImode: + case V4DFmode: + case V4DImode: + /* Unnamed 256bit vector mode parameters are passed on stack. */ + if (ix86_cfun_abi () == SYSV_ABI) + { + container = NULL; + break; + } + + default: + container = construct_container (nat_mode, TYPE_MODE (type), + type, 0, X86_64_REGPARM_MAX, + X86_64_SSE_REGPARM_MAX, intreg, + 0); + break; + } + + /* Pull the value out of the saved registers. */ + + addr = create_tmp_var (ptr_type_node, "addr"); + + if (container) + { + int needed_intregs, needed_sseregs; + bool need_temp; + tree int_addr, sse_addr; + + lab_false = create_artificial_label (UNKNOWN_LOCATION); + lab_over = create_artificial_label (UNKNOWN_LOCATION); + + examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs); + + need_temp = (!REG_P (container) + && ((needed_intregs && TYPE_ALIGN (type) > 64) + || TYPE_ALIGN (type) > 128)); + + /* In case we are passing structure, verify that it is consecutive block + on the register save area. If not we need to do moves. */ + if (!need_temp && !REG_P (container)) + { + /* Verify that all registers are strictly consecutive */ + if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0)))) + { + int i; + + for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) + { + rtx slot = XVECEXP (container, 0, i); + if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i + || INTVAL (XEXP (slot, 1)) != i * 16) + need_temp = 1; + } + } + else + { + int i; + + for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) + { + rtx slot = XVECEXP (container, 0, i); + if (REGNO (XEXP (slot, 0)) != (unsigned int) i + || INTVAL (XEXP (slot, 1)) != i * 8) + need_temp = 1; + } + } + } + if (!need_temp) + { + int_addr = addr; + sse_addr = addr; + } + else + { + int_addr = create_tmp_var (ptr_type_node, "int_addr"); + sse_addr = create_tmp_var (ptr_type_node, "sse_addr"); + } + + /* First ensure that we fit completely in registers. */ + if (needed_intregs) + { + t = build_int_cst (TREE_TYPE (gpr), + (X86_64_REGPARM_MAX - needed_intregs + 1) * 8); + t = build2 (GE_EXPR, boolean_type_node, gpr, t); + t2 = build1 (GOTO_EXPR, void_type_node, lab_false); + t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); + gimplify_and_add (t, pre_p); + } + if (needed_sseregs) + { + t = build_int_cst (TREE_TYPE (fpr), + (X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16 + + X86_64_REGPARM_MAX * 8); + t = build2 (GE_EXPR, boolean_type_node, fpr, t); + t2 = build1 (GOTO_EXPR, void_type_node, lab_false); + t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); + gimplify_and_add (t, pre_p); + } + + /* Compute index to start of area used for integer regs. */ + if (needed_intregs) + { + /* int_addr = gpr + sav; */ + t = fold_convert (sizetype, gpr); + t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, t); + gimplify_assign (int_addr, t, pre_p); + } + if (needed_sseregs) + { + /* sse_addr = fpr + sav; */ + t = fold_convert (sizetype, fpr); + t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, t); + gimplify_assign (sse_addr, t, pre_p); + } + if (need_temp) + { + int i, prev_size = 0; + tree temp = create_tmp_var (type, "va_arg_tmp"); + + /* addr = &temp; */ + t = build1 (ADDR_EXPR, build_pointer_type (type), temp); + gimplify_assign (addr, t, pre_p); + + for (i = 0; i < XVECLEN (container, 0); i++) + { + rtx slot = XVECEXP (container, 0, i); + rtx reg = XEXP (slot, 0); + enum machine_mode mode = GET_MODE (reg); + tree piece_type; + tree addr_type; + tree daddr_type; + tree src_addr, src; + int src_offset; + tree dest_addr, dest; + int cur_size = GET_MODE_SIZE (mode); + + gcc_assert (prev_size <= INTVAL (XEXP (slot, 1))); + prev_size = INTVAL (XEXP (slot, 1)); + if (prev_size + cur_size > size) + { + cur_size = size - prev_size; + mode = mode_for_size (cur_size * BITS_PER_UNIT, MODE_INT, 1); + if (mode == BLKmode) + mode = QImode; + } + piece_type = lang_hooks.types.type_for_mode (mode, 1); + if (mode == GET_MODE (reg)) + addr_type = build_pointer_type (piece_type); + else + addr_type = build_pointer_type_for_mode (piece_type, ptr_mode, + true); + daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode, + true); + + if (SSE_REGNO_P (REGNO (reg))) + { + src_addr = sse_addr; + src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16; + } + else + { + src_addr = int_addr; + src_offset = REGNO (reg) * 8; + } + src_addr = fold_convert (addr_type, src_addr); + src_addr = fold_build2 (POINTER_PLUS_EXPR, addr_type, src_addr, + size_int (src_offset)); + + dest_addr = fold_convert (daddr_type, addr); + dest_addr = fold_build2 (POINTER_PLUS_EXPR, daddr_type, dest_addr, + size_int (prev_size)); + if (cur_size == GET_MODE_SIZE (mode)) + { + src = build_va_arg_indirect_ref (src_addr); + dest = build_va_arg_indirect_ref (dest_addr); + + gimplify_assign (dest, src, pre_p); + } + else + { + tree copy + = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY], + 3, dest_addr, src_addr, + size_int (cur_size)); + gimplify_and_add (copy, pre_p); + } + prev_size += cur_size; + } + } + + if (needed_intregs) + { + t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr, + build_int_cst (TREE_TYPE (gpr), needed_intregs * 8)); + gimplify_assign (gpr, t, pre_p); + } + + if (needed_sseregs) + { + t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr, + build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16)); + gimplify_assign (fpr, t, pre_p); + } + + gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over)); + + gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false)); + } + + /* ... otherwise out of the overflow area. */ + + /* When we align parameter on stack for caller, if the parameter + alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be + aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee + here with caller. */ + arg_boundary = ix86_function_arg_boundary (VOIDmode, type); + if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT) + arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT; + + /* Care for on-stack alignment if needed. */ + if (arg_boundary <= 64 || size == 0) + t = ovf; + else + { + HOST_WIDE_INT align = arg_boundary / 8; + t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), ovf, + size_int (align - 1)); + t = fold_convert (sizetype, t); + t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, + size_int (-align)); + t = fold_convert (TREE_TYPE (ovf), t); + } + + gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); + gimplify_assign (addr, t, pre_p); + + t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, + size_int (rsize * UNITS_PER_WORD)); + gimplify_assign (unshare_expr (ovf), t, pre_p); + + if (container) + gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over)); + + ptrtype = build_pointer_type_for_mode (type, ptr_mode, true); + addr = fold_convert (ptrtype, addr); + + if (indirect_p) + addr = build_va_arg_indirect_ref (addr); + return build_va_arg_indirect_ref (addr); +} + +/* Return true if OPNUM's MEM should be matched + in movabs* patterns. */ + +bool +ix86_check_movabs (rtx insn, int opnum) +{ + rtx set, mem; + + set = PATTERN (insn); + if (GET_CODE (set) == PARALLEL) + set = XVECEXP (set, 0, 0); + gcc_assert (GET_CODE (set) == SET); + mem = XEXP (set, opnum); + while (GET_CODE (mem) == SUBREG) + mem = SUBREG_REG (mem); + gcc_assert (MEM_P (mem)); + return volatile_ok || !MEM_VOLATILE_P (mem); +} + +/* Initialize the table of extra 80387 mathematical constants. */ + +static void +init_ext_80387_constants (void) +{ + static const char * cst[5] = + { + "0.3010299956639811952256464283594894482", /* 0: fldlg2 */ + "0.6931471805599453094286904741849753009", /* 1: fldln2 */ + "1.4426950408889634073876517827983434472", /* 2: fldl2e */ + "3.3219280948873623478083405569094566090", /* 3: fldl2t */ + "3.1415926535897932385128089594061862044", /* 4: fldpi */ + }; + int i; + + for (i = 0; i < 5; i++) + { + real_from_string (&ext_80387_constants_table[i], cst[i]); + /* Ensure each constant is rounded to XFmode precision. */ + real_convert (&ext_80387_constants_table[i], + XFmode, &ext_80387_constants_table[i]); + } + + ext_80387_constants_init = 1; +} + +/* Return non-zero if the constant is something that + can be loaded with a special instruction. */ + +int +standard_80387_constant_p (rtx x) +{ + enum machine_mode mode = GET_MODE (x); + + REAL_VALUE_TYPE r; + + if (!(X87_FLOAT_MODE_P (mode) && (GET_CODE (x) == CONST_DOUBLE))) + return -1; + + if (x == CONST0_RTX (mode)) + return 1; + if (x == CONST1_RTX (mode)) + return 2; + + REAL_VALUE_FROM_CONST_DOUBLE (r, x); + + /* For XFmode constants, try to find a special 80387 instruction when + optimizing for size or on those CPUs that benefit from them. */ + if (mode == XFmode + && (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS)) + { + int i; + + if (! ext_80387_constants_init) + init_ext_80387_constants (); + + for (i = 0; i < 5; i++) + if (real_identical (&r, &ext_80387_constants_table[i])) + return i + 3; + } + + /* Load of the constant -0.0 or -1.0 will be split as + fldz;fchs or fld1;fchs sequence. */ + if (real_isnegzero (&r)) + return 8; + if (real_identical (&r, &dconstm1)) + return 9; + + return 0; +} + +/* Return the opcode of the special instruction to be used to load + the constant X. */ + +const char * +standard_80387_constant_opcode (rtx x) +{ + switch (standard_80387_constant_p (x)) + { + case 1: + return "fldz"; + case 2: + return "fld1"; + case 3: + return "fldlg2"; + case 4: + return "fldln2"; + case 5: + return "fldl2e"; + case 6: + return "fldl2t"; + case 7: + return "fldpi"; + case 8: + case 9: + return "#"; + default: + gcc_unreachable (); + } +} + +/* Return the CONST_DOUBLE representing the 80387 constant that is + loaded by the specified special instruction. The argument IDX + matches the return value from standard_80387_constant_p. */ + +rtx +standard_80387_constant_rtx (int idx) +{ + int i; + + if (! ext_80387_constants_init) + init_ext_80387_constants (); + + switch (idx) + { + case 3: + case 4: + case 5: + case 6: + case 7: + i = idx - 3; + break; + + default: + gcc_unreachable (); + } + + return CONST_DOUBLE_FROM_REAL_VALUE (ext_80387_constants_table[i], + XFmode); +} + +/* Return 1 if X is all 0s and 2 if x is all 1s + in supported SSE vector mode. */ + +int +standard_sse_constant_p (rtx x) +{ + enum machine_mode mode = GET_MODE (x); + + if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x))) + return 1; + if (vector_all_ones_operand (x, mode)) + switch (mode) + { + case V16QImode: + case V8HImode: + case V4SImode: + case V2DImode: + if (TARGET_SSE2) + return 2; + default: + break; + } + + return 0; +} + +/* Return the opcode of the special instruction to be used to load + the constant X. */ + +const char * +standard_sse_constant_opcode (rtx insn, rtx x) +{ + switch (standard_sse_constant_p (x)) + { + case 1: + switch (get_attr_mode (insn)) + { + case MODE_V4SF: + return TARGET_AVX ? "vxorps\t%0, %0, %0" : "xorps\t%0, %0"; + case MODE_V2DF: + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + return TARGET_AVX ? "vxorps\t%0, %0, %0" : "xorps\t%0, %0"; + else + return TARGET_AVX ? "vxorpd\t%0, %0, %0" : "xorpd\t%0, %0"; + case MODE_TI: + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + return TARGET_AVX ? "vxorps\t%0, %0, %0" : "xorps\t%0, %0"; + else + return TARGET_AVX ? "vpxor\t%0, %0, %0" : "pxor\t%0, %0"; + case MODE_V8SF: + return "vxorps\t%x0, %x0, %x0"; + case MODE_V4DF: + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + return "vxorps\t%x0, %x0, %x0"; + else + return "vxorpd\t%x0, %x0, %x0"; + case MODE_OI: + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + return "vxorps\t%x0, %x0, %x0"; + else + return "vpxor\t%x0, %x0, %x0"; + default: + break; + } + case 2: + return TARGET_AVX ? "vpcmpeqd\t%0, %0, %0" : "pcmpeqd\t%0, %0"; + default: + break; + } + gcc_unreachable (); +} + +/* Returns true if OP contains a symbol reference */ + +bool +symbolic_reference_mentioned_p (rtx op) +{ + const char *fmt; + int i; + + if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) + return true; + + fmt = GET_RTX_FORMAT (GET_CODE (op)); + for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) + { + if (fmt[i] == 'E') + { + int j; + + for (j = XVECLEN (op, i) - 1; j >= 0; j--) + if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) + return true; + } + + else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) + return true; + } + + return false; +} + +/* Return true if it is appropriate to emit `ret' instructions in the + body of a function. Do this only if the epilogue is simple, needing a + couple of insns. Prior to reloading, we can't tell how many registers + must be saved, so return false then. Return false if there is no frame + marker to de-allocate. */ + +bool +ix86_can_use_return_insn_p (void) +{ + struct ix86_frame frame; + + if (! reload_completed || frame_pointer_needed) + return 0; + + /* Don't allow more than 32k pop, since that's all we can do + with one instruction. */ + if (crtl->args.pops_args && crtl->args.size >= 32768) + return 0; + + ix86_compute_frame_layout (&frame); + return (frame.stack_pointer_offset == UNITS_PER_WORD + && (frame.nregs + frame.nsseregs) == 0); +} + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms may + be accessed via the stack pointer) in functions that seem suitable. */ + +static bool +ix86_frame_pointer_required (void) +{ + /* If we accessed previous frames, then the generated code expects + to be able to access the saved ebp value in our frame. */ + if (cfun->machine->accesses_prev_frame) + return true; + + /* Several x86 os'es need a frame pointer for other reasons, + usually pertaining to setjmp. */ + if (SUBTARGET_FRAME_POINTER_REQUIRED) + return true; + + /* In ix86_option_override_internal, TARGET_OMIT_LEAF_FRAME_POINTER + turns off the frame pointer by default. Turn it back on now if + we've not got a leaf function. */ + if (TARGET_OMIT_LEAF_FRAME_POINTER + && (!current_function_is_leaf + || ix86_current_function_calls_tls_descriptor)) + return true; + + if (crtl->profile && !flag_fentry) + return true; + + return false; +} + +/* Record that the current function accesses previous call frames. */ + +void +ix86_setup_frame_addresses (void) +{ + cfun->machine->accesses_prev_frame = 1; +} + +#ifndef USE_HIDDEN_LINKONCE +# if (defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0)) || TARGET_MACHO +# define USE_HIDDEN_LINKONCE 1 +# else +# define USE_HIDDEN_LINKONCE 0 +# endif +#endif + +static int pic_labels_used; + +/* Fills in the label name that should be used for a pc thunk for + the given register. */ + +static void +get_pc_thunk_name (char name[32], unsigned int regno) +{ + gcc_assert (!TARGET_64BIT); + + if (USE_HIDDEN_LINKONCE) + sprintf (name, "__i686.get_pc_thunk.%s", reg_names[regno]); + else + ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno); +} + + +/* This function generates code for -fpic that loads %ebx with + the return address of the caller and then returns. */ + +static void +ix86_code_end (void) +{ + rtx xops[2]; + int regno; + + for (regno = AX_REG; regno <= SP_REG; regno++) + { + char name[32]; + tree decl; + + if (!(pic_labels_used & (1 << regno))) + continue; + + get_pc_thunk_name (name, regno); + + decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, + get_identifier (name), + build_function_type (void_type_node, void_list_node)); + DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, + NULL_TREE, void_type_node); + TREE_PUBLIC (decl) = 1; + TREE_STATIC (decl) = 1; + +#if TARGET_MACHO + if (TARGET_MACHO) + { + switch_to_section (darwin_sections[text_coal_section]); + fputs ("\t.weak_definition\t", asm_out_file); + assemble_name (asm_out_file, name); + fputs ("\n\t.private_extern\t", asm_out_file); + assemble_name (asm_out_file, name); + putc ('\n', asm_out_file); + ASM_OUTPUT_LABEL (asm_out_file, name); + DECL_WEAK (decl) = 1; + } + else +#endif + if (USE_HIDDEN_LINKONCE) + { + DECL_COMDAT_GROUP (decl) = DECL_ASSEMBLER_NAME (decl); + + targetm.asm_out.unique_section (decl, 0); + switch_to_section (get_named_section (decl, NULL, 0)); + + targetm.asm_out.globalize_label (asm_out_file, name); + fputs ("\t.hidden\t", asm_out_file); + assemble_name (asm_out_file, name); + putc ('\n', asm_out_file); + ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); + } + else + { + switch_to_section (text_section); + ASM_OUTPUT_LABEL (asm_out_file, name); + } + + DECL_INITIAL (decl) = make_node (BLOCK); + current_function_decl = decl; + init_function_start (decl); + first_function_block_is_cold = false; + /* Make sure unwind info is emitted for the thunk if needed. */ + final_start_function (emit_barrier (), asm_out_file, 1); + + /* Pad stack IP move with 4 instructions (two NOPs count + as one instruction). */ + if (TARGET_PAD_SHORT_FUNCTION) + { + int i = 8; + + while (i--) + fputs ("\tnop\n", asm_out_file); + } + + xops[0] = gen_rtx_REG (Pmode, regno); + xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx); + output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops); + fputs ("\tret\n", asm_out_file); + final_end_function (); + init_insn_lengths (); + free_after_compilation (cfun); + set_cfun (NULL); + current_function_decl = NULL; + } + + if (flag_split_stack) + file_end_indicate_split_stack (); +} + +/* Emit code for the SET_GOT patterns. */ + +const char * +output_set_got (rtx dest, rtx label ATTRIBUTE_UNUSED) +{ + rtx xops[3]; + + xops[0] = dest; + + if (TARGET_VXWORKS_RTP && flag_pic) + { + /* Load (*VXWORKS_GOTT_BASE) into the PIC register. */ + xops[2] = gen_rtx_MEM (Pmode, + gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE)); + output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); + + /* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register. + Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as + an unadorned address. */ + xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX); + SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL; + output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops); + return ""; + } + + xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); + + if (! TARGET_DEEP_BRANCH_PREDICTION || !flag_pic) + { + xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); + + if (!flag_pic) + output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); + else + { + output_asm_insn ("call\t%a2", xops); +#ifdef DWARF2_UNWIND_INFO + /* The call to next label acts as a push. */ + if (dwarf2out_do_frame ()) + { + rtx insn; + start_sequence (); + insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (-4)))); + RTX_FRAME_RELATED_P (insn) = 1; + dwarf2out_frame_debug (insn, true); + end_sequence (); + } +#endif + } + +#if TARGET_MACHO + /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This + is what will be referenced by the Mach-O PIC subsystem. */ + if (!label) + ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); +#endif + + targetm.asm_out.internal_label (asm_out_file, "L", + CODE_LABEL_NUMBER (XEXP (xops[2], 0))); + + if (flag_pic) + { + output_asm_insn ("pop%z0\t%0", xops); +#ifdef DWARF2_UNWIND_INFO + /* The pop is a pop and clobbers dest, but doesn't restore it + for unwind info purposes. */ + if (dwarf2out_do_frame ()) + { + rtx insn; + start_sequence (); + insn = emit_insn (gen_rtx_SET (VOIDmode, dest, const0_rtx)); + dwarf2out_frame_debug (insn, true); + insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (4)))); + RTX_FRAME_RELATED_P (insn) = 1; + dwarf2out_frame_debug (insn, true); + end_sequence (); + } +#endif + } + } + else + { + char name[32]; + get_pc_thunk_name (name, REGNO (dest)); + pic_labels_used |= 1 << REGNO (dest); + +#ifdef DWARF2_UNWIND_INFO + /* Ensure all queued register saves are flushed before the + call. */ + if (dwarf2out_do_frame ()) + dwarf2out_flush_queued_reg_saves (); +#endif + xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); + xops[2] = gen_rtx_MEM (QImode, xops[2]); + output_asm_insn ("call\t%X2", xops); + /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This + is what will be referenced by the Mach-O PIC subsystem. */ +#if TARGET_MACHO + if (!label) + ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); + else + targetm.asm_out.internal_label (asm_out_file, "L", + CODE_LABEL_NUMBER (label)); +#endif + } + + if (TARGET_MACHO) + return ""; + + if (!flag_pic || TARGET_DEEP_BRANCH_PREDICTION) + output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops); + else + output_asm_insn ("add%z0\t{%1+[.-%a2], %0|%0, %1+(.-%a2)}", xops); + + return ""; +} + +/* Generate an "push" pattern for input ARG. */ + +static rtx +gen_push (rtx arg) +{ + struct machine_function *m = cfun->machine; + + if (m->fs.cfa_reg == stack_pointer_rtx) + m->fs.cfa_offset += UNITS_PER_WORD; + m->fs.sp_offset += UNITS_PER_WORD; + + return gen_rtx_SET (VOIDmode, + gen_rtx_MEM (Pmode, + gen_rtx_PRE_DEC (Pmode, + stack_pointer_rtx)), + arg); +} + +/* Generate an "pop" pattern for input ARG. */ + +static rtx +gen_pop (rtx arg) +{ + return gen_rtx_SET (VOIDmode, + arg, + gen_rtx_MEM (Pmode, + gen_rtx_POST_INC (Pmode, + stack_pointer_rtx))); +} + +/* Return >= 0 if there is an unused call-clobbered register available + for the entire function. */ + +static unsigned int +ix86_select_alt_pic_regnum (void) +{ + if (current_function_is_leaf + && !crtl->profile + && !ix86_current_function_calls_tls_descriptor) + { + int i, drap; + /* Can't use the same register for both PIC and DRAP. */ + if (crtl->drap_reg) + drap = REGNO (crtl->drap_reg); + else + drap = -1; + for (i = 2; i >= 0; --i) + if (i != drap && !df_regs_ever_live_p (i)) + return i; + } + + return INVALID_REGNUM; +} + +/* Return 1 if we need to save REGNO. */ +static int +ix86_save_reg (unsigned int regno, int maybe_eh_return) +{ + if (pic_offset_table_rtx + && regno == REAL_PIC_OFFSET_TABLE_REGNUM + && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) + || crtl->profile + || crtl->calls_eh_return + || crtl->uses_const_pool)) + { + if (ix86_select_alt_pic_regnum () != INVALID_REGNUM) + return 0; + return 1; + } + + if (crtl->calls_eh_return && maybe_eh_return) + { + unsigned i; + for (i = 0; ; i++) + { + unsigned test = EH_RETURN_DATA_REGNO (i); + if (test == INVALID_REGNUM) + break; + if (test == regno) + return 1; + } + } + + if (crtl->drap_reg && regno == REGNO (crtl->drap_reg)) + return 1; + + return (df_regs_ever_live_p (regno) + && !call_used_regs[regno] + && !fixed_regs[regno] + && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); +} + +/* Return number of saved general prupose registers. */ + +static int +ix86_nsaved_regs (void) +{ + int nregs = 0; + int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) + nregs ++; + return nregs; +} + +/* Return number of saved SSE registrers. */ + +static int +ix86_nsaved_sseregs (void) +{ + int nregs = 0; + int regno; + + if (ix86_cfun_abi () != MS_ABI) + return 0; + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) + nregs ++; + return nregs; +} + +/* Given FROM and TO register numbers, say whether this elimination is + allowed. If stack alignment is needed, we can only replace argument + pointer with hard frame pointer, or replace frame pointer with stack + pointer. Otherwise, frame pointer elimination is automatically + handled and all other eliminations are valid. */ + +static bool +ix86_can_eliminate (const int from, const int to) +{ + if (stack_realign_fp) + return ((from == ARG_POINTER_REGNUM + && to == HARD_FRAME_POINTER_REGNUM) + || (from == FRAME_POINTER_REGNUM + && to == STACK_POINTER_REGNUM)); + else + return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true; +} + +/* Return the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ + +HOST_WIDE_INT +ix86_initial_elimination_offset (int from, int to) +{ + struct ix86_frame frame; + ix86_compute_frame_layout (&frame); + + if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) + return frame.hard_frame_pointer_offset; + else if (from == FRAME_POINTER_REGNUM + && to == HARD_FRAME_POINTER_REGNUM) + return frame.hard_frame_pointer_offset - frame.frame_pointer_offset; + else + { + gcc_assert (to == STACK_POINTER_REGNUM); + + if (from == ARG_POINTER_REGNUM) + return frame.stack_pointer_offset; + + gcc_assert (from == FRAME_POINTER_REGNUM); + return frame.stack_pointer_offset - frame.frame_pointer_offset; + } +} + +/* In a dynamically-aligned function, we can't know the offset from + stack pointer to frame pointer, so we must ensure that setjmp + eliminates fp against the hard fp (%ebp) rather than trying to + index from %esp up to the top of the frame across a gap that is + of unknown (at compile-time) size. */ +static rtx +ix86_builtin_setjmp_frame_value (void) +{ + return stack_realign_fp ? hard_frame_pointer_rtx : virtual_stack_vars_rtx; +} + +/* On the x86 -fsplit-stack and -fstack-protector both use the same + field in the TCB, so they can not be used together. */ + +static bool +ix86_supports_split_stack (bool report ATTRIBUTE_UNUSED, + struct gcc_options *opts ATTRIBUTE_UNUSED) +{ + bool ret = true; + +#ifndef TARGET_THREAD_SPLIT_STACK_OFFSET + if (report) + error ("%<-fsplit-stack%> currently only supported on GNU/Linux"); + ret = false; +#else + if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE) + { + if (report) + error ("%<-fsplit-stack%> requires " + "assembler support for CFI directives"); + ret = false; + } +#endif + + return ret; +} + +/* When using -fsplit-stack, the allocation routines set a field in + the TCB to the bottom of the stack plus this much space, measured + in bytes. */ + +#define SPLIT_STACK_AVAILABLE 256 + +/* Fill structure ix86_frame about frame of currently computed function. */ + +static void +ix86_compute_frame_layout (struct ix86_frame *frame) +{ + unsigned int stack_alignment_needed; + HOST_WIDE_INT offset; + unsigned int preferred_alignment; + HOST_WIDE_INT size = get_frame_size (); + HOST_WIDE_INT to_allocate; + + frame->nregs = ix86_nsaved_regs (); + frame->nsseregs = ix86_nsaved_sseregs (); + + stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; + preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; + + /* MS ABI seem to require stack alignment to be always 16 except for function + prologues and leaf. */ + if ((ix86_cfun_abi () == MS_ABI && preferred_alignment < 16) + && (!current_function_is_leaf || cfun->calls_alloca != 0 + || ix86_current_function_calls_tls_descriptor)) + { + preferred_alignment = 16; + stack_alignment_needed = 16; + crtl->preferred_stack_boundary = 128; + crtl->stack_alignment_needed = 128; + } + + gcc_assert (!size || stack_alignment_needed); + gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); + gcc_assert (preferred_alignment <= stack_alignment_needed); + + /* For SEH we have to limit the amount of code movement into the prologue. + At present we do this via a BLOCKAGE, at which point there's very little + scheduling that can be done, which means that there's very little point + in doing anything except PUSHs. */ + if (TARGET_SEH) + cfun->machine->use_fast_prologue_epilogue = false; + + /* During reload iteration the amount of registers saved can change. + Recompute the value as needed. Do not recompute when amount of registers + didn't change as reload does multiple calls to the function and does not + expect the decision to change within single iteration. */ + else if (!optimize_function_for_size_p (cfun) + && cfun->machine->use_fast_prologue_epilogue_nregs != frame->nregs) + { + int count = frame->nregs; + struct cgraph_node *node = cgraph_node (current_function_decl); + + cfun->machine->use_fast_prologue_epilogue_nregs = count; + + /* The fast prologue uses move instead of push to save registers. This + is significantly longer, but also executes faster as modern hardware + can execute the moves in parallel, but can't do that for push/pop. + + Be careful about choosing what prologue to emit: When function takes + many instructions to execute we may use slow version as well as in + case function is known to be outside hot spot (this is known with + feedback only). Weight the size of function by number of registers + to save as it is cheap to use one or two push instructions but very + slow to use many of them. */ + if (count) + count = (count - 1) * FAST_PROLOGUE_INSN_COUNT; + if (node->frequency < NODE_FREQUENCY_NORMAL + || (flag_branch_probabilities + && node->frequency < NODE_FREQUENCY_HOT)) + cfun->machine->use_fast_prologue_epilogue = false; + else + cfun->machine->use_fast_prologue_epilogue + = !expensive_function_p (count); + } + if (TARGET_PROLOGUE_USING_MOVE + && cfun->machine->use_fast_prologue_epilogue) + frame->save_regs_using_mov = true; + else + frame->save_regs_using_mov = false; + + /* If static stack checking is enabled and done with probes, the registers + need to be saved before allocating the frame. */ + if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) + frame->save_regs_using_mov = false; + + /* Skip return address. */ + offset = UNITS_PER_WORD; + + /* Skip pushed static chain. */ + if (ix86_static_chain_on_stack) + offset += UNITS_PER_WORD; + + /* Skip saved base pointer. */ + if (frame_pointer_needed) + offset += UNITS_PER_WORD; + frame->hfp_save_offset = offset; + + /* The traditional frame pointer location is at the top of the frame. */ + frame->hard_frame_pointer_offset = offset; + + /* Register save area */ + offset += frame->nregs * UNITS_PER_WORD; + frame->reg_save_offset = offset; + + /* Align and set SSE register save area. */ + if (frame->nsseregs) + { + /* The only ABI that has saved SSE registers (Win64) also has a + 16-byte aligned default stack, and thus we don't need to be + within the re-aligned local stack frame to save them. */ + gcc_assert (INCOMING_STACK_BOUNDARY >= 128); + offset = (offset + 16 - 1) & -16; + offset += frame->nsseregs * 16; + } + frame->sse_reg_save_offset = offset; + + /* The re-aligned stack starts here. Values before this point are not + directly comparable with values below this point. In order to make + sure that no value happens to be the same before and after, force + the alignment computation below to add a non-zero value. */ + if (stack_realign_fp) + offset = (offset + stack_alignment_needed) & -stack_alignment_needed; + + /* Va-arg area */ + frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size; + offset += frame->va_arg_size; + + /* Align start of frame for local function. */ + if (stack_realign_fp + || offset != frame->sse_reg_save_offset + || size != 0 + || !current_function_is_leaf + || cfun->calls_alloca + || ix86_current_function_calls_tls_descriptor) + offset = (offset + stack_alignment_needed - 1) & -stack_alignment_needed; + + /* Frame pointer points here. */ + frame->frame_pointer_offset = offset; + + offset += size; + + /* Add outgoing arguments area. Can be skipped if we eliminated + all the function calls as dead code. + Skipping is however impossible when function calls alloca. Alloca + expander assumes that last crtl->outgoing_args_size + of stack frame are unused. */ + if (ACCUMULATE_OUTGOING_ARGS + && (!current_function_is_leaf || cfun->calls_alloca + || ix86_current_function_calls_tls_descriptor)) + { + offset += crtl->outgoing_args_size; + frame->outgoing_arguments_size = crtl->outgoing_args_size; + } + else + frame->outgoing_arguments_size = 0; + + /* Align stack boundary. Only needed if we're calling another function + or using alloca. */ + if (!current_function_is_leaf || cfun->calls_alloca + || ix86_current_function_calls_tls_descriptor) + offset = (offset + preferred_alignment - 1) & -preferred_alignment; + + /* We've reached end of stack frame. */ + frame->stack_pointer_offset = offset; + + /* Size prologue needs to allocate. */ + to_allocate = offset - frame->sse_reg_save_offset; + + if ((!to_allocate && frame->nregs <= 1) + || (TARGET_64BIT && to_allocate >= (HOST_WIDE_INT) 0x80000000)) + frame->save_regs_using_mov = false; + + if (ix86_using_red_zone () + && current_function_sp_is_unchanging + && current_function_is_leaf + && !ix86_current_function_calls_tls_descriptor) + { + frame->red_zone_size = to_allocate; + if (frame->save_regs_using_mov) + frame->red_zone_size += frame->nregs * UNITS_PER_WORD; + if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE) + frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE; + } + else + frame->red_zone_size = 0; + frame->stack_pointer_offset -= frame->red_zone_size; + + /* The SEH frame pointer location is near the bottom of the frame. + This is enforced by the fact that the difference between the + stack pointer and the frame pointer is limited to 240 bytes in + the unwind data structure. */ + if (TARGET_SEH) + { + HOST_WIDE_INT diff; + + /* If we can leave the frame pointer where it is, do so. */ + diff = frame->stack_pointer_offset - frame->hard_frame_pointer_offset; + if (diff > 240 || (diff & 15) != 0) + { + /* Ideally we'd determine what portion of the local stack frame + (within the constraint of the lowest 240) is most heavily used. + But without that complication, simply bias the frame pointer + by 128 bytes so as to maximize the amount of the local stack + frame that is addressable with 8-bit offsets. */ + frame->hard_frame_pointer_offset = frame->stack_pointer_offset - 128; + } + } +} + +/* This is semi-inlined memory_address_length, but simplified + since we know that we're always dealing with reg+offset, and + to avoid having to create and discard all that rtl. */ + +static inline int +choose_baseaddr_len (unsigned int regno, HOST_WIDE_INT offset) +{ + int len = 4; + + if (offset == 0) + { + /* EBP and R13 cannot be encoded without an offset. */ + len = (regno == BP_REG || regno == R13_REG); + } + else if (IN_RANGE (offset, -128, 127)) + len = 1; + + /* ESP and R12 must be encoded with a SIB byte. */ + if (regno == SP_REG || regno == R12_REG) + len++; + + return len; +} + +/* Return an RTX that points to CFA_OFFSET within the stack frame. + The valid base registers are taken from CFUN->MACHINE->FS. */ + +static rtx +choose_baseaddr (HOST_WIDE_INT cfa_offset) +{ + const struct machine_function *m = cfun->machine; + rtx base_reg = NULL; + HOST_WIDE_INT base_offset = 0; + + if (m->use_fast_prologue_epilogue) + { + /* Choose the base register most likely to allow the most scheduling + opportunities. Generally FP is valid througout the function, + while DRAP must be reloaded within the epilogue. But choose either + over the SP due to increased encoding size. */ + + if (m->fs.fp_valid) + { + base_reg = hard_frame_pointer_rtx; + base_offset = m->fs.fp_offset - cfa_offset; + } + else if (m->fs.drap_valid) + { + base_reg = crtl->drap_reg; + base_offset = 0 - cfa_offset; + } + else if (m->fs.sp_valid) + { + base_reg = stack_pointer_rtx; + base_offset = m->fs.sp_offset - cfa_offset; + } + } + else + { + HOST_WIDE_INT toffset; + int len = 16, tlen; + + /* Choose the base register with the smallest address encoding. + With a tie, choose FP > DRAP > SP. */ + if (m->fs.sp_valid) + { + base_reg = stack_pointer_rtx; + base_offset = m->fs.sp_offset - cfa_offset; + len = choose_baseaddr_len (STACK_POINTER_REGNUM, base_offset); + } + if (m->fs.drap_valid) + { + toffset = 0 - cfa_offset; + tlen = choose_baseaddr_len (REGNO (crtl->drap_reg), toffset); + if (tlen <= len) + { + base_reg = crtl->drap_reg; + base_offset = toffset; + len = tlen; + } + } + if (m->fs.fp_valid) + { + toffset = m->fs.fp_offset - cfa_offset; + tlen = choose_baseaddr_len (HARD_FRAME_POINTER_REGNUM, toffset); + if (tlen <= len) + { + base_reg = hard_frame_pointer_rtx; + base_offset = toffset; + len = tlen; + } + } + } + gcc_assert (base_reg != NULL); + + return plus_constant (base_reg, base_offset); +} + +/* Emit code to save registers in the prologue. */ + +static void +ix86_emit_save_regs (void) +{ + unsigned int regno; + rtx insn; + + for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; ) + if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) + { + insn = emit_insn (gen_push (gen_rtx_REG (Pmode, regno))); + RTX_FRAME_RELATED_P (insn) = 1; + } +} + +/* Emit a single register save at CFA - CFA_OFFSET. */ + +static void +ix86_emit_save_reg_using_mov (enum machine_mode mode, unsigned int regno, + HOST_WIDE_INT cfa_offset) +{ + struct machine_function *m = cfun->machine; + rtx reg = gen_rtx_REG (mode, regno); + rtx mem, addr, base, insn; + + addr = choose_baseaddr (cfa_offset); + mem = gen_frame_mem (mode, addr); + + /* For SSE saves, we need to indicate the 128-bit alignment. */ + set_mem_align (mem, GET_MODE_ALIGNMENT (mode)); + + insn = emit_move_insn (mem, reg); + RTX_FRAME_RELATED_P (insn) = 1; + + base = addr; + if (GET_CODE (base) == PLUS) + base = XEXP (base, 0); + gcc_checking_assert (REG_P (base)); + + /* When saving registers into a re-aligned local stack frame, avoid + any tricky guessing by dwarf2out. */ + if (m->fs.realigned) + { + gcc_checking_assert (stack_realign_drap); + + if (regno == REGNO (crtl->drap_reg)) + { + /* A bit of a hack. We force the DRAP register to be saved in + the re-aligned stack frame, which provides us with a copy + of the CFA that will last past the prologue. Install it. */ + gcc_checking_assert (cfun->machine->fs.fp_valid); + addr = plus_constant (hard_frame_pointer_rtx, + cfun->machine->fs.fp_offset - cfa_offset); + mem = gen_rtx_MEM (mode, addr); + add_reg_note (insn, REG_CFA_DEF_CFA, mem); + } + else + { + /* The frame pointer is a stable reference within the + aligned frame. Use it. */ + gcc_checking_assert (cfun->machine->fs.fp_valid); + addr = plus_constant (hard_frame_pointer_rtx, + cfun->machine->fs.fp_offset - cfa_offset); + mem = gen_rtx_MEM (mode, addr); + add_reg_note (insn, REG_CFA_EXPRESSION, + gen_rtx_SET (VOIDmode, mem, reg)); + } + } + + /* The memory may not be relative to the current CFA register, + which means that we may need to generate a new pattern for + use by the unwind info. */ + else if (base != m->fs.cfa_reg) + { + addr = plus_constant (m->fs.cfa_reg, m->fs.cfa_offset - cfa_offset); + mem = gen_rtx_MEM (mode, addr); + add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (VOIDmode, mem, reg)); + } +} + +/* Emit code to save registers using MOV insns. + First register is stored at CFA - CFA_OFFSET. */ +static void +ix86_emit_save_regs_using_mov (HOST_WIDE_INT cfa_offset) +{ + unsigned int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) + { + ix86_emit_save_reg_using_mov (Pmode, regno, cfa_offset); + cfa_offset -= UNITS_PER_WORD; + } +} + +/* Emit code to save SSE registers using MOV insns. + First register is stored at CFA - CFA_OFFSET. */ +static void +ix86_emit_save_sse_regs_using_mov (HOST_WIDE_INT cfa_offset) +{ + unsigned int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) + { + ix86_emit_save_reg_using_mov (V4SFmode, regno, cfa_offset); + cfa_offset -= 16; + } +} + +static GTY(()) rtx queued_cfa_restores; + +/* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack + manipulation insn. The value is on the stack at CFA - CFA_OFFSET. + Don't add the note if the previously saved value will be left untouched + within stack red-zone till return, as unwinders can find the same value + in the register and on the stack. */ + +static void +ix86_add_cfa_restore_note (rtx insn, rtx reg, HOST_WIDE_INT cfa_offset) +{ + if (cfa_offset <= cfun->machine->fs.red_zone_offset) + return; + + if (insn) + { + add_reg_note (insn, REG_CFA_RESTORE, reg); + RTX_FRAME_RELATED_P (insn) = 1; + } + else + queued_cfa_restores + = alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores); +} + +/* Add queued REG_CFA_RESTORE notes if any to INSN. */ + +static void +ix86_add_queued_cfa_restore_notes (rtx insn) +{ + rtx last; + if (!queued_cfa_restores) + return; + for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1)) + ; + XEXP (last, 1) = REG_NOTES (insn); + REG_NOTES (insn) = queued_cfa_restores; + queued_cfa_restores = NULL_RTX; + RTX_FRAME_RELATED_P (insn) = 1; +} + +/* Expand prologue or epilogue stack adjustment. + The pattern exist to put a dependency on all ebp-based memory accesses. + STYLE should be negative if instructions should be marked as frame related, + zero if %r11 register is live and cannot be freely used and positive + otherwise. */ + +static void +pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset, + int style, bool set_cfa) +{ + struct machine_function *m = cfun->machine; + rtx insn; + bool add_frame_related_expr = false; + + if (! TARGET_64BIT) + insn = gen_pro_epilogue_adjust_stack_si_add (dest, src, offset); + else if (x86_64_immediate_operand (offset, DImode)) + insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, offset); + else + { + rtx tmp; + /* r11 is used by indirect sibcall return as well, set before the + epilogue and used after the epilogue. */ + if (style) + tmp = gen_rtx_REG (DImode, R11_REG); + else + { + gcc_assert (src != hard_frame_pointer_rtx + && dest != hard_frame_pointer_rtx); + tmp = hard_frame_pointer_rtx; + } + insn = emit_insn (gen_rtx_SET (DImode, tmp, offset)); + if (style < 0) + add_frame_related_expr = true; + + insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, tmp); + } + + insn = emit_insn (insn); + if (style >= 0) + ix86_add_queued_cfa_restore_notes (insn); + + if (set_cfa) + { + rtx r; + + gcc_assert (m->fs.cfa_reg == src); + m->fs.cfa_offset += INTVAL (offset); + m->fs.cfa_reg = dest; + + r = gen_rtx_PLUS (Pmode, src, offset); + r = gen_rtx_SET (VOIDmode, dest, r); + add_reg_note (insn, REG_CFA_ADJUST_CFA, r); + RTX_FRAME_RELATED_P (insn) = 1; + } + else if (style < 0) + { + RTX_FRAME_RELATED_P (insn) = 1; + if (add_frame_related_expr) + { + rtx r = gen_rtx_PLUS (Pmode, src, offset); + r = gen_rtx_SET (VOIDmode, dest, r); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, r); + } + } + + if (dest == stack_pointer_rtx) + { + HOST_WIDE_INT ooffset = m->fs.sp_offset; + bool valid = m->fs.sp_valid; + + if (src == hard_frame_pointer_rtx) + { + valid = m->fs.fp_valid; + ooffset = m->fs.fp_offset; + } + else if (src == crtl->drap_reg) + { + valid = m->fs.drap_valid; + ooffset = 0; + } + else + { + /* Else there are two possibilities: SP itself, which we set + up as the default above. Or EH_RETURN_STACKADJ_RTX, which is + taken care of this by hand along the eh_return path. */ + gcc_checking_assert (src == stack_pointer_rtx + || offset == const0_rtx); + } + + m->fs.sp_offset = ooffset - INTVAL (offset); + m->fs.sp_valid = valid; + } +} + +/* Find an available register to be used as dynamic realign argument + pointer regsiter. Such a register will be written in prologue and + used in begin of body, so it must not be + 1. parameter passing register. + 2. GOT pointer. + We reuse static-chain register if it is available. Otherwise, we + use DI for i386 and R13 for x86-64. We chose R13 since it has + shorter encoding. + + Return: the regno of chosen register. */ + +static unsigned int +find_drap_reg (void) +{ + tree decl = cfun->decl; + + if (TARGET_64BIT) + { + /* Use R13 for nested function or function need static chain. + Since function with tail call may use any caller-saved + registers in epilogue, DRAP must not use caller-saved + register in such case. */ + if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) + return R13_REG; + + return R10_REG; + } + else + { + /* Use DI for nested function or function need static chain. + Since function with tail call may use any caller-saved + registers in epilogue, DRAP must not use caller-saved + register in such case. */ + if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) + return DI_REG; + + /* Reuse static chain register if it isn't used for parameter + passing. */ + if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2 + && !lookup_attribute ("fastcall", + TYPE_ATTRIBUTES (TREE_TYPE (decl))) + && !lookup_attribute ("thiscall", + TYPE_ATTRIBUTES (TREE_TYPE (decl)))) + return CX_REG; + else + return DI_REG; + } +} + +/* Return minimum incoming stack alignment. */ + +static unsigned int +ix86_minimum_incoming_stack_boundary (bool sibcall) +{ + unsigned int incoming_stack_boundary; + + /* Prefer the one specified at command line. */ + if (ix86_user_incoming_stack_boundary) + incoming_stack_boundary = ix86_user_incoming_stack_boundary; + /* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary + if -mstackrealign is used, it isn't used for sibcall check and + estimated stack alignment is 128bit. */ + else if (!sibcall + && !TARGET_64BIT + && ix86_force_align_arg_pointer + && crtl->stack_alignment_estimated == 128) + incoming_stack_boundary = MIN_STACK_BOUNDARY; + else + incoming_stack_boundary = ix86_default_incoming_stack_boundary; + + /* Incoming stack alignment can be changed on individual functions + via force_align_arg_pointer attribute. We use the smallest + incoming stack boundary. */ + if (incoming_stack_boundary > MIN_STACK_BOUNDARY + && lookup_attribute (ix86_force_align_arg_pointer_string, + TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl)))) + incoming_stack_boundary = MIN_STACK_BOUNDARY; + + /* The incoming stack frame has to be aligned at least at + parm_stack_boundary. */ + if (incoming_stack_boundary < crtl->parm_stack_boundary) + incoming_stack_boundary = crtl->parm_stack_boundary; + + /* Stack at entrance of main is aligned by runtime. We use the + smallest incoming stack boundary. */ + if (incoming_stack_boundary > MAIN_STACK_BOUNDARY + && DECL_NAME (current_function_decl) + && MAIN_NAME_P (DECL_NAME (current_function_decl)) + && DECL_FILE_SCOPE_P (current_function_decl)) + incoming_stack_boundary = MAIN_STACK_BOUNDARY; + + return incoming_stack_boundary; +} + +/* Update incoming stack boundary and estimated stack alignment. */ + +static void +ix86_update_stack_boundary (void) +{ + ix86_incoming_stack_boundary + = ix86_minimum_incoming_stack_boundary (false); + + /* x86_64 vararg needs 16byte stack alignment for register save + area. */ + if (TARGET_64BIT + && cfun->stdarg + && crtl->stack_alignment_estimated < 128) + crtl->stack_alignment_estimated = 128; +} + +/* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is + needed or an rtx for DRAP otherwise. */ + +static rtx +ix86_get_drap_rtx (void) +{ + if (ix86_force_drap || !ACCUMULATE_OUTGOING_ARGS) + crtl->need_drap = true; + + if (stack_realign_drap) + { + /* Assign DRAP to vDRAP and returns vDRAP */ + unsigned int regno = find_drap_reg (); + rtx drap_vreg; + rtx arg_ptr; + rtx seq, insn; + + arg_ptr = gen_rtx_REG (Pmode, regno); + crtl->drap_reg = arg_ptr; + + start_sequence (); + drap_vreg = copy_to_reg (arg_ptr); + seq = get_insns (); + end_sequence (); + + insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ())); + if (!optimize) + { + add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg); + RTX_FRAME_RELATED_P (insn) = 1; + } + return drap_vreg; + } + else + return NULL; +} + +/* Handle the TARGET_INTERNAL_ARG_POINTER hook. */ + +static rtx +ix86_internal_arg_pointer (void) +{ + return virtual_incoming_args_rtx; +} + +struct scratch_reg { + rtx reg; + bool saved; +}; + +/* Return a short-lived scratch register for use on function entry. + In 32-bit mode, it is valid only after the registers are saved + in the prologue. This register must be released by means of + release_scratch_register_on_entry once it is dead. */ + +static void +get_scratch_register_on_entry (struct scratch_reg *sr) +{ + int regno; + + sr->saved = false; + + if (TARGET_64BIT) + { + /* We always use R11 in 64-bit mode. */ + regno = R11_REG; + } + else + { + tree decl = current_function_decl, fntype = TREE_TYPE (decl); + bool fastcall_p + = lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE; + bool static_chain_p = DECL_STATIC_CHAIN (decl); + int regparm = ix86_function_regparm (fntype, decl); + int drap_regno + = crtl->drap_reg ? REGNO (crtl->drap_reg) : INVALID_REGNUM; + + /* 'fastcall' sets regparm to 2, uses ecx/edx for arguments and eax + for the static chain register. */ + if ((regparm < 1 || (fastcall_p && !static_chain_p)) + && drap_regno != AX_REG) + regno = AX_REG; + else if (regparm < 2 && drap_regno != DX_REG) + regno = DX_REG; + /* ecx is the static chain register. */ + else if (regparm < 3 && !fastcall_p && !static_chain_p + && drap_regno != CX_REG) + regno = CX_REG; + else if (ix86_save_reg (BX_REG, true)) + regno = BX_REG; + /* esi is the static chain register. */ + else if (!(regparm == 3 && static_chain_p) + && ix86_save_reg (SI_REG, true)) + regno = SI_REG; + else if (ix86_save_reg (DI_REG, true)) + regno = DI_REG; + else + { + regno = (drap_regno == AX_REG ? DX_REG : AX_REG); + sr->saved = true; + } + } + + sr->reg = gen_rtx_REG (Pmode, regno); + if (sr->saved) + { + rtx insn = emit_insn (gen_push (sr->reg)); + RTX_FRAME_RELATED_P (insn) = 1; + } +} + +/* Release a scratch register obtained from the preceding function. */ + +static void +release_scratch_register_on_entry (struct scratch_reg *sr) +{ + if (sr->saved) + { + rtx x, insn = emit_insn (gen_pop (sr->reg)); + + /* The RTX_FRAME_RELATED_P mechanism doesn't know about pop. */ + RTX_FRAME_RELATED_P (insn) = 1; + x = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)); + x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, x); + } +} + +#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) + +/* Emit code to adjust the stack pointer by SIZE bytes while probing it. */ + +static void +ix86_adjust_stack_and_probe (const HOST_WIDE_INT size) +{ + /* We skip the probe for the first interval + a small dope of 4 words and + probe that many bytes past the specified size to maintain a protection + area at the botton of the stack. */ + const int dope = 4 * UNITS_PER_WORD; + rtx size_rtx = GEN_INT (size), last; + + /* See if we have a constant small number of probes to generate. If so, + that's the easy case. The run-time loop is made up of 11 insns in the + generic case while the compile-time loop is made up of 3+2*(n-1) insns + for n # of intervals. */ + if (size <= 5 * PROBE_INTERVAL) + { + HOST_WIDE_INT i, adjust; + bool first_probe = true; + + /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for + values of N from 1 until it exceeds SIZE. If only one probe is + needed, this will not generate any code. Then adjust and probe + to PROBE_INTERVAL + SIZE. */ + for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) + { + if (first_probe) + { + adjust = 2 * PROBE_INTERVAL + dope; + first_probe = false; + } + else + adjust = PROBE_INTERVAL; + + emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, -adjust))); + emit_stack_probe (stack_pointer_rtx); + } + + if (first_probe) + adjust = size + PROBE_INTERVAL + dope; + else + adjust = size + PROBE_INTERVAL - i; + + emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, -adjust))); + emit_stack_probe (stack_pointer_rtx); + + /* Adjust back to account for the additional first interval. */ + last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + PROBE_INTERVAL + dope))); + } + + /* Otherwise, do the same as above, but in a loop. Note that we must be + extra careful with variables wrapping around because we might be at + the very top (or the very bottom) of the address space and we have + to be able to handle this case properly; in particular, we use an + equality test for the loop condition. */ + else + { + HOST_WIDE_INT rounded_size; + struct scratch_reg sr; + + get_scratch_register_on_entry (&sr); + + + /* Step 1: round SIZE to the previous multiple of the interval. */ + + rounded_size = size & -PROBE_INTERVAL; + + + /* Step 2: compute initial and final value of the loop counter. */ + + /* SP = SP_0 + PROBE_INTERVAL. */ + emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + - (PROBE_INTERVAL + dope)))); + + /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ + emit_move_insn (sr.reg, GEN_INT (-rounded_size)); + emit_insn (gen_rtx_SET (VOIDmode, sr.reg, + gen_rtx_PLUS (Pmode, sr.reg, + stack_pointer_rtx))); + + + /* Step 3: the loop + + while (SP != LAST_ADDR) + { + SP = SP + PROBE_INTERVAL + probe at SP + } + + adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for + values of N from 1 until it is equal to ROUNDED_SIZE. */ + + emit_insn (ix86_gen_adjust_stack_and_probe (sr.reg, sr.reg, size_rtx)); + + + /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot + assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ + + if (size != rounded_size) + { + emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + rounded_size - size))); + emit_stack_probe (stack_pointer_rtx); + } + + /* Adjust back to account for the additional first interval. */ + last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + PROBE_INTERVAL + dope))); + + release_scratch_register_on_entry (&sr); + } + + gcc_assert (cfun->machine->fs.cfa_reg != stack_pointer_rtx); + + /* Even if the stack pointer isn't the CFA register, we need to correctly + describe the adjustments made to it, in particular differentiate the + frame-related ones from the frame-unrelated ones. */ + if (size > 0) + { + rtx expr = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2)); + XVECEXP (expr, 0, 0) + = gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, -size)); + XVECEXP (expr, 0, 1) + = gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + PROBE_INTERVAL + dope + size)); + add_reg_note (last, REG_FRAME_RELATED_EXPR, expr); + RTX_FRAME_RELATED_P (last) = 1; + + cfun->machine->fs.sp_offset += size; + } + + /* Make sure nothing is scheduled before we are done. */ + emit_insn (gen_blockage ()); +} + +/* Adjust the stack pointer up to REG while probing it. */ + +const char * +output_adjust_stack_and_probe (rtx reg) +{ + static int labelno = 0; + char loop_lab[32], end_lab[32]; + rtx xops[2]; + + ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno); + ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); + + /* Jump to END_LAB if SP == LAST_ADDR. */ + xops[0] = stack_pointer_rtx; + xops[1] = reg; + output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); + fputs ("\tje\t", asm_out_file); + assemble_name_raw (asm_out_file, end_lab); + fputc ('\n', asm_out_file); + + /* SP = SP + PROBE_INTERVAL. */ + xops[1] = GEN_INT (PROBE_INTERVAL); + output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); + + /* Probe at SP. */ + xops[1] = const0_rtx; + output_asm_insn ("or%z0\t{%1, (%0)|DWORD PTR [%0], %1}", xops); + + fprintf (asm_out_file, "\tjmp\t"); + assemble_name_raw (asm_out_file, loop_lab); + fputc ('\n', asm_out_file); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab); + + return ""; +} + +/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, + inclusive. These are offsets from the current stack pointer. */ + +static void +ix86_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) +{ + /* See if we have a constant small number of probes to generate. If so, + that's the easy case. The run-time loop is made up of 7 insns in the + generic case while the compile-time loop is made up of n insns for n # + of intervals. */ + if (size <= 7 * PROBE_INTERVAL) + { + HOST_WIDE_INT i; + + /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until + it exceeds SIZE. If only one probe is needed, this will not + generate any code. Then probe at FIRST + SIZE. */ + for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) + emit_stack_probe (plus_constant (stack_pointer_rtx, -(first + i))); + + emit_stack_probe (plus_constant (stack_pointer_rtx, -(first + size))); + } + + /* Otherwise, do the same as above, but in a loop. Note that we must be + extra careful with variables wrapping around because we might be at + the very top (or the very bottom) of the address space and we have + to be able to handle this case properly; in particular, we use an + equality test for the loop condition. */ + else + { + HOST_WIDE_INT rounded_size, last; + struct scratch_reg sr; + + get_scratch_register_on_entry (&sr); + + + /* Step 1: round SIZE to the previous multiple of the interval. */ + + rounded_size = size & -PROBE_INTERVAL; + + + /* Step 2: compute initial and final value of the loop counter. */ + + /* TEST_OFFSET = FIRST. */ + emit_move_insn (sr.reg, GEN_INT (-first)); + + /* LAST_OFFSET = FIRST + ROUNDED_SIZE. */ + last = first + rounded_size; + + + /* Step 3: the loop + + while (TEST_ADDR != LAST_ADDR) + { + TEST_ADDR = TEST_ADDR + PROBE_INTERVAL + probe at TEST_ADDR + } + + probes at FIRST + N * PROBE_INTERVAL for values of N from 1 + until it is equal to ROUNDED_SIZE. */ + + emit_insn (ix86_gen_probe_stack_range (sr.reg, sr.reg, GEN_INT (-last))); + + + /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time + that SIZE is equal to ROUNDED_SIZE. */ + + if (size != rounded_size) + emit_stack_probe (plus_constant (gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + sr.reg), + rounded_size - size)); + + release_scratch_register_on_entry (&sr); + } + + /* Make sure nothing is scheduled before we are done. */ + emit_insn (gen_blockage ()); +} + +/* Probe a range of stack addresses from REG to END, inclusive. These are + offsets from the current stack pointer. */ + +const char * +output_probe_stack_range (rtx reg, rtx end) +{ + static int labelno = 0; + char loop_lab[32], end_lab[32]; + rtx xops[3]; + + ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno); + ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); + + /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ + xops[0] = reg; + xops[1] = end; + output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); + fputs ("\tje\t", asm_out_file); + assemble_name_raw (asm_out_file, end_lab); + fputc ('\n', asm_out_file); + + /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ + xops[1] = GEN_INT (PROBE_INTERVAL); + output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); + + /* Probe at TEST_ADDR. */ + xops[0] = stack_pointer_rtx; + xops[1] = reg; + xops[2] = const0_rtx; + output_asm_insn ("or%z0\t{%2, (%0,%1)|DWORD PTR [%0+%1], %2}", xops); + + fprintf (asm_out_file, "\tjmp\t"); + assemble_name_raw (asm_out_file, loop_lab); + fputc ('\n', asm_out_file); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab); + + return ""; +} + +/* Finalize stack_realign_needed flag, which will guide prologue/epilogue + to be generated in correct form. */ +static void +ix86_finalize_stack_realign_flags (void) +{ + /* Check if stack realign is really needed after reload, and + stores result in cfun */ + unsigned int incoming_stack_boundary + = (crtl->parm_stack_boundary > ix86_incoming_stack_boundary + ? crtl->parm_stack_boundary : ix86_incoming_stack_boundary); + unsigned int stack_realign = (incoming_stack_boundary + < (current_function_is_leaf + ? crtl->max_used_stack_slot_alignment + : crtl->stack_alignment_needed)); + + if (crtl->stack_realign_finalized) + { + /* After stack_realign_needed is finalized, we can't no longer + change it. */ + gcc_assert (crtl->stack_realign_needed == stack_realign); + } + else + { + crtl->stack_realign_needed = stack_realign; + crtl->stack_realign_finalized = true; + } +} + +/* Expand the prologue into a bunch of separate insns. */ + +void +ix86_expand_prologue (void) +{ + struct machine_function *m = cfun->machine; + rtx insn, t; + bool pic_reg_used; + struct ix86_frame frame; + HOST_WIDE_INT allocate; + bool int_registers_saved; + + ix86_finalize_stack_realign_flags (); + + /* DRAP should not coexist with stack_realign_fp */ + gcc_assert (!(crtl->drap_reg && stack_realign_fp)); + + memset (&m->fs, 0, sizeof (m->fs)); + + /* Initialize CFA state for before the prologue. */ + m->fs.cfa_reg = stack_pointer_rtx; + m->fs.cfa_offset = INCOMING_FRAME_SP_OFFSET; + + /* Track SP offset to the CFA. We continue tracking this after we've + swapped the CFA register away from SP. In the case of re-alignment + this is fudged; we're interested to offsets within the local frame. */ + m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; + m->fs.sp_valid = true; + + ix86_compute_frame_layout (&frame); + + if (!TARGET_64BIT && ix86_function_ms_hook_prologue (current_function_decl)) + { + /* We should have already generated an error for any use of + ms_hook on a nested function. */ + gcc_checking_assert (!ix86_static_chain_on_stack); + + /* Check if profiling is active and we shall use profiling before + prologue variant. If so sorry. */ + if (crtl->profile && flag_fentry != 0) + sorry ("ms_hook_prologue attribute isn%'t compatible " + "with -mfentry for 32-bit"); + + /* In ix86_asm_output_function_label we emitted: + 8b ff movl.s %edi,%edi + 55 push %ebp + 8b ec movl.s %esp,%ebp + + This matches the hookable function prologue in Win32 API + functions in Microsoft Windows XP Service Pack 2 and newer. + Wine uses this to enable Windows apps to hook the Win32 API + functions provided by Wine. + + What that means is that we've already set up the frame pointer. */ + + if (frame_pointer_needed + && !(crtl->drap_reg && crtl->stack_realign_needed)) + { + rtx push, mov; + + /* We've decided to use the frame pointer already set up. + Describe this to the unwinder by pretending that both + push and mov insns happen right here. + + Putting the unwind info here at the end of the ms_hook + is done so that we can make absolutely certain we get + the required byte sequence at the start of the function, + rather than relying on an assembler that can produce + the exact encoding required. + + However it does mean (in the unpatched case) that we have + a 1 insn window where the asynchronous unwind info is + incorrect. However, if we placed the unwind info at + its correct location we would have incorrect unwind info + in the patched case. Which is probably all moot since + I don't expect Wine generates dwarf2 unwind info for the + system libraries that use this feature. */ + + insn = emit_insn (gen_blockage ()); + + push = gen_push (hard_frame_pointer_rtx); + mov = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx, + stack_pointer_rtx); + RTX_FRAME_RELATED_P (push) = 1; + RTX_FRAME_RELATED_P (mov) = 1; + + RTX_FRAME_RELATED_P (insn) = 1; + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, push, mov))); + + /* Note that gen_push incremented m->fs.cfa_offset, even + though we didn't emit the push insn here. */ + m->fs.cfa_reg = hard_frame_pointer_rtx; + m->fs.fp_offset = m->fs.cfa_offset; + m->fs.fp_valid = true; + } + else + { + /* The frame pointer is not needed so pop %ebp again. + This leaves us with a pristine state. */ + emit_insn (gen_pop (hard_frame_pointer_rtx)); + } + } + + /* The first insn of a function that accepts its static chain on the + stack is to push the register that would be filled in by a direct + call. This insn will be skipped by the trampoline. */ + else if (ix86_static_chain_on_stack) + { + insn = emit_insn (gen_push (ix86_static_chain (cfun->decl, false))); + emit_insn (gen_blockage ()); + + /* We don't want to interpret this push insn as a register save, + only as a stack adjustment. The real copy of the register as + a save will be done later, if needed. */ + t = plus_constant (stack_pointer_rtx, -UNITS_PER_WORD); + t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t); + add_reg_note (insn, REG_CFA_ADJUST_CFA, t); + RTX_FRAME_RELATED_P (insn) = 1; + } + + /* Emit prologue code to adjust stack alignment and setup DRAP, in case + of DRAP is needed and stack realignment is really needed after reload */ + if (stack_realign_drap) + { + int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; + + /* Only need to push parameter pointer reg if it is caller saved. */ + if (!call_used_regs[REGNO (crtl->drap_reg)]) + { + /* Push arg pointer reg */ + insn = emit_insn (gen_push (crtl->drap_reg)); + RTX_FRAME_RELATED_P (insn) = 1; + } + + /* Grab the argument pointer. */ + t = plus_constant (stack_pointer_rtx, m->fs.sp_offset); + insn = emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t)); + RTX_FRAME_RELATED_P (insn) = 1; + m->fs.cfa_reg = crtl->drap_reg; + m->fs.cfa_offset = 0; + + /* Align the stack. */ + insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (-align_bytes))); + RTX_FRAME_RELATED_P (insn) = 1; + + /* Replicate the return address on the stack so that return + address can be reached via (argp - 1) slot. This is needed + to implement macro RETURN_ADDR_RTX and intrinsic function + expand_builtin_return_addr etc. */ + t = plus_constant (crtl->drap_reg, -UNITS_PER_WORD); + t = gen_frame_mem (Pmode, t); + insn = emit_insn (gen_push (t)); + RTX_FRAME_RELATED_P (insn) = 1; + + /* For the purposes of frame and register save area addressing, + we've started over with a new frame. */ + m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; + m->fs.realigned = true; + } + + if (frame_pointer_needed && !m->fs.fp_valid) + { + /* Note: AT&T enter does NOT have reversed args. Enter is probably + slower on all targets. Also sdb doesn't like it. */ + insn = emit_insn (gen_push (hard_frame_pointer_rtx)); + RTX_FRAME_RELATED_P (insn) = 1; + + if (m->fs.sp_offset == frame.hard_frame_pointer_offset) + { + insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); + RTX_FRAME_RELATED_P (insn) = 1; + + if (m->fs.cfa_reg == stack_pointer_rtx) + m->fs.cfa_reg = hard_frame_pointer_rtx; + m->fs.fp_offset = m->fs.sp_offset; + m->fs.fp_valid = true; + } + } + + int_registers_saved = (frame.nregs == 0); + + if (!int_registers_saved) + { + /* If saving registers via PUSH, do so now. */ + if (!frame.save_regs_using_mov) + { + ix86_emit_save_regs (); + int_registers_saved = true; + gcc_assert (m->fs.sp_offset == frame.reg_save_offset); + } + + /* When using red zone we may start register saving before allocating + the stack frame saving one cycle of the prologue. However, avoid + doing this if we have to probe the stack; at least on x86_64 the + stack probe can turn into a call that clobbers a red zone location. */ + else if (ix86_using_red_zone () + && (! TARGET_STACK_PROBE + || frame.stack_pointer_offset < CHECK_STACK_LIMIT)) + { + ix86_emit_save_regs_using_mov (frame.reg_save_offset); + int_registers_saved = true; + } + } + + if (stack_realign_fp) + { + int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; + gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT); + + /* The computation of the size of the re-aligned stack frame means + that we must allocate the size of the register save area before + performing the actual alignment. Otherwise we cannot guarantee + that there's enough storage above the realignment point. */ + if (m->fs.sp_offset != frame.sse_reg_save_offset) + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (m->fs.sp_offset + - frame.sse_reg_save_offset), + -1, false); + + /* Align the stack. */ + insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (-align_bytes))); + + /* For the purposes of register save area addressing, the stack + pointer is no longer valid. As for the value of sp_offset, + see ix86_compute_frame_layout, which we need to match in order + to pass verification of stack_pointer_offset at the end. */ + m->fs.sp_offset = (m->fs.sp_offset + align_bytes) & -align_bytes; + m->fs.sp_valid = false; + } + + allocate = frame.stack_pointer_offset - m->fs.sp_offset; + + if (flag_stack_usage) + { + /* We start to count from ARG_POINTER. */ + HOST_WIDE_INT stack_size = frame.stack_pointer_offset; + + /* If it was realigned, take into account the fake frame. */ + if (stack_realign_drap) + { + if (ix86_static_chain_on_stack) + stack_size += UNITS_PER_WORD; + + if (!call_used_regs[REGNO (crtl->drap_reg)]) + stack_size += UNITS_PER_WORD; + + /* This over-estimates by 1 minimal-stack-alignment-unit but + mitigates that by counting in the new return address slot. */ + current_function_dynamic_stack_size + += crtl->stack_alignment_needed / BITS_PER_UNIT; + } + + current_function_static_stack_size = stack_size; + } + + /* The stack has already been decremented by the instruction calling us + so probe if the size is non-negative to preserve the protection area. */ + if (allocate >= 0 && flag_stack_check == STATIC_BUILTIN_STACK_CHECK) + { + /* We expect the registers to be saved when probes are used. */ + gcc_assert (int_registers_saved); + + if (STACK_CHECK_MOVING_SP) + { + ix86_adjust_stack_and_probe (allocate); + allocate = 0; + } + else + { + HOST_WIDE_INT size = allocate; + + if (TARGET_64BIT && size >= (HOST_WIDE_INT) 0x80000000) + size = 0x80000000 - STACK_CHECK_PROTECT - 1; + + if (TARGET_STACK_PROBE) + ix86_emit_probe_stack_range (0, size + STACK_CHECK_PROTECT); + else + ix86_emit_probe_stack_range (STACK_CHECK_PROTECT, size); + } + } + + if (allocate == 0) + ; + else if (!ix86_target_stack_probe () + || frame.stack_pointer_offset < CHECK_STACK_LIMIT) + { + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (-allocate), -1, + m->fs.cfa_reg == stack_pointer_rtx); + } + else + { + rtx eax = gen_rtx_REG (Pmode, AX_REG); + rtx r10 = NULL; + rtx (*adjust_stack_insn)(rtx, rtx, rtx); + + bool eax_live = false; + bool r10_live = false; + + if (TARGET_64BIT) + r10_live = (DECL_STATIC_CHAIN (current_function_decl) != 0); + if (!TARGET_64BIT_MS_ABI) + eax_live = ix86_eax_live_at_start_p (); + + if (eax_live) + { + emit_insn (gen_push (eax)); + allocate -= UNITS_PER_WORD; + } + if (r10_live) + { + r10 = gen_rtx_REG (Pmode, R10_REG); + emit_insn (gen_push (r10)); + allocate -= UNITS_PER_WORD; + } + + emit_move_insn (eax, GEN_INT (allocate)); + emit_insn (ix86_gen_allocate_stack_worker (eax, eax)); + + /* Use the fact that AX still contains ALLOCATE. */ + adjust_stack_insn = (TARGET_64BIT + ? gen_pro_epilogue_adjust_stack_di_sub + : gen_pro_epilogue_adjust_stack_si_sub); + + insn = emit_insn (adjust_stack_insn (stack_pointer_rtx, + stack_pointer_rtx, eax)); + + /* Note that SEH directives need to continue tracking the stack + pointer even after the frame pointer has been set up. */ + if (m->fs.cfa_reg == stack_pointer_rtx || TARGET_SEH) + { + if (m->fs.cfa_reg == stack_pointer_rtx) + m->fs.cfa_offset += allocate; + + RTX_FRAME_RELATED_P (insn) = 1; + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_rtx_SET (VOIDmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, + -allocate))); + } + m->fs.sp_offset += allocate; + + if (r10_live && eax_live) + { + t = choose_baseaddr (m->fs.sp_offset - allocate); + emit_move_insn (r10, gen_frame_mem (Pmode, t)); + t = choose_baseaddr (m->fs.sp_offset - allocate - UNITS_PER_WORD); + emit_move_insn (eax, gen_frame_mem (Pmode, t)); + } + else if (eax_live || r10_live) + { + t = choose_baseaddr (m->fs.sp_offset - allocate); + emit_move_insn ((eax_live ? eax : r10), gen_frame_mem (Pmode, t)); + } + } + gcc_assert (m->fs.sp_offset == frame.stack_pointer_offset); + + /* If we havn't already set up the frame pointer, do so now. */ + if (frame_pointer_needed && !m->fs.fp_valid) + { + insn = ix86_gen_add3 (hard_frame_pointer_rtx, stack_pointer_rtx, + GEN_INT (frame.stack_pointer_offset + - frame.hard_frame_pointer_offset)); + insn = emit_insn (insn); + RTX_FRAME_RELATED_P (insn) = 1; + add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL); + + if (m->fs.cfa_reg == stack_pointer_rtx) + m->fs.cfa_reg = hard_frame_pointer_rtx; + m->fs.fp_offset = frame.hard_frame_pointer_offset; + m->fs.fp_valid = true; + } + + if (!int_registers_saved) + ix86_emit_save_regs_using_mov (frame.reg_save_offset); + if (frame.nsseregs) + ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); + + pic_reg_used = false; + if (pic_offset_table_rtx + && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) + || crtl->profile)) + { + unsigned int alt_pic_reg_used = ix86_select_alt_pic_regnum (); + + if (alt_pic_reg_used != INVALID_REGNUM) + SET_REGNO (pic_offset_table_rtx, alt_pic_reg_used); + + pic_reg_used = true; + } + + if (pic_reg_used) + { + if (TARGET_64BIT) + { + if (ix86_cmodel == CM_LARGE_PIC) + { + rtx tmp_reg = gen_rtx_REG (DImode, R11_REG); + rtx label = gen_label_rtx (); + emit_label (label); + LABEL_PRESERVE_P (label) = 1; + gcc_assert (REGNO (pic_offset_table_rtx) != REGNO (tmp_reg)); + insn = emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx, label)); + insn = emit_insn (gen_set_got_offset_rex64 (tmp_reg, label)); + insn = emit_insn (gen_adddi3 (pic_offset_table_rtx, + pic_offset_table_rtx, tmp_reg)); + } + else + insn = emit_insn (gen_set_got_rex64 (pic_offset_table_rtx)); + } + else + insn = emit_insn (gen_set_got (pic_offset_table_rtx)); + } + + /* In the pic_reg_used case, make sure that the got load isn't deleted + when mcount needs it. Blockage to avoid call movement across mcount + call is emitted in generic code after the NOTE_INSN_PROLOGUE_END + note. */ + if (crtl->profile && !flag_fentry && pic_reg_used) + emit_insn (gen_prologue_use (pic_offset_table_rtx)); + + if (crtl->drap_reg && !crtl->stack_realign_needed) + { + /* vDRAP is setup but after reload it turns out stack realign + isn't necessary, here we will emit prologue to setup DRAP + without stack realign adjustment */ + t = choose_baseaddr (0); + emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t)); + } + + /* Prevent instructions from being scheduled into register save push + sequence when access to the redzone area is done through frame pointer. + The offset between the frame pointer and the stack pointer is calculated + relative to the value of the stack pointer at the end of the function + prologue, and moving instructions that access redzone area via frame + pointer inside push sequence violates this assumption. */ + if (frame_pointer_needed && frame.red_zone_size) + emit_insn (gen_memory_blockage ()); + + /* Emit cld instruction if stringops are used in the function. */ + if (TARGET_CLD && ix86_current_function_needs_cld) + emit_insn (gen_cld ()); + + /* SEH requires that the prologue end within 256 bytes of the start of + the function. Prevent instruction schedules that would extend that. */ + if (TARGET_SEH) + emit_insn (gen_blockage ()); +} + +/* Emit code to restore REG using a POP insn. */ + +static void +ix86_emit_restore_reg_using_pop (rtx reg) +{ + struct machine_function *m = cfun->machine; + rtx insn = emit_insn (gen_pop (reg)); + + ix86_add_cfa_restore_note (insn, reg, m->fs.sp_offset); + m->fs.sp_offset -= UNITS_PER_WORD; + + if (m->fs.cfa_reg == crtl->drap_reg + && REGNO (reg) == REGNO (crtl->drap_reg)) + { + /* Previously we'd represented the CFA as an expression + like *(%ebp - 8). We've just popped that value from + the stack, which means we need to reset the CFA to + the drap register. This will remain until we restore + the stack pointer. */ + add_reg_note (insn, REG_CFA_DEF_CFA, reg); + RTX_FRAME_RELATED_P (insn) = 1; + + /* This means that the DRAP register is valid for addressing too. */ + m->fs.drap_valid = true; + return; + } + + if (m->fs.cfa_reg == stack_pointer_rtx) + { + rtx x = plus_constant (stack_pointer_rtx, UNITS_PER_WORD); + x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x); + add_reg_note (insn, REG_CFA_ADJUST_CFA, x); + RTX_FRAME_RELATED_P (insn) = 1; + + m->fs.cfa_offset -= UNITS_PER_WORD; + } + + /* When the frame pointer is the CFA, and we pop it, we are + swapping back to the stack pointer as the CFA. This happens + for stack frames that don't allocate other data, so we assume + the stack pointer is now pointing at the return address, i.e. + the function entry state, which makes the offset be 1 word. */ + if (reg == hard_frame_pointer_rtx) + { + m->fs.fp_valid = false; + if (m->fs.cfa_reg == hard_frame_pointer_rtx) + { + m->fs.cfa_reg = stack_pointer_rtx; + m->fs.cfa_offset -= UNITS_PER_WORD; + + add_reg_note (insn, REG_CFA_DEF_CFA, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + GEN_INT (m->fs.cfa_offset))); + RTX_FRAME_RELATED_P (insn) = 1; + } + } +} + +/* Emit code to restore saved registers using POP insns. */ + +static void +ix86_emit_restore_regs_using_pop (void) +{ + unsigned int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, false)) + ix86_emit_restore_reg_using_pop (gen_rtx_REG (Pmode, regno)); +} + +/* Emit code and notes for the LEAVE instruction. */ + +static void +ix86_emit_leave (void) +{ + struct machine_function *m = cfun->machine; + rtx insn = emit_insn (ix86_gen_leave ()); + + ix86_add_queued_cfa_restore_notes (insn); + + gcc_assert (m->fs.fp_valid); + m->fs.sp_valid = true; + m->fs.sp_offset = m->fs.fp_offset - UNITS_PER_WORD; + m->fs.fp_valid = false; + + if (m->fs.cfa_reg == hard_frame_pointer_rtx) + { + m->fs.cfa_reg = stack_pointer_rtx; + m->fs.cfa_offset = m->fs.sp_offset; + + add_reg_note (insn, REG_CFA_DEF_CFA, + plus_constant (stack_pointer_rtx, m->fs.sp_offset)); + RTX_FRAME_RELATED_P (insn) = 1; + ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx, + m->fs.fp_offset); + } +} + +/* Emit code to restore saved registers using MOV insns. + First register is restored from CFA - CFA_OFFSET. */ +static void +ix86_emit_restore_regs_using_mov (HOST_WIDE_INT cfa_offset, + int maybe_eh_return) +{ + struct machine_function *m = cfun->machine; + unsigned int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) + { + rtx reg = gen_rtx_REG (Pmode, regno); + rtx insn, mem; + + mem = choose_baseaddr (cfa_offset); + mem = gen_frame_mem (Pmode, mem); + insn = emit_move_insn (reg, mem); + + if (m->fs.cfa_reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg)) + { + /* Previously we'd represented the CFA as an expression + like *(%ebp - 8). We've just popped that value from + the stack, which means we need to reset the CFA to + the drap register. This will remain until we restore + the stack pointer. */ + add_reg_note (insn, REG_CFA_DEF_CFA, reg); + RTX_FRAME_RELATED_P (insn) = 1; + + /* This means that the DRAP register is valid for addressing. */ + m->fs.drap_valid = true; + } + else + ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset); + + cfa_offset -= UNITS_PER_WORD; + } +} + +/* Emit code to restore saved registers using MOV insns. + First register is restored from CFA - CFA_OFFSET. */ +static void +ix86_emit_restore_sse_regs_using_mov (HOST_WIDE_INT cfa_offset, + int maybe_eh_return) +{ + unsigned int regno; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) + { + rtx reg = gen_rtx_REG (V4SFmode, regno); + rtx mem; + + mem = choose_baseaddr (cfa_offset); + mem = gen_rtx_MEM (V4SFmode, mem); + set_mem_align (mem, 128); + emit_move_insn (reg, mem); + + ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset); + + cfa_offset -= 16; + } +} + +/* Restore function stack, frame, and registers. */ + +void +ix86_expand_epilogue (int style) +{ + struct machine_function *m = cfun->machine; + struct machine_frame_state frame_state_save = m->fs; + struct ix86_frame frame; + bool restore_regs_via_mov; + bool using_drap; + + ix86_finalize_stack_realign_flags (); + ix86_compute_frame_layout (&frame); + + m->fs.sp_valid = (!frame_pointer_needed + || (current_function_sp_is_unchanging + && !stack_realign_fp)); + gcc_assert (!m->fs.sp_valid + || m->fs.sp_offset == frame.stack_pointer_offset); + + /* The FP must be valid if the frame pointer is present. */ + gcc_assert (frame_pointer_needed == m->fs.fp_valid); + gcc_assert (!m->fs.fp_valid + || m->fs.fp_offset == frame.hard_frame_pointer_offset); + + /* We must have *some* valid pointer to the stack frame. */ + gcc_assert (m->fs.sp_valid || m->fs.fp_valid); + + /* The DRAP is never valid at this point. */ + gcc_assert (!m->fs.drap_valid); + + /* See the comment about red zone and frame + pointer usage in ix86_expand_prologue. */ + if (frame_pointer_needed && frame.red_zone_size) + emit_insn (gen_memory_blockage ()); + + using_drap = crtl->drap_reg && crtl->stack_realign_needed; + gcc_assert (!using_drap || m->fs.cfa_reg == crtl->drap_reg); + + /* Determine the CFA offset of the end of the red-zone. */ + m->fs.red_zone_offset = 0; + if (ix86_using_red_zone () && crtl->args.pops_args < 65536) + { + /* The red-zone begins below the return address. */ + m->fs.red_zone_offset = RED_ZONE_SIZE + UNITS_PER_WORD; + + /* When the register save area is in the aligned portion of + the stack, determine the maximum runtime displacement that + matches up with the aligned frame. */ + if (stack_realign_drap) + m->fs.red_zone_offset -= (crtl->stack_alignment_needed / BITS_PER_UNIT + + UNITS_PER_WORD); + } + + /* Special care must be taken for the normal return case of a function + using eh_return: the eax and edx registers are marked as saved, but + not restored along this path. Adjust the save location to match. */ + if (crtl->calls_eh_return && style != 2) + frame.reg_save_offset -= 2 * UNITS_PER_WORD; + + /* EH_RETURN requires the use of moves to function properly. */ + if (crtl->calls_eh_return) + restore_regs_via_mov = true; + /* SEH requires the use of pops to identify the epilogue. */ + else if (TARGET_SEH) + restore_regs_via_mov = false; + /* If we're only restoring one register and sp is not valid then + using a move instruction to restore the register since it's + less work than reloading sp and popping the register. */ + else if (!m->fs.sp_valid && frame.nregs <= 1) + restore_regs_via_mov = true; + else if (TARGET_EPILOGUE_USING_MOVE + && cfun->machine->use_fast_prologue_epilogue + && (frame.nregs > 1 + || m->fs.sp_offset != frame.reg_save_offset)) + restore_regs_via_mov = true; + else if (frame_pointer_needed + && !frame.nregs + && m->fs.sp_offset != frame.reg_save_offset) + restore_regs_via_mov = true; + else if (frame_pointer_needed + && TARGET_USE_LEAVE + && cfun->machine->use_fast_prologue_epilogue + && frame.nregs == 1) + restore_regs_via_mov = true; + else + restore_regs_via_mov = false; + + if (restore_regs_via_mov || frame.nsseregs) + { + /* Ensure that the entire register save area is addressable via + the stack pointer, if we will restore via sp. */ + if (TARGET_64BIT + && m->fs.sp_offset > 0x7fffffff + && !(m->fs.fp_valid || m->fs.drap_valid) + && (frame.nsseregs + frame.nregs) != 0) + { + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (m->fs.sp_offset + - frame.sse_reg_save_offset), + style, + m->fs.cfa_reg == stack_pointer_rtx); + } + } + + /* If there are any SSE registers to restore, then we have to do it + via moves, since there's obviously no pop for SSE regs. */ + if (frame.nsseregs) + ix86_emit_restore_sse_regs_using_mov (frame.sse_reg_save_offset, + style == 2); + + if (restore_regs_via_mov) + { + rtx t; + + if (frame.nregs) + ix86_emit_restore_regs_using_mov (frame.reg_save_offset, style == 2); + + /* eh_return epilogues need %ecx added to the stack pointer. */ + if (style == 2) + { + rtx insn, sa = EH_RETURN_STACKADJ_RTX; + + /* Stack align doesn't work with eh_return. */ + gcc_assert (!stack_realign_drap); + /* Neither does regparm nested functions. */ + gcc_assert (!ix86_static_chain_on_stack); + + if (frame_pointer_needed) + { + t = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa); + t = plus_constant (t, m->fs.fp_offset - UNITS_PER_WORD); + emit_insn (gen_rtx_SET (VOIDmode, sa, t)); + + t = gen_frame_mem (Pmode, hard_frame_pointer_rtx); + insn = emit_move_insn (hard_frame_pointer_rtx, t); + + /* Note that we use SA as a temporary CFA, as the return + address is at the proper place relative to it. We + pretend this happens at the FP restore insn because + prior to this insn the FP would be stored at the wrong + offset relative to SA, and after this insn we have no + other reasonable register to use for the CFA. We don't + bother resetting the CFA to the SP for the duration of + the return insn. */ + add_reg_note (insn, REG_CFA_DEF_CFA, + plus_constant (sa, UNITS_PER_WORD)); + ix86_add_queued_cfa_restore_notes (insn); + add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx); + RTX_FRAME_RELATED_P (insn) = 1; + + m->fs.cfa_reg = sa; + m->fs.cfa_offset = UNITS_PER_WORD; + m->fs.fp_valid = false; + + pro_epilogue_adjust_stack (stack_pointer_rtx, sa, + const0_rtx, style, false); + } + else + { + t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa); + t = plus_constant (t, m->fs.sp_offset - UNITS_PER_WORD); + insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, t)); + ix86_add_queued_cfa_restore_notes (insn); + + gcc_assert (m->fs.cfa_reg == stack_pointer_rtx); + if (m->fs.cfa_offset != UNITS_PER_WORD) + { + m->fs.cfa_offset = UNITS_PER_WORD; + add_reg_note (insn, REG_CFA_DEF_CFA, + plus_constant (stack_pointer_rtx, + UNITS_PER_WORD)); + RTX_FRAME_RELATED_P (insn) = 1; + } + } + m->fs.sp_offset = UNITS_PER_WORD; + m->fs.sp_valid = true; + } + } + else + { + /* SEH requires that the function end with (1) a stack adjustment + if necessary, (2) a sequence of pops, and (3) a return or + jump instruction. Prevent insns from the function body from + being scheduled into this sequence. */ + if (TARGET_SEH) + { + /* Prevent a catch region from being adjacent to the standard + epilogue sequence. Unfortuantely crtl->uses_eh_lsda nor + several other flags that would be interesting to test are + not yet set up. */ + if (flag_non_call_exceptions) + emit_insn (gen_nops (const1_rtx)); + else + emit_insn (gen_blockage ()); + } + + /* First step is to deallocate the stack frame so that we can + pop the registers. */ + if (!m->fs.sp_valid) + { + pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, + GEN_INT (m->fs.fp_offset + - frame.reg_save_offset), + style, false); + } + else if (m->fs.sp_offset != frame.reg_save_offset) + { + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (m->fs.sp_offset + - frame.reg_save_offset), + style, + m->fs.cfa_reg == stack_pointer_rtx); + } + + ix86_emit_restore_regs_using_pop (); + } + + /* If we used a stack pointer and haven't already got rid of it, + then do so now. */ + if (m->fs.fp_valid) + { + /* If the stack pointer is valid and pointing at the frame + pointer store address, then we only need a pop. */ + if (m->fs.sp_valid && m->fs.sp_offset == frame.hfp_save_offset) + ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); + /* Leave results in shorter dependency chains on CPUs that are + able to grok it fast. */ + else if (TARGET_USE_LEAVE + || optimize_function_for_size_p (cfun) + || !cfun->machine->use_fast_prologue_epilogue) + ix86_emit_leave (); + else + { + pro_epilogue_adjust_stack (stack_pointer_rtx, + hard_frame_pointer_rtx, + const0_rtx, style, !using_drap); + ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); + } + } + + if (using_drap) + { + int param_ptr_offset = UNITS_PER_WORD; + rtx insn; + + gcc_assert (stack_realign_drap); + + if (ix86_static_chain_on_stack) + param_ptr_offset += UNITS_PER_WORD; + if (!call_used_regs[REGNO (crtl->drap_reg)]) + param_ptr_offset += UNITS_PER_WORD; + + insn = emit_insn (gen_rtx_SET + (VOIDmode, stack_pointer_rtx, + gen_rtx_PLUS (Pmode, + crtl->drap_reg, + GEN_INT (-param_ptr_offset)))); + m->fs.cfa_reg = stack_pointer_rtx; + m->fs.cfa_offset = param_ptr_offset; + m->fs.sp_offset = param_ptr_offset; + m->fs.realigned = false; + + add_reg_note (insn, REG_CFA_DEF_CFA, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + GEN_INT (param_ptr_offset))); + RTX_FRAME_RELATED_P (insn) = 1; + + if (!call_used_regs[REGNO (crtl->drap_reg)]) + ix86_emit_restore_reg_using_pop (crtl->drap_reg); + } + + /* At this point the stack pointer must be valid, and we must have + restored all of the registers. We may not have deallocated the + entire stack frame. We've delayed this until now because it may + be possible to merge the local stack deallocation with the + deallocation forced by ix86_static_chain_on_stack. */ + gcc_assert (m->fs.sp_valid); + gcc_assert (!m->fs.fp_valid); + gcc_assert (!m->fs.realigned); + if (m->fs.sp_offset != UNITS_PER_WORD) + { + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (m->fs.sp_offset - UNITS_PER_WORD), + style, true); + } + + /* Sibcall epilogues don't want a return instruction. */ + if (style == 0) + { + m->fs = frame_state_save; + return; + } + + /* Emit vzeroupper if needed. */ + if (TARGET_VZEROUPPER + && !TREE_THIS_VOLATILE (cfun->decl) + && !cfun->machine->caller_return_avx256_p) + emit_insn (gen_avx_vzeroupper (GEN_INT (call_no_avx256))); + + if (crtl->args.pops_args && crtl->args.size) + { + rtx popc = GEN_INT (crtl->args.pops_args); + + /* i386 can only pop 64K bytes. If asked to pop more, pop return + address, do explicit add, and jump indirectly to the caller. */ + + if (crtl->args.pops_args >= 65536) + { + rtx ecx = gen_rtx_REG (SImode, CX_REG); + rtx insn; + + /* There is no "pascal" calling convention in any 64bit ABI. */ + gcc_assert (!TARGET_64BIT); + + insn = emit_insn (gen_pop (ecx)); + m->fs.cfa_offset -= UNITS_PER_WORD; + m->fs.sp_offset -= UNITS_PER_WORD; + + add_reg_note (insn, REG_CFA_ADJUST_CFA, + copy_rtx (XVECEXP (PATTERN (insn), 0, 1))); + add_reg_note (insn, REG_CFA_REGISTER, + gen_rtx_SET (VOIDmode, ecx, pc_rtx)); + RTX_FRAME_RELATED_P (insn) = 1; + + pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, + popc, -1, true); + emit_jump_insn (gen_return_indirect_internal (ecx)); + } + else + emit_jump_insn (gen_return_pop_internal (popc)); + } + else + emit_jump_insn (gen_return_internal ()); + + /* Restore the state back to the state from the prologue, + so that it's correct for the next epilogue. */ + m->fs = frame_state_save; +} + +/* Reset from the function's potential modifications. */ + +static void +ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED, + HOST_WIDE_INT size ATTRIBUTE_UNUSED) +{ + if (pic_offset_table_rtx) + SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM); +#if TARGET_MACHO + /* Mach-O doesn't support labels at the end of objects, so if + it looks like we might want one, insert a NOP. */ + { + rtx insn = get_last_insn (); + while (insn + && NOTE_P (insn) + && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL) + insn = PREV_INSN (insn); + if (insn + && (LABEL_P (insn) + || (NOTE_P (insn) + && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))) + fputs ("\tnop\n", file); + } +#endif + +} + +/* Return a scratch register to use in the split stack prologue. The + split stack prologue is used for -fsplit-stack. It is the first + instructions in the function, even before the regular prologue. + The scratch register can be any caller-saved register which is not + used for parameters or for the static chain. */ + +static unsigned int +split_stack_prologue_scratch_regno (void) +{ + if (TARGET_64BIT) + return R11_REG; + else + { + bool is_fastcall; + int regparm; + + is_fastcall = (lookup_attribute ("fastcall", + TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))) + != NULL); + regparm = ix86_function_regparm (TREE_TYPE (cfun->decl), cfun->decl); + + if (is_fastcall) + { + if (DECL_STATIC_CHAIN (cfun->decl)) + { + sorry ("-fsplit-stack does not support fastcall with " + "nested function"); + return INVALID_REGNUM; + } + return AX_REG; + } + else if (regparm < 3) + { + if (!DECL_STATIC_CHAIN (cfun->decl)) + return CX_REG; + else + { + if (regparm >= 2) + { + sorry ("-fsplit-stack does not support 2 register " + " parameters for a nested function"); + return INVALID_REGNUM; + } + return DX_REG; + } + } + else + { + /* FIXME: We could make this work by pushing a register + around the addition and comparison. */ + sorry ("-fsplit-stack does not support 3 register parameters"); + return INVALID_REGNUM; + } + } +} + +/* A SYMBOL_REF for the function which allocates new stackspace for + -fsplit-stack. */ + +static GTY(()) rtx split_stack_fn; + +/* A SYMBOL_REF for the more stack function when using the large + model. */ + +static GTY(()) rtx split_stack_fn_large; + +/* Handle -fsplit-stack. These are the first instructions in the + function, even before the regular prologue. */ + +void +ix86_expand_split_stack_prologue (void) +{ + struct ix86_frame frame; + HOST_WIDE_INT allocate; + unsigned HOST_WIDE_INT args_size; + rtx label, limit, current, jump_insn, allocate_rtx, call_insn, call_fusage; + rtx scratch_reg = NULL_RTX; + rtx varargs_label = NULL_RTX; + rtx fn; + + gcc_assert (flag_split_stack && reload_completed); + + ix86_finalize_stack_realign_flags (); + ix86_compute_frame_layout (&frame); + allocate = frame.stack_pointer_offset - INCOMING_FRAME_SP_OFFSET; + + /* This is the label we will branch to if we have enough stack + space. We expect the basic block reordering pass to reverse this + branch if optimizing, so that we branch in the unlikely case. */ + label = gen_label_rtx (); + + /* We need to compare the stack pointer minus the frame size with + the stack boundary in the TCB. The stack boundary always gives + us SPLIT_STACK_AVAILABLE bytes, so if we need less than that we + can compare directly. Otherwise we need to do an addition. */ + + limit = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), + UNSPEC_STACK_CHECK); + limit = gen_rtx_CONST (Pmode, limit); + limit = gen_rtx_MEM (Pmode, limit); + if (allocate < SPLIT_STACK_AVAILABLE) + current = stack_pointer_rtx; + else + { + unsigned int scratch_regno; + rtx offset; + + /* We need a scratch register to hold the stack pointer minus + the required frame size. Since this is the very start of the + function, the scratch register can be any caller-saved + register which is not used for parameters. */ + offset = GEN_INT (- allocate); + scratch_regno = split_stack_prologue_scratch_regno (); + if (scratch_regno == INVALID_REGNUM) + return; + scratch_reg = gen_rtx_REG (Pmode, scratch_regno); + if (!TARGET_64BIT || x86_64_immediate_operand (offset, Pmode)) + { + /* We don't use ix86_gen_add3 in this case because it will + want to split to lea, but when not optimizing the insn + will not be split after this point. */ + emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + offset))); + } + else + { + emit_move_insn (scratch_reg, offset); + emit_insn (gen_adddi3 (scratch_reg, scratch_reg, + stack_pointer_rtx)); + } + current = scratch_reg; + } + + ix86_expand_branch (GEU, current, limit, label); + jump_insn = get_last_insn (); + JUMP_LABEL (jump_insn) = label; + + /* Mark the jump as very likely to be taken. */ + add_reg_note (jump_insn, REG_BR_PROB, + GEN_INT (REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100)); + + if (split_stack_fn == NULL_RTX) + split_stack_fn = gen_rtx_SYMBOL_REF (Pmode, "__morestack"); + fn = split_stack_fn; + + /* Get more stack space. We pass in the desired stack space and the + size of the arguments to copy to the new stack. In 32-bit mode + we push the parameters; __morestack will return on a new stack + anyhow. In 64-bit mode we pass the parameters in r10 and + r11. */ + allocate_rtx = GEN_INT (allocate); + args_size = crtl->args.size >= 0 ? crtl->args.size : 0; + call_fusage = NULL_RTX; + if (TARGET_64BIT) + { + rtx reg10, reg11; + + reg10 = gen_rtx_REG (Pmode, R10_REG); + reg11 = gen_rtx_REG (Pmode, R11_REG); + + /* If this function uses a static chain, it will be in %r10. + Preserve it across the call to __morestack. */ + if (DECL_STATIC_CHAIN (cfun->decl)) + { + rtx rax; + + rax = gen_rtx_REG (Pmode, AX_REG); + emit_move_insn (rax, reg10); + use_reg (&call_fusage, rax); + } + + if (ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC) + { + HOST_WIDE_INT argval; + + /* When using the large model we need to load the address + into a register, and we've run out of registers. So we + switch to a different calling convention, and we call a + different function: __morestack_large. We pass the + argument size in the upper 32 bits of r10 and pass the + frame size in the lower 32 bits. */ + gcc_assert ((allocate & (HOST_WIDE_INT) 0xffffffff) == allocate); + gcc_assert ((args_size & 0xffffffff) == args_size); + + if (split_stack_fn_large == NULL_RTX) + split_stack_fn_large = + gen_rtx_SYMBOL_REF (Pmode, "__morestack_large_model"); + + if (ix86_cmodel == CM_LARGE_PIC) + { + rtx label, x; + + label = gen_label_rtx (); + emit_label (label); + LABEL_PRESERVE_P (label) = 1; + emit_insn (gen_set_rip_rex64 (reg10, label)); + emit_insn (gen_set_got_offset_rex64 (reg11, label)); + emit_insn (gen_adddi3 (reg10, reg10, reg11)); + x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, split_stack_fn_large), + UNSPEC_GOT); + x = gen_rtx_CONST (Pmode, x); + emit_move_insn (reg11, x); + x = gen_rtx_PLUS (Pmode, reg10, reg11); + x = gen_const_mem (Pmode, x); + emit_move_insn (reg11, x); + } + else + emit_move_insn (reg11, split_stack_fn_large); + + fn = reg11; + + argval = ((args_size << 16) << 16) + allocate; + emit_move_insn (reg10, GEN_INT (argval)); + } + else + { + emit_move_insn (reg10, allocate_rtx); + emit_move_insn (reg11, GEN_INT (args_size)); + use_reg (&call_fusage, reg11); + } + + use_reg (&call_fusage, reg10); + } + else + { + emit_insn (gen_push (GEN_INT (args_size))); + emit_insn (gen_push (allocate_rtx)); + } + call_insn = ix86_expand_call (NULL_RTX, gen_rtx_MEM (QImode, fn), + GEN_INT (UNITS_PER_WORD), constm1_rtx, + NULL_RTX, 0); + add_function_usage_to (call_insn, call_fusage); + + /* In order to make call/return prediction work right, we now need + to execute a return instruction. See + libgcc/config/i386/morestack.S for the details on how this works. + + For flow purposes gcc must not see this as a return + instruction--we need control flow to continue at the subsequent + label. Therefore, we use an unspec. */ + gcc_assert (crtl->args.pops_args < 65536); + emit_insn (gen_split_stack_return (GEN_INT (crtl->args.pops_args))); + + /* If we are in 64-bit mode and this function uses a static chain, + we saved %r10 in %rax before calling _morestack. */ + if (TARGET_64BIT && DECL_STATIC_CHAIN (cfun->decl)) + emit_move_insn (gen_rtx_REG (Pmode, R10_REG), + gen_rtx_REG (Pmode, AX_REG)); + + /* If this function calls va_start, we need to store a pointer to + the arguments on the old stack, because they may not have been + all copied to the new stack. At this point the old stack can be + found at the frame pointer value used by __morestack, because + __morestack has set that up before calling back to us. Here we + store that pointer in a scratch register, and in + ix86_expand_prologue we store the scratch register in a stack + slot. */ + if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) + { + unsigned int scratch_regno; + rtx frame_reg; + int words; + + scratch_regno = split_stack_prologue_scratch_regno (); + scratch_reg = gen_rtx_REG (Pmode, scratch_regno); + frame_reg = gen_rtx_REG (Pmode, BP_REG); + + /* 64-bit: + fp -> old fp value + return address within this function + return address of caller of this function + stack arguments + So we add three words to get to the stack arguments. + + 32-bit: + fp -> old fp value + return address within this function + first argument to __morestack + second argument to __morestack + return address of caller of this function + stack arguments + So we add five words to get to the stack arguments. + */ + words = TARGET_64BIT ? 3 : 5; + emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, + gen_rtx_PLUS (Pmode, frame_reg, + GEN_INT (words * UNITS_PER_WORD)))); + + varargs_label = gen_label_rtx (); + emit_jump_insn (gen_jump (varargs_label)); + JUMP_LABEL (get_last_insn ()) = varargs_label; + + emit_barrier (); + } + + emit_label (label); + LABEL_NUSES (label) = 1; + + /* If this function calls va_start, we now have to set the scratch + register for the case where we do not call __morestack. In this + case we need to set it based on the stack pointer. */ + if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) + { + emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + GEN_INT (UNITS_PER_WORD)))); + + emit_label (varargs_label); + LABEL_NUSES (varargs_label) = 1; + } +} + +/* We may have to tell the dataflow pass that the split stack prologue + is initializing a scratch register. */ + +static void +ix86_live_on_entry (bitmap regs) +{ + if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) + { + gcc_assert (flag_split_stack); + bitmap_set_bit (regs, split_stack_prologue_scratch_regno ()); + } +} + +/* Extract the parts of an RTL expression that is a valid memory address + for an instruction. Return 0 if the structure of the address is + grossly off. Return -1 if the address contains ASHIFT, so it is not + strictly valid, but still used for computing length of lea instruction. */ + +int +ix86_decompose_address (rtx addr, struct ix86_address *out) +{ + rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX; + rtx base_reg, index_reg; + HOST_WIDE_INT scale = 1; + rtx scale_rtx = NULL_RTX; + rtx tmp; + int retval = 1; + enum ix86_address_seg seg = SEG_DEFAULT; + + if (REG_P (addr) || GET_CODE (addr) == SUBREG) + base = addr; + else if (GET_CODE (addr) == PLUS) + { + rtx addends[4], op; + int n = 0, i; + + op = addr; + do + { + if (n >= 4) + return 0; + addends[n++] = XEXP (op, 1); + op = XEXP (op, 0); + } + while (GET_CODE (op) == PLUS); + if (n >= 4) + return 0; + addends[n] = op; + + for (i = n; i >= 0; --i) + { + op = addends[i]; + switch (GET_CODE (op)) + { + case MULT: + if (index) + return 0; + index = XEXP (op, 0); + scale_rtx = XEXP (op, 1); + break; + + case ASHIFT: + if (index) + return 0; + index = XEXP (op, 0); + tmp = XEXP (op, 1); + if (!CONST_INT_P (tmp)) + return 0; + scale = INTVAL (tmp); + if ((unsigned HOST_WIDE_INT) scale > 3) + return 0; + scale = 1 << scale; + break; + + case UNSPEC: + if (XINT (op, 1) == UNSPEC_TP + && TARGET_TLS_DIRECT_SEG_REFS + && seg == SEG_DEFAULT) + seg = TARGET_64BIT ? SEG_FS : SEG_GS; + else + return 0; + break; + + case REG: + case SUBREG: + if (!base) + base = op; + else if (!index) + index = op; + else + return 0; + break; + + case CONST: + case CONST_INT: + case SYMBOL_REF: + case LABEL_REF: + if (disp) + return 0; + disp = op; + break; + + default: + return 0; + } + } + } + else if (GET_CODE (addr) == MULT) + { + index = XEXP (addr, 0); /* index*scale */ + scale_rtx = XEXP (addr, 1); + } + else if (GET_CODE (addr) == ASHIFT) + { + /* We're called for lea too, which implements ashift on occasion. */ + index = XEXP (addr, 0); + tmp = XEXP (addr, 1); + if (!CONST_INT_P (tmp)) + return 0; + scale = INTVAL (tmp); + if ((unsigned HOST_WIDE_INT) scale > 3) + return 0; + scale = 1 << scale; + retval = -1; + } + else + disp = addr; /* displacement */ + + /* Extract the integral value of scale. */ + if (scale_rtx) + { + if (!CONST_INT_P (scale_rtx)) + return 0; + scale = INTVAL (scale_rtx); + } + + base_reg = base && GET_CODE (base) == SUBREG ? SUBREG_REG (base) : base; + index_reg = index && GET_CODE (index) == SUBREG ? SUBREG_REG (index) : index; + + /* Avoid useless 0 displacement. */ + if (disp == const0_rtx && (base || index)) + disp = NULL_RTX; + + /* Allow arg pointer and stack pointer as index if there is not scaling. */ + if (base_reg && index_reg && scale == 1 + && (index_reg == arg_pointer_rtx + || index_reg == frame_pointer_rtx + || (REG_P (index_reg) && REGNO (index_reg) == STACK_POINTER_REGNUM))) + { + rtx tmp; + tmp = base, base = index, index = tmp; + tmp = base_reg, base_reg = index_reg, index_reg = tmp; + } + + /* Special case: %ebp cannot be encoded as a base without a displacement. + Similarly %r13. */ + if (!disp + && base_reg + && (base_reg == hard_frame_pointer_rtx + || base_reg == frame_pointer_rtx + || base_reg == arg_pointer_rtx + || (REG_P (base_reg) + && (REGNO (base_reg) == HARD_FRAME_POINTER_REGNUM + || REGNO (base_reg) == R13_REG)))) + disp = const0_rtx; + + /* Special case: on K6, [%esi] makes the instruction vector decoded. + Avoid this by transforming to [%esi+0]. + Reload calls address legitimization without cfun defined, so we need + to test cfun for being non-NULL. */ + if (TARGET_K6 && cfun && optimize_function_for_speed_p (cfun) + && base_reg && !index_reg && !disp + && REG_P (base_reg) && REGNO (base_reg) == SI_REG) + disp = const0_rtx; + + /* Special case: encode reg+reg instead of reg*2. */ + if (!base && index && scale == 2) + base = index, base_reg = index_reg, scale = 1; + + /* Special case: scaling cannot be encoded without base or displacement. */ + if (!base && !disp && index && scale != 1) + disp = const0_rtx; + + out->base = base; + out->index = index; + out->disp = disp; + out->scale = scale; + out->seg = seg; + + return retval; +} + +/* Return cost of the memory address x. + For i386, it is better to use a complex address than let gcc copy + the address into a reg and make a new pseudo. But not if the address + requires to two regs - that would mean more pseudos with longer + lifetimes. */ +static int +ix86_address_cost (rtx x, bool speed ATTRIBUTE_UNUSED) +{ + struct ix86_address parts; + int cost = 1; + int ok = ix86_decompose_address (x, &parts); + + gcc_assert (ok); + + if (parts.base && GET_CODE (parts.base) == SUBREG) + parts.base = SUBREG_REG (parts.base); + if (parts.index && GET_CODE (parts.index) == SUBREG) + parts.index = SUBREG_REG (parts.index); + + /* Attempt to minimize number of registers in the address. */ + if ((parts.base + && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)) + || (parts.index + && (!REG_P (parts.index) + || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER))) + cost++; + + if (parts.base + && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) + && parts.index + && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) + && parts.base != parts.index) + cost++; + + /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, + since it's predecode logic can't detect the length of instructions + and it degenerates to vector decoded. Increase cost of such + addresses here. The penalty is minimally 2 cycles. It may be worthwhile + to split such addresses or even refuse such addresses at all. + + Following addressing modes are affected: + [base+scale*index] + [scale*index+disp] + [base+index] + + The first and last case may be avoidable by explicitly coding the zero in + memory address, but I don't have AMD-K6 machine handy to check this + theory. */ + + if (TARGET_K6 + && ((!parts.disp && parts.base && parts.index && parts.scale != 1) + || (parts.disp && !parts.base && parts.index && parts.scale != 1) + || (!parts.disp && parts.base && parts.index && parts.scale == 1))) + cost += 10; + + return cost; +} + +/* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as + this is used for to form addresses to local data when -fPIC is in + use. */ + +static bool +darwin_local_data_pic (rtx disp) +{ + return (GET_CODE (disp) == UNSPEC + && XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET); +} + +/* Determine if a given RTX is a valid constant. We already know this + satisfies CONSTANT_P. */ + +bool +legitimate_constant_p (rtx x) +{ + switch (GET_CODE (x)) + { + case CONST: + x = XEXP (x, 0); + + if (GET_CODE (x) == PLUS) + { + if (!CONST_INT_P (XEXP (x, 1))) + return false; + x = XEXP (x, 0); + } + + if (TARGET_MACHO && darwin_local_data_pic (x)) + return true; + + /* Only some unspecs are valid as "constants". */ + if (GET_CODE (x) == UNSPEC) + switch (XINT (x, 1)) + { + case UNSPEC_GOT: + case UNSPEC_GOTOFF: + case UNSPEC_PLTOFF: + return TARGET_64BIT; + case UNSPEC_TPOFF: + case UNSPEC_NTPOFF: + x = XVECEXP (x, 0, 0); + return (GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); + case UNSPEC_DTPOFF: + x = XVECEXP (x, 0, 0); + return (GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC); + default: + return false; + } + + /* We must have drilled down to a symbol. */ + if (GET_CODE (x) == LABEL_REF) + return true; + if (GET_CODE (x) != SYMBOL_REF) + return false; + /* FALLTHRU */ + + case SYMBOL_REF: + /* TLS symbols are never valid. */ + if (SYMBOL_REF_TLS_MODEL (x)) + return false; + + /* DLLIMPORT symbols are never valid. */ + if (TARGET_DLLIMPORT_DECL_ATTRIBUTES + && SYMBOL_REF_DLLIMPORT_P (x)) + return false; + +#if TARGET_MACHO + /* mdynamic-no-pic */ + if (MACHO_DYNAMIC_NO_PIC_P) + return machopic_symbol_defined_p (x); +#endif + break; + + case CONST_DOUBLE: + if (GET_MODE (x) == TImode + && x != CONST0_RTX (TImode) + && !TARGET_64BIT) + return false; + break; + + case CONST_VECTOR: + if (!standard_sse_constant_p (x)) + return false; + + default: + break; + } + + /* Otherwise we handle everything else in the move patterns. */ + return true; +} + +/* Determine if it's legal to put X into the constant pool. This + is not possible for the address of thread-local symbols, which + is checked above. */ + +static bool +ix86_cannot_force_const_mem (rtx x) +{ + /* We can always put integral constants and vectors in memory. */ + switch (GET_CODE (x)) + { + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + return false; + + default: + break; + } + return !legitimate_constant_p (x); +} + + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +bool +legitimate_pic_operand_p (rtx x) +{ + rtx inner; + + switch (GET_CODE (x)) + { + case CONST: + inner = XEXP (x, 0); + if (GET_CODE (inner) == PLUS + && CONST_INT_P (XEXP (inner, 1))) + inner = XEXP (inner, 0); + + /* Only some unspecs are valid as "constants". */ + if (GET_CODE (inner) == UNSPEC) + switch (XINT (inner, 1)) + { + case UNSPEC_GOT: + case UNSPEC_GOTOFF: + case UNSPEC_PLTOFF: + return TARGET_64BIT; + case UNSPEC_TPOFF: + x = XVECEXP (inner, 0, 0); + return (GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); + case UNSPEC_MACHOPIC_OFFSET: + return legitimate_pic_address_disp_p (x); + default: + return false; + } + /* FALLTHRU */ + + case SYMBOL_REF: + case LABEL_REF: + return legitimate_pic_address_disp_p (x); + + default: + return true; + } +} + +/* Determine if a given CONST RTX is a valid memory displacement + in PIC mode. */ + +bool +legitimate_pic_address_disp_p (rtx disp) +{ + bool saw_plus; + + /* In 64bit mode we can allow direct addresses of symbols and labels + when they are not dynamic symbols. */ + if (TARGET_64BIT) + { + rtx op0 = disp, op1; + + switch (GET_CODE (disp)) + { + case LABEL_REF: + return true; + + case CONST: + if (GET_CODE (XEXP (disp, 0)) != PLUS) + break; + op0 = XEXP (XEXP (disp, 0), 0); + op1 = XEXP (XEXP (disp, 0), 1); + if (!CONST_INT_P (op1) + || INTVAL (op1) >= 16*1024*1024 + || INTVAL (op1) < -16*1024*1024) + break; + if (GET_CODE (op0) == LABEL_REF) + return true; + if (GET_CODE (op0) != SYMBOL_REF) + break; + /* FALLTHRU */ + + case SYMBOL_REF: + /* TLS references should always be enclosed in UNSPEC. */ + if (SYMBOL_REF_TLS_MODEL (op0)) + return false; + if (!SYMBOL_REF_FAR_ADDR_P (op0) && SYMBOL_REF_LOCAL_P (op0) + && ix86_cmodel != CM_LARGE_PIC) + return true; + break; + + default: + break; + } + } + if (GET_CODE (disp) != CONST) + return false; + disp = XEXP (disp, 0); + + if (TARGET_64BIT) + { + /* We are unsafe to allow PLUS expressions. This limit allowed distance + of GOT tables. We should not need these anyway. */ + if (GET_CODE (disp) != UNSPEC + || (XINT (disp, 1) != UNSPEC_GOTPCREL + && XINT (disp, 1) != UNSPEC_GOTOFF + && XINT (disp, 1) != UNSPEC_PCREL + && XINT (disp, 1) != UNSPEC_PLTOFF)) + return false; + + if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF + && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) + return false; + return true; + } + + saw_plus = false; + if (GET_CODE (disp) == PLUS) + { + if (!CONST_INT_P (XEXP (disp, 1))) + return false; + disp = XEXP (disp, 0); + saw_plus = true; + } + + if (TARGET_MACHO && darwin_local_data_pic (disp)) + return true; + + if (GET_CODE (disp) != UNSPEC) + return false; + + switch (XINT (disp, 1)) + { + case UNSPEC_GOT: + if (saw_plus) + return false; + /* We need to check for both symbols and labels because VxWorks loads + text labels with @GOT rather than @GOTOFF. See gotoff_operand for + details. */ + return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF + || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF); + case UNSPEC_GOTOFF: + /* Refuse GOTOFF in 64bit mode since it is always 64bit when used. + While ABI specify also 32bit relocation but we don't produce it in + small PIC model at all. */ + if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF + || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF) + && !TARGET_64BIT) + return gotoff_operand (XVECEXP (disp, 0, 0), Pmode); + return false; + case UNSPEC_GOTTPOFF: + case UNSPEC_GOTNTPOFF: + case UNSPEC_INDNTPOFF: + if (saw_plus) + return false; + disp = XVECEXP (disp, 0, 0); + return (GET_CODE (disp) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC); + case UNSPEC_NTPOFF: + disp = XVECEXP (disp, 0, 0); + return (GET_CODE (disp) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC); + case UNSPEC_DTPOFF: + disp = XVECEXP (disp, 0, 0); + return (GET_CODE (disp) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC); + } + + return false; +} + +/* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to + replace the input X, or the original X if no replacement is called for. + The output parameter *WIN is 1 if the calling macro should goto WIN, + 0 if it should not. */ + +bool +ix86_legitimize_reload_address (rtx x, + enum machine_mode mode ATTRIBUTE_UNUSED, + int opnum, int type, + int ind_levels ATTRIBUTE_UNUSED) +{ + /* Reload can generate: + + (plus:DI (plus:DI (unspec:DI [(const_int 0 [0])] UNSPEC_TP) + (reg:DI 97)) + (reg:DI 2 cx)) + + This RTX is rejected from ix86_legitimate_address_p due to + non-strictness of base register 97. Following this rejection, + reload pushes all three components into separate registers, + creating invalid memory address RTX. + + Following code reloads only the invalid part of the + memory address RTX. */ + + if (GET_CODE (x) == PLUS + && REG_P (XEXP (x, 1)) + && GET_CODE (XEXP (x, 0)) == PLUS + && REG_P (XEXP (XEXP (x, 0), 1))) + { + rtx base, index; + bool something_reloaded = false; + + base = XEXP (XEXP (x, 0), 1); + if (!REG_OK_FOR_BASE_STRICT_P (base)) + { + push_reload (base, NULL_RTX, &XEXP (XEXP (x, 0), 1), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + something_reloaded = true; + } + + index = XEXP (x, 1); + if (!REG_OK_FOR_INDEX_STRICT_P (index)) + { + push_reload (index, NULL_RTX, &XEXP (x, 1), NULL, + INDEX_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + something_reloaded = true; + } + + gcc_assert (something_reloaded); + return true; + } + + return false; +} + +/* Recognizes RTL expressions that are valid memory addresses for an + instruction. The MODE argument is the machine mode for the MEM + expression that wants to use this address. + + It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should + convert common non-canonical forms to canonical form so that they will + be recognized. */ + +static bool +ix86_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, + rtx addr, bool strict) +{ + struct ix86_address parts; + rtx base, index, disp; + HOST_WIDE_INT scale; + + if (ix86_decompose_address (addr, &parts) <= 0) + /* Decomposition failed. */ + return false; + + base = parts.base; + index = parts.index; + disp = parts.disp; + scale = parts.scale; + + /* Validate base register. + + Don't allow SUBREG's that span more than a word here. It can lead to spill + failures when the base is one word out of a two word structure, which is + represented internally as a DImode int. */ + + if (base) + { + rtx reg; + + if (REG_P (base)) + reg = base; + else if (GET_CODE (base) == SUBREG + && REG_P (SUBREG_REG (base)) + && GET_MODE_SIZE (GET_MODE (SUBREG_REG (base))) + <= UNITS_PER_WORD) + reg = SUBREG_REG (base); + else + /* Base is not a register. */ + return false; + + if (GET_MODE (base) != Pmode) + /* Base is not in Pmode. */ + return false; + + if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg)) + || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg))) + /* Base is not valid. */ + return false; + } + + /* Validate index register. + + Don't allow SUBREG's that span more than a word here -- same as above. */ + + if (index) + { + rtx reg; + + if (REG_P (index)) + reg = index; + else if (GET_CODE (index) == SUBREG + && REG_P (SUBREG_REG (index)) + && GET_MODE_SIZE (GET_MODE (SUBREG_REG (index))) + <= UNITS_PER_WORD) + reg = SUBREG_REG (index); + else + /* Index is not a register. */ + return false; + + if (GET_MODE (index) != Pmode) + /* Index is not in Pmode. */ + return false; + + if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg)) + || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg))) + /* Index is not valid. */ + return false; + } + + /* Validate scale factor. */ + if (scale != 1) + { + if (!index) + /* Scale without index. */ + return false; + + if (scale != 2 && scale != 4 && scale != 8) + /* Scale is not a valid multiplier. */ + return false; + } + + /* Validate displacement. */ + if (disp) + { + if (GET_CODE (disp) == CONST + && GET_CODE (XEXP (disp, 0)) == UNSPEC + && XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET) + switch (XINT (XEXP (disp, 0), 1)) + { + /* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit when + used. While ABI specify also 32bit relocations, we don't produce + them at all and use IP relative instead. */ + case UNSPEC_GOT: + case UNSPEC_GOTOFF: + gcc_assert (flag_pic); + if (!TARGET_64BIT) + goto is_legitimate_pic; + + /* 64bit address unspec. */ + return false; + + case UNSPEC_GOTPCREL: + case UNSPEC_PCREL: + gcc_assert (flag_pic); + goto is_legitimate_pic; + + case UNSPEC_GOTTPOFF: + case UNSPEC_GOTNTPOFF: + case UNSPEC_INDNTPOFF: + case UNSPEC_NTPOFF: + case UNSPEC_DTPOFF: + break; + + case UNSPEC_STACK_CHECK: + gcc_assert (flag_split_stack); + break; + + default: + /* Invalid address unspec. */ + return false; + } + + else if (SYMBOLIC_CONST (disp) + && (flag_pic + || (TARGET_MACHO +#if TARGET_MACHO + && MACHOPIC_INDIRECT + && !machopic_operand_p (disp) +#endif + ))) + { + + is_legitimate_pic: + if (TARGET_64BIT && (index || base)) + { + /* foo@dtpoff(%rX) is ok. */ + if (GET_CODE (disp) != CONST + || GET_CODE (XEXP (disp, 0)) != PLUS + || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC + || !CONST_INT_P (XEXP (XEXP (disp, 0), 1)) + || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF + && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF)) + /* Non-constant pic memory reference. */ + return false; + } + else if ((!TARGET_MACHO || flag_pic) + && ! legitimate_pic_address_disp_p (disp)) + /* Displacement is an invalid pic construct. */ + return false; +#if TARGET_MACHO + else if (MACHO_DYNAMIC_NO_PIC_P && !legitimate_constant_p (disp)) + /* displacment must be referenced via non_lazy_pointer */ + return false; +#endif + + /* This code used to verify that a symbolic pic displacement + includes the pic_offset_table_rtx register. + + While this is good idea, unfortunately these constructs may + be created by "adds using lea" optimization for incorrect + code like: + + int a; + int foo(int i) + { + return *(&a+i); + } + + This code is nonsensical, but results in addressing + GOT table with pic_offset_table_rtx base. We can't + just refuse it easily, since it gets matched by + "addsi3" pattern, that later gets split to lea in the + case output register differs from input. While this + can be handled by separate addsi pattern for this case + that never results in lea, this seems to be easier and + correct fix for crash to disable this test. */ + } + else if (GET_CODE (disp) != LABEL_REF + && !CONST_INT_P (disp) + && (GET_CODE (disp) != CONST + || !legitimate_constant_p (disp)) + && (GET_CODE (disp) != SYMBOL_REF + || !legitimate_constant_p (disp))) + /* Displacement is not constant. */ + return false; + else if (TARGET_64BIT + && !x86_64_immediate_operand (disp, VOIDmode)) + /* Displacement is out of range. */ + return false; + } + + /* Everything looks valid. */ + return true; +} + +/* Determine if a given RTX is a valid constant address. */ + +bool +constant_address_p (rtx x) +{ + return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1); +} + +/* Return a unique alias set for the GOT. */ + +static alias_set_type +ix86_GOT_alias_set (void) +{ + static alias_set_type set = -1; + if (set == -1) + set = new_alias_set (); + return set; +} + +/* Return a legitimate reference for ORIG (an address) using the + register REG. If REG is 0, a new pseudo is generated. + + There are two types of references that must be handled: + + 1. Global data references must load the address from the GOT, via + the PIC reg. An insn is emitted to do this load, and the reg is + returned. + + 2. Static data references, constant pool addresses, and code labels + compute the address as an offset from the GOT, whose base is in + the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to + differentiate them from global data objects. The returned + address is the PIC reg + an unspec constant. + + TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC + reg also appears in the address. */ + +static rtx +legitimize_pic_address (rtx orig, rtx reg) +{ + rtx addr = orig; + rtx new_rtx = orig; + rtx base; + +#if TARGET_MACHO + if (TARGET_MACHO && !TARGET_64BIT) + { + if (reg == 0) + reg = gen_reg_rtx (Pmode); + /* Use the generic Mach-O PIC machinery. */ + return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg); + } +#endif + + if (TARGET_64BIT && legitimate_pic_address_disp_p (addr)) + new_rtx = addr; + else if (TARGET_64BIT + && ix86_cmodel != CM_SMALL_PIC + && gotoff_operand (addr, Pmode)) + { + rtx tmpreg; + /* This symbol may be referenced via a displacement from the PIC + base address (@GOTOFF). */ + + if (reload_in_progress) + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + if (GET_CODE (addr) == CONST) + addr = XEXP (addr, 0); + if (GET_CODE (addr) == PLUS) + { + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), + UNSPEC_GOTOFF); + new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); + } + else + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + if (!reg) + tmpreg = gen_reg_rtx (Pmode); + else + tmpreg = reg; + emit_move_insn (tmpreg, new_rtx); + + if (reg != 0) + { + new_rtx = expand_simple_binop (Pmode, PLUS, reg, pic_offset_table_rtx, + tmpreg, 1, OPTAB_DIRECT); + new_rtx = reg; + } + else new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, tmpreg); + } + else if (!TARGET_64BIT && gotoff_operand (addr, Pmode)) + { + /* This symbol may be referenced via a displacement from the PIC + base address (@GOTOFF). */ + + if (reload_in_progress) + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + if (GET_CODE (addr) == CONST) + addr = XEXP (addr, 0); + if (GET_CODE (addr) == PLUS) + { + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), + UNSPEC_GOTOFF); + new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); + } + else + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); + + if (reg != 0) + { + emit_move_insn (reg, new_rtx); + new_rtx = reg; + } + } + else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0) + /* We can't use @GOTOFF for text labels on VxWorks; + see gotoff_operand. */ + || (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF)) + { + if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) + { + if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr)) + return legitimize_dllimport_symbol (addr, true); + if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS + && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF + && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0))) + { + rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), true); + return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); + } + } + + /* For x64 PE-COFF there is no GOT table. So we use address + directly. */ + if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) + { + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PCREL); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + + if (reg == 0) + reg = gen_reg_rtx (Pmode); + emit_move_insn (reg, new_rtx); + new_rtx = reg; + } + else if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC) + { + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + new_rtx = gen_const_mem (Pmode, new_rtx); + set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); + + if (reg == 0) + reg = gen_reg_rtx (Pmode); + /* Use directly gen_movsi, otherwise the address is loaded + into register for CSE. We don't want to CSE this addresses, + instead we CSE addresses from the GOT table, so skip this. */ + emit_insn (gen_movsi (reg, new_rtx)); + new_rtx = reg; + } + else + { + /* This symbol must be referenced via a load from the + Global Offset Table (@GOT). */ + + if (reload_in_progress) + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + if (TARGET_64BIT) + new_rtx = force_reg (Pmode, new_rtx); + new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); + new_rtx = gen_const_mem (Pmode, new_rtx); + set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); + + if (reg == 0) + reg = gen_reg_rtx (Pmode); + emit_move_insn (reg, new_rtx); + new_rtx = reg; + } + } + else + { + if (CONST_INT_P (addr) + && !x86_64_immediate_operand (addr, VOIDmode)) + { + if (reg) + { + emit_move_insn (reg, addr); + new_rtx = reg; + } + else + new_rtx = force_reg (Pmode, addr); + } + else if (GET_CODE (addr) == CONST) + { + addr = XEXP (addr, 0); + + /* We must match stuff we generate before. Assume the only + unspecs that can get here are ours. Not that we could do + anything with them anyway.... */ + if (GET_CODE (addr) == UNSPEC + || (GET_CODE (addr) == PLUS + && GET_CODE (XEXP (addr, 0)) == UNSPEC)) + return orig; + gcc_assert (GET_CODE (addr) == PLUS); + } + if (GET_CODE (addr) == PLUS) + { + rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); + + /* Check first to see if this is a constant offset from a @GOTOFF + symbol reference. */ + if (gotoff_operand (op0, Pmode) + && CONST_INT_P (op1)) + { + if (!TARGET_64BIT) + { + if (reload_in_progress) + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), + UNSPEC_GOTOFF); + new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1); + new_rtx = gen_rtx_CONST (Pmode, new_rtx); + new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); + + if (reg != 0) + { + emit_move_insn (reg, new_rtx); + new_rtx = reg; + } + } + else + { + if (INTVAL (op1) < -16*1024*1024 + || INTVAL (op1) >= 16*1024*1024) + { + if (!x86_64_immediate_operand (op1, Pmode)) + op1 = force_reg (Pmode, op1); + new_rtx = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1); + } + } + } + else + { + base = legitimize_pic_address (XEXP (addr, 0), reg); + new_rtx = legitimize_pic_address (XEXP (addr, 1), + base == reg ? NULL_RTX : reg); + + if (CONST_INT_P (new_rtx)) + new_rtx = plus_constant (base, INTVAL (new_rtx)); + else + { + if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1))) + { + base = gen_rtx_PLUS (Pmode, base, XEXP (new_rtx, 0)); + new_rtx = XEXP (new_rtx, 1); + } + new_rtx = gen_rtx_PLUS (Pmode, base, new_rtx); + } + } + } + } + return new_rtx; +} + +/* Load the thread pointer. If TO_REG is true, force it into a register. */ + +static rtx +get_thread_pointer (int to_reg) +{ + rtx tp, reg, insn; + + tp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TP); + if (!to_reg) + return tp; + + reg = gen_reg_rtx (Pmode); + insn = gen_rtx_SET (VOIDmode, reg, tp); + insn = emit_insn (insn); + + return reg; +} + +/* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is + false if we expect this to be used for a memory address and true if + we expect to load the address into a register. */ + +static rtx +legitimize_tls_address (rtx x, enum tls_model model, int for_mov) +{ + rtx dest, base, off, pic, tp; + int type; + + switch (model) + { + case TLS_MODEL_GLOBAL_DYNAMIC: + dest = gen_reg_rtx (Pmode); + tp = TARGET_GNU2_TLS ? get_thread_pointer (1) : 0; + + if (TARGET_64BIT && ! TARGET_GNU2_TLS) + { + rtx rax = gen_rtx_REG (Pmode, AX_REG), insns; + + start_sequence (); + emit_call_insn (gen_tls_global_dynamic_64 (rax, x)); + insns = get_insns (); + end_sequence (); + + RTL_CONST_CALL_P (insns) = 1; + emit_libcall_block (insns, dest, rax, x); + } + else if (TARGET_64BIT && TARGET_GNU2_TLS) + emit_insn (gen_tls_global_dynamic_64 (dest, x)); + else + emit_insn (gen_tls_global_dynamic_32 (dest, x)); + + if (TARGET_GNU2_TLS) + { + dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tp, dest)); + + set_unique_reg_note (get_last_insn (), REG_EQUAL, x); + } + break; + + case TLS_MODEL_LOCAL_DYNAMIC: + base = gen_reg_rtx (Pmode); + tp = TARGET_GNU2_TLS ? get_thread_pointer (1) : 0; + + if (TARGET_64BIT && ! TARGET_GNU2_TLS) + { + rtx rax = gen_rtx_REG (Pmode, AX_REG), insns, note; + + start_sequence (); + emit_call_insn (gen_tls_local_dynamic_base_64 (rax)); + insns = get_insns (); + end_sequence (); + + note = gen_rtx_EXPR_LIST (VOIDmode, const0_rtx, NULL); + note = gen_rtx_EXPR_LIST (VOIDmode, ix86_tls_get_addr (), note); + RTL_CONST_CALL_P (insns) = 1; + emit_libcall_block (insns, base, rax, note); + } + else if (TARGET_64BIT && TARGET_GNU2_TLS) + emit_insn (gen_tls_local_dynamic_base_64 (base)); + else + emit_insn (gen_tls_local_dynamic_base_32 (base)); + + if (TARGET_GNU2_TLS) + { + rtx x = ix86_tls_module_base (); + + set_unique_reg_note (get_last_insn (), REG_EQUAL, + gen_rtx_MINUS (Pmode, x, tp)); + } + + off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF); + off = gen_rtx_CONST (Pmode, off); + + dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off)); + + if (TARGET_GNU2_TLS) + { + dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, dest, tp)); + + set_unique_reg_note (get_last_insn (), REG_EQUAL, x); + } + + break; + + case TLS_MODEL_INITIAL_EXEC: + if (TARGET_64BIT) + { + if (TARGET_SUN_TLS) + { + /* The Sun linker took the AMD64 TLS spec literally + and can only handle %rax as destination of the + initial executable code sequence. */ + + dest = gen_reg_rtx (Pmode); + emit_insn (gen_tls_initial_exec_64_sun (dest, x)); + return dest; + } + + pic = NULL; + type = UNSPEC_GOTNTPOFF; + } + else if (flag_pic) + { + if (reload_in_progress) + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + pic = pic_offset_table_rtx; + type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF; + } + else if (!TARGET_ANY_GNU_TLS) + { + pic = gen_reg_rtx (Pmode); + emit_insn (gen_set_got (pic)); + type = UNSPEC_GOTTPOFF; + } + else + { + pic = NULL; + type = UNSPEC_INDNTPOFF; + } + + off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), type); + off = gen_rtx_CONST (Pmode, off); + if (pic) + off = gen_rtx_PLUS (Pmode, pic, off); + off = gen_const_mem (Pmode, off); + set_mem_alias_set (off, ix86_GOT_alias_set ()); + + if (TARGET_64BIT || TARGET_ANY_GNU_TLS) + { + base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); + off = force_reg (Pmode, off); + return gen_rtx_PLUS (Pmode, base, off); + } + else + { + base = get_thread_pointer (true); + dest = gen_reg_rtx (Pmode); + emit_insn (gen_subsi3 (dest, base, off)); + } + break; + + case TLS_MODEL_LOCAL_EXEC: + off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), + (TARGET_64BIT || TARGET_ANY_GNU_TLS) + ? UNSPEC_NTPOFF : UNSPEC_TPOFF); + off = gen_rtx_CONST (Pmode, off); + + if (TARGET_64BIT || TARGET_ANY_GNU_TLS) + { + base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); + return gen_rtx_PLUS (Pmode, base, off); + } + else + { + base = get_thread_pointer (true); + dest = gen_reg_rtx (Pmode); + emit_insn (gen_subsi3 (dest, base, off)); + } + break; + + default: + gcc_unreachable (); + } + + return dest; +} + +/* Create or return the unique __imp_DECL dllimport symbol corresponding + to symbol DECL. */ + +static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) + htab_t dllimport_map; + +static tree +get_dllimport_decl (tree decl) +{ + struct tree_map *h, in; + void **loc; + const char *name; + const char *prefix; + size_t namelen, prefixlen; + char *imp_name; + tree to; + rtx rtl; + + if (!dllimport_map) + dllimport_map = htab_create_ggc (512, tree_map_hash, tree_map_eq, 0); + + in.hash = htab_hash_pointer (decl); + in.base.from = decl; + loc = htab_find_slot_with_hash (dllimport_map, &in, in.hash, INSERT); + h = (struct tree_map *) *loc; + if (h) + return h->to; + + *loc = h = ggc_alloc_tree_map (); + h->hash = in.hash; + h->base.from = decl; + h->to = to = build_decl (DECL_SOURCE_LOCATION (decl), + VAR_DECL, NULL, ptr_type_node); + DECL_ARTIFICIAL (to) = 1; + DECL_IGNORED_P (to) = 1; + DECL_EXTERNAL (to) = 1; + TREE_READONLY (to) = 1; + + name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); + name = targetm.strip_name_encoding (name); + prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0 + ? "*__imp_" : "*__imp__"; + namelen = strlen (name); + prefixlen = strlen (prefix); + imp_name = (char *) alloca (namelen + prefixlen + 1); + memcpy (imp_name, prefix, prefixlen); + memcpy (imp_name + prefixlen, name, namelen + 1); + + name = ggc_alloc_string (imp_name, namelen + prefixlen); + rtl = gen_rtx_SYMBOL_REF (Pmode, name); + SET_SYMBOL_REF_DECL (rtl, to); + SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL; + + rtl = gen_const_mem (Pmode, rtl); + set_mem_alias_set (rtl, ix86_GOT_alias_set ()); + + SET_DECL_RTL (to, rtl); + SET_DECL_ASSEMBLER_NAME (to, get_identifier (name)); + + return to; +} + +/* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is + true if we require the result be a register. */ + +static rtx +legitimize_dllimport_symbol (rtx symbol, bool want_reg) +{ + tree imp_decl; + rtx x; + + gcc_assert (SYMBOL_REF_DECL (symbol)); + imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol)); + + x = DECL_RTL (imp_decl); + if (want_reg) + x = force_reg (Pmode, x); + return x; +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 80386, we handle X+REG by loading X into a register R and + using R+REG. R will go in a general reg and indexing will be used. + However, if REG is a broken-out memory address or multiplication, + nothing needs to be done because REG can certainly go in a general reg. + + When -fpic is used, special handling is needed for symbolic references. + See comments by legitimize_pic_address in i386.c for details. */ + +static rtx +ix86_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, + enum machine_mode mode) +{ + int changed = 0; + unsigned log; + + log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0; + if (log) + return legitimize_tls_address (x, (enum tls_model) log, false); + if (GET_CODE (x) == CONST + && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF + && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)))) + { + rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0), + (enum tls_model) log, false); + return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); + } + + if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) + { + if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (x)) + return legitimize_dllimport_symbol (x, true); + if (GET_CODE (x) == CONST + && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF + && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (x, 0), 0))) + { + rtx t = legitimize_dllimport_symbol (XEXP (XEXP (x, 0), 0), true); + return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); + } + } + + if (flag_pic && SYMBOLIC_CONST (x)) + return legitimize_pic_address (x, 0); + +#if TARGET_MACHO + if (MACHO_DYNAMIC_NO_PIC_P && SYMBOLIC_CONST (x)) + return machopic_indirect_data_reference (x, 0); +#endif + + /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ + if (GET_CODE (x) == ASHIFT + && CONST_INT_P (XEXP (x, 1)) + && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4) + { + changed = 1; + log = INTVAL (XEXP (x, 1)); + x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), + GEN_INT (1 << log)); + } + + if (GET_CODE (x) == PLUS) + { + /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ + + if (GET_CODE (XEXP (x, 0)) == ASHIFT + && CONST_INT_P (XEXP (XEXP (x, 0), 1)) + && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4) + { + changed = 1; + log = INTVAL (XEXP (XEXP (x, 0), 1)); + XEXP (x, 0) = gen_rtx_MULT (Pmode, + force_reg (Pmode, XEXP (XEXP (x, 0), 0)), + GEN_INT (1 << log)); + } + + if (GET_CODE (XEXP (x, 1)) == ASHIFT + && CONST_INT_P (XEXP (XEXP (x, 1), 1)) + && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4) + { + changed = 1; + log = INTVAL (XEXP (XEXP (x, 1), 1)); + XEXP (x, 1) = gen_rtx_MULT (Pmode, + force_reg (Pmode, XEXP (XEXP (x, 1), 0)), + GEN_INT (1 << log)); + } + + /* Put multiply first if it isn't already. */ + if (GET_CODE (XEXP (x, 1)) == MULT) + { + rtx tmp = XEXP (x, 0); + XEXP (x, 0) = XEXP (x, 1); + XEXP (x, 1) = tmp; + changed = 1; + } + + /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) + into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be + created by virtual register instantiation, register elimination, and + similar optimizations. */ + if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) + { + changed = 1; + x = gen_rtx_PLUS (Pmode, + gen_rtx_PLUS (Pmode, XEXP (x, 0), + XEXP (XEXP (x, 1), 0)), + XEXP (XEXP (x, 1), 1)); + } + + /* Canonicalize + (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) + into (plus (plus (mult (reg) (const)) (reg)) (const)). */ + else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT + && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS + && CONSTANT_P (XEXP (x, 1))) + { + rtx constant; + rtx other = NULL_RTX; + + if (CONST_INT_P (XEXP (x, 1))) + { + constant = XEXP (x, 1); + other = XEXP (XEXP (XEXP (x, 0), 1), 1); + } + else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1))) + { + constant = XEXP (XEXP (XEXP (x, 0), 1), 1); + other = XEXP (x, 1); + } + else + constant = 0; + + if (constant) + { + changed = 1; + x = gen_rtx_PLUS (Pmode, + gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), + XEXP (XEXP (XEXP (x, 0), 1), 0)), + plus_constant (other, INTVAL (constant))); + } + } + + if (changed && ix86_legitimate_address_p (mode, x, false)) + return x; + + if (GET_CODE (XEXP (x, 0)) == MULT) + { + changed = 1; + XEXP (x, 0) = force_operand (XEXP (x, 0), 0); + } + + if (GET_CODE (XEXP (x, 1)) == MULT) + { + changed = 1; + XEXP (x, 1) = force_operand (XEXP (x, 1), 0); + } + + if (changed + && REG_P (XEXP (x, 1)) + && REG_P (XEXP (x, 0))) + return x; + + if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) + { + changed = 1; + x = legitimize_pic_address (x, 0); + } + + if (changed && ix86_legitimate_address_p (mode, x, false)) + return x; + + if (REG_P (XEXP (x, 0))) + { + rtx temp = gen_reg_rtx (Pmode); + rtx val = force_operand (XEXP (x, 1), temp); + if (val != temp) + emit_move_insn (temp, val); + + XEXP (x, 1) = temp; + return x; + } + + else if (REG_P (XEXP (x, 1))) + { + rtx temp = gen_reg_rtx (Pmode); + rtx val = force_operand (XEXP (x, 0), temp); + if (val != temp) + emit_move_insn (temp, val); + + XEXP (x, 0) = temp; + return x; + } + } + + return x; +} + +/* Print an integer constant expression in assembler syntax. Addition + and subtraction are the only arithmetic that may appear in these + expressions. FILE is the stdio stream to write to, X is the rtx, and + CODE is the operand print code from the output string. */ + +static void +output_pic_addr_const (FILE *file, rtx x, int code) +{ + char buf[256]; + + switch (GET_CODE (x)) + { + case PC: + gcc_assert (flag_pic); + putc ('.', file); + break; + + case SYMBOL_REF: + if (TARGET_64BIT || ! TARGET_MACHO_BRANCH_ISLANDS) + output_addr_const (file, x); + else + { + const char *name = XSTR (x, 0); + + /* Mark the decl as referenced so that cgraph will + output the function. */ + if (SYMBOL_REF_DECL (x)) + mark_decl_referenced (SYMBOL_REF_DECL (x)); + +#if TARGET_MACHO + if (MACHOPIC_INDIRECT + && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION) + name = machopic_indirection_name (x, /*stub_p=*/true); +#endif + assemble_name (file, name); + } + if (!TARGET_MACHO && !(TARGET_64BIT && DEFAULT_ABI == MS_ABI) + && code == 'P' && ! SYMBOL_REF_LOCAL_P (x)) + fputs ("@PLT", file); + break; + + case LABEL_REF: + x = XEXP (x, 0); + /* FALLTHRU */ + case CODE_LABEL: + ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); + assemble_name (asm_out_file, buf); + break; + + case CONST_INT: + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); + break; + + case CONST: + /* This used to output parentheses around the expression, + but that does not work on the 386 (either ATT or BSD assembler). */ + output_pic_addr_const (file, XEXP (x, 0), code); + break; + + case CONST_DOUBLE: + if (GET_MODE (x) == VOIDmode) + { + /* We can use %d if the number is <32 bits and positive. */ + if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) + fprintf (file, "0x%lx%08lx", + (unsigned long) CONST_DOUBLE_HIGH (x), + (unsigned long) CONST_DOUBLE_LOW (x)); + else + fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); + } + else + /* We can't handle floating point constants; + TARGET_PRINT_OPERAND must handle them. */ + output_operand_lossage ("floating constant misused"); + break; + + case PLUS: + /* Some assemblers need integer constants to appear first. */ + if (CONST_INT_P (XEXP (x, 0))) + { + output_pic_addr_const (file, XEXP (x, 0), code); + putc ('+', file); + output_pic_addr_const (file, XEXP (x, 1), code); + } + else + { + gcc_assert (CONST_INT_P (XEXP (x, 1))); + output_pic_addr_const (file, XEXP (x, 1), code); + putc ('+', file); + output_pic_addr_const (file, XEXP (x, 0), code); + } + break; + + case MINUS: + if (!TARGET_MACHO) + putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file); + output_pic_addr_const (file, XEXP (x, 0), code); + putc ('-', file); + output_pic_addr_const (file, XEXP (x, 1), code); + if (!TARGET_MACHO) + putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file); + break; + + case UNSPEC: + if (XINT (x, 1) == UNSPEC_STACK_CHECK) + { + bool f = i386_asm_output_addr_const_extra (file, x); + gcc_assert (f); + break; + } + + gcc_assert (XVECLEN (x, 0) == 1); + output_pic_addr_const (file, XVECEXP (x, 0, 0), code); + switch (XINT (x, 1)) + { + case UNSPEC_GOT: + fputs ("@GOT", file); + break; + case UNSPEC_GOTOFF: + fputs ("@GOTOFF", file); + break; + case UNSPEC_PLTOFF: + fputs ("@PLTOFF", file); + break; + case UNSPEC_PCREL: + fputs (ASSEMBLER_DIALECT == ASM_ATT ? + "(%rip)" : "[rip]", file); + break; + case UNSPEC_GOTPCREL: + fputs (ASSEMBLER_DIALECT == ASM_ATT ? + "@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file); + break; + case UNSPEC_GOTTPOFF: + /* FIXME: This might be @TPOFF in Sun ld too. */ + fputs ("@gottpoff", file); + break; + case UNSPEC_TPOFF: + fputs ("@tpoff", file); + break; + case UNSPEC_NTPOFF: + if (TARGET_64BIT) + fputs ("@tpoff", file); + else + fputs ("@ntpoff", file); + break; + case UNSPEC_DTPOFF: + fputs ("@dtpoff", file); + break; + case UNSPEC_GOTNTPOFF: + if (TARGET_64BIT) + fputs (ASSEMBLER_DIALECT == ASM_ATT ? + "@gottpoff(%rip)": "@gottpoff[rip]", file); + else + fputs ("@gotntpoff", file); + break; + case UNSPEC_INDNTPOFF: + fputs ("@indntpoff", file); + break; +#if TARGET_MACHO + case UNSPEC_MACHOPIC_OFFSET: + putc ('-', file); + machopic_output_function_base_name (file); + break; +#endif + default: + output_operand_lossage ("invalid UNSPEC as operand"); + break; + } + break; + + default: + output_operand_lossage ("invalid expression as operand"); + } +} + +/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. + We need to emit DTP-relative relocations. */ + +static void ATTRIBUTE_UNUSED +i386_output_dwarf_dtprel (FILE *file, int size, rtx x) +{ + fputs (ASM_LONG, file); + output_addr_const (file, x); + fputs ("@dtpoff", file); + switch (size) + { + case 4: + break; + case 8: + fputs (", 0", file); + break; + default: + gcc_unreachable (); + } +} + +/* Return true if X is a representation of the PIC register. This copes + with calls from ix86_find_base_term, where the register might have + been replaced by a cselib value. */ + +static bool +ix86_pic_register_p (rtx x) +{ + if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x)) + return (pic_offset_table_rtx + && rtx_equal_for_cselib_p (x, pic_offset_table_rtx)); + else + return REG_P (x) && REGNO (x) == PIC_OFFSET_TABLE_REGNUM; +} + +/* Helper function for ix86_delegitimize_address. + Attempt to delegitimize TLS local-exec accesses. */ + +static rtx +ix86_delegitimize_tls_address (rtx orig_x) +{ + rtx x = orig_x, unspec; + struct ix86_address addr; + + if (!TARGET_TLS_DIRECT_SEG_REFS) + return orig_x; + if (MEM_P (x)) + x = XEXP (x, 0); + if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode) + return orig_x; + if (ix86_decompose_address (x, &addr) == 0 + || addr.seg != (TARGET_64BIT ? SEG_FS : SEG_GS) + || addr.disp == NULL_RTX + || GET_CODE (addr.disp) != CONST) + return orig_x; + unspec = XEXP (addr.disp, 0); + if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1))) + unspec = XEXP (unspec, 0); + if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_NTPOFF) + return orig_x; + x = XVECEXP (unspec, 0, 0); + gcc_assert (GET_CODE (x) == SYMBOL_REF); + if (unspec != XEXP (addr.disp, 0)) + x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.disp, 0), 1)); + if (addr.index) + { + rtx idx = addr.index; + if (addr.scale != 1) + idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale)); + x = gen_rtx_PLUS (Pmode, idx, x); + } + if (addr.base) + x = gen_rtx_PLUS (Pmode, addr.base, x); + if (MEM_P (orig_x)) + x = replace_equiv_address_nv (orig_x, x); + return x; +} + +/* In the name of slightly smaller debug output, and to cater to + general assembler lossage, recognize PIC+GOTOFF and turn it back + into a direct symbol reference. + + On Darwin, this is necessary to avoid a crash, because Darwin + has a different PIC label for each routine but the DWARF debugging + information is not associated with any particular routine, so it's + necessary to remove references to the PIC label from RTL stored by + the DWARF output code. */ + +static rtx +ix86_delegitimize_address (rtx x) +{ + rtx orig_x = delegitimize_mem_from_attrs (x); + /* addend is NULL or some rtx if x is something+GOTOFF where + something doesn't include the PIC register. */ + rtx addend = NULL_RTX; + /* reg_addend is NULL or a multiple of some register. */ + rtx reg_addend = NULL_RTX; + /* const_addend is NULL or a const_int. */ + rtx const_addend = NULL_RTX; + /* This is the result, or NULL. */ + rtx result = NULL_RTX; + + x = orig_x; + + if (MEM_P (x)) + x = XEXP (x, 0); + + if (TARGET_64BIT) + { + if (GET_CODE (x) != CONST + || GET_CODE (XEXP (x, 0)) != UNSPEC + || (XINT (XEXP (x, 0), 1) != UNSPEC_GOTPCREL + && XINT (XEXP (x, 0), 1) != UNSPEC_PCREL) + || !MEM_P (orig_x)) + return ix86_delegitimize_tls_address (orig_x); + x = XVECEXP (XEXP (x, 0), 0, 0); + if (GET_MODE (orig_x) != Pmode) + { + x = simplify_gen_subreg (GET_MODE (orig_x), x, Pmode, 0); + if (x == NULL_RTX) + return orig_x; + } + return x; + } + + if (GET_CODE (x) != PLUS + || GET_CODE (XEXP (x, 1)) != CONST) + return ix86_delegitimize_tls_address (orig_x); + + if (ix86_pic_register_p (XEXP (x, 0))) + /* %ebx + GOT/GOTOFF */ + ; + else if (GET_CODE (XEXP (x, 0)) == PLUS) + { + /* %ebx + %reg * scale + GOT/GOTOFF */ + reg_addend = XEXP (x, 0); + if (ix86_pic_register_p (XEXP (reg_addend, 0))) + reg_addend = XEXP (reg_addend, 1); + else if (ix86_pic_register_p (XEXP (reg_addend, 1))) + reg_addend = XEXP (reg_addend, 0); + else + { + reg_addend = NULL_RTX; + addend = XEXP (x, 0); + } + } + else + addend = XEXP (x, 0); + + x = XEXP (XEXP (x, 1), 0); + if (GET_CODE (x) == PLUS + && CONST_INT_P (XEXP (x, 1))) + { + const_addend = XEXP (x, 1); + x = XEXP (x, 0); + } + + if (GET_CODE (x) == UNSPEC + && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) + || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)))) + result = XVECEXP (x, 0, 0); + + if (TARGET_MACHO && darwin_local_data_pic (x) + && !MEM_P (orig_x)) + result = XVECEXP (x, 0, 0); + + if (! result) + return ix86_delegitimize_tls_address (orig_x); + + if (const_addend) + result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend)); + if (reg_addend) + result = gen_rtx_PLUS (Pmode, reg_addend, result); + if (addend) + { + /* If the rest of original X doesn't involve the PIC register, add + addend and subtract pic_offset_table_rtx. This can happen e.g. + for code like: + leal (%ebx, %ecx, 4), %ecx + ... + movl foo@GOTOFF(%ecx), %edx + in which case we return (%ecx - %ebx) + foo. */ + if (pic_offset_table_rtx) + result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend), + pic_offset_table_rtx), + result); + else + return orig_x; + } + if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x)) + { + result = simplify_gen_subreg (GET_MODE (orig_x), result, Pmode, 0); + if (result == NULL_RTX) + return orig_x; + } + return result; +} + +/* If X is a machine specific address (i.e. a symbol or label being + referenced as a displacement from the GOT implemented using an + UNSPEC), then return the base term. Otherwise return X. */ + +rtx +ix86_find_base_term (rtx x) +{ + rtx term; + + if (TARGET_64BIT) + { + if (GET_CODE (x) != CONST) + return x; + term = XEXP (x, 0); + if (GET_CODE (term) == PLUS + && (CONST_INT_P (XEXP (term, 1)) + || GET_CODE (XEXP (term, 1)) == CONST_DOUBLE)) + term = XEXP (term, 0); + if (GET_CODE (term) != UNSPEC + || (XINT (term, 1) != UNSPEC_GOTPCREL + && XINT (term, 1) != UNSPEC_PCREL)) + return x; + + return XVECEXP (term, 0, 0); + } + + return ix86_delegitimize_address (x); +} + +static void +put_condition_code (enum rtx_code code, enum machine_mode mode, int reverse, + int fp, FILE *file) +{ + const char *suffix; + + if (mode == CCFPmode || mode == CCFPUmode) + { + code = ix86_fp_compare_code_to_integer (code); + mode = CCmode; + } + if (reverse) + code = reverse_condition (code); + + switch (code) + { + case EQ: + switch (mode) + { + case CCAmode: + suffix = "a"; + break; + + case CCCmode: + suffix = "c"; + break; + + case CCOmode: + suffix = "o"; + break; + + case CCSmode: + suffix = "s"; + break; + + default: + suffix = "e"; + } + break; + case NE: + switch (mode) + { + case CCAmode: + suffix = "na"; + break; + + case CCCmode: + suffix = "nc"; + break; + + case CCOmode: + suffix = "no"; + break; + + case CCSmode: + suffix = "ns"; + break; + + default: + suffix = "ne"; + } + break; + case GT: + gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode); + suffix = "g"; + break; + case GTU: + /* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers. + Those same assemblers have the same but opposite lossage on cmov. */ + if (mode == CCmode) + suffix = fp ? "nbe" : "a"; + else if (mode == CCCmode) + suffix = "b"; + else + gcc_unreachable (); + break; + case LT: + switch (mode) + { + case CCNOmode: + case CCGOCmode: + suffix = "s"; + break; + + case CCmode: + case CCGCmode: + suffix = "l"; + break; + + default: + gcc_unreachable (); + } + break; + case LTU: + gcc_assert (mode == CCmode || mode == CCCmode); + suffix = "b"; + break; + case GE: + switch (mode) + { + case CCNOmode: + case CCGOCmode: + suffix = "ns"; + break; + + case CCmode: + case CCGCmode: + suffix = "ge"; + break; + + default: + gcc_unreachable (); + } + break; + case GEU: + /* ??? As above. */ + gcc_assert (mode == CCmode || mode == CCCmode); + suffix = fp ? "nb" : "ae"; + break; + case LE: + gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode); + suffix = "le"; + break; + case LEU: + /* ??? As above. */ + if (mode == CCmode) + suffix = "be"; + else if (mode == CCCmode) + suffix = fp ? "nb" : "ae"; + else + gcc_unreachable (); + break; + case UNORDERED: + suffix = fp ? "u" : "p"; + break; + case ORDERED: + suffix = fp ? "nu" : "np"; + break; + default: + gcc_unreachable (); + } + fputs (suffix, file); +} + +/* Print the name of register X to FILE based on its machine mode and number. + If CODE is 'w', pretend the mode is HImode. + If CODE is 'b', pretend the mode is QImode. + If CODE is 'k', pretend the mode is SImode. + If CODE is 'q', pretend the mode is DImode. + If CODE is 'x', pretend the mode is V4SFmode. + If CODE is 't', pretend the mode is V8SFmode. + If CODE is 'h', pretend the reg is the 'high' byte register. + If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. + If CODE is 'd', duplicate the operand for AVX instruction. + */ + +void +print_reg (rtx x, int code, FILE *file) +{ + const char *reg; + bool duplicated = code == 'd' && TARGET_AVX; + + gcc_assert (x == pc_rtx + || (REGNO (x) != ARG_POINTER_REGNUM + && REGNO (x) != FRAME_POINTER_REGNUM + && REGNO (x) != FLAGS_REG + && REGNO (x) != FPSR_REG + && REGNO (x) != FPCR_REG)); + + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('%', file); + + if (x == pc_rtx) + { + gcc_assert (TARGET_64BIT); + fputs ("rip", file); + return; + } + + if (code == 'w' || MMX_REG_P (x)) + code = 2; + else if (code == 'b') + code = 1; + else if (code == 'k') + code = 4; + else if (code == 'q') + code = 8; + else if (code == 'y') + code = 3; + else if (code == 'h') + code = 0; + else if (code == 'x') + code = 16; + else if (code == 't') + code = 32; + else + code = GET_MODE_SIZE (GET_MODE (x)); + + /* Irritatingly, AMD extended registers use different naming convention + from the normal registers. */ + if (REX_INT_REG_P (x)) + { + gcc_assert (TARGET_64BIT); + switch (code) + { + case 0: + error ("extended registers have no high halves"); + break; + case 1: + fprintf (file, "r%ib", REGNO (x) - FIRST_REX_INT_REG + 8); + break; + case 2: + fprintf (file, "r%iw", REGNO (x) - FIRST_REX_INT_REG + 8); + break; + case 4: + fprintf (file, "r%id", REGNO (x) - FIRST_REX_INT_REG + 8); + break; + case 8: + fprintf (file, "r%i", REGNO (x) - FIRST_REX_INT_REG + 8); + break; + default: + error ("unsupported operand size for extended register"); + break; + } + return; + } + + reg = NULL; + switch (code) + { + case 3: + if (STACK_TOP_P (x)) + { + reg = "st(0)"; + break; + } + /* FALLTHRU */ + case 8: + case 4: + case 12: + if (! ANY_FP_REG_P (x)) + putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file); + /* FALLTHRU */ + case 16: + case 2: + normal: + reg = hi_reg_name[REGNO (x)]; + break; + case 1: + if (REGNO (x) >= ARRAY_SIZE (qi_reg_name)) + goto normal; + reg = qi_reg_name[REGNO (x)]; + break; + case 0: + if (REGNO (x) >= ARRAY_SIZE (qi_high_reg_name)) + goto normal; + reg = qi_high_reg_name[REGNO (x)]; + break; + case 32: + if (SSE_REG_P (x)) + { + gcc_assert (!duplicated); + putc ('y', file); + fputs (hi_reg_name[REGNO (x)] + 1, file); + return; + } + break; + default: + gcc_unreachable (); + } + + fputs (reg, file); + if (duplicated) + { + if (ASSEMBLER_DIALECT == ASM_ATT) + fprintf (file, ", %%%s", reg); + else + fprintf (file, ", %s", reg); + } +} + +/* Locate some local-dynamic symbol still in use by this function + so that we can print its name in some tls_local_dynamic_base + pattern. */ + +static int +get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + rtx x = *px; + + if (GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) + { + cfun->machine->some_ld_name = XSTR (x, 0); + return 1; + } + + return 0; +} + +static const char * +get_some_local_dynamic_name (void) +{ + rtx insn; + + if (cfun->machine->some_ld_name) + return cfun->machine->some_ld_name; + + for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) + if (NONDEBUG_INSN_P (insn) + && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) + return cfun->machine->some_ld_name; + + return NULL; +} + +/* Meaning of CODE: + L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. + C -- print opcode suffix for set/cmov insn. + c -- like C, but print reversed condition + F,f -- likewise, but for floating-point. + O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.", + otherwise nothing + R -- print the prefix for register names. + z -- print the opcode suffix for the size of the current operand. + Z -- likewise, with special suffixes for x87 instructions. + * -- print a star (in certain assembler syntax) + A -- print an absolute memory reference. + w -- print the operand as if it's a "word" (HImode) even if it isn't. + s -- print a shift double count, followed by the assemblers argument + delimiter. + b -- print the QImode name of the register for the indicated operand. + %b0 would print %al if operands[0] is reg 0. + w -- likewise, print the HImode name of the register. + k -- likewise, print the SImode name of the register. + q -- likewise, print the DImode name of the register. + x -- likewise, print the V4SFmode name of the register. + t -- likewise, print the V8SFmode name of the register. + h -- print the QImode name for a "high" register, either ah, bh, ch or dh. + y -- print "st(0)" instead of "st" as a register. + d -- print duplicated register operand for AVX instruction. + D -- print condition for SSE cmp instruction. + P -- if PIC, print an @PLT suffix. + X -- don't print any sort of PIC '@' suffix for a symbol. + & -- print some in-use local-dynamic symbol name. + H -- print a memory address offset by 8; used for sse high-parts + Y -- print condition for XOP pcom* instruction. + + -- print a branch hint as 'cs' or 'ds' prefix + ; -- print a semicolon (after prefixes due to bug in older gas). + @ -- print a segment register of thread base pointer load + */ + +void +ix86_print_operand (FILE *file, rtx x, int code) +{ + if (code) + { + switch (code) + { + case '*': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('*', file); + return; + + case '&': + { + const char *name = get_some_local_dynamic_name (); + if (name == NULL) + output_operand_lossage ("'%%&' used without any " + "local dynamic TLS references"); + else + assemble_name (file, name); + return; + } + + case 'A': + switch (ASSEMBLER_DIALECT) + { + case ASM_ATT: + putc ('*', file); + break; + + case ASM_INTEL: + /* Intel syntax. For absolute addresses, registers should not + be surrounded by braces. */ + if (!REG_P (x)) + { + putc ('[', file); + ix86_print_operand (file, x, 0); + putc (']', file); + return; + } + break; + + default: + gcc_unreachable (); + } + + ix86_print_operand (file, x, 0); + return; + + + case 'L': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('l', file); + return; + + case 'W': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('w', file); + return; + + case 'B': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('b', file); + return; + + case 'Q': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('l', file); + return; + + case 'S': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('s', file); + return; + + case 'T': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('t', file); + return; + + case 'z': + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) + { + /* Opcodes don't get size suffixes if using Intel opcodes. */ + if (ASSEMBLER_DIALECT == ASM_INTEL) + return; + + switch (GET_MODE_SIZE (GET_MODE (x))) + { + case 1: + putc ('b', file); + return; + + case 2: + putc ('w', file); + return; + + case 4: + putc ('l', file); + return; + + case 8: + putc ('q', file); + return; + + default: + output_operand_lossage + ("invalid operand size for operand code '%c'", code); + return; + } + } + + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + warning + (0, "non-integer operand used with operand code '%c'", code); + /* FALLTHRU */ + + case 'Z': + /* 387 opcodes don't get size suffixes if using Intel opcodes. */ + if (ASSEMBLER_DIALECT == ASM_INTEL) + return; + + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) + { + switch (GET_MODE_SIZE (GET_MODE (x))) + { + case 2: +#ifdef HAVE_AS_IX86_FILDS + putc ('s', file); +#endif + return; + + case 4: + putc ('l', file); + return; + + case 8: +#ifdef HAVE_AS_IX86_FILDQ + putc ('q', file); +#else + fputs ("ll", file); +#endif + return; + + default: + break; + } + } + else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + { + /* 387 opcodes don't get size suffixes + if the operands are registers. */ + if (STACK_REG_P (x)) + return; + + switch (GET_MODE_SIZE (GET_MODE (x))) + { + case 4: + putc ('s', file); + return; + + case 8: + putc ('l', file); + return; + + case 12: + case 16: + putc ('t', file); + return; + + default: + break; + } + } + else + { + output_operand_lossage + ("invalid operand type used with operand code '%c'", code); + return; + } + + output_operand_lossage + ("invalid operand size for operand code '%c'", code); + return; + + case 'd': + case 'b': + case 'w': + case 'k': + case 'q': + case 'h': + case 't': + case 'y': + case 'x': + case 'X': + case 'P': + break; + + case 's': + if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT) + { + ix86_print_operand (file, x, 0); + fputs (", ", file); + } + return; + + case 'D': + /* Little bit of braindamage here. The SSE compare instructions + does use completely different names for the comparisons that the + fp conditional moves. */ + if (TARGET_AVX) + { + switch (GET_CODE (x)) + { + case EQ: + fputs ("eq", file); + break; + case UNEQ: + fputs ("eq_us", file); + break; + case LT: + fputs ("lt", file); + break; + case UNLT: + fputs ("nge", file); + break; + case LE: + fputs ("le", file); + break; + case UNLE: + fputs ("ngt", file); + break; + case UNORDERED: + fputs ("unord", file); + break; + case NE: + fputs ("neq", file); + break; + case LTGT: + fputs ("neq_oq", file); + break; + case GE: + fputs ("ge", file); + break; + case UNGE: + fputs ("nlt", file); + break; + case GT: + fputs ("gt", file); + break; + case UNGT: + fputs ("nle", file); + break; + case ORDERED: + fputs ("ord", file); + break; + default: + output_operand_lossage ("operand is not a condition code, " + "invalid operand code 'D'"); + return; + } + } + else + { + switch (GET_CODE (x)) + { + case EQ: + case UNEQ: + fputs ("eq", file); + break; + case LT: + case UNLT: + fputs ("lt", file); + break; + case LE: + case UNLE: + fputs ("le", file); + break; + case UNORDERED: + fputs ("unord", file); + break; + case NE: + case LTGT: + fputs ("neq", file); + break; + case UNGE: + case GE: + fputs ("nlt", file); + break; + case UNGT: + case GT: + fputs ("nle", file); + break; + case ORDERED: + fputs ("ord", file); + break; + default: + output_operand_lossage ("operand is not a condition code, " + "invalid operand code 'D'"); + return; + } + } + return; + case 'O': +#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX + if (ASSEMBLER_DIALECT == ASM_ATT) + { + switch (GET_MODE (x)) + { + case HImode: putc ('w', file); break; + case SImode: + case SFmode: putc ('l', file); break; + case DImode: + case DFmode: putc ('q', file); break; + default: gcc_unreachable (); + } + putc ('.', file); + } +#endif + return; + case 'C': + if (!COMPARISON_P (x)) + { + output_operand_lossage ("operand is neither a constant nor a " + "condition code, invalid operand code " + "'C'"); + return; + } + put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 0, file); + return; + case 'F': + if (!COMPARISON_P (x)) + { + output_operand_lossage ("operand is neither a constant nor a " + "condition code, invalid operand code " + "'F'"); + return; + } +#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('.', file); +#endif + put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 1, file); + return; + + /* Like above, but reverse condition */ + case 'c': + /* Check to see if argument to %c is really a constant + and not a condition code which needs to be reversed. */ + if (!COMPARISON_P (x)) + { + output_operand_lossage ("operand is neither a constant nor a " + "condition code, invalid operand " + "code 'c'"); + return; + } + put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 0, file); + return; + case 'f': + if (!COMPARISON_P (x)) + { + output_operand_lossage ("operand is neither a constant nor a " + "condition code, invalid operand " + "code 'f'"); + return; + } +#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('.', file); +#endif + put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 1, file); + return; + + case 'H': + if (!offsettable_memref_p (x)) + { + output_operand_lossage ("operand is not an offsettable memory " + "reference, invalid operand " + "code 'H'"); + return; + } + /* It doesn't actually matter what mode we use here, as we're + only going to use this for printing. */ + x = adjust_address_nv (x, DImode, 8); + break; + + case '+': + { + rtx x; + + if (!optimize + || optimize_function_for_size_p (cfun) || !TARGET_BRANCH_PREDICTION_HINTS) + return; + + x = find_reg_note (current_output_insn, REG_BR_PROB, 0); + if (x) + { + int pred_val = INTVAL (XEXP (x, 0)); + + if (pred_val < REG_BR_PROB_BASE * 45 / 100 + || pred_val > REG_BR_PROB_BASE * 55 / 100) + { + int taken = pred_val > REG_BR_PROB_BASE / 2; + int cputaken = final_forward_branch_p (current_output_insn) == 0; + + /* Emit hints only in the case default branch prediction + heuristics would fail. */ + if (taken != cputaken) + { + /* We use 3e (DS) prefix for taken branches and + 2e (CS) prefix for not taken branches. */ + if (taken) + fputs ("ds ; ", file); + else + fputs ("cs ; ", file); + } + } + } + return; + } + + case 'Y': + switch (GET_CODE (x)) + { + case NE: + fputs ("neq", file); + break; + case EQ: + fputs ("eq", file); + break; + case GE: + case GEU: + fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file); + break; + case GT: + case GTU: + fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file); + break; + case LE: + case LEU: + fputs ("le", file); + break; + case LT: + case LTU: + fputs ("lt", file); + break; + case UNORDERED: + fputs ("unord", file); + break; + case ORDERED: + fputs ("ord", file); + break; + case UNEQ: + fputs ("ueq", file); + break; + case UNGE: + fputs ("nlt", file); + break; + case UNGT: + fputs ("nle", file); + break; + case UNLE: + fputs ("ule", file); + break; + case UNLT: + fputs ("ult", file); + break; + case LTGT: + fputs ("une", file); + break; + default: + output_operand_lossage ("operand is not a condition code, " + "invalid operand code 'Y'"); + return; + } + return; + + case ';': +#ifndef HAVE_AS_IX86_REP_LOCK_PREFIX + putc (';', file); +#endif + return; + + case '@': + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('%', file); + + /* The kernel uses a different segment register for performance + reasons; a system call would not have to trash the userspace + segment register, which would be expensive. */ + if (TARGET_64BIT && ix86_cmodel != CM_KERNEL) + fputs ("fs", file); + else + fputs ("gs", file); + return; + + default: + output_operand_lossage ("invalid operand code '%c'", code); + } + } + + if (REG_P (x)) + print_reg (x, code, file); + + else if (MEM_P (x)) + { + /* No `byte ptr' prefix for call instructions or BLKmode operands. */ + if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P' + && GET_MODE (x) != BLKmode) + { + const char * size; + switch (GET_MODE_SIZE (GET_MODE (x))) + { + case 1: size = "BYTE"; break; + case 2: size = "WORD"; break; + case 4: size = "DWORD"; break; + case 8: size = "QWORD"; break; + case 12: size = "TBYTE"; break; + case 16: + if (GET_MODE (x) == XFmode) + size = "TBYTE"; + else + size = "XMMWORD"; + break; + case 32: size = "YMMWORD"; break; + default: + gcc_unreachable (); + } + + /* Check for explicit size override (codes 'b', 'w' and 'k') */ + if (code == 'b') + size = "BYTE"; + else if (code == 'w') + size = "WORD"; + else if (code == 'k') + size = "DWORD"; + + fputs (size, file); + fputs (" PTR ", file); + } + + x = XEXP (x, 0); + /* Avoid (%rip) for call operands. */ + if (CONSTANT_ADDRESS_P (x) && code == 'P' + && !CONST_INT_P (x)) + output_addr_const (file, x); + else if (this_is_asm_operands && ! address_operand (x, VOIDmode)) + output_operand_lossage ("invalid constraints for operand"); + else + output_address (x); + } + + else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) + { + REAL_VALUE_TYPE r; + long l; + + REAL_VALUE_FROM_CONST_DOUBLE (r, x); + REAL_VALUE_TO_TARGET_SINGLE (r, l); + + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('$', file); + /* Sign extend 32bit SFmode immediate to 8 bytes. */ + if (code == 'q') + fprintf (file, "0x%08llx", (unsigned long long) (int) l); + else + fprintf (file, "0x%08x", (unsigned int) l); + } + + else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) + { + REAL_VALUE_TYPE r; + long l[2]; + + REAL_VALUE_FROM_CONST_DOUBLE (r, x); + REAL_VALUE_TO_TARGET_DOUBLE (r, l); + + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('$', file); + fprintf (file, "0x%lx%08lx", l[1] & 0xffffffff, l[0] & 0xffffffff); + } + + /* These float cases don't actually occur as immediate operands. */ + else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode) + { + char dstr[30]; + + real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); + fputs (dstr, file); + } + + else + { + /* We have patterns that allow zero sets of memory, for instance. + In 64-bit mode, we should probably support all 8-byte vectors, + since we can in fact encode that into an immediate. */ + if (GET_CODE (x) == CONST_VECTOR) + { + gcc_assert (x == CONST0_RTX (GET_MODE (x))); + x = const0_rtx; + } + + if (code != 'P') + { + if (CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE) + { + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('$', file); + } + else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF + || GET_CODE (x) == LABEL_REF) + { + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('$', file); + else + fputs ("OFFSET FLAT:", file); + } + } + if (CONST_INT_P (x)) + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); + else if (flag_pic || MACHOPIC_INDIRECT) + output_pic_addr_const (file, x, code); + else + output_addr_const (file, x); + } +} + +static bool +ix86_print_operand_punct_valid_p (unsigned char code) +{ + return (code == '@' || code == '*' || code == '+' + || code == '&' || code == ';'); +} + +/* Print a memory operand whose address is ADDR. */ + +static void +ix86_print_operand_address (FILE *file, rtx addr) +{ + struct ix86_address parts; + rtx base, index, disp; + int scale; + int ok = ix86_decompose_address (addr, &parts); + + gcc_assert (ok); + + base = parts.base; + index = parts.index; + disp = parts.disp; + scale = parts.scale; + + switch (parts.seg) + { + case SEG_DEFAULT: + break; + case SEG_FS: + case SEG_GS: + if (ASSEMBLER_DIALECT == ASM_ATT) + putc ('%', file); + fputs ((parts.seg == SEG_FS ? "fs:" : "gs:"), file); + break; + default: + gcc_unreachable (); + } + + /* Use one byte shorter RIP relative addressing for 64bit mode. */ + if (TARGET_64BIT && !base && !index) + { + rtx symbol = disp; + + if (GET_CODE (disp) == CONST + && GET_CODE (XEXP (disp, 0)) == PLUS + && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) + symbol = XEXP (XEXP (disp, 0), 0); + + if (GET_CODE (symbol) == LABEL_REF + || (GET_CODE (symbol) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (symbol) == 0)) + base = pc_rtx; + } + if (!base && !index) + { + /* Displacement only requires special attention. */ + + if (CONST_INT_P (disp)) + { + if (ASSEMBLER_DIALECT == ASM_INTEL && parts.seg == SEG_DEFAULT) + fputs ("ds:", file); + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp)); + } + else if (flag_pic) + output_pic_addr_const (file, disp, 0); + else + output_addr_const (file, disp); + } + else + { + if (ASSEMBLER_DIALECT == ASM_ATT) + { + if (disp) + { + if (flag_pic) + output_pic_addr_const (file, disp, 0); + else if (GET_CODE (disp) == LABEL_REF) + output_asm_label (disp); + else + output_addr_const (file, disp); + } + + putc ('(', file); + if (base) + print_reg (base, 0, file); + if (index) + { + putc (',', file); + print_reg (index, 0, file); + if (scale != 1) + fprintf (file, ",%d", scale); + } + putc (')', file); + } + else + { + rtx offset = NULL_RTX; + + if (disp) + { + /* Pull out the offset of a symbol; print any symbol itself. */ + if (GET_CODE (disp) == CONST + && GET_CODE (XEXP (disp, 0)) == PLUS + && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) + { + offset = XEXP (XEXP (disp, 0), 1); + disp = gen_rtx_CONST (VOIDmode, + XEXP (XEXP (disp, 0), 0)); + } + + if (flag_pic) + output_pic_addr_const (file, disp, 0); + else if (GET_CODE (disp) == LABEL_REF) + output_asm_label (disp); + else if (CONST_INT_P (disp)) + offset = disp; + else + output_addr_const (file, disp); + } + + putc ('[', file); + if (base) + { + print_reg (base, 0, file); + if (offset) + { + if (INTVAL (offset) >= 0) + putc ('+', file); + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); + } + } + else if (offset) + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); + else + putc ('0', file); + + if (index) + { + putc ('+', file); + print_reg (index, 0, file); + if (scale != 1) + fprintf (file, "*%d", scale); + } + putc (']', file); + } + } +} + +/* Implementation of TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */ + +static bool +i386_asm_output_addr_const_extra (FILE *file, rtx x) +{ + rtx op; + + if (GET_CODE (x) != UNSPEC) + return false; + + op = XVECEXP (x, 0, 0); + switch (XINT (x, 1)) + { + case UNSPEC_GOTTPOFF: + output_addr_const (file, op); + /* FIXME: This might be @TPOFF in Sun ld. */ + fputs ("@gottpoff", file); + break; + case UNSPEC_TPOFF: + output_addr_const (file, op); + fputs ("@tpoff", file); + break; + case UNSPEC_NTPOFF: + output_addr_const (file, op); + if (TARGET_64BIT) + fputs ("@tpoff", file); + else + fputs ("@ntpoff", file); + break; + case UNSPEC_DTPOFF: + output_addr_const (file, op); + fputs ("@dtpoff", file); + break; + case UNSPEC_GOTNTPOFF: + output_addr_const (file, op); + if (TARGET_64BIT) + fputs (ASSEMBLER_DIALECT == ASM_ATT ? + "@gottpoff(%rip)" : "@gottpoff[rip]", file); + else + fputs ("@gotntpoff", file); + break; + case UNSPEC_INDNTPOFF: + output_addr_const (file, op); + fputs ("@indntpoff", file); + break; +#if TARGET_MACHO + case UNSPEC_MACHOPIC_OFFSET: + output_addr_const (file, op); + putc ('-', file); + machopic_output_function_base_name (file); + break; +#endif + + case UNSPEC_STACK_CHECK: + { + int offset; + + gcc_assert (flag_split_stack); + +#ifdef TARGET_THREAD_SPLIT_STACK_OFFSET + offset = TARGET_THREAD_SPLIT_STACK_OFFSET; +#else + gcc_unreachable (); +#endif + + fprintf (file, "%s:%d", TARGET_64BIT ? "%fs" : "%gs", offset); + } + break; + + default: + return false; + } + + return true; +} + +/* Split one or more double-mode RTL references into pairs of half-mode + references. The RTL can be REG, offsettable MEM, integer constant, or + CONST_DOUBLE. "operands" is a pointer to an array of double-mode RTLs to + split and "num" is its length. lo_half and hi_half are output arrays + that parallel "operands". */ + +void +split_double_mode (enum machine_mode mode, rtx operands[], + int num, rtx lo_half[], rtx hi_half[]) +{ + enum machine_mode half_mode; + unsigned int byte; + + switch (mode) + { + case TImode: + half_mode = DImode; + break; + case DImode: + half_mode = SImode; + break; + default: + gcc_unreachable (); + } + + byte = GET_MODE_SIZE (half_mode); + + while (num--) + { + rtx op = operands[num]; + + /* simplify_subreg refuse to split volatile memory addresses, + but we still have to handle it. */ + if (MEM_P (op)) + { + lo_half[num] = adjust_address (op, half_mode, 0); + hi_half[num] = adjust_address (op, half_mode, byte); + } + else + { + lo_half[num] = simplify_gen_subreg (half_mode, op, + GET_MODE (op) == VOIDmode + ? mode : GET_MODE (op), 0); + hi_half[num] = simplify_gen_subreg (half_mode, op, + GET_MODE (op) == VOIDmode + ? mode : GET_MODE (op), byte); + } + } +} + +/* Output code to perform a 387 binary operation in INSN, one of PLUS, + MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] + is the expression of the binary operation. The output may either be + emitted here, or returned to the caller, like all output_* functions. + + There is no guarantee that the operands are the same mode, as they + might be within FLOAT or FLOAT_EXTEND expressions. */ + +#ifndef SYSV386_COMPAT +/* Set to 1 for compatibility with brain-damaged assemblers. No-one + wants to fix the assemblers because that causes incompatibility + with gcc. No-one wants to fix gcc because that causes + incompatibility with assemblers... You can use the option of + -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ +#define SYSV386_COMPAT 1 +#endif + +const char * +output_387_binary_op (rtx insn, rtx *operands) +{ + static char buf[40]; + const char *p; + const char *ssep; + int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]); + +#ifdef ENABLE_CHECKING + /* Even if we do not want to check the inputs, this documents input + constraints. Which helps in understanding the following code. */ + if (STACK_REG_P (operands[0]) + && ((REG_P (operands[1]) + && REGNO (operands[0]) == REGNO (operands[1]) + && (STACK_REG_P (operands[2]) || MEM_P (operands[2]))) + || (REG_P (operands[2]) + && REGNO (operands[0]) == REGNO (operands[2]) + && (STACK_REG_P (operands[1]) || MEM_P (operands[1])))) + && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) + ; /* ok */ + else + gcc_assert (is_sse); +#endif + + switch (GET_CODE (operands[3])) + { + case PLUS: + if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT + || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) + p = "fiadd"; + else + p = "fadd"; + ssep = "vadd"; + break; + + case MINUS: + if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT + || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) + p = "fisub"; + else + p = "fsub"; + ssep = "vsub"; + break; + + case MULT: + if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT + || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) + p = "fimul"; + else + p = "fmul"; + ssep = "vmul"; + break; + + case DIV: + if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT + || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) + p = "fidiv"; + else + p = "fdiv"; + ssep = "vdiv"; + break; + + default: + gcc_unreachable (); + } + + if (is_sse) + { + if (TARGET_AVX) + { + strcpy (buf, ssep); + if (GET_MODE (operands[0]) == SFmode) + strcat (buf, "ss\t{%2, %1, %0|%0, %1, %2}"); + else + strcat (buf, "sd\t{%2, %1, %0|%0, %1, %2}"); + } + else + { + strcpy (buf, ssep + 1); + if (GET_MODE (operands[0]) == SFmode) + strcat (buf, "ss\t{%2, %0|%0, %2}"); + else + strcat (buf, "sd\t{%2, %0|%0, %2}"); + } + return buf; + } + strcpy (buf, p); + + switch (GET_CODE (operands[3])) + { + case MULT: + case PLUS: + if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) + { + rtx temp = operands[2]; + operands[2] = operands[1]; + operands[1] = temp; + } + + /* know operands[0] == operands[1]. */ + + if (MEM_P (operands[2])) + { + p = "%Z2\t%2"; + break; + } + + if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) + { + if (STACK_TOP_P (operands[0])) + /* How is it that we are storing to a dead operand[2]? + Well, presumably operands[1] is dead too. We can't + store the result to st(0) as st(0) gets popped on this + instruction. Instead store to operands[2] (which I + think has to be st(1)). st(1) will be popped later. + gcc <= 2.8.1 didn't have this check and generated + assembly code that the Unixware assembler rejected. */ + p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ + else + p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ + break; + } + + if (STACK_TOP_P (operands[0])) + p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ + else + p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ + break; + + case MINUS: + case DIV: + if (MEM_P (operands[1])) + { + p = "r%Z1\t%1"; + break; + } + + if (MEM_P (operands[2])) + { + p = "%Z2\t%2"; + break; + } + + if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) + { +#if SYSV386_COMPAT + /* The SystemV/386 SVR3.2 assembler, and probably all AT&T + derived assemblers, confusingly reverse the direction of + the operation for fsub{r} and fdiv{r} when the + destination register is not st(0). The Intel assembler + doesn't have this brain damage. Read !SYSV386_COMPAT to + figure out what the hardware really does. */ + if (STACK_TOP_P (operands[0])) + p = "{p\t%0, %2|rp\t%2, %0}"; + else + p = "{rp\t%2, %0|p\t%0, %2}"; +#else + if (STACK_TOP_P (operands[0])) + /* As above for fmul/fadd, we can't store to st(0). */ + p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ + else + p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ +#endif + break; + } + + if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) + { +#if SYSV386_COMPAT + if (STACK_TOP_P (operands[0])) + p = "{rp\t%0, %1|p\t%1, %0}"; + else + p = "{p\t%1, %0|rp\t%0, %1}"; +#else + if (STACK_TOP_P (operands[0])) + p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ + else + p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ +#endif + break; + } + + if (STACK_TOP_P (operands[0])) + { + if (STACK_TOP_P (operands[1])) + p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ + else + p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ + break; + } + else if (STACK_TOP_P (operands[1])) + { +#if SYSV386_COMPAT + p = "{\t%1, %0|r\t%0, %1}"; +#else + p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ +#endif + } + else + { +#if SYSV386_COMPAT + p = "{r\t%2, %0|\t%0, %2}"; +#else + p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ +#endif + } + break; + + default: + gcc_unreachable (); + } + + strcat (buf, p); + return buf; +} + +/* Return needed mode for entity in optimize_mode_switching pass. */ + +int +ix86_mode_needed (int entity, rtx insn) +{ + enum attr_i387_cw mode; + + /* The mode UNINITIALIZED is used to store control word after a + function call or ASM pattern. The mode ANY specify that function + has no requirements on the control word and make no changes in the + bits we are interested in. */ + + if (CALL_P (insn) + || (NONJUMP_INSN_P (insn) + && (asm_noperands (PATTERN (insn)) >= 0 + || GET_CODE (PATTERN (insn)) == ASM_INPUT))) + return I387_CW_UNINITIALIZED; + + if (recog_memoized (insn) < 0) + return I387_CW_ANY; + + mode = get_attr_i387_cw (insn); + + switch (entity) + { + case I387_TRUNC: + if (mode == I387_CW_TRUNC) + return mode; + break; + + case I387_FLOOR: + if (mode == I387_CW_FLOOR) + return mode; + break; + + case I387_CEIL: + if (mode == I387_CW_CEIL) + return mode; + break; + + case I387_MASK_PM: + if (mode == I387_CW_MASK_PM) + return mode; + break; + + default: + gcc_unreachable (); + } + + return I387_CW_ANY; +} + +/* Output code to initialize control word copies used by trunc?f?i and + rounding patterns. CURRENT_MODE is set to current control word, + while NEW_MODE is set to new control word. */ + +void +emit_i387_cw_initialization (int mode) +{ + rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED); + rtx new_mode; + + enum ix86_stack_slot slot; + + rtx reg = gen_reg_rtx (HImode); + + emit_insn (gen_x86_fnstcw_1 (stored_mode)); + emit_move_insn (reg, copy_rtx (stored_mode)); + + if (TARGET_64BIT || TARGET_PARTIAL_REG_STALL + || optimize_function_for_size_p (cfun)) + { + switch (mode) + { + case I387_CW_TRUNC: + /* round toward zero (truncate) */ + emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00))); + slot = SLOT_CW_TRUNC; + break; + + case I387_CW_FLOOR: + /* round down toward -oo */ + emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); + emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400))); + slot = SLOT_CW_FLOOR; + break; + + case I387_CW_CEIL: + /* round up toward +oo */ + emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); + emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800))); + slot = SLOT_CW_CEIL; + break; + + case I387_CW_MASK_PM: + /* mask precision exception for nearbyint() */ + emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); + slot = SLOT_CW_MASK_PM; + break; + + default: + gcc_unreachable (); + } + } + else + { + switch (mode) + { + case I387_CW_TRUNC: + /* round toward zero (truncate) */ + emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc))); + slot = SLOT_CW_TRUNC; + break; + + case I387_CW_FLOOR: + /* round down toward -oo */ + emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x4))); + slot = SLOT_CW_FLOOR; + break; + + case I387_CW_CEIL: + /* round up toward +oo */ + emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x8))); + slot = SLOT_CW_CEIL; + break; + + case I387_CW_MASK_PM: + /* mask precision exception for nearbyint() */ + emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); + slot = SLOT_CW_MASK_PM; + break; + + default: + gcc_unreachable (); + } + } + + gcc_assert (slot < MAX_386_STACK_LOCALS); + + new_mode = assign_386_stack_local (HImode, slot); + emit_move_insn (new_mode, reg); +} + +/* Output code for INSN to convert a float to a signed int. OPERANDS + are the insn operands. The output may be [HSD]Imode and the input + operand may be [SDX]Fmode. */ + +const char * +output_fix_trunc (rtx insn, rtx *operands, int fisttp) +{ + int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; + int dimode_p = GET_MODE (operands[0]) == DImode; + int round_mode = get_attr_i387_cw (insn); + + /* Jump through a hoop or two for DImode, since the hardware has no + non-popping instruction. We used to do this a different way, but + that was somewhat fragile and broke with post-reload splitters. */ + if ((dimode_p || fisttp) && !stack_top_dies) + output_asm_insn ("fld\t%y1", operands); + + gcc_assert (STACK_TOP_P (operands[1])); + gcc_assert (MEM_P (operands[0])); + gcc_assert (GET_MODE (operands[1]) != TFmode); + + if (fisttp) + output_asm_insn ("fisttp%Z0\t%0", operands); + else + { + if (round_mode != I387_CW_ANY) + output_asm_insn ("fldcw\t%3", operands); + if (stack_top_dies || dimode_p) + output_asm_insn ("fistp%Z0\t%0", operands); + else + output_asm_insn ("fist%Z0\t%0", operands); + if (round_mode != I387_CW_ANY) + output_asm_insn ("fldcw\t%2", operands); + } + + return ""; +} + +/* Output code for x87 ffreep insn. The OPNO argument, which may only + have the values zero or one, indicates the ffreep insn's operand + from the OPERANDS array. */ + +static const char * +output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno) +{ + if (TARGET_USE_FFREEP) +#ifdef HAVE_AS_IX86_FFREEP + return opno ? "ffreep\t%y1" : "ffreep\t%y0"; +#else + { + static char retval[32]; + int regno = REGNO (operands[opno]); + + gcc_assert (FP_REGNO_P (regno)); + + regno -= FIRST_STACK_REG; + + snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno); + return retval; + } +#endif + + return opno ? "fstp\t%y1" : "fstp\t%y0"; +} + + +/* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi + should be used. UNORDERED_P is true when fucom should be used. */ + +const char * +output_fp_compare (rtx insn, rtx *operands, int eflags_p, int unordered_p) +{ + int stack_top_dies; + rtx cmp_op0, cmp_op1; + int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]); + + if (eflags_p) + { + cmp_op0 = operands[0]; + cmp_op1 = operands[1]; + } + else + { + cmp_op0 = operands[1]; + cmp_op1 = operands[2]; + } + + if (is_sse) + { + static const char ucomiss[] = "vucomiss\t{%1, %0|%0, %1}"; + static const char ucomisd[] = "vucomisd\t{%1, %0|%0, %1}"; + static const char comiss[] = "vcomiss\t{%1, %0|%0, %1}"; + static const char comisd[] = "vcomisd\t{%1, %0|%0, %1}"; + + if (GET_MODE (operands[0]) == SFmode) + if (unordered_p) + return &ucomiss[TARGET_AVX ? 0 : 1]; + else + return &comiss[TARGET_AVX ? 0 : 1]; + else + if (unordered_p) + return &ucomisd[TARGET_AVX ? 0 : 1]; + else + return &comisd[TARGET_AVX ? 0 : 1]; + } + + gcc_assert (STACK_TOP_P (cmp_op0)); + + stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; + + if (cmp_op1 == CONST0_RTX (GET_MODE (cmp_op1))) + { + if (stack_top_dies) + { + output_asm_insn ("ftst\n\tfnstsw\t%0", operands); + return output_387_ffreep (operands, 1); + } + else + return "ftst\n\tfnstsw\t%0"; + } + + if (STACK_REG_P (cmp_op1) + && stack_top_dies + && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1)) + && REGNO (cmp_op1) != FIRST_STACK_REG) + { + /* If both the top of the 387 stack dies, and the other operand + is also a stack register that dies, then this must be a + `fcompp' float compare */ + + if (eflags_p) + { + /* There is no double popping fcomi variant. Fortunately, + eflags is immune from the fstp's cc clobbering. */ + if (unordered_p) + output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands); + else + output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands); + return output_387_ffreep (operands, 0); + } + else + { + if (unordered_p) + return "fucompp\n\tfnstsw\t%0"; + else + return "fcompp\n\tfnstsw\t%0"; + } + } + else + { + /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */ + + static const char * const alt[16] = + { + "fcom%Z2\t%y2\n\tfnstsw\t%0", + "fcomp%Z2\t%y2\n\tfnstsw\t%0", + "fucom%Z2\t%y2\n\tfnstsw\t%0", + "fucomp%Z2\t%y2\n\tfnstsw\t%0", + + "ficom%Z2\t%y2\n\tfnstsw\t%0", + "ficomp%Z2\t%y2\n\tfnstsw\t%0", + NULL, + NULL, + + "fcomi\t{%y1, %0|%0, %y1}", + "fcomip\t{%y1, %0|%0, %y1}", + "fucomi\t{%y1, %0|%0, %y1}", + "fucomip\t{%y1, %0|%0, %y1}", + + NULL, + NULL, + NULL, + NULL + }; + + int mask; + const char *ret; + + mask = eflags_p << 3; + mask |= (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_INT) << 2; + mask |= unordered_p << 1; + mask |= stack_top_dies; + + gcc_assert (mask < 16); + ret = alt[mask]; + gcc_assert (ret); + + return ret; + } +} + +void +ix86_output_addr_vec_elt (FILE *file, int value) +{ + const char *directive = ASM_LONG; + +#ifdef ASM_QUAD + if (TARGET_64BIT) + directive = ASM_QUAD; +#else + gcc_assert (!TARGET_64BIT); +#endif + + fprintf (file, "%s%s%d\n", directive, LPREFIX, value); +} + +void +ix86_output_addr_diff_elt (FILE *file, int value, int rel) +{ + const char *directive = ASM_LONG; + +#ifdef ASM_QUAD + if (TARGET_64BIT && CASE_VECTOR_MODE == DImode) + directive = ASM_QUAD; +#else + gcc_assert (!TARGET_64BIT); +#endif + /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ + if (TARGET_64BIT || TARGET_VXWORKS_RTP) + fprintf (file, "%s%s%d-%s%d\n", + directive, LPREFIX, value, LPREFIX, rel); + else if (HAVE_AS_GOTOFF_IN_DATA) + fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value); +#if TARGET_MACHO + else if (TARGET_MACHO) + { + fprintf (file, ASM_LONG "%s%d-", LPREFIX, value); + machopic_output_function_base_name (file); + putc ('\n', file); + } +#endif + else + asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n", + GOT_SYMBOL_NAME, LPREFIX, value); +} + +/* Generate either "mov $0, reg" or "xor reg, reg", as appropriate + for the target. */ + +void +ix86_expand_clear (rtx dest) +{ + rtx tmp; + + /* We play register width games, which are only valid after reload. */ + gcc_assert (reload_completed); + + /* Avoid HImode and its attendant prefix byte. */ + if (GET_MODE_SIZE (GET_MODE (dest)) < 4) + dest = gen_rtx_REG (SImode, REGNO (dest)); + tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx); + + /* This predicate should match that for movsi_xor and movdi_xor_rex64. */ + if (!TARGET_USE_MOV0 || optimize_insn_for_speed_p ()) + { + rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); + tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); + } + + emit_insn (tmp); +} + +/* X is an unchanging MEM. If it is a constant pool reference, return + the constant pool rtx, else NULL. */ + +rtx +maybe_get_pool_constant (rtx x) +{ + x = ix86_delegitimize_address (XEXP (x, 0)); + + if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) + return get_pool_constant (x); + + return NULL_RTX; +} + +void +ix86_expand_move (enum machine_mode mode, rtx operands[]) +{ + rtx op0, op1; + enum tls_model model; + + op0 = operands[0]; + op1 = operands[1]; + + if (GET_CODE (op1) == SYMBOL_REF) + { + model = SYMBOL_REF_TLS_MODEL (op1); + if (model) + { + op1 = legitimize_tls_address (op1, model, true); + op1 = force_operand (op1, op0); + if (op1 == op0) + return; + } + else if (TARGET_DLLIMPORT_DECL_ATTRIBUTES + && SYMBOL_REF_DLLIMPORT_P (op1)) + op1 = legitimize_dllimport_symbol (op1, false); + } + else if (GET_CODE (op1) == CONST + && GET_CODE (XEXP (op1, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SYMBOL_REF) + { + rtx addend = XEXP (XEXP (op1, 0), 1); + rtx symbol = XEXP (XEXP (op1, 0), 0); + rtx tmp = NULL; + + model = SYMBOL_REF_TLS_MODEL (symbol); + if (model) + tmp = legitimize_tls_address (symbol, model, true); + else if (TARGET_DLLIMPORT_DECL_ATTRIBUTES + && SYMBOL_REF_DLLIMPORT_P (symbol)) + tmp = legitimize_dllimport_symbol (symbol, true); + + if (tmp) + { + tmp = force_operand (tmp, NULL); + op1 = expand_simple_binop (Pmode, PLUS, tmp, addend, + op0, 1, OPTAB_DIRECT); + if (op1 == op0) + return; + } + } + + if ((flag_pic || MACHOPIC_INDIRECT) + && mode == Pmode && symbolic_operand (op1, Pmode)) + { + if (TARGET_MACHO && !TARGET_64BIT) + { +#if TARGET_MACHO + /* dynamic-no-pic */ + if (MACHOPIC_INDIRECT) + { + rtx temp = ((reload_in_progress + || ((op0 && REG_P (op0)) + && mode == Pmode)) + ? op0 : gen_reg_rtx (Pmode)); + op1 = machopic_indirect_data_reference (op1, temp); + if (MACHOPIC_PURE) + op1 = machopic_legitimize_pic_address (op1, mode, + temp == op1 ? 0 : temp); + } + if (op0 != op1 && GET_CODE (op0) != MEM) + { + rtx insn = gen_rtx_SET (VOIDmode, op0, op1); + emit_insn (insn); + return; + } + if (GET_CODE (op0) == MEM) + op1 = force_reg (Pmode, op1); + else + { + rtx temp = op0; + if (GET_CODE (temp) != REG) + temp = gen_reg_rtx (Pmode); + temp = legitimize_pic_address (op1, temp); + if (temp == op0) + return; + op1 = temp; + } + /* dynamic-no-pic */ +#endif + } + else + { + if (MEM_P (op0)) + op1 = force_reg (Pmode, op1); + else if (!TARGET_64BIT || !x86_64_movabs_operand (op1, Pmode)) + { + rtx reg = can_create_pseudo_p () ? NULL_RTX : op0; + op1 = legitimize_pic_address (op1, reg); + if (op0 == op1) + return; + } + } + } + else + { + if (MEM_P (op0) + && (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode) + || !push_operand (op0, mode)) + && MEM_P (op1)) + op1 = force_reg (mode, op1); + + if (push_operand (op0, mode) + && ! general_no_elim_operand (op1, mode)) + op1 = copy_to_mode_reg (mode, op1); + + /* Force large constants in 64bit compilation into register + to get them CSEed. */ + if (can_create_pseudo_p () + && (mode == DImode) && TARGET_64BIT + && immediate_operand (op1, mode) + && !x86_64_zext_immediate_operand (op1, VOIDmode) + && !register_operand (op0, mode) + && optimize) + op1 = copy_to_mode_reg (mode, op1); + + if (can_create_pseudo_p () + && FLOAT_MODE_P (mode) + && GET_CODE (op1) == CONST_DOUBLE) + { + /* If we are loading a floating point constant to a register, + force the value to memory now, since we'll get better code + out the back end. */ + + op1 = validize_mem (force_const_mem (mode, op1)); + if (!register_operand (op0, mode)) + { + rtx temp = gen_reg_rtx (mode); + emit_insn (gen_rtx_SET (VOIDmode, temp, op1)); + emit_move_insn (op0, temp); + return; + } + } + } + + emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); +} + +void +ix86_expand_vector_move (enum machine_mode mode, rtx operands[]) +{ + rtx op0 = operands[0], op1 = operands[1]; + unsigned int align = GET_MODE_ALIGNMENT (mode); + + /* Force constants other than zero into memory. We do not know how + the instructions used to build constants modify the upper 64 bits + of the register, once we have that information we may be able + to handle some of them more efficiently. */ + if (can_create_pseudo_p () + && register_operand (op0, mode) + && (CONSTANT_P (op1) + || (GET_CODE (op1) == SUBREG + && CONSTANT_P (SUBREG_REG (op1)))) + && !standard_sse_constant_p (op1)) + op1 = validize_mem (force_const_mem (mode, op1)); + + /* We need to check memory alignment for SSE mode since attribute + can make operands unaligned. */ + if (can_create_pseudo_p () + && SSE_REG_MODE_P (mode) + && ((MEM_P (op0) && (MEM_ALIGN (op0) < align)) + || (MEM_P (op1) && (MEM_ALIGN (op1) < align)))) + { + rtx tmp[2]; + + /* ix86_expand_vector_move_misalign() does not like constants ... */ + if (CONSTANT_P (op1) + || (GET_CODE (op1) == SUBREG + && CONSTANT_P (SUBREG_REG (op1)))) + op1 = validize_mem (force_const_mem (mode, op1)); + + /* ... nor both arguments in memory. */ + if (!register_operand (op0, mode) + && !register_operand (op1, mode)) + op1 = force_reg (mode, op1); + + tmp[0] = op0; tmp[1] = op1; + ix86_expand_vector_move_misalign (mode, tmp); + return; + } + + /* Make operand1 a register if it isn't already. */ + if (can_create_pseudo_p () + && !register_operand (op0, mode) + && !register_operand (op1, mode)) + { + emit_move_insn (op0, force_reg (GET_MODE (op0), op1)); + return; + } + + emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); +} + +/* Split 32-byte AVX unaligned load and store if needed. */ + +static void +ix86_avx256_split_vector_move_misalign (rtx op0, rtx op1) +{ + rtx m; + rtx (*extract) (rtx, rtx, rtx); + rtx (*move_unaligned) (rtx, rtx); + enum machine_mode mode; + + switch (GET_MODE (op0)) + { + default: + gcc_unreachable (); + case V32QImode: + extract = gen_avx_vextractf128v32qi; + move_unaligned = gen_avx_movdqu256; + mode = V16QImode; + break; + case V8SFmode: + extract = gen_avx_vextractf128v8sf; + move_unaligned = gen_avx_movups256; + mode = V4SFmode; + break; + case V4DFmode: + extract = gen_avx_vextractf128v4df; + move_unaligned = gen_avx_movupd256; + mode = V2DFmode; + break; + } + + if (MEM_P (op1) && TARGET_AVX256_SPLIT_UNALIGNED_LOAD) + { + rtx r = gen_reg_rtx (mode); + m = adjust_address (op1, mode, 0); + emit_move_insn (r, m); + m = adjust_address (op1, mode, 16); + r = gen_rtx_VEC_CONCAT (GET_MODE (op0), r, m); + emit_move_insn (op0, r); + } + else if (MEM_P (op0) && TARGET_AVX256_SPLIT_UNALIGNED_STORE) + { + m = adjust_address (op0, mode, 0); + emit_insn (extract (m, op1, const0_rtx)); + m = adjust_address (op0, mode, 16); + emit_insn (extract (m, op1, const1_rtx)); + } + else + emit_insn (move_unaligned (op0, op1)); +} + +/* Implement the movmisalign patterns for SSE. Non-SSE modes go + straight to ix86_expand_vector_move. */ +/* Code generation for scalar reg-reg moves of single and double precision data: + if (x86_sse_partial_reg_dependency == true | x86_sse_split_regs == true) + movaps reg, reg + else + movss reg, reg + if (x86_sse_partial_reg_dependency == true) + movapd reg, reg + else + movsd reg, reg + + Code generation for scalar loads of double precision data: + if (x86_sse_split_regs == true) + movlpd mem, reg (gas syntax) + else + movsd mem, reg + + Code generation for unaligned packed loads of single precision data + (x86_sse_unaligned_move_optimal overrides x86_sse_partial_reg_dependency): + if (x86_sse_unaligned_move_optimal) + movups mem, reg + + if (x86_sse_partial_reg_dependency == true) + { + xorps reg, reg + movlps mem, reg + movhps mem+8, reg + } + else + { + movlps mem, reg + movhps mem+8, reg + } + + Code generation for unaligned packed loads of double precision data + (x86_sse_unaligned_move_optimal overrides x86_sse_split_regs): + if (x86_sse_unaligned_move_optimal) + movupd mem, reg + + if (x86_sse_split_regs == true) + { + movlpd mem, reg + movhpd mem+8, reg + } + else + { + movsd mem, reg + movhpd mem+8, reg + } + */ + +void +ix86_expand_vector_move_misalign (enum machine_mode mode, rtx operands[]) +{ + rtx op0, op1, m; + + op0 = operands[0]; + op1 = operands[1]; + + if (TARGET_AVX) + { + switch (GET_MODE_CLASS (mode)) + { + case MODE_VECTOR_INT: + case MODE_INT: + switch (GET_MODE_SIZE (mode)) + { + case 16: + /* If we're optimizing for size, movups is the smallest. */ + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + op1 = gen_lowpart (V4SFmode, op1); + emit_insn (gen_avx_movups (op0, op1)); + return; + } + op0 = gen_lowpart (V16QImode, op0); + op1 = gen_lowpart (V16QImode, op1); + emit_insn (gen_avx_movdqu (op0, op1)); + break; + case 32: + op0 = gen_lowpart (V32QImode, op0); + op1 = gen_lowpart (V32QImode, op1); + ix86_avx256_split_vector_move_misalign (op0, op1); + break; + default: + gcc_unreachable (); + } + break; + case MODE_VECTOR_FLOAT: + op0 = gen_lowpart (mode, op0); + op1 = gen_lowpart (mode, op1); + + switch (mode) + { + case V4SFmode: + emit_insn (gen_avx_movups (op0, op1)); + break; + case V8SFmode: + ix86_avx256_split_vector_move_misalign (op0, op1); + break; + case V2DFmode: + if (TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + op1 = gen_lowpart (V4SFmode, op1); + emit_insn (gen_avx_movups (op0, op1)); + return; + } + emit_insn (gen_avx_movupd (op0, op1)); + break; + case V4DFmode: + ix86_avx256_split_vector_move_misalign (op0, op1); + break; + default: + gcc_unreachable (); + } + break; + + default: + gcc_unreachable (); + } + + return; + } + + if (MEM_P (op1)) + { + /* If we're optimizing for size, movups is the smallest. */ + if (optimize_insn_for_size_p () + || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + op1 = gen_lowpart (V4SFmode, op1); + emit_insn (gen_sse_movups (op0, op1)); + return; + } + + /* ??? If we have typed data, then it would appear that using + movdqu is the only way to get unaligned data loaded with + integer type. */ + if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) + { + op0 = gen_lowpart (V16QImode, op0); + op1 = gen_lowpart (V16QImode, op1); + emit_insn (gen_sse2_movdqu (op0, op1)); + return; + } + + if (TARGET_SSE2 && mode == V2DFmode) + { + rtx zero; + + if (TARGET_SSE_UNALIGNED_LOAD_OPTIMAL) + { + op0 = gen_lowpart (V2DFmode, op0); + op1 = gen_lowpart (V2DFmode, op1); + emit_insn (gen_sse2_movupd (op0, op1)); + return; + } + + /* When SSE registers are split into halves, we can avoid + writing to the top half twice. */ + if (TARGET_SSE_SPLIT_REGS) + { + emit_clobber (op0); + zero = op0; + } + else + { + /* ??? Not sure about the best option for the Intel chips. + The following would seem to satisfy; the register is + entirely cleared, breaking the dependency chain. We + then store to the upper half, with a dependency depth + of one. A rumor has it that Intel recommends two movsd + followed by an unpacklpd, but this is unconfirmed. And + given that the dependency depth of the unpacklpd would + still be one, I'm not sure why this would be better. */ + zero = CONST0_RTX (V2DFmode); + } + + m = adjust_address (op1, DFmode, 0); + emit_insn (gen_sse2_loadlpd (op0, zero, m)); + m = adjust_address (op1, DFmode, 8); + emit_insn (gen_sse2_loadhpd (op0, op0, m)); + } + else + { + if (TARGET_SSE_UNALIGNED_LOAD_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + op1 = gen_lowpart (V4SFmode, op1); + emit_insn (gen_sse_movups (op0, op1)); + return; + } + + if (TARGET_SSE_PARTIAL_REG_DEPENDENCY) + emit_move_insn (op0, CONST0_RTX (mode)); + else + emit_clobber (op0); + + if (mode != V4SFmode) + op0 = gen_lowpart (V4SFmode, op0); + m = adjust_address (op1, V2SFmode, 0); + emit_insn (gen_sse_loadlps (op0, op0, m)); + m = adjust_address (op1, V2SFmode, 8); + emit_insn (gen_sse_loadhps (op0, op0, m)); + } + } + else if (MEM_P (op0)) + { + /* If we're optimizing for size, movups is the smallest. */ + if (optimize_insn_for_size_p () + || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + op1 = gen_lowpart (V4SFmode, op1); + emit_insn (gen_sse_movups (op0, op1)); + return; + } + + /* ??? Similar to above, only less clear because of quote + typeless stores unquote. */ + if (TARGET_SSE2 && !TARGET_SSE_TYPELESS_STORES + && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) + { + op0 = gen_lowpart (V16QImode, op0); + op1 = gen_lowpart (V16QImode, op1); + emit_insn (gen_sse2_movdqu (op0, op1)); + return; + } + + if (TARGET_SSE2 && mode == V2DFmode) + { + if (TARGET_SSE_UNALIGNED_STORE_OPTIMAL) + { + op0 = gen_lowpart (V2DFmode, op0); + op1 = gen_lowpart (V2DFmode, op1); + emit_insn (gen_sse2_movupd (op0, op1)); + } + else + { + m = adjust_address (op0, DFmode, 0); + emit_insn (gen_sse2_storelpd (m, op1)); + m = adjust_address (op0, DFmode, 8); + emit_insn (gen_sse2_storehpd (m, op1)); + } + } + else + { + if (mode != V4SFmode) + op1 = gen_lowpart (V4SFmode, op1); + + if (TARGET_SSE_UNALIGNED_STORE_OPTIMAL) + { + op0 = gen_lowpart (V4SFmode, op0); + emit_insn (gen_sse_movups (op0, op1)); + } + else + { + m = adjust_address (op0, V2SFmode, 0); + emit_insn (gen_sse_storelps (m, op1)); + m = adjust_address (op0, V2SFmode, 8); + emit_insn (gen_sse_storehps (m, op1)); + } + } + } + else + gcc_unreachable (); +} + +/* Expand a push in MODE. This is some mode for which we do not support + proper push instructions, at least from the registers that we expect + the value to live in. */ + +void +ix86_expand_push (enum machine_mode mode, rtx x) +{ + rtx tmp; + + tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, + GEN_INT (-GET_MODE_SIZE (mode)), + stack_pointer_rtx, 1, OPTAB_DIRECT); + if (tmp != stack_pointer_rtx) + emit_move_insn (stack_pointer_rtx, tmp); + + tmp = gen_rtx_MEM (mode, stack_pointer_rtx); + + /* When we push an operand onto stack, it has to be aligned at least + at the function argument boundary. However since we don't have + the argument type, we can't determine the actual argument + boundary. */ + emit_move_insn (tmp, x); +} + +/* Helper function of ix86_fixup_binary_operands to canonicalize + operand order. Returns true if the operands should be swapped. */ + +static bool +ix86_swap_binary_operands_p (enum rtx_code code, enum machine_mode mode, + rtx operands[]) +{ + rtx dst = operands[0]; + rtx src1 = operands[1]; + rtx src2 = operands[2]; + + /* If the operation is not commutative, we can't do anything. */ + if (GET_RTX_CLASS (code) != RTX_COMM_ARITH) + return false; + + /* Highest priority is that src1 should match dst. */ + if (rtx_equal_p (dst, src1)) + return false; + if (rtx_equal_p (dst, src2)) + return true; + + /* Next highest priority is that immediate constants come second. */ + if (immediate_operand (src2, mode)) + return false; + if (immediate_operand (src1, mode)) + return true; + + /* Lowest priority is that memory references should come second. */ + if (MEM_P (src2)) + return false; + if (MEM_P (src1)) + return true; + + return false; +} + + +/* Fix up OPERANDS to satisfy ix86_binary_operator_ok. Return the + destination to use for the operation. If different from the true + destination in operands[0], a copy operation will be required. */ + +rtx +ix86_fixup_binary_operands (enum rtx_code code, enum machine_mode mode, + rtx operands[]) +{ + rtx dst = operands[0]; + rtx src1 = operands[1]; + rtx src2 = operands[2]; + + /* Canonicalize operand order. */ + if (ix86_swap_binary_operands_p (code, mode, operands)) + { + rtx temp; + + /* It is invalid to swap operands of different modes. */ + gcc_assert (GET_MODE (src1) == GET_MODE (src2)); + + temp = src1; + src1 = src2; + src2 = temp; + } + + /* Both source operands cannot be in memory. */ + if (MEM_P (src1) && MEM_P (src2)) + { + /* Optimization: Only read from memory once. */ + if (rtx_equal_p (src1, src2)) + { + src2 = force_reg (mode, src2); + src1 = src2; + } + else + src2 = force_reg (mode, src2); + } + + /* If the destination is memory, and we do not have matching source + operands, do things in registers. */ + if (MEM_P (dst) && !rtx_equal_p (dst, src1)) + dst = gen_reg_rtx (mode); + + /* Source 1 cannot be a constant. */ + if (CONSTANT_P (src1)) + src1 = force_reg (mode, src1); + + /* Source 1 cannot be a non-matching memory. */ + if (MEM_P (src1) && !rtx_equal_p (dst, src1)) + src1 = force_reg (mode, src1); + + operands[1] = src1; + operands[2] = src2; + return dst; +} + +/* Similarly, but assume that the destination has already been + set up properly. */ + +void +ix86_fixup_binary_operands_no_copy (enum rtx_code code, + enum machine_mode mode, rtx operands[]) +{ + rtx dst = ix86_fixup_binary_operands (code, mode, operands); + gcc_assert (dst == operands[0]); +} + +/* Attempt to expand a binary operator. Make the expansion closer to the + actual machine, then just general_operand, which will allow 3 separate + memory references (one output, two input) in a single insn. */ + +void +ix86_expand_binary_operator (enum rtx_code code, enum machine_mode mode, + rtx operands[]) +{ + rtx src1, src2, dst, op, clob; + + dst = ix86_fixup_binary_operands (code, mode, operands); + src1 = operands[1]; + src2 = operands[2]; + + /* Emit the instruction. */ + + op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2)); + if (reload_in_progress) + { + /* Reload doesn't know about the flags register, and doesn't know that + it doesn't want to clobber it. We can only do this with PLUS. */ + gcc_assert (code == PLUS); + emit_insn (op); + } + else if (reload_completed + && code == PLUS + && !rtx_equal_p (dst, src1)) + { + /* This is going to be an LEA; avoid splitting it later. */ + emit_insn (op); + } + else + { + clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); + emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); + } + + /* Fix up the destination if needed. */ + if (dst != operands[0]) + emit_move_insn (operands[0], dst); +} + +/* Return TRUE or FALSE depending on whether the binary operator meets the + appropriate constraints. */ + +bool +ix86_binary_operator_ok (enum rtx_code code, enum machine_mode mode, + rtx operands[3]) +{ + rtx dst = operands[0]; + rtx src1 = operands[1]; + rtx src2 = operands[2]; + + /* Both source operands cannot be in memory. */ + if (MEM_P (src1) && MEM_P (src2)) + return false; + + /* Canonicalize operand order for commutative operators. */ + if (ix86_swap_binary_operands_p (code, mode, operands)) + { + rtx temp = src1; + src1 = src2; + src2 = temp; + } + + /* If the destination is memory, we must have a matching source operand. */ + if (MEM_P (dst) && !rtx_equal_p (dst, src1)) + return false; + + /* Source 1 cannot be a constant. */ + if (CONSTANT_P (src1)) + return false; + + /* Source 1 cannot be a non-matching memory. */ + if (MEM_P (src1) && !rtx_equal_p (dst, src1)) + { + /* Support "andhi/andsi/anddi" as a zero-extending move. */ + return (code == AND + && (mode == HImode + || mode == SImode + || (TARGET_64BIT && mode == DImode)) + && CONST_INT_P (src2) + && (INTVAL (src2) == 0xff + || INTVAL (src2) == 0xffff)); + } + + return true; +} + +/* Attempt to expand a unary operator. Make the expansion closer to the + actual machine, then just general_operand, which will allow 2 separate + memory references (one output, one input) in a single insn. */ + +void +ix86_expand_unary_operator (enum rtx_code code, enum machine_mode mode, + rtx operands[]) +{ + int matching_memory; + rtx src, dst, op, clob; + + dst = operands[0]; + src = operands[1]; + + /* If the destination is memory, and we do not have matching source + operands, do things in registers. */ + matching_memory = 0; + if (MEM_P (dst)) + { + if (rtx_equal_p (dst, src)) + matching_memory = 1; + else + dst = gen_reg_rtx (mode); + } + + /* When source operand is memory, destination must match. */ + if (MEM_P (src) && !matching_memory) + src = force_reg (mode, src); + + /* Emit the instruction. */ + + op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src)); + if (reload_in_progress || code == NOT) + { + /* Reload doesn't know about the flags register, and doesn't know that + it doesn't want to clobber it. */ + gcc_assert (code == NOT); + emit_insn (op); + } + else + { + clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); + emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); + } + + /* Fix up the destination if needed. */ + if (dst != operands[0]) + emit_move_insn (operands[0], dst); +} + +/* Split 32bit/64bit divmod with 8bit unsigned divmod if dividend and + divisor are within the the range [0-255]. */ + +void +ix86_split_idivmod (enum machine_mode mode, rtx operands[], + bool signed_p) +{ + rtx end_label, qimode_label; + rtx insn, div, mod; + rtx scratch, tmp0, tmp1, tmp2; + rtx (*gen_divmod4_1) (rtx, rtx, rtx, rtx); + rtx (*gen_zero_extend) (rtx, rtx); + rtx (*gen_test_ccno_1) (rtx, rtx); + + switch (mode) + { + case SImode: + gen_divmod4_1 = signed_p ? gen_divmodsi4_1 : gen_udivmodsi4_1; + gen_test_ccno_1 = gen_testsi_ccno_1; + gen_zero_extend = gen_zero_extendqisi2; + break; + case DImode: + gen_divmod4_1 = signed_p ? gen_divmoddi4_1 : gen_udivmoddi4_1; + gen_test_ccno_1 = gen_testdi_ccno_1; + gen_zero_extend = gen_zero_extendqidi2; + break; + default: + gcc_unreachable (); + } + + end_label = gen_label_rtx (); + qimode_label = gen_label_rtx (); + + scratch = gen_reg_rtx (mode); + + /* Use 8bit unsigned divimod if dividend and divisor are within the + the range [0-255]. */ + emit_move_insn (scratch, operands[2]); + scratch = expand_simple_binop (mode, IOR, scratch, operands[3], + scratch, 1, OPTAB_DIRECT); + emit_insn (gen_test_ccno_1 (scratch, GEN_INT (-0x100))); + tmp0 = gen_rtx_REG (CCNOmode, FLAGS_REG); + tmp0 = gen_rtx_EQ (VOIDmode, tmp0, const0_rtx); + tmp0 = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp0, + gen_rtx_LABEL_REF (VOIDmode, qimode_label), + pc_rtx); + insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp0)); + predict_jump (REG_BR_PROB_BASE * 50 / 100); + JUMP_LABEL (insn) = qimode_label; + + /* Generate original signed/unsigned divimod. */ + div = gen_divmod4_1 (operands[0], operands[1], + operands[2], operands[3]); + emit_insn (div); + + /* Branch to the end. */ + emit_jump_insn (gen_jump (end_label)); + emit_barrier (); + + /* Generate 8bit unsigned divide. */ + emit_label (qimode_label); + /* Don't use operands[0] for result of 8bit divide since not all + registers support QImode ZERO_EXTRACT. */ + tmp0 = simplify_gen_subreg (HImode, scratch, mode, 0); + tmp1 = simplify_gen_subreg (HImode, operands[2], mode, 0); + tmp2 = simplify_gen_subreg (QImode, operands[3], mode, 0); + emit_insn (gen_udivmodhiqi3 (tmp0, tmp1, tmp2)); + + if (signed_p) + { + div = gen_rtx_DIV (SImode, operands[2], operands[3]); + mod = gen_rtx_MOD (SImode, operands[2], operands[3]); + } + else + { + div = gen_rtx_UDIV (SImode, operands[2], operands[3]); + mod = gen_rtx_UMOD (SImode, operands[2], operands[3]); + } + + /* Extract remainder from AH. */ + tmp1 = gen_rtx_ZERO_EXTRACT (mode, tmp0, GEN_INT (8), GEN_INT (8)); + if (REG_P (operands[1])) + insn = emit_move_insn (operands[1], tmp1); + else + { + /* Need a new scratch register since the old one has result + of 8bit divide. */ + scratch = gen_reg_rtx (mode); + emit_move_insn (scratch, tmp1); + insn = emit_move_insn (operands[1], scratch); + } + set_unique_reg_note (insn, REG_EQUAL, mod); + + /* Zero extend quotient from AL. */ + tmp1 = gen_lowpart (QImode, tmp0); + insn = emit_insn (gen_zero_extend (operands[0], tmp1)); + set_unique_reg_note (insn, REG_EQUAL, div); + + emit_label (end_label); +} + +#define LEA_SEARCH_THRESHOLD 12 + +/* Search backward for non-agu definition of register number REGNO1 + or register number REGNO2 in INSN's basic block until + 1. Pass LEA_SEARCH_THRESHOLD instructions, or + 2. Reach BB boundary, or + 3. Reach agu definition. + Returns the distance between the non-agu definition point and INSN. + If no definition point, returns -1. */ + +static int +distance_non_agu_define (unsigned int regno1, unsigned int regno2, + rtx insn) +{ + basic_block bb = BLOCK_FOR_INSN (insn); + int distance = 0; + df_ref *def_rec; + + if (insn != BB_HEAD (bb)) + { + rtx prev = PREV_INSN (insn); + while (prev && distance < LEA_SEARCH_THRESHOLD) + { + if (NONDEBUG_INSN_P (prev)) + { + distance++; + for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++) + if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF + && !DF_REF_IS_ARTIFICIAL (*def_rec) + && (regno1 == DF_REF_REGNO (*def_rec) + || regno2 == DF_REF_REGNO (*def_rec))) + { + if (recog_memoized (prev) < 0 + || get_attr_type (prev) != TYPE_LEA) + goto done; + } + } + if (prev == BB_HEAD (bb)) + break; + prev = PREV_INSN (prev); + } + } + + if (distance < LEA_SEARCH_THRESHOLD) + { + edge e; + edge_iterator ei; + bool simple_loop = false; + + FOR_EACH_EDGE (e, ei, bb->preds) + if (e->src == bb) + { + simple_loop = true; + break; + } + + if (simple_loop) + { + rtx prev = BB_END (bb); + while (prev + && prev != insn + && distance < LEA_SEARCH_THRESHOLD) + { + if (NONDEBUG_INSN_P (prev)) + { + distance++; + for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++) + if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF + && !DF_REF_IS_ARTIFICIAL (*def_rec) + && (regno1 == DF_REF_REGNO (*def_rec) + || regno2 == DF_REF_REGNO (*def_rec))) + { + if (recog_memoized (prev) < 0 + || get_attr_type (prev) != TYPE_LEA) + goto done; + } + } + prev = PREV_INSN (prev); + } + } + } + + distance = -1; + +done: + /* get_attr_type may modify recog data. We want to make sure + that recog data is valid for instruction INSN, on which + distance_non_agu_define is called. INSN is unchanged here. */ + extract_insn_cached (insn); + return distance; +} + +/* Return the distance between INSN and the next insn that uses + register number REGNO0 in memory address. Return -1 if no such + a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */ + +static int +distance_agu_use (unsigned int regno0, rtx insn) +{ + basic_block bb = BLOCK_FOR_INSN (insn); + int distance = 0; + df_ref *def_rec; + df_ref *use_rec; + + if (insn != BB_END (bb)) + { + rtx next = NEXT_INSN (insn); + while (next && distance < LEA_SEARCH_THRESHOLD) + { + if (NONDEBUG_INSN_P (next)) + { + distance++; + + for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++) + if ((DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_LOAD + || DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_STORE) + && regno0 == DF_REF_REGNO (*use_rec)) + { + /* Return DISTANCE if OP0 is used in memory + address in NEXT. */ + return distance; + } + + for (def_rec = DF_INSN_DEFS (next); *def_rec; def_rec++) + if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF + && !DF_REF_IS_ARTIFICIAL (*def_rec) + && regno0 == DF_REF_REGNO (*def_rec)) + { + /* Return -1 if OP0 is set in NEXT. */ + return -1; + } + } + if (next == BB_END (bb)) + break; + next = NEXT_INSN (next); + } + } + + if (distance < LEA_SEARCH_THRESHOLD) + { + edge e; + edge_iterator ei; + bool simple_loop = false; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->dest == bb) + { + simple_loop = true; + break; + } + + if (simple_loop) + { + rtx next = BB_HEAD (bb); + while (next + && next != insn + && distance < LEA_SEARCH_THRESHOLD) + { + if (NONDEBUG_INSN_P (next)) + { + distance++; + + for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++) + if ((DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_LOAD + || DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_STORE) + && regno0 == DF_REF_REGNO (*use_rec)) + { + /* Return DISTANCE if OP0 is used in memory + address in NEXT. */ + return distance; + } + + for (def_rec = DF_INSN_DEFS (next); *def_rec; def_rec++) + if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF + && !DF_REF_IS_ARTIFICIAL (*def_rec) + && regno0 == DF_REF_REGNO (*def_rec)) + { + /* Return -1 if OP0 is set in NEXT. */ + return -1; + } + + } + next = NEXT_INSN (next); + } + } + } + + return -1; +} + +/* Define this macro to tune LEA priority vs ADD, it take effect when + there is a dilemma of choicing LEA or ADD + Negative value: ADD is more preferred than LEA + Zero: Netrual + Positive value: LEA is more preferred than ADD*/ +#define IX86_LEA_PRIORITY 2 + +/* Return true if it is ok to optimize an ADD operation to LEA + operation to avoid flag register consumation. For most processors, + ADD is faster than LEA. For the processors like ATOM, if the + destination register of LEA holds an actual address which will be + used soon, LEA is better and otherwise ADD is better. */ + +bool +ix86_lea_for_add_ok (rtx insn, rtx operands[]) +{ + unsigned int regno0 = true_regnum (operands[0]); + unsigned int regno1 = true_regnum (operands[1]); + unsigned int regno2 = true_regnum (operands[2]); + + /* If a = b + c, (a!=b && a!=c), must use lea form. */ + if (regno0 != regno1 && regno0 != regno2) + return true; + + if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) + return false; + else + { + int dist_define, dist_use; + + /* Return false if REGNO0 isn't used in memory address. */ + dist_use = distance_agu_use (regno0, insn); + if (dist_use <= 0) + return false; + + dist_define = distance_non_agu_define (regno1, regno2, insn); + if (dist_define <= 0) + return true; + + /* If this insn has both backward non-agu dependence and forward + agu dependence, the one with short distance take effect. */ + if ((dist_define + IX86_LEA_PRIORITY) < dist_use) + return false; + + return true; + } +} + +/* Return true if destination reg of SET_BODY is shift count of + USE_BODY. */ + +static bool +ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body) +{ + rtx set_dest; + rtx shift_rtx; + int i; + + /* Retrieve destination of SET_BODY. */ + switch (GET_CODE (set_body)) + { + case SET: + set_dest = SET_DEST (set_body); + if (!set_dest || !REG_P (set_dest)) + return false; + break; + case PARALLEL: + for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--) + if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i), + use_body)) + return true; + default: + return false; + break; + } + + /* Retrieve shift count of USE_BODY. */ + switch (GET_CODE (use_body)) + { + case SET: + shift_rtx = XEXP (use_body, 1); + break; + case PARALLEL: + for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--) + if (ix86_dep_by_shift_count_body (set_body, + XVECEXP (use_body, 0, i))) + return true; + default: + return false; + break; + } + + if (shift_rtx + && (GET_CODE (shift_rtx) == ASHIFT + || GET_CODE (shift_rtx) == LSHIFTRT + || GET_CODE (shift_rtx) == ASHIFTRT + || GET_CODE (shift_rtx) == ROTATE + || GET_CODE (shift_rtx) == ROTATERT)) + { + rtx shift_count = XEXP (shift_rtx, 1); + + /* Return true if shift count is dest of SET_BODY. */ + if (REG_P (shift_count) + && true_regnum (set_dest) == true_regnum (shift_count)) + return true; + } + + return false; +} + +/* Return true if destination reg of SET_INSN is shift count of + USE_INSN. */ + +bool +ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn) +{ + return ix86_dep_by_shift_count_body (PATTERN (set_insn), + PATTERN (use_insn)); +} + +/* Return TRUE or FALSE depending on whether the unary operator meets the + appropriate constraints. */ + +bool +ix86_unary_operator_ok (enum rtx_code code ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + rtx operands[2] ATTRIBUTE_UNUSED) +{ + /* If one of operands is memory, source and destination must match. */ + if ((MEM_P (operands[0]) + || MEM_P (operands[1])) + && ! rtx_equal_p (operands[0], operands[1])) + return false; + return true; +} + +/* Return TRUE if the operands to a vec_interleave_{high,low}v2df + are ok, keeping in mind the possible movddup alternative. */ + +bool +ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high) +{ + if (MEM_P (operands[0])) + return rtx_equal_p (operands[0], operands[1 + high]); + if (MEM_P (operands[1]) && MEM_P (operands[2])) + return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]); + return true; +} + +/* Post-reload splitter for converting an SF or DFmode value in an + SSE register into an unsigned SImode. */ + +void +ix86_split_convert_uns_si_sse (rtx operands[]) +{ + enum machine_mode vecmode; + rtx value, large, zero_or_two31, input, two31, x; + + large = operands[1]; + zero_or_two31 = operands[2]; + input = operands[3]; + two31 = operands[4]; + vecmode = GET_MODE (large); + value = gen_rtx_REG (vecmode, REGNO (operands[0])); + + /* Load up the value into the low element. We must ensure that the other + elements are valid floats -- zero is the easiest such value. */ + if (MEM_P (input)) + { + if (vecmode == V4SFmode) + emit_insn (gen_vec_setv4sf_0 (value, CONST0_RTX (V4SFmode), input)); + else + emit_insn (gen_sse2_loadlpd (value, CONST0_RTX (V2DFmode), input)); + } + else + { + input = gen_rtx_REG (vecmode, REGNO (input)); + emit_move_insn (value, CONST0_RTX (vecmode)); + if (vecmode == V4SFmode) + emit_insn (gen_sse_movss (value, value, input)); + else + emit_insn (gen_sse2_movsd (value, value, input)); + } + + emit_move_insn (large, two31); + emit_move_insn (zero_or_two31, MEM_P (two31) ? large : two31); + + x = gen_rtx_fmt_ee (LE, vecmode, large, value); + emit_insn (gen_rtx_SET (VOIDmode, large, x)); + + x = gen_rtx_AND (vecmode, zero_or_two31, large); + emit_insn (gen_rtx_SET (VOIDmode, zero_or_two31, x)); + + x = gen_rtx_MINUS (vecmode, value, zero_or_two31); + emit_insn (gen_rtx_SET (VOIDmode, value, x)); + + large = gen_rtx_REG (V4SImode, REGNO (large)); + emit_insn (gen_ashlv4si3 (large, large, GEN_INT (31))); + + x = gen_rtx_REG (V4SImode, REGNO (value)); + if (vecmode == V4SFmode) + emit_insn (gen_sse2_cvttps2dq (x, value)); + else + emit_insn (gen_sse2_cvttpd2dq (x, value)); + value = x; + + emit_insn (gen_xorv4si3 (value, value, large)); +} + +/* Convert an unsigned DImode value into a DFmode, using only SSE. + Expects the 64-bit DImode to be supplied in a pair of integral + registers. Requires SSE2; will use SSE3 if available. For x86_32, + -mfpmath=sse, !optimize_size only. */ + +void +ix86_expand_convert_uns_didf_sse (rtx target, rtx input) +{ + REAL_VALUE_TYPE bias_lo_rvt, bias_hi_rvt; + rtx int_xmm, fp_xmm; + rtx biases, exponents; + rtx x; + + int_xmm = gen_reg_rtx (V4SImode); + if (TARGET_INTER_UNIT_MOVES) + emit_insn (gen_movdi_to_sse (int_xmm, input)); + else if (TARGET_SSE_SPLIT_REGS) + { + emit_clobber (int_xmm); + emit_move_insn (gen_lowpart (DImode, int_xmm), input); + } + else + { + x = gen_reg_rtx (V2DImode); + ix86_expand_vector_init_one_nonzero (false, V2DImode, x, input, 0); + emit_move_insn (int_xmm, gen_lowpart (V4SImode, x)); + } + + x = gen_rtx_CONST_VECTOR (V4SImode, + gen_rtvec (4, GEN_INT (0x43300000UL), + GEN_INT (0x45300000UL), + const0_rtx, const0_rtx)); + exponents = validize_mem (force_const_mem (V4SImode, x)); + + /* int_xmm = {0x45300000UL, fp_xmm/hi, 0x43300000, fp_xmm/lo } */ + emit_insn (gen_vec_interleave_lowv4si (int_xmm, int_xmm, exponents)); + + /* Concatenating (juxtaposing) (0x43300000UL ## fp_value_low_xmm) + yields a valid DF value equal to (0x1.0p52 + double(fp_value_lo_xmm)). + Similarly (0x45300000UL ## fp_value_hi_xmm) yields + (0x1.0p84 + double(fp_value_hi_xmm)). + Note these exponents differ by 32. */ + + fp_xmm = copy_to_mode_reg (V2DFmode, gen_lowpart (V2DFmode, int_xmm)); + + /* Subtract off those 0x1.0p52 and 0x1.0p84 biases, to produce values + in [0,2**32-1] and [0]+[2**32,2**64-1] respectively. */ + real_ldexp (&bias_lo_rvt, &dconst1, 52); + real_ldexp (&bias_hi_rvt, &dconst1, 84); + biases = const_double_from_real_value (bias_lo_rvt, DFmode); + x = const_double_from_real_value (bias_hi_rvt, DFmode); + biases = gen_rtx_CONST_VECTOR (V2DFmode, gen_rtvec (2, biases, x)); + biases = validize_mem (force_const_mem (V2DFmode, biases)); + emit_insn (gen_subv2df3 (fp_xmm, fp_xmm, biases)); + + /* Add the upper and lower DFmode values together. */ + if (TARGET_SSE3) + emit_insn (gen_sse3_haddv2df3 (fp_xmm, fp_xmm, fp_xmm)); + else + { + x = copy_to_mode_reg (V2DFmode, fp_xmm); + emit_insn (gen_vec_interleave_highv2df (fp_xmm, fp_xmm, fp_xmm)); + emit_insn (gen_addv2df3 (fp_xmm, fp_xmm, x)); + } + + ix86_expand_vector_extract (false, target, fp_xmm, 0); +} + +/* Not used, but eases macroization of patterns. */ +void +ix86_expand_convert_uns_sixf_sse (rtx target ATTRIBUTE_UNUSED, + rtx input ATTRIBUTE_UNUSED) +{ + gcc_unreachable (); +} + +/* Convert an unsigned SImode value into a DFmode. Only currently used + for SSE, but applicable anywhere. */ + +void +ix86_expand_convert_uns_sidf_sse (rtx target, rtx input) +{ + REAL_VALUE_TYPE TWO31r; + rtx x, fp; + + x = expand_simple_binop (SImode, PLUS, input, GEN_INT (-2147483647 - 1), + NULL, 1, OPTAB_DIRECT); + + fp = gen_reg_rtx (DFmode); + emit_insn (gen_floatsidf2 (fp, x)); + + real_ldexp (&TWO31r, &dconst1, 31); + x = const_double_from_real_value (TWO31r, DFmode); + + x = expand_simple_binop (DFmode, PLUS, fp, x, target, 0, OPTAB_DIRECT); + if (x != target) + emit_move_insn (target, x); +} + +/* Convert a signed DImode value into a DFmode. Only used for SSE in + 32-bit mode; otherwise we have a direct convert instruction. */ + +void +ix86_expand_convert_sign_didf_sse (rtx target, rtx input) +{ + REAL_VALUE_TYPE TWO32r; + rtx fp_lo, fp_hi, x; + + fp_lo = gen_reg_rtx (DFmode); + fp_hi = gen_reg_rtx (DFmode); + + emit_insn (gen_floatsidf2 (fp_hi, gen_highpart (SImode, input))); + + real_ldexp (&TWO32r, &dconst1, 32); + x = const_double_from_real_value (TWO32r, DFmode); + fp_hi = expand_simple_binop (DFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT); + + ix86_expand_convert_uns_sidf_sse (fp_lo, gen_lowpart (SImode, input)); + + x = expand_simple_binop (DFmode, PLUS, fp_hi, fp_lo, target, + 0, OPTAB_DIRECT); + if (x != target) + emit_move_insn (target, x); +} + +/* Convert an unsigned SImode value into a SFmode, using only SSE. + For x86_32, -mfpmath=sse, !optimize_size only. */ +void +ix86_expand_convert_uns_sisf_sse (rtx target, rtx input) +{ + REAL_VALUE_TYPE ONE16r; + rtx fp_hi, fp_lo, int_hi, int_lo, x; + + real_ldexp (&ONE16r, &dconst1, 16); + x = const_double_from_real_value (ONE16r, SFmode); + int_lo = expand_simple_binop (SImode, AND, input, GEN_INT(0xffff), + NULL, 0, OPTAB_DIRECT); + int_hi = expand_simple_binop (SImode, LSHIFTRT, input, GEN_INT(16), + NULL, 0, OPTAB_DIRECT); + fp_hi = gen_reg_rtx (SFmode); + fp_lo = gen_reg_rtx (SFmode); + emit_insn (gen_floatsisf2 (fp_hi, int_hi)); + emit_insn (gen_floatsisf2 (fp_lo, int_lo)); + fp_hi = expand_simple_binop (SFmode, MULT, fp_hi, x, fp_hi, + 0, OPTAB_DIRECT); + fp_hi = expand_simple_binop (SFmode, PLUS, fp_hi, fp_lo, target, + 0, OPTAB_DIRECT); + if (!rtx_equal_p (target, fp_hi)) + emit_move_insn (target, fp_hi); +} + +/* A subroutine of ix86_build_signbit_mask. If VECT is true, + then replicate the value for all elements of the vector + register. */ + +rtx +ix86_build_const_vector (enum machine_mode mode, bool vect, rtx value) +{ + rtvec v; + switch (mode) + { + case V4SImode: + gcc_assert (vect); + v = gen_rtvec (4, value, value, value, value); + return gen_rtx_CONST_VECTOR (V4SImode, v); + + case V2DImode: + gcc_assert (vect); + v = gen_rtvec (2, value, value); + return gen_rtx_CONST_VECTOR (V2DImode, v); + + case V8SFmode: + if (vect) + v = gen_rtvec (8, value, value, value, value, + value, value, value, value); + else + v = gen_rtvec (8, value, CONST0_RTX (SFmode), + CONST0_RTX (SFmode), CONST0_RTX (SFmode), + CONST0_RTX (SFmode), CONST0_RTX (SFmode), + CONST0_RTX (SFmode), CONST0_RTX (SFmode)); + return gen_rtx_CONST_VECTOR (V8SFmode, v); + + case V4SFmode: + if (vect) + v = gen_rtvec (4, value, value, value, value); + else + v = gen_rtvec (4, value, CONST0_RTX (SFmode), + CONST0_RTX (SFmode), CONST0_RTX (SFmode)); + return gen_rtx_CONST_VECTOR (V4SFmode, v); + + case V4DFmode: + if (vect) + v = gen_rtvec (4, value, value, value, value); + else + v = gen_rtvec (4, value, CONST0_RTX (DFmode), + CONST0_RTX (DFmode), CONST0_RTX (DFmode)); + return gen_rtx_CONST_VECTOR (V4DFmode, v); + + case V2DFmode: + if (vect) + v = gen_rtvec (2, value, value); + else + v = gen_rtvec (2, value, CONST0_RTX (DFmode)); + return gen_rtx_CONST_VECTOR (V2DFmode, v); + + default: + gcc_unreachable (); + } +} + +/* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders + and ix86_expand_int_vcond. Create a mask for the sign bit in MODE + for an SSE register. If VECT is true, then replicate the mask for + all elements of the vector register. If INVERT is true, then create + a mask excluding the sign bit. */ + +rtx +ix86_build_signbit_mask (enum machine_mode mode, bool vect, bool invert) +{ + enum machine_mode vec_mode, imode; + HOST_WIDE_INT hi, lo; + int shift = 63; + rtx v; + rtx mask; + + /* Find the sign bit, sign extended to 2*HWI. */ + switch (mode) + { + case V4SImode: + case V8SFmode: + case V4SFmode: + vec_mode = mode; + mode = GET_MODE_INNER (mode); + imode = SImode; + lo = 0x80000000, hi = lo < 0; + break; + + case V2DImode: + case V4DFmode: + case V2DFmode: + vec_mode = mode; + mode = GET_MODE_INNER (mode); + imode = DImode; + if (HOST_BITS_PER_WIDE_INT >= 64) + lo = (HOST_WIDE_INT)1 << shift, hi = -1; + else + lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); + break; + + case TImode: + case TFmode: + vec_mode = VOIDmode; + if (HOST_BITS_PER_WIDE_INT >= 64) + { + imode = TImode; + lo = 0, hi = (HOST_WIDE_INT)1 << shift; + } + else + { + rtvec vec; + + imode = DImode; + lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); + + if (invert) + { + lo = ~lo, hi = ~hi; + v = constm1_rtx; + } + else + v = const0_rtx; + + mask = immed_double_const (lo, hi, imode); + + vec = gen_rtvec (2, v, mask); + v = gen_rtx_CONST_VECTOR (V2DImode, vec); + v = copy_to_mode_reg (mode, gen_lowpart (mode, v)); + + return v; + } + break; + + default: + gcc_unreachable (); + } + + if (invert) + lo = ~lo, hi = ~hi; + + /* Force this value into the low part of a fp vector constant. */ + mask = immed_double_const (lo, hi, imode); + mask = gen_lowpart (mode, mask); + + if (vec_mode == VOIDmode) + return force_reg (mode, mask); + + v = ix86_build_const_vector (vec_mode, vect, mask); + return force_reg (vec_mode, v); +} + +/* Generate code for floating point ABS or NEG. */ + +void +ix86_expand_fp_absneg_operator (enum rtx_code code, enum machine_mode mode, + rtx operands[]) +{ + rtx mask, set, dst, src; + bool use_sse = false; + bool vector_mode = VECTOR_MODE_P (mode); + enum machine_mode vmode = mode; + + if (vector_mode) + use_sse = true; + else if (mode == TFmode) + use_sse = true; + else if (TARGET_SSE_MATH) + { + use_sse = SSE_FLOAT_MODE_P (mode); + if (mode == SFmode) + vmode = V4SFmode; + else if (mode == DFmode) + vmode = V2DFmode; + } + + /* NEG and ABS performed with SSE use bitwise mask operations. + Create the appropriate mask now. */ + if (use_sse) + mask = ix86_build_signbit_mask (vmode, vector_mode, code == ABS); + else + mask = NULL_RTX; + + dst = operands[0]; + src = operands[1]; + + set = gen_rtx_fmt_e (code, mode, src); + set = gen_rtx_SET (VOIDmode, dst, set); + + if (mask) + { + rtx use, clob; + rtvec par; + + use = gen_rtx_USE (VOIDmode, mask); + if (vector_mode) + par = gen_rtvec (2, set, use); + else + { + clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); + par = gen_rtvec (3, set, use, clob); + } + emit_insn (gen_rtx_PARALLEL (VOIDmode, par)); + } + else + emit_insn (set); +} + +/* Expand a copysign operation. Special case operand 0 being a constant. */ + +void +ix86_expand_copysign (rtx operands[]) +{ + enum machine_mode mode, vmode; + rtx dest, op0, op1, mask, nmask; + + dest = operands[0]; + op0 = operands[1]; + op1 = operands[2]; + + mode = GET_MODE (dest); + + if (mode == SFmode) + vmode = V4SFmode; + else if (mode == DFmode) + vmode = V2DFmode; + else + vmode = mode; + + if (GET_CODE (op0) == CONST_DOUBLE) + { + rtx (*copysign_insn)(rtx, rtx, rtx, rtx); + + if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) + op0 = simplify_unary_operation (ABS, mode, op0, mode); + + if (mode == SFmode || mode == DFmode) + { + if (op0 == CONST0_RTX (mode)) + op0 = CONST0_RTX (vmode); + else + { + rtx v = ix86_build_const_vector (vmode, false, op0); + + op0 = force_reg (vmode, v); + } + } + else if (op0 != CONST0_RTX (mode)) + op0 = force_reg (mode, op0); + + mask = ix86_build_signbit_mask (vmode, 0, 0); + + if (mode == SFmode) + copysign_insn = gen_copysignsf3_const; + else if (mode == DFmode) + copysign_insn = gen_copysigndf3_const; + else + copysign_insn = gen_copysigntf3_const; + + emit_insn (copysign_insn (dest, op0, op1, mask)); + } + else + { + rtx (*copysign_insn)(rtx, rtx, rtx, rtx, rtx, rtx); + + nmask = ix86_build_signbit_mask (vmode, 0, 1); + mask = ix86_build_signbit_mask (vmode, 0, 0); + + if (mode == SFmode) + copysign_insn = gen_copysignsf3_var; + else if (mode == DFmode) + copysign_insn = gen_copysigndf3_var; + else + copysign_insn = gen_copysigntf3_var; + + emit_insn (copysign_insn (dest, NULL_RTX, op0, op1, nmask, mask)); + } +} + +/* Deconstruct a copysign operation into bit masks. Operand 0 is known to + be a constant, and so has already been expanded into a vector constant. */ + +void +ix86_split_copysign_const (rtx operands[]) +{ + enum machine_mode mode, vmode; + rtx dest, op0, mask, x; + + dest = operands[0]; + op0 = operands[1]; + mask = operands[3]; + + mode = GET_MODE (dest); + vmode = GET_MODE (mask); + + dest = simplify_gen_subreg (vmode, dest, mode, 0); + x = gen_rtx_AND (vmode, dest, mask); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + + if (op0 != CONST0_RTX (vmode)) + { + x = gen_rtx_IOR (vmode, dest, op0); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } +} + +/* Deconstruct a copysign operation into bit masks. Operand 0 is variable, + so we have to do two masks. */ + +void +ix86_split_copysign_var (rtx operands[]) +{ + enum machine_mode mode, vmode; + rtx dest, scratch, op0, op1, mask, nmask, x; + + dest = operands[0]; + scratch = operands[1]; + op0 = operands[2]; + op1 = operands[3]; + nmask = operands[4]; + mask = operands[5]; + + mode = GET_MODE (dest); + vmode = GET_MODE (mask); + + if (rtx_equal_p (op0, op1)) + { + /* Shouldn't happen often (it's useless, obviously), but when it does + we'd generate incorrect code if we continue below. */ + emit_move_insn (dest, op0); + return; + } + + if (REG_P (mask) && REGNO (dest) == REGNO (mask)) /* alternative 0 */ + { + gcc_assert (REGNO (op1) == REGNO (scratch)); + + x = gen_rtx_AND (vmode, scratch, mask); + emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); + + dest = mask; + op0 = simplify_gen_subreg (vmode, op0, mode, 0); + x = gen_rtx_NOT (vmode, dest); + x = gen_rtx_AND (vmode, x, op0); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } + else + { + if (REGNO (op1) == REGNO (scratch)) /* alternative 1,3 */ + { + x = gen_rtx_AND (vmode, scratch, mask); + } + else /* alternative 2,4 */ + { + gcc_assert (REGNO (mask) == REGNO (scratch)); + op1 = simplify_gen_subreg (vmode, op1, mode, 0); + x = gen_rtx_AND (vmode, scratch, op1); + } + emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); + + if (REGNO (op0) == REGNO (dest)) /* alternative 1,2 */ + { + dest = simplify_gen_subreg (vmode, op0, mode, 0); + x = gen_rtx_AND (vmode, dest, nmask); + } + else /* alternative 3,4 */ + { + gcc_assert (REGNO (nmask) == REGNO (dest)); + dest = nmask; + op0 = simplify_gen_subreg (vmode, op0, mode, 0); + x = gen_rtx_AND (vmode, dest, op0); + } + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } + + x = gen_rtx_IOR (vmode, dest, scratch); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); +} + +/* Return TRUE or FALSE depending on whether the first SET in INSN + has source and destination with matching CC modes, and that the + CC mode is at least as constrained as REQ_MODE. */ + +bool +ix86_match_ccmode (rtx insn, enum machine_mode req_mode) +{ + rtx set; + enum machine_mode set_mode; + + set = PATTERN (insn); + if (GET_CODE (set) == PARALLEL) + set = XVECEXP (set, 0, 0); + gcc_assert (GET_CODE (set) == SET); + gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); + + set_mode = GET_MODE (SET_DEST (set)); + switch (set_mode) + { + case CCNOmode: + if (req_mode != CCNOmode + && (req_mode != CCmode + || XEXP (SET_SRC (set), 1) != const0_rtx)) + return false; + break; + case CCmode: + if (req_mode == CCGCmode) + return false; + /* FALLTHRU */ + case CCGCmode: + if (req_mode == CCGOCmode || req_mode == CCNOmode) + return false; + /* FALLTHRU */ + case CCGOCmode: + if (req_mode == CCZmode) + return false; + /* FALLTHRU */ + case CCZmode: + break; + + case CCAmode: + case CCCmode: + case CCOmode: + case CCSmode: + if (set_mode != req_mode) + return false; + break; + + default: + gcc_unreachable (); + } + + return GET_MODE (SET_SRC (set)) == set_mode; +} + +/* Generate insn patterns to do an integer compare of OPERANDS. */ + +static rtx +ix86_expand_int_compare (enum rtx_code code, rtx op0, rtx op1) +{ + enum machine_mode cmpmode; + rtx tmp, flags; + + cmpmode = SELECT_CC_MODE (code, op0, op1); + flags = gen_rtx_REG (cmpmode, FLAGS_REG); + + /* This is very simple, but making the interface the same as in the + FP case makes the rest of the code easier. */ + tmp = gen_rtx_COMPARE (cmpmode, op0, op1); + emit_insn (gen_rtx_SET (VOIDmode, flags, tmp)); + + /* Return the test that should be put into the flags user, i.e. + the bcc, scc, or cmov instruction. */ + return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx); +} + +/* Figure out whether to use ordered or unordered fp comparisons. + Return the appropriate mode to use. */ + +enum machine_mode +ix86_fp_compare_mode (enum rtx_code code ATTRIBUTE_UNUSED) +{ + /* ??? In order to make all comparisons reversible, we do all comparisons + non-trapping when compiling for IEEE. Once gcc is able to distinguish + all forms trapping and nontrapping comparisons, we can make inequality + comparisons trapping again, since it results in better code when using + FCOM based compares. */ + return TARGET_IEEE_FP ? CCFPUmode : CCFPmode; +} + +enum machine_mode +ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1) +{ + enum machine_mode mode = GET_MODE (op0); + + if (SCALAR_FLOAT_MODE_P (mode)) + { + gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); + return ix86_fp_compare_mode (code); + } + + switch (code) + { + /* Only zero flag is needed. */ + case EQ: /* ZF=0 */ + case NE: /* ZF!=0 */ + return CCZmode; + /* Codes needing carry flag. */ + case GEU: /* CF=0 */ + case LTU: /* CF=1 */ + /* Detect overflow checks. They need just the carry flag. */ + if (GET_CODE (op0) == PLUS + && rtx_equal_p (op1, XEXP (op0, 0))) + return CCCmode; + else + return CCmode; + case GTU: /* CF=0 & ZF=0 */ + case LEU: /* CF=1 | ZF=1 */ + /* Detect overflow checks. They need just the carry flag. */ + if (GET_CODE (op0) == MINUS + && rtx_equal_p (op1, XEXP (op0, 0))) + return CCCmode; + else + return CCmode; + /* Codes possibly doable only with sign flag when + comparing against zero. */ + case GE: /* SF=OF or SF=0 */ + case LT: /* SF<>OF or SF=1 */ + if (op1 == const0_rtx) + return CCGOCmode; + else + /* For other cases Carry flag is not required. */ + return CCGCmode; + /* Codes doable only with sign flag when comparing + against zero, but we miss jump instruction for it + so we need to use relational tests against overflow + that thus needs to be zero. */ + case GT: /* ZF=0 & SF=OF */ + case LE: /* ZF=1 | SF<>OF */ + if (op1 == const0_rtx) + return CCNOmode; + else + return CCGCmode; + /* strcmp pattern do (use flags) and combine may ask us for proper + mode. */ + case USE: + return CCmode; + default: + gcc_unreachable (); + } +} + +/* Return the fixed registers used for condition codes. */ + +static bool +ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) +{ + *p1 = FLAGS_REG; + *p2 = FPSR_REG; + return true; +} + +/* If two condition code modes are compatible, return a condition code + mode which is compatible with both. Otherwise, return + VOIDmode. */ + +static enum machine_mode +ix86_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) +{ + if (m1 == m2) + return m1; + + if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) + return VOIDmode; + + if ((m1 == CCGCmode && m2 == CCGOCmode) + || (m1 == CCGOCmode && m2 == CCGCmode)) + return CCGCmode; + + switch (m1) + { + default: + gcc_unreachable (); + + case CCmode: + case CCGCmode: + case CCGOCmode: + case CCNOmode: + case CCAmode: + case CCCmode: + case CCOmode: + case CCSmode: + case CCZmode: + switch (m2) + { + default: + return VOIDmode; + + case CCmode: + case CCGCmode: + case CCGOCmode: + case CCNOmode: + case CCAmode: + case CCCmode: + case CCOmode: + case CCSmode: + case CCZmode: + return CCmode; + } + + case CCFPmode: + case CCFPUmode: + /* These are only compatible with themselves, which we already + checked above. */ + return VOIDmode; + } +} + + +/* Return a comparison we can do and that it is equivalent to + swap_condition (code) apart possibly from orderedness. + But, never change orderedness if TARGET_IEEE_FP, returning + UNKNOWN in that case if necessary. */ + +static enum rtx_code +ix86_fp_swap_condition (enum rtx_code code) +{ + switch (code) + { + case GT: /* GTU - CF=0 & ZF=0 */ + return TARGET_IEEE_FP ? UNKNOWN : UNLT; + case GE: /* GEU - CF=0 */ + return TARGET_IEEE_FP ? UNKNOWN : UNLE; + case UNLT: /* LTU - CF=1 */ + return TARGET_IEEE_FP ? UNKNOWN : GT; + case UNLE: /* LEU - CF=1 | ZF=1 */ + return TARGET_IEEE_FP ? UNKNOWN : GE; + default: + return swap_condition (code); + } +} + +/* Return cost of comparison CODE using the best strategy for performance. + All following functions do use number of instructions as a cost metrics. + In future this should be tweaked to compute bytes for optimize_size and + take into account performance of various instructions on various CPUs. */ + +static int +ix86_fp_comparison_cost (enum rtx_code code) +{ + int arith_cost; + + /* The cost of code using bit-twiddling on %ah. */ + switch (code) + { + case UNLE: + case UNLT: + case LTGT: + case GT: + case GE: + case UNORDERED: + case ORDERED: + case UNEQ: + arith_cost = 4; + break; + case LT: + case NE: + case EQ: + case UNGE: + arith_cost = TARGET_IEEE_FP ? 5 : 4; + break; + case LE: + case UNGT: + arith_cost = TARGET_IEEE_FP ? 6 : 4; + break; + default: + gcc_unreachable (); + } + + switch (ix86_fp_comparison_strategy (code)) + { + case IX86_FPCMP_COMI: + return arith_cost > 4 ? 3 : 2; + case IX86_FPCMP_SAHF: + return arith_cost > 4 ? 4 : 3; + default: + return arith_cost; + } +} + +/* Return strategy to use for floating-point. We assume that fcomi is always + preferrable where available, since that is also true when looking at size + (2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */ + +enum ix86_fpcmp_strategy +ix86_fp_comparison_strategy (enum rtx_code code ATTRIBUTE_UNUSED) +{ + /* Do fcomi/sahf based test when profitable. */ + + if (TARGET_CMOVE) + return IX86_FPCMP_COMI; + + if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_function_for_size_p (cfun))) + return IX86_FPCMP_SAHF; + + return IX86_FPCMP_ARITH; +} + +/* Swap, force into registers, or otherwise massage the two operands + to a fp comparison. The operands are updated in place; the new + comparison code is returned. */ + +static enum rtx_code +ix86_prepare_fp_compare_args (enum rtx_code code, rtx *pop0, rtx *pop1) +{ + enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); + rtx op0 = *pop0, op1 = *pop1; + enum machine_mode op_mode = GET_MODE (op0); + int is_sse = TARGET_SSE_MATH && SSE_FLOAT_MODE_P (op_mode); + + /* All of the unordered compare instructions only work on registers. + The same is true of the fcomi compare instructions. The XFmode + compare instructions require registers except when comparing + against zero or when converting operand 1 from fixed point to + floating point. */ + + if (!is_sse + && (fpcmp_mode == CCFPUmode + || (op_mode == XFmode + && ! (standard_80387_constant_p (op0) == 1 + || standard_80387_constant_p (op1) == 1) + && GET_CODE (op1) != FLOAT) + || ix86_fp_comparison_strategy (code) == IX86_FPCMP_COMI)) + { + op0 = force_reg (op_mode, op0); + op1 = force_reg (op_mode, op1); + } + else + { + /* %%% We only allow op1 in memory; op0 must be st(0). So swap + things around if they appear profitable, otherwise force op0 + into a register. */ + + if (standard_80387_constant_p (op0) == 0 + || (MEM_P (op0) + && ! (standard_80387_constant_p (op1) == 0 + || MEM_P (op1)))) + { + enum rtx_code new_code = ix86_fp_swap_condition (code); + if (new_code != UNKNOWN) + { + rtx tmp; + tmp = op0, op0 = op1, op1 = tmp; + code = new_code; + } + } + + if (!REG_P (op0)) + op0 = force_reg (op_mode, op0); + + if (CONSTANT_P (op1)) + { + int tmp = standard_80387_constant_p (op1); + if (tmp == 0) + op1 = validize_mem (force_const_mem (op_mode, op1)); + else if (tmp == 1) + { + if (TARGET_CMOVE) + op1 = force_reg (op_mode, op1); + } + else + op1 = force_reg (op_mode, op1); + } + } + + /* Try to rearrange the comparison to make it cheaper. */ + if (ix86_fp_comparison_cost (code) + > ix86_fp_comparison_cost (swap_condition (code)) + && (REG_P (op1) || can_create_pseudo_p ())) + { + rtx tmp; + tmp = op0, op0 = op1, op1 = tmp; + code = swap_condition (code); + if (!REG_P (op0)) + op0 = force_reg (op_mode, op0); + } + + *pop0 = op0; + *pop1 = op1; + return code; +} + +/* Convert comparison codes we use to represent FP comparison to integer + code that will result in proper branch. Return UNKNOWN if no such code + is available. */ + +enum rtx_code +ix86_fp_compare_code_to_integer (enum rtx_code code) +{ + switch (code) + { + case GT: + return GTU; + case GE: + return GEU; + case ORDERED: + case UNORDERED: + return code; + break; + case UNEQ: + return EQ; + break; + case UNLT: + return LTU; + break; + case UNLE: + return LEU; + break; + case LTGT: + return NE; + break; + default: + return UNKNOWN; + } +} + +/* Generate insn patterns to do a floating point compare of OPERANDS. */ + +static rtx +ix86_expand_fp_compare (enum rtx_code code, rtx op0, rtx op1, rtx scratch) +{ + enum machine_mode fpcmp_mode, intcmp_mode; + rtx tmp, tmp2; + + fpcmp_mode = ix86_fp_compare_mode (code); + code = ix86_prepare_fp_compare_args (code, &op0, &op1); + + /* Do fcomi/sahf based test when profitable. */ + switch (ix86_fp_comparison_strategy (code)) + { + case IX86_FPCMP_COMI: + intcmp_mode = fpcmp_mode; + tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); + tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), + tmp); + emit_insn (tmp); + break; + + case IX86_FPCMP_SAHF: + intcmp_mode = fpcmp_mode; + tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); + tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), + tmp); + + if (!scratch) + scratch = gen_reg_rtx (HImode); + tmp2 = gen_rtx_CLOBBER (VOIDmode, scratch); + emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, tmp2))); + break; + + case IX86_FPCMP_ARITH: + /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */ + tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); + tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW); + if (!scratch) + scratch = gen_reg_rtx (HImode); + emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); + + /* In the unordered case, we have to check C2 for NaN's, which + doesn't happen to work out to anything nice combination-wise. + So do some bit twiddling on the value we've got in AH to come + up with an appropriate set of condition codes. */ + + intcmp_mode = CCNOmode; + switch (code) + { + case GT: + case UNGT: + if (code == GT || !TARGET_IEEE_FP) + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); + code = EQ; + } + else + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); + emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44))); + intcmp_mode = CCmode; + code = GEU; + } + break; + case LT: + case UNLT: + if (code == LT && TARGET_IEEE_FP) + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_cmpqi_ext_3 (scratch, const1_rtx)); + intcmp_mode = CCmode; + code = EQ; + } + else + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, const1_rtx)); + code = NE; + } + break; + case GE: + case UNGE: + if (code == GE || !TARGET_IEEE_FP) + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05))); + code = EQ; + } + else + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, const1_rtx)); + code = NE; + } + break; + case LE: + case UNLE: + if (code == LE && TARGET_IEEE_FP) + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); + emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); + intcmp_mode = CCmode; + code = LTU; + } + else + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); + code = NE; + } + break; + case EQ: + case UNEQ: + if (code == EQ && TARGET_IEEE_FP) + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); + intcmp_mode = CCmode; + code = EQ; + } + else + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); + code = NE; + } + break; + case NE: + case LTGT: + if (code == NE && TARGET_IEEE_FP) + { + emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); + emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, + GEN_INT (0x40))); + code = NE; + } + else + { + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); + code = EQ; + } + break; + + case UNORDERED: + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); + code = NE; + break; + case ORDERED: + emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); + code = EQ; + break; + + default: + gcc_unreachable (); + } + break; + + default: + gcc_unreachable(); + } + + /* Return the test that should be put into the flags user, i.e. + the bcc, scc, or cmov instruction. */ + return gen_rtx_fmt_ee (code, VOIDmode, + gen_rtx_REG (intcmp_mode, FLAGS_REG), + const0_rtx); +} + +static rtx +ix86_expand_compare (enum rtx_code code, rtx op0, rtx op1) +{ + rtx ret; + + if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC) + ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); + + else if (SCALAR_FLOAT_MODE_P (GET_MODE (op0))) + { + gcc_assert (!DECIMAL_FLOAT_MODE_P (GET_MODE (op0))); + ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); + } + else + ret = ix86_expand_int_compare (code, op0, op1); + + return ret; +} + +void +ix86_expand_branch (enum rtx_code code, rtx op0, rtx op1, rtx label) +{ + enum machine_mode mode = GET_MODE (op0); + rtx tmp; + + switch (mode) + { + case SFmode: + case DFmode: + case XFmode: + case QImode: + case HImode: + case SImode: + simple: + tmp = ix86_expand_compare (code, op0, op1); + tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, + gen_rtx_LABEL_REF (VOIDmode, label), + pc_rtx); + emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); + return; + + case DImode: + if (TARGET_64BIT) + goto simple; + case TImode: + /* Expand DImode branch into multiple compare+branch. */ + { + rtx lo[2], hi[2], label2; + enum rtx_code code1, code2, code3; + enum machine_mode submode; + + if (CONSTANT_P (op0) && !CONSTANT_P (op1)) + { + tmp = op0, op0 = op1, op1 = tmp; + code = swap_condition (code); + } + + split_double_mode (mode, &op0, 1, lo+0, hi+0); + split_double_mode (mode, &op1, 1, lo+1, hi+1); + + submode = mode == DImode ? SImode : DImode; + + /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to + avoid two branches. This costs one extra insn, so disable when + optimizing for size. */ + + if ((code == EQ || code == NE) + && (!optimize_insn_for_size_p () + || hi[1] == const0_rtx || lo[1] == const0_rtx)) + { + rtx xor0, xor1; + + xor1 = hi[0]; + if (hi[1] != const0_rtx) + xor1 = expand_binop (submode, xor_optab, xor1, hi[1], + NULL_RTX, 0, OPTAB_WIDEN); + + xor0 = lo[0]; + if (lo[1] != const0_rtx) + xor0 = expand_binop (submode, xor_optab, xor0, lo[1], + NULL_RTX, 0, OPTAB_WIDEN); + + tmp = expand_binop (submode, ior_optab, xor1, xor0, + NULL_RTX, 0, OPTAB_WIDEN); + + ix86_expand_branch (code, tmp, const0_rtx, label); + return; + } + + /* Otherwise, if we are doing less-than or greater-or-equal-than, + op1 is a constant and the low word is zero, then we can just + examine the high word. Similarly for low word -1 and + less-or-equal-than or greater-than. */ + + if (CONST_INT_P (hi[1])) + switch (code) + { + case LT: case LTU: case GE: case GEU: + if (lo[1] == const0_rtx) + { + ix86_expand_branch (code, hi[0], hi[1], label); + return; + } + break; + case LE: case LEU: case GT: case GTU: + if (lo[1] == constm1_rtx) + { + ix86_expand_branch (code, hi[0], hi[1], label); + return; + } + break; + default: + break; + } + + /* Otherwise, we need two or three jumps. */ + + label2 = gen_label_rtx (); + + code1 = code; + code2 = swap_condition (code); + code3 = unsigned_condition (code); + + switch (code) + { + case LT: case GT: case LTU: case GTU: + break; + + case LE: code1 = LT; code2 = GT; break; + case GE: code1 = GT; code2 = LT; break; + case LEU: code1 = LTU; code2 = GTU; break; + case GEU: code1 = GTU; code2 = LTU; break; + + case EQ: code1 = UNKNOWN; code2 = NE; break; + case NE: code2 = UNKNOWN; break; + + default: + gcc_unreachable (); + } + + /* + * a < b => + * if (hi(a) < hi(b)) goto true; + * if (hi(a) > hi(b)) goto false; + * if (lo(a) < lo(b)) goto true; + * false: + */ + + if (code1 != UNKNOWN) + ix86_expand_branch (code1, hi[0], hi[1], label); + if (code2 != UNKNOWN) + ix86_expand_branch (code2, hi[0], hi[1], label2); + + ix86_expand_branch (code3, lo[0], lo[1], label); + + if (code2 != UNKNOWN) + emit_label (label2); + return; + } + + default: + gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC); + goto simple; + } +} + +/* Split branch based on floating point condition. */ +void +ix86_split_fp_branch (enum rtx_code code, rtx op1, rtx op2, + rtx target1, rtx target2, rtx tmp, rtx pushed) +{ + rtx condition; + rtx i; + + if (target2 != pc_rtx) + { + rtx tmp = target2; + code = reverse_condition_maybe_unordered (code); + target2 = target1; + target1 = tmp; + } + + condition = ix86_expand_fp_compare (code, op1, op2, + tmp); + + /* Remove pushed operand from stack. */ + if (pushed) + ix86_free_from_memory (GET_MODE (pushed)); + + i = emit_jump_insn (gen_rtx_SET + (VOIDmode, pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + condition, target1, target2))); + if (split_branch_probability >= 0) + add_reg_note (i, REG_BR_PROB, GEN_INT (split_branch_probability)); +} + +void +ix86_expand_setcc (rtx dest, enum rtx_code code, rtx op0, rtx op1) +{ + rtx ret; + + gcc_assert (GET_MODE (dest) == QImode); + + ret = ix86_expand_compare (code, op0, op1); + PUT_MODE (ret, QImode); + emit_insn (gen_rtx_SET (VOIDmode, dest, ret)); +} + +/* Expand comparison setting or clearing carry flag. Return true when + successful and set pop for the operation. */ +static bool +ix86_expand_carry_flag_compare (enum rtx_code code, rtx op0, rtx op1, rtx *pop) +{ + enum machine_mode mode = + GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); + + /* Do not handle double-mode compares that go through special path. */ + if (mode == (TARGET_64BIT ? TImode : DImode)) + return false; + + if (SCALAR_FLOAT_MODE_P (mode)) + { + rtx compare_op, compare_seq; + + gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); + + /* Shortcut: following common codes never translate + into carry flag compares. */ + if (code == EQ || code == NE || code == UNEQ || code == LTGT + || code == ORDERED || code == UNORDERED) + return false; + + /* These comparisons require zero flag; swap operands so they won't. */ + if ((code == GT || code == UNLE || code == LE || code == UNGT) + && !TARGET_IEEE_FP) + { + rtx tmp = op0; + op0 = op1; + op1 = tmp; + code = swap_condition (code); + } + + /* Try to expand the comparison and verify that we end up with + carry flag based comparison. This fails to be true only when + we decide to expand comparison using arithmetic that is not + too common scenario. */ + start_sequence (); + compare_op = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); + compare_seq = get_insns (); + end_sequence (); + + if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode + || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) + code = ix86_fp_compare_code_to_integer (GET_CODE (compare_op)); + else + code = GET_CODE (compare_op); + + if (code != LTU && code != GEU) + return false; + + emit_insn (compare_seq); + *pop = compare_op; + return true; + } + + if (!INTEGRAL_MODE_P (mode)) + return false; + + switch (code) + { + case LTU: + case GEU: + break; + + /* Convert a==0 into (unsigned)a<1. */ + case EQ: + case NE: + if (op1 != const0_rtx) + return false; + op1 = const1_rtx; + code = (code == EQ ? LTU : GEU); + break; + + /* Convert a>b into b<a or a>=b-1. */ + case GTU: + case LEU: + if (CONST_INT_P (op1)) + { + op1 = gen_int_mode (INTVAL (op1) + 1, GET_MODE (op0)); + /* Bail out on overflow. We still can swap operands but that + would force loading of the constant into register. */ + if (op1 == const0_rtx + || !x86_64_immediate_operand (op1, GET_MODE (op1))) + return false; + code = (code == GTU ? GEU : LTU); + } + else + { + rtx tmp = op1; + op1 = op0; + op0 = tmp; + code = (code == GTU ? LTU : GEU); + } + break; + + /* Convert a>=0 into (unsigned)a<0x80000000. */ + case LT: + case GE: + if (mode == DImode || op1 != const0_rtx) + return false; + op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); + code = (code == LT ? GEU : LTU); + break; + case LE: + case GT: + if (mode == DImode || op1 != constm1_rtx) + return false; + op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); + code = (code == LE ? GEU : LTU); + break; + + default: + return false; + } + /* Swapping operands may cause constant to appear as first operand. */ + if (!nonimmediate_operand (op0, VOIDmode)) + { + if (!can_create_pseudo_p ()) + return false; + op0 = force_reg (mode, op0); + } + *pop = ix86_expand_compare (code, op0, op1); + gcc_assert (GET_CODE (*pop) == LTU || GET_CODE (*pop) == GEU); + return true; +} + +bool +ix86_expand_int_movcc (rtx operands[]) +{ + enum rtx_code code = GET_CODE (operands[1]), compare_code; + rtx compare_seq, compare_op; + enum machine_mode mode = GET_MODE (operands[0]); + bool sign_bit_compare_p = false; + rtx op0 = XEXP (operands[1], 0); + rtx op1 = XEXP (operands[1], 1); + + start_sequence (); + compare_op = ix86_expand_compare (code, op0, op1); + compare_seq = get_insns (); + end_sequence (); + + compare_code = GET_CODE (compare_op); + + if ((op1 == const0_rtx && (code == GE || code == LT)) + || (op1 == constm1_rtx && (code == GT || code == LE))) + sign_bit_compare_p = true; + + /* Don't attempt mode expansion here -- if we had to expand 5 or 6 + HImode insns, we'd be swallowed in word prefix ops. */ + + if ((mode != HImode || TARGET_FAST_PREFIX) + && (mode != (TARGET_64BIT ? TImode : DImode)) + && CONST_INT_P (operands[2]) + && CONST_INT_P (operands[3])) + { + rtx out = operands[0]; + HOST_WIDE_INT ct = INTVAL (operands[2]); + HOST_WIDE_INT cf = INTVAL (operands[3]); + HOST_WIDE_INT diff; + + diff = ct - cf; + /* Sign bit compares are better done using shifts than we do by using + sbb. */ + if (sign_bit_compare_p + || ix86_expand_carry_flag_compare (code, op0, op1, &compare_op)) + { + /* Detect overlap between destination and compare sources. */ + rtx tmp = out; + + if (!sign_bit_compare_p) + { + rtx flags; + bool fpcmp = false; + + compare_code = GET_CODE (compare_op); + + flags = XEXP (compare_op, 0); + + if (GET_MODE (flags) == CCFPmode + || GET_MODE (flags) == CCFPUmode) + { + fpcmp = true; + compare_code + = ix86_fp_compare_code_to_integer (compare_code); + } + + /* To simplify rest of code, restrict to the GEU case. */ + if (compare_code == LTU) + { + HOST_WIDE_INT tmp = ct; + ct = cf; + cf = tmp; + compare_code = reverse_condition (compare_code); + code = reverse_condition (code); + } + else + { + if (fpcmp) + PUT_CODE (compare_op, + reverse_condition_maybe_unordered + (GET_CODE (compare_op))); + else + PUT_CODE (compare_op, + reverse_condition (GET_CODE (compare_op))); + } + diff = ct - cf; + + if (reg_overlap_mentioned_p (out, op0) + || reg_overlap_mentioned_p (out, op1)) + tmp = gen_reg_rtx (mode); + + if (mode == DImode) + emit_insn (gen_x86_movdicc_0_m1 (tmp, flags, compare_op)); + else + emit_insn (gen_x86_movsicc_0_m1 (gen_lowpart (SImode, tmp), + flags, compare_op)); + } + else + { + if (code == GT || code == GE) + code = reverse_condition (code); + else + { + HOST_WIDE_INT tmp = ct; + ct = cf; + cf = tmp; + diff = ct - cf; + } + tmp = emit_store_flag (tmp, code, op0, op1, VOIDmode, 0, -1); + } + + if (diff == 1) + { + /* + * cmpl op0,op1 + * sbbl dest,dest + * [addl dest, ct] + * + * Size 5 - 8. + */ + if (ct) + tmp = expand_simple_binop (mode, PLUS, + tmp, GEN_INT (ct), + copy_rtx (tmp), 1, OPTAB_DIRECT); + } + else if (cf == -1) + { + /* + * cmpl op0,op1 + * sbbl dest,dest + * orl $ct, dest + * + * Size 8. + */ + tmp = expand_simple_binop (mode, IOR, + tmp, GEN_INT (ct), + copy_rtx (tmp), 1, OPTAB_DIRECT); + } + else if (diff == -1 && ct) + { + /* + * cmpl op0,op1 + * sbbl dest,dest + * notl dest + * [addl dest, cf] + * + * Size 8 - 11. + */ + tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); + if (cf) + tmp = expand_simple_binop (mode, PLUS, + copy_rtx (tmp), GEN_INT (cf), + copy_rtx (tmp), 1, OPTAB_DIRECT); + } + else + { + /* + * cmpl op0,op1 + * sbbl dest,dest + * [notl dest] + * andl cf - ct, dest + * [addl dest, ct] + * + * Size 8 - 11. + */ + + if (cf == 0) + { + cf = ct; + ct = 0; + tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); + } + + tmp = expand_simple_binop (mode, AND, + copy_rtx (tmp), + gen_int_mode (cf - ct, mode), + copy_rtx (tmp), 1, OPTAB_DIRECT); + if (ct) + tmp = expand_simple_binop (mode, PLUS, + copy_rtx (tmp), GEN_INT (ct), + copy_rtx (tmp), 1, OPTAB_DIRECT); + } + + if (!rtx_equal_p (tmp, out)) + emit_move_insn (copy_rtx (out), copy_rtx (tmp)); + + return true; + } + + if (diff < 0) + { + enum machine_mode cmp_mode = GET_MODE (op0); + + HOST_WIDE_INT tmp; + tmp = ct, ct = cf, cf = tmp; + diff = -diff; + + if (SCALAR_FLOAT_MODE_P (cmp_mode)) + { + gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); + + /* We may be reversing unordered compare to normal compare, that + is not valid in general (we may convert non-trapping condition + to trapping one), however on i386 we currently emit all + comparisons unordered. */ + compare_code = reverse_condition_maybe_unordered (compare_code); + code = reverse_condition_maybe_unordered (code); + } + else + { + compare_code = reverse_condition (compare_code); + code = reverse_condition (code); + } + } + + compare_code = UNKNOWN; + if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT + && CONST_INT_P (op1)) + { + if (op1 == const0_rtx + && (code == LT || code == GE)) + compare_code = code; + else if (op1 == constm1_rtx) + { + if (code == LE) + compare_code = LT; + else if (code == GT) + compare_code = GE; + } + } + + /* Optimize dest = (op0 < 0) ? -1 : cf. */ + if (compare_code != UNKNOWN + && GET_MODE (op0) == GET_MODE (out) + && (cf == -1 || ct == -1)) + { + /* If lea code below could be used, only optimize + if it results in a 2 insn sequence. */ + + if (! (diff == 1 || diff == 2 || diff == 4 || diff == 8 + || diff == 3 || diff == 5 || diff == 9) + || (compare_code == LT && ct == -1) + || (compare_code == GE && cf == -1)) + { + /* + * notl op1 (if necessary) + * sarl $31, op1 + * orl cf, op1 + */ + if (ct != -1) + { + cf = ct; + ct = -1; + code = reverse_condition (code); + } + + out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1); + + out = expand_simple_binop (mode, IOR, + out, GEN_INT (cf), + out, 1, OPTAB_DIRECT); + if (out != operands[0]) + emit_move_insn (operands[0], out); + + return true; + } + } + + + if ((diff == 1 || diff == 2 || diff == 4 || diff == 8 + || diff == 3 || diff == 5 || diff == 9) + && ((mode != QImode && mode != HImode) || !TARGET_PARTIAL_REG_STALL) + && (mode != DImode + || x86_64_immediate_operand (GEN_INT (cf), VOIDmode))) + { + /* + * xorl dest,dest + * cmpl op1,op2 + * setcc dest + * lea cf(dest*(ct-cf)),dest + * + * Size 14. + * + * This also catches the degenerate setcc-only case. + */ + + rtx tmp; + int nops; + + out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1); + + nops = 0; + /* On x86_64 the lea instruction operates on Pmode, so we need + to get arithmetics done in proper mode to match. */ + if (diff == 1) + tmp = copy_rtx (out); + else + { + rtx out1; + out1 = copy_rtx (out); + tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1)); + nops++; + if (diff & 1) + { + tmp = gen_rtx_PLUS (mode, tmp, out1); + nops++; + } + } + if (cf != 0) + { + tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf)); + nops++; + } + if (!rtx_equal_p (tmp, out)) + { + if (nops == 1) + out = force_operand (tmp, copy_rtx (out)); + else + emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (out), copy_rtx (tmp))); + } + if (!rtx_equal_p (out, operands[0])) + emit_move_insn (operands[0], copy_rtx (out)); + + return true; + } + + /* + * General case: Jumpful: + * xorl dest,dest cmpl op1, op2 + * cmpl op1, op2 movl ct, dest + * setcc dest jcc 1f + * decl dest movl cf, dest + * andl (cf-ct),dest 1: + * addl ct,dest + * + * Size 20. Size 14. + * + * This is reasonably steep, but branch mispredict costs are + * high on modern cpus, so consider failing only if optimizing + * for space. + */ + + if ((!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) + && BRANCH_COST (optimize_insn_for_speed_p (), + false) >= 2) + { + if (cf == 0) + { + enum machine_mode cmp_mode = GET_MODE (op0); + + cf = ct; + ct = 0; + + if (SCALAR_FLOAT_MODE_P (cmp_mode)) + { + gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); + + /* We may be reversing unordered compare to normal compare, + that is not valid in general (we may convert non-trapping + condition to trapping one), however on i386 we currently + emit all comparisons unordered. */ + code = reverse_condition_maybe_unordered (code); + } + else + { + code = reverse_condition (code); + if (compare_code != UNKNOWN) + compare_code = reverse_condition (compare_code); + } + } + + if (compare_code != UNKNOWN) + { + /* notl op1 (if needed) + sarl $31, op1 + andl (cf-ct), op1 + addl ct, op1 + + For x < 0 (resp. x <= -1) there will be no notl, + so if possible swap the constants to get rid of the + complement. + True/false will be -1/0 while code below (store flag + followed by decrement) is 0/-1, so the constants need + to be exchanged once more. */ + + if (compare_code == GE || !cf) + { + code = reverse_condition (code); + compare_code = LT; + } + else + { + HOST_WIDE_INT tmp = cf; + cf = ct; + ct = tmp; + } + + out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1); + } + else + { + out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1); + + out = expand_simple_binop (mode, PLUS, copy_rtx (out), + constm1_rtx, + copy_rtx (out), 1, OPTAB_DIRECT); + } + + out = expand_simple_binop (mode, AND, copy_rtx (out), + gen_int_mode (cf - ct, mode), + copy_rtx (out), 1, OPTAB_DIRECT); + if (ct) + out = expand_simple_binop (mode, PLUS, copy_rtx (out), GEN_INT (ct), + copy_rtx (out), 1, OPTAB_DIRECT); + if (!rtx_equal_p (out, operands[0])) + emit_move_insn (operands[0], copy_rtx (out)); + + return true; + } + } + + if (!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) + { + /* Try a few things more with specific constants and a variable. */ + + optab op; + rtx var, orig_out, out, tmp; + + if (BRANCH_COST (optimize_insn_for_speed_p (), false) <= 2) + return false; + + /* If one of the two operands is an interesting constant, load a + constant with the above and mask it in with a logical operation. */ + + if (CONST_INT_P (operands[2])) + { + var = operands[3]; + if (INTVAL (operands[2]) == 0 && operands[3] != constm1_rtx) + operands[3] = constm1_rtx, op = and_optab; + else if (INTVAL (operands[2]) == -1 && operands[3] != const0_rtx) + operands[3] = const0_rtx, op = ior_optab; + else + return false; + } + else if (CONST_INT_P (operands[3])) + { + var = operands[2]; + if (INTVAL (operands[3]) == 0 && operands[2] != constm1_rtx) + operands[2] = constm1_rtx, op = and_optab; + else if (INTVAL (operands[3]) == -1 && operands[3] != const0_rtx) + operands[2] = const0_rtx, op = ior_optab; + else + return false; + } + else + return false; + + orig_out = operands[0]; + tmp = gen_reg_rtx (mode); + operands[0] = tmp; + + /* Recurse to get the constant loaded. */ + if (ix86_expand_int_movcc (operands) == 0) + return false; + + /* Mask in the interesting variable. */ + out = expand_binop (mode, op, var, tmp, orig_out, 0, + OPTAB_WIDEN); + if (!rtx_equal_p (out, orig_out)) + emit_move_insn (copy_rtx (orig_out), copy_rtx (out)); + + return true; + } + + /* + * For comparison with above, + * + * movl cf,dest + * movl ct,tmp + * cmpl op1,op2 + * cmovcc tmp,dest + * + * Size 15. + */ + + if (! nonimmediate_operand (operands[2], mode)) + operands[2] = force_reg (mode, operands[2]); + if (! nonimmediate_operand (operands[3], mode)) + operands[3] = force_reg (mode, operands[3]); + + if (! register_operand (operands[2], VOIDmode) + && (mode == QImode + || ! register_operand (operands[3], VOIDmode))) + operands[2] = force_reg (mode, operands[2]); + + if (mode == QImode + && ! register_operand (operands[3], VOIDmode)) + operands[3] = force_reg (mode, operands[3]); + + emit_insn (compare_seq); + emit_insn (gen_rtx_SET (VOIDmode, operands[0], + gen_rtx_IF_THEN_ELSE (mode, + compare_op, operands[2], + operands[3]))); + return true; +} + +/* Swap, force into registers, or otherwise massage the two operands + to an sse comparison with a mask result. Thus we differ a bit from + ix86_prepare_fp_compare_args which expects to produce a flags result. + + The DEST operand exists to help determine whether to commute commutative + operators. The POP0/POP1 operands are updated in place. The new + comparison code is returned, or UNKNOWN if not implementable. */ + +static enum rtx_code +ix86_prepare_sse_fp_compare_args (rtx dest, enum rtx_code code, + rtx *pop0, rtx *pop1) +{ + rtx tmp; + + /* AVX supports all the needed comparisons, no need to swap arguments + nor help reload. */ + if (TARGET_AVX) + return code; + + switch (code) + { + case LTGT: + case UNEQ: + /* We have no LTGT as an operator. We could implement it with + NE & ORDERED, but this requires an extra temporary. It's + not clear that it's worth it. */ + return UNKNOWN; + + case LT: + case LE: + case UNGT: + case UNGE: + /* These are supported directly. */ + break; + + case EQ: + case NE: + case UNORDERED: + case ORDERED: + /* For commutative operators, try to canonicalize the destination + operand to be first in the comparison - this helps reload to + avoid extra moves. */ + if (!dest || !rtx_equal_p (dest, *pop1)) + break; + /* FALLTHRU */ + + case GE: + case GT: + case UNLE: + case UNLT: + /* These are not supported directly. Swap the comparison operands + to transform into something that is supported. */ + tmp = *pop0; + *pop0 = *pop1; + *pop1 = tmp; + code = swap_condition (code); + break; + + default: + gcc_unreachable (); + } + + return code; +} + +/* Detect conditional moves that exactly match min/max operational + semantics. Note that this is IEEE safe, as long as we don't + interchange the operands. + + Returns FALSE if this conditional move doesn't match a MIN/MAX, + and TRUE if the operation is successful and instructions are emitted. */ + +static bool +ix86_expand_sse_fp_minmax (rtx dest, enum rtx_code code, rtx cmp_op0, + rtx cmp_op1, rtx if_true, rtx if_false) +{ + enum machine_mode mode; + bool is_min; + rtx tmp; + + if (code == LT) + ; + else if (code == UNGE) + { + tmp = if_true; + if_true = if_false; + if_false = tmp; + } + else + return false; + + if (rtx_equal_p (cmp_op0, if_true) && rtx_equal_p (cmp_op1, if_false)) + is_min = true; + else if (rtx_equal_p (cmp_op1, if_true) && rtx_equal_p (cmp_op0, if_false)) + is_min = false; + else + return false; + + mode = GET_MODE (dest); + + /* We want to check HONOR_NANS and HONOR_SIGNED_ZEROS here, + but MODE may be a vector mode and thus not appropriate. */ + if (!flag_finite_math_only || !flag_unsafe_math_optimizations) + { + int u = is_min ? UNSPEC_IEEE_MIN : UNSPEC_IEEE_MAX; + rtvec v; + + if_true = force_reg (mode, if_true); + v = gen_rtvec (2, if_true, if_false); + tmp = gen_rtx_UNSPEC (mode, v, u); + } + else + { + code = is_min ? SMIN : SMAX; + tmp = gen_rtx_fmt_ee (code, mode, if_true, if_false); + } + + emit_insn (gen_rtx_SET (VOIDmode, dest, tmp)); + return true; +} + +/* Expand an sse vector comparison. Return the register with the result. */ + +static rtx +ix86_expand_sse_cmp (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1, + rtx op_true, rtx op_false) +{ + enum machine_mode mode = GET_MODE (dest); + rtx x; + + cmp_op0 = force_reg (mode, cmp_op0); + if (!nonimmediate_operand (cmp_op1, mode)) + cmp_op1 = force_reg (mode, cmp_op1); + + if (optimize + || reg_overlap_mentioned_p (dest, op_true) + || reg_overlap_mentioned_p (dest, op_false)) + dest = gen_reg_rtx (mode); + + x = gen_rtx_fmt_ee (code, mode, cmp_op0, cmp_op1); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + + return dest; +} + +/* Expand DEST = CMP ? OP_TRUE : OP_FALSE into a sequence of logical + operations. This is used for both scalar and vector conditional moves. */ + +static void +ix86_expand_sse_movcc (rtx dest, rtx cmp, rtx op_true, rtx op_false) +{ + enum machine_mode mode = GET_MODE (dest); + rtx t2, t3, x; + + if (op_false == CONST0_RTX (mode)) + { + op_true = force_reg (mode, op_true); + x = gen_rtx_AND (mode, cmp, op_true); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } + else if (op_true == CONST0_RTX (mode)) + { + op_false = force_reg (mode, op_false); + x = gen_rtx_NOT (mode, cmp); + x = gen_rtx_AND (mode, x, op_false); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } + else if (TARGET_XOP) + { + op_true = force_reg (mode, op_true); + + if (!nonimmediate_operand (op_false, mode)) + op_false = force_reg (mode, op_false); + + emit_insn (gen_rtx_SET (mode, dest, + gen_rtx_IF_THEN_ELSE (mode, cmp, + op_true, + op_false))); + } + else + { + op_true = force_reg (mode, op_true); + op_false = force_reg (mode, op_false); + + t2 = gen_reg_rtx (mode); + if (optimize) + t3 = gen_reg_rtx (mode); + else + t3 = dest; + + x = gen_rtx_AND (mode, op_true, cmp); + emit_insn (gen_rtx_SET (VOIDmode, t2, x)); + + x = gen_rtx_NOT (mode, cmp); + x = gen_rtx_AND (mode, x, op_false); + emit_insn (gen_rtx_SET (VOIDmode, t3, x)); + + x = gen_rtx_IOR (mode, t3, t2); + emit_insn (gen_rtx_SET (VOIDmode, dest, x)); + } +} + +/* Expand a floating-point conditional move. Return true if successful. */ + +bool +ix86_expand_fp_movcc (rtx operands[]) +{ + enum machine_mode mode = GET_MODE (operands[0]); + enum rtx_code code = GET_CODE (operands[1]); + rtx tmp, compare_op; + rtx op0 = XEXP (operands[1], 0); + rtx op1 = XEXP (operands[1], 1); + + if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) + { + enum machine_mode cmode; + + /* Since we've no cmove for sse registers, don't force bad register + allocation just to gain access to it. Deny movcc when the + comparison mode doesn't match the move mode. */ + cmode = GET_MODE (op0); + if (cmode == VOIDmode) + cmode = GET_MODE (op1); + if (cmode != mode) + return false; + + code = ix86_prepare_sse_fp_compare_args (operands[0], code, &op0, &op1); + if (code == UNKNOWN) + return false; + + if (ix86_expand_sse_fp_minmax (operands[0], code, op0, op1, + operands[2], operands[3])) + return true; + + tmp = ix86_expand_sse_cmp (operands[0], code, op0, op1, + operands[2], operands[3]); + ix86_expand_sse_movcc (operands[0], tmp, operands[2], operands[3]); + return true; + } + + /* The floating point conditional move instructions don't directly + support conditions resulting from a signed integer comparison. */ + + compare_op = ix86_expand_compare (code, op0, op1); + if (!fcmov_comparison_operator (compare_op, VOIDmode)) + { + tmp = gen_reg_rtx (QImode); + ix86_expand_setcc (tmp, code, op0, op1); + + compare_op = ix86_expand_compare (NE, tmp, const0_rtx); + } + + emit_insn (gen_rtx_SET (VOIDmode, operands[0], + gen_rtx_IF_THEN_ELSE (mode, compare_op, + operands[2], operands[3]))); + + return true; +} + +/* Expand a floating-point vector conditional move; a vcond operation + rather than a movcc operation. */ + +bool +ix86_expand_fp_vcond (rtx operands[]) +{ + enum rtx_code code = GET_CODE (operands[3]); + rtx cmp; + + code = ix86_prepare_sse_fp_compare_args (operands[0], code, + &operands[4], &operands[5]); + if (code == UNKNOWN) + { + rtx temp; + switch (GET_CODE (operands[3])) + { + case LTGT: + temp = ix86_expand_sse_cmp (operands[0], ORDERED, operands[4], + operands[5], operands[0], operands[0]); + cmp = ix86_expand_sse_cmp (operands[0], NE, operands[4], + operands[5], operands[1], operands[2]); + code = AND; + break; + case UNEQ: + temp = ix86_expand_sse_cmp (operands[0], UNORDERED, operands[4], + operands[5], operands[0], operands[0]); + cmp = ix86_expand_sse_cmp (operands[0], EQ, operands[4], + operands[5], operands[1], operands[2]); + code = IOR; + break; + default: + gcc_unreachable (); + } + cmp = expand_simple_binop (GET_MODE (cmp), code, temp, cmp, cmp, 1, + OPTAB_DIRECT); + ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]); + return true; + } + + if (ix86_expand_sse_fp_minmax (operands[0], code, operands[4], + operands[5], operands[1], operands[2])) + return true; + + cmp = ix86_expand_sse_cmp (operands[0], code, operands[4], operands[5], + operands[1], operands[2]); + ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]); + return true; +} + +/* Expand a signed/unsigned integral vector conditional move. */ + +bool +ix86_expand_int_vcond (rtx operands[]) +{ + enum machine_mode mode = GET_MODE (operands[0]); + enum rtx_code code = GET_CODE (operands[3]); + bool negate = false; + rtx x, cop0, cop1; + + cop0 = operands[4]; + cop1 = operands[5]; + + /* XOP supports all of the comparisons on all vector int types. */ + if (!TARGET_XOP) + { + /* Canonicalize the comparison to EQ, GT, GTU. */ + switch (code) + { + case EQ: + case GT: + case GTU: + break; + + case NE: + case LE: + case LEU: + code = reverse_condition (code); + negate = true; + break; + + case GE: + case GEU: + code = reverse_condition (code); + negate = true; + /* FALLTHRU */ + + case LT: + case LTU: + code = swap_condition (code); + x = cop0, cop0 = cop1, cop1 = x; + break; + + default: + gcc_unreachable (); + } + + /* Only SSE4.1/SSE4.2 supports V2DImode. */ + if (mode == V2DImode) + { + switch (code) + { + case EQ: + /* SSE4.1 supports EQ. */ + if (!TARGET_SSE4_1) + return false; + break; + + case GT: + case GTU: + /* SSE4.2 supports GT/GTU. */ + if (!TARGET_SSE4_2) + return false; + break; + + default: + gcc_unreachable (); + } + } + + /* Unsigned parallel compare is not supported by the hardware. + Play some tricks to turn this into a signed comparison + against 0. */ + if (code == GTU) + { + cop0 = force_reg (mode, cop0); + + switch (mode) + { + case V4SImode: + case V2DImode: + { + rtx t1, t2, mask; + rtx (*gen_sub3) (rtx, rtx, rtx); + + /* Subtract (-(INT MAX) - 1) from both operands to make + them signed. */ + mask = ix86_build_signbit_mask (mode, true, false); + gen_sub3 = (mode == V4SImode + ? gen_subv4si3 : gen_subv2di3); + t1 = gen_reg_rtx (mode); + emit_insn (gen_sub3 (t1, cop0, mask)); + + t2 = gen_reg_rtx (mode); + emit_insn (gen_sub3 (t2, cop1, mask)); + + cop0 = t1; + cop1 = t2; + code = GT; + } + break; + + case V16QImode: + case V8HImode: + /* Perform a parallel unsigned saturating subtraction. */ + x = gen_reg_rtx (mode); + emit_insn (gen_rtx_SET (VOIDmode, x, + gen_rtx_US_MINUS (mode, cop0, cop1))); + + cop0 = x; + cop1 = CONST0_RTX (mode); + code = EQ; + negate = !negate; + break; + + default: + gcc_unreachable (); + } + } + } + + x = ix86_expand_sse_cmp (operands[0], code, cop0, cop1, + operands[1+negate], operands[2-negate]); + + ix86_expand_sse_movcc (operands[0], x, operands[1+negate], + operands[2-negate]); + return true; +} + +/* Unpack OP[1] into the next wider integer vector type. UNSIGNED_P is + true if we should do zero extension, else sign extension. HIGH_P is + true if we want the N/2 high elements, else the low elements. */ + +void +ix86_expand_sse_unpack (rtx operands[2], bool unsigned_p, bool high_p) +{ + enum machine_mode imode = GET_MODE (operands[1]); + rtx (*unpack)(rtx, rtx, rtx); + rtx se, dest; + + switch (imode) + { + case V16QImode: + if (high_p) + unpack = gen_vec_interleave_highv16qi; + else + unpack = gen_vec_interleave_lowv16qi; + break; + case V8HImode: + if (high_p) + unpack = gen_vec_interleave_highv8hi; + else + unpack = gen_vec_interleave_lowv8hi; + break; + case V4SImode: + if (high_p) + unpack = gen_vec_interleave_highv4si; + else + unpack = gen_vec_interleave_lowv4si; + break; + default: + gcc_unreachable (); + } + + dest = gen_lowpart (imode, operands[0]); + + if (unsigned_p) + se = force_reg (imode, CONST0_RTX (imode)); + else + se = ix86_expand_sse_cmp (gen_reg_rtx (imode), GT, CONST0_RTX (imode), + operands[1], pc_rtx, pc_rtx); + + emit_insn (unpack (dest, operands[1], se)); +} + +/* This function performs the same task as ix86_expand_sse_unpack, + but with SSE4.1 instructions. */ + +void +ix86_expand_sse4_unpack (rtx operands[2], bool unsigned_p, bool high_p) +{ + enum machine_mode imode = GET_MODE (operands[1]); + rtx (*unpack)(rtx, rtx); + rtx src, dest; + + switch (imode) + { + case V16QImode: + if (unsigned_p) + unpack = gen_sse4_1_zero_extendv8qiv8hi2; + else + unpack = gen_sse4_1_sign_extendv8qiv8hi2; + break; + case V8HImode: + if (unsigned_p) + unpack = gen_sse4_1_zero_extendv4hiv4si2; + else + unpack = gen_sse4_1_sign_extendv4hiv4si2; + break; + case V4SImode: + if (unsigned_p) + unpack = gen_sse4_1_zero_extendv2siv2di2; + else + unpack = gen_sse4_1_sign_extendv2siv2di2; + break; + default: + gcc_unreachable (); + } + + dest = operands[0]; + if (high_p) + { + /* Shift higher 8 bytes to lower 8 bytes. */ + src = gen_reg_rtx (imode); + emit_insn (gen_sse2_lshrv1ti3 (gen_lowpart (V1TImode, src), + gen_lowpart (V1TImode, operands[1]), + GEN_INT (64))); + } + else + src = operands[1]; + + emit_insn (unpack (dest, src)); +} + +/* Expand conditional increment or decrement using adb/sbb instructions. + The default case using setcc followed by the conditional move can be + done by generic code. */ +bool +ix86_expand_int_addcc (rtx operands[]) +{ + enum rtx_code code = GET_CODE (operands[1]); + rtx flags; + rtx (*insn)(rtx, rtx, rtx, rtx, rtx); + rtx compare_op; + rtx val = const0_rtx; + bool fpcmp = false; + enum machine_mode mode; + rtx op0 = XEXP (operands[1], 0); + rtx op1 = XEXP (operands[1], 1); + + if (operands[3] != const1_rtx + && operands[3] != constm1_rtx) + return false; + if (!ix86_expand_carry_flag_compare (code, op0, op1, &compare_op)) + return false; + code = GET_CODE (compare_op); + + flags = XEXP (compare_op, 0); + + if (GET_MODE (flags) == CCFPmode + || GET_MODE (flags) == CCFPUmode) + { + fpcmp = true; + code = ix86_fp_compare_code_to_integer (code); + } + + if (code != LTU) + { + val = constm1_rtx; + if (fpcmp) + PUT_CODE (compare_op, + reverse_condition_maybe_unordered + (GET_CODE (compare_op))); + else + PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); + } + + mode = GET_MODE (operands[0]); + + /* Construct either adc or sbb insn. */ + if ((code == LTU) == (operands[3] == constm1_rtx)) + { + switch (mode) + { + case QImode: + insn = gen_subqi3_carry; + break; + case HImode: + insn = gen_subhi3_carry; + break; + case SImode: + insn = gen_subsi3_carry; + break; + case DImode: + insn = gen_subdi3_carry; + break; + default: + gcc_unreachable (); + } + } + else + { + switch (mode) + { + case QImode: + insn = gen_addqi3_carry; + break; + case HImode: + insn = gen_addhi3_carry; + break; + case SImode: + insn = gen_addsi3_carry; + break; + case DImode: + insn = gen_adddi3_carry; + break; + default: + gcc_unreachable (); + } + } + emit_insn (insn (operands[0], operands[2], val, flags, compare_op)); + + return true; +} + + +/* Split operands 0 and 1 into half-mode parts. Similar to split_double_mode, + but works for floating pointer parameters and nonoffsetable memories. + For pushes, it returns just stack offsets; the values will be saved + in the right order. Maximally three parts are generated. */ + +static int +ix86_split_to_parts (rtx operand, rtx *parts, enum machine_mode mode) +{ + int size; + + if (!TARGET_64BIT) + size = mode==XFmode ? 3 : GET_MODE_SIZE (mode) / 4; + else + size = (GET_MODE_SIZE (mode) + 4) / 8; + + gcc_assert (!REG_P (operand) || !MMX_REGNO_P (REGNO (operand))); + gcc_assert (size >= 2 && size <= 4); + + /* Optimize constant pool reference to immediates. This is used by fp + moves, that force all constants to memory to allow combining. */ + if (MEM_P (operand) && MEM_READONLY_P (operand)) + { + rtx tmp = maybe_get_pool_constant (operand); + if (tmp) + operand = tmp; + } + + if (MEM_P (operand) && !offsettable_memref_p (operand)) + { + /* The only non-offsetable memories we handle are pushes. */ + int ok = push_operand (operand, VOIDmode); + + gcc_assert (ok); + + operand = copy_rtx (operand); + PUT_MODE (operand, Pmode); + parts[0] = parts[1] = parts[2] = parts[3] = operand; + return size; + } + + if (GET_CODE (operand) == CONST_VECTOR) + { + enum machine_mode imode = int_mode_for_mode (mode); + /* Caution: if we looked through a constant pool memory above, + the operand may actually have a different mode now. That's + ok, since we want to pun this all the way back to an integer. */ + operand = simplify_subreg (imode, operand, GET_MODE (operand), 0); + gcc_assert (operand != NULL); + mode = imode; + } + + if (!TARGET_64BIT) + { + if (mode == DImode) + split_double_mode (mode, &operand, 1, &parts[0], &parts[1]); + else + { + int i; + + if (REG_P (operand)) + { + gcc_assert (reload_completed); + for (i = 0; i < size; i++) + parts[i] = gen_rtx_REG (SImode, REGNO (operand) + i); + } + else if (offsettable_memref_p (operand)) + { + operand = adjust_address (operand, SImode, 0); + parts[0] = operand; + for (i = 1; i < size; i++) + parts[i] = adjust_address (operand, SImode, 4 * i); + } + else if (GET_CODE (operand) == CONST_DOUBLE) + { + REAL_VALUE_TYPE r; + long l[4]; + + REAL_VALUE_FROM_CONST_DOUBLE (r, operand); + switch (mode) + { + case TFmode: + real_to_target (l, &r, mode); + parts[3] = gen_int_mode (l[3], SImode); + parts[2] = gen_int_mode (l[2], SImode); + break; + case XFmode: + REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l); + parts[2] = gen_int_mode (l[2], SImode); + break; + case DFmode: + REAL_VALUE_TO_TARGET_DOUBLE (r, l); + break; + default: + gcc_unreachable (); + } + parts[1] = gen_int_mode (l[1], SImode); + parts[0] = gen_int_mode (l[0], SImode); + } + else + gcc_unreachable (); + } + } + else + { + if (mode == TImode) + split_double_mode (mode, &operand, 1, &parts[0], &parts[1]); + if (mode == XFmode || mode == TFmode) + { + enum machine_mode upper_mode = mode==XFmode ? SImode : DImode; + if (REG_P (operand)) + { + gcc_assert (reload_completed); + parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0); + parts[1] = gen_rtx_REG (upper_mode, REGNO (operand) + 1); + } + else if (offsettable_memref_p (operand)) + { + operand = adjust_address (operand, DImode, 0); + parts[0] = operand; + parts[1] = adjust_address (operand, upper_mode, 8); + } + else if (GET_CODE (operand) == CONST_DOUBLE) + { + REAL_VALUE_TYPE r; + long l[4]; + + REAL_VALUE_FROM_CONST_DOUBLE (r, operand); + real_to_target (l, &r, mode); + + /* Do not use shift by 32 to avoid warning on 32bit systems. */ + if (HOST_BITS_PER_WIDE_INT >= 64) + parts[0] + = gen_int_mode + ((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1)) + + ((((HOST_WIDE_INT) l[1]) << 31) << 1), + DImode); + else + parts[0] = immed_double_const (l[0], l[1], DImode); + + if (upper_mode == SImode) + parts[1] = gen_int_mode (l[2], SImode); + else if (HOST_BITS_PER_WIDE_INT >= 64) + parts[1] + = gen_int_mode + ((l[2] & (((HOST_WIDE_INT) 2 << 31) - 1)) + + ((((HOST_WIDE_INT) l[3]) << 31) << 1), + DImode); + else + parts[1] = immed_double_const (l[2], l[3], DImode); + } + else + gcc_unreachable (); + } + } + + return size; +} + +/* Emit insns to perform a move or push of DI, DF, XF, and TF values. + Return false when normal moves are needed; true when all required + insns have been emitted. Operands 2-4 contain the input values + int the correct order; operands 5-7 contain the output values. */ + +void +ix86_split_long_move (rtx operands[]) +{ + rtx part[2][4]; + int nparts, i, j; + int push = 0; + int collisions = 0; + enum machine_mode mode = GET_MODE (operands[0]); + bool collisionparts[4]; + + /* The DFmode expanders may ask us to move double. + For 64bit target this is single move. By hiding the fact + here we simplify i386.md splitters. */ + if (TARGET_64BIT && GET_MODE_SIZE (GET_MODE (operands[0])) == 8) + { + /* Optimize constant pool reference to immediates. This is used by + fp moves, that force all constants to memory to allow combining. */ + + if (MEM_P (operands[1]) + && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) + operands[1] = get_pool_constant (XEXP (operands[1], 0)); + if (push_operand (operands[0], VOIDmode)) + { + operands[0] = copy_rtx (operands[0]); + PUT_MODE (operands[0], Pmode); + } + else + operands[0] = gen_lowpart (DImode, operands[0]); + operands[1] = gen_lowpart (DImode, operands[1]); + emit_move_insn (operands[0], operands[1]); + return; + } + + /* The only non-offsettable memory we handle is push. */ + if (push_operand (operands[0], VOIDmode)) + push = 1; + else + gcc_assert (!MEM_P (operands[0]) + || offsettable_memref_p (operands[0])); + + nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0])); + ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0])); + + /* When emitting push, take care for source operands on the stack. */ + if (push && MEM_P (operands[1]) + && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) + { + rtx src_base = XEXP (part[1][nparts - 1], 0); + + /* Compensate for the stack decrement by 4. */ + if (!TARGET_64BIT && nparts == 3 + && mode == XFmode && TARGET_128BIT_LONG_DOUBLE) + src_base = plus_constant (src_base, 4); + + /* src_base refers to the stack pointer and is + automatically decreased by emitted push. */ + for (i = 0; i < nparts; i++) + part[1][i] = change_address (part[1][i], + GET_MODE (part[1][i]), src_base); + } + + /* We need to do copy in the right order in case an address register + of the source overlaps the destination. */ + if (REG_P (part[0][0]) && MEM_P (part[1][0])) + { + rtx tmp; + + for (i = 0; i < nparts; i++) + { + collisionparts[i] + = reg_overlap_mentioned_p (part[0][i], XEXP (part[1][0], 0)); + if (collisionparts[i]) + collisions++; + } + + /* Collision in the middle part can be handled by reordering. */ + if (collisions == 1 && nparts == 3 && collisionparts [1]) + { + tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; + tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; + } + else if (collisions == 1 + && nparts == 4 + && (collisionparts [1] || collisionparts [2])) + { + if (collisionparts [1]) + { + tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; + tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; + } + else + { + tmp = part[0][2]; part[0][2] = part[0][3]; part[0][3] = tmp; + tmp = part[1][2]; part[1][2] = part[1][3]; part[1][3] = tmp; + } + } + + /* If there are more collisions, we can't handle it by reordering. + Do an lea to the last part and use only one colliding move. */ + else if (collisions > 1) + { + rtx base; + + collisions = 1; + + base = part[0][nparts - 1]; + + /* Handle the case when the last part isn't valid for lea. + Happens in 64-bit mode storing the 12-byte XFmode. */ + if (GET_MODE (base) != Pmode) + base = gen_rtx_REG (Pmode, REGNO (base)); + + emit_insn (gen_rtx_SET (VOIDmode, base, XEXP (part[1][0], 0))); + part[1][0] = replace_equiv_address (part[1][0], base); + for (i = 1; i < nparts; i++) + { + tmp = plus_constant (base, UNITS_PER_WORD * i); + part[1][i] = replace_equiv_address (part[1][i], tmp); + } + } + } + + if (push) + { + if (!TARGET_64BIT) + { + if (nparts == 3) + { + if (TARGET_128BIT_LONG_DOUBLE && mode == XFmode) + emit_insn (gen_addsi3 (stack_pointer_rtx, + stack_pointer_rtx, GEN_INT (-4))); + emit_move_insn (part[0][2], part[1][2]); + } + else if (nparts == 4) + { + emit_move_insn (part[0][3], part[1][3]); + emit_move_insn (part[0][2], part[1][2]); + } + } + else + { + /* In 64bit mode we don't have 32bit push available. In case this is + register, it is OK - we will just use larger counterpart. We also + retype memory - these comes from attempt to avoid REX prefix on + moving of second half of TFmode value. */ + if (GET_MODE (part[1][1]) == SImode) + { + switch (GET_CODE (part[1][1])) + { + case MEM: + part[1][1] = adjust_address (part[1][1], DImode, 0); + break; + + case REG: + part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1])); + break; + + default: + gcc_unreachable (); + } + + if (GET_MODE (part[1][0]) == SImode) + part[1][0] = part[1][1]; + } + } + emit_move_insn (part[0][1], part[1][1]); + emit_move_insn (part[0][0], part[1][0]); + return; + } + + /* Choose correct order to not overwrite the source before it is copied. */ + if ((REG_P (part[0][0]) + && REG_P (part[1][1]) + && (REGNO (part[0][0]) == REGNO (part[1][1]) + || (nparts == 3 + && REGNO (part[0][0]) == REGNO (part[1][2])) + || (nparts == 4 + && REGNO (part[0][0]) == REGNO (part[1][3])))) + || (collisions > 0 + && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))) + { + for (i = 0, j = nparts - 1; i < nparts; i++, j--) + { + operands[2 + i] = part[0][j]; + operands[6 + i] = part[1][j]; + } + } + else + { + for (i = 0; i < nparts; i++) + { + operands[2 + i] = part[0][i]; + operands[6 + i] = part[1][i]; + } + } + + /* If optimizing for size, attempt to locally unCSE nonzero constants. */ + if (optimize_insn_for_size_p ()) + { + for (j = 0; j < nparts - 1; j++) + if (CONST_INT_P (operands[6 + j]) + && operands[6 + j] != const0_rtx + && REG_P (operands[2 + j])) + for (i = j; i < nparts - 1; i++) + if (CONST_INT_P (operands[7 + i]) + && INTVAL (operands[7 + i]) == INTVAL (operands[6 + j])) + operands[7 + i] = operands[2 + j]; + } + + for (i = 0; i < nparts; i++) + emit_move_insn (operands[2 + i], operands[6 + i]); + + return; +} + +/* Helper function of ix86_split_ashl used to generate an SImode/DImode + left shift by a constant, either using a single shift or + a sequence of add instructions. */ + +static void +ix86_expand_ashl_const (rtx operand, int count, enum machine_mode mode) +{ + rtx (*insn)(rtx, rtx, rtx); + + if (count == 1 + || (count * ix86_cost->add <= ix86_cost->shift_const + && !optimize_insn_for_size_p ())) + { + insn = mode == DImode ? gen_addsi3 : gen_adddi3; + while (count-- > 0) + emit_insn (insn (operand, operand, operand)); + } + else + { + insn = mode == DImode ? gen_ashlsi3 : gen_ashldi3; + emit_insn (insn (operand, operand, GEN_INT (count))); + } +} + +void +ix86_split_ashl (rtx *operands, rtx scratch, enum machine_mode mode) +{ + rtx (*gen_ashl3)(rtx, rtx, rtx); + rtx (*gen_shld)(rtx, rtx, rtx); + int half_width = GET_MODE_BITSIZE (mode) >> 1; + + rtx low[2], high[2]; + int count; + + if (CONST_INT_P (operands[2])) + { + split_double_mode (mode, operands, 2, low, high); + count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); + + if (count >= half_width) + { + emit_move_insn (high[0], low[1]); + emit_move_insn (low[0], const0_rtx); + + if (count > half_width) + ix86_expand_ashl_const (high[0], count - half_width, mode); + } + else + { + gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + emit_insn (gen_shld (high[0], low[0], GEN_INT (count))); + ix86_expand_ashl_const (low[0], count, mode); + } + return; + } + + split_double_mode (mode, operands, 1, low, high); + + gen_ashl3 = mode == DImode ? gen_ashlsi3 : gen_ashldi3; + + if (operands[1] == const1_rtx) + { + /* Assuming we've chosen a QImode capable registers, then 1 << N + can be done with two 32/64-bit shifts, no branches, no cmoves. */ + if (ANY_QI_REG_P (low[0]) && ANY_QI_REG_P (high[0])) + { + rtx s, d, flags = gen_rtx_REG (CCZmode, FLAGS_REG); + + ix86_expand_clear (low[0]); + ix86_expand_clear (high[0]); + emit_insn (gen_testqi_ccz_1 (operands[2], GEN_INT (half_width))); + + d = gen_lowpart (QImode, low[0]); + d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); + s = gen_rtx_EQ (QImode, flags, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, d, s)); + + d = gen_lowpart (QImode, high[0]); + d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); + s = gen_rtx_NE (QImode, flags, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, d, s)); + } + + /* Otherwise, we can get the same results by manually performing + a bit extract operation on bit 5/6, and then performing the two + shifts. The two methods of getting 0/1 into low/high are exactly + the same size. Avoiding the shift in the bit extract case helps + pentium4 a bit; no one else seems to care much either way. */ + else + { + enum machine_mode half_mode; + rtx (*gen_lshr3)(rtx, rtx, rtx); + rtx (*gen_and3)(rtx, rtx, rtx); + rtx (*gen_xor3)(rtx, rtx, rtx); + HOST_WIDE_INT bits; + rtx x; + + if (mode == DImode) + { + half_mode = SImode; + gen_lshr3 = gen_lshrsi3; + gen_and3 = gen_andsi3; + gen_xor3 = gen_xorsi3; + bits = 5; + } + else + { + half_mode = DImode; + gen_lshr3 = gen_lshrdi3; + gen_and3 = gen_anddi3; + gen_xor3 = gen_xordi3; + bits = 6; + } + + if (TARGET_PARTIAL_REG_STALL && !optimize_insn_for_size_p ()) + x = gen_rtx_ZERO_EXTEND (half_mode, operands[2]); + else + x = gen_lowpart (half_mode, operands[2]); + emit_insn (gen_rtx_SET (VOIDmode, high[0], x)); + + emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (bits))); + emit_insn (gen_and3 (high[0], high[0], const1_rtx)); + emit_move_insn (low[0], high[0]); + emit_insn (gen_xor3 (low[0], low[0], const1_rtx)); + } + + emit_insn (gen_ashl3 (low[0], low[0], operands[2])); + emit_insn (gen_ashl3 (high[0], high[0], operands[2])); + return; + } + + if (operands[1] == constm1_rtx) + { + /* For -1 << N, we can avoid the shld instruction, because we + know that we're shifting 0...31/63 ones into a -1. */ + emit_move_insn (low[0], constm1_rtx); + if (optimize_insn_for_size_p ()) + emit_move_insn (high[0], low[0]); + else + emit_move_insn (high[0], constm1_rtx); + } + else + { + gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + split_double_mode (mode, operands, 1, low, high); + emit_insn (gen_shld (high[0], low[0], operands[2])); + } + + emit_insn (gen_ashl3 (low[0], low[0], operands[2])); + + if (TARGET_CMOVE && scratch) + { + rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; + + ix86_expand_clear (scratch); + emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2], scratch)); + } + else + { + rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2; + + emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2])); + } +} + +void +ix86_split_ashr (rtx *operands, rtx scratch, enum machine_mode mode) +{ + rtx (*gen_ashr3)(rtx, rtx, rtx) + = mode == DImode ? gen_ashrsi3 : gen_ashrdi3; + rtx (*gen_shrd)(rtx, rtx, rtx); + int half_width = GET_MODE_BITSIZE (mode) >> 1; + + rtx low[2], high[2]; + int count; + + if (CONST_INT_P (operands[2])) + { + split_double_mode (mode, operands, 2, low, high); + count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); + + if (count == GET_MODE_BITSIZE (mode) - 1) + { + emit_move_insn (high[0], high[1]); + emit_insn (gen_ashr3 (high[0], high[0], + GEN_INT (half_width - 1))); + emit_move_insn (low[0], high[0]); + + } + else if (count >= half_width) + { + emit_move_insn (low[0], high[1]); + emit_move_insn (high[0], low[0]); + emit_insn (gen_ashr3 (high[0], high[0], + GEN_INT (half_width - 1))); + + if (count > half_width) + emit_insn (gen_ashr3 (low[0], low[0], + GEN_INT (count - half_width))); + } + else + { + gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + emit_insn (gen_shrd (low[0], high[0], GEN_INT (count))); + emit_insn (gen_ashr3 (high[0], high[0], GEN_INT (count))); + } + } + else + { + gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + split_double_mode (mode, operands, 1, low, high); + + emit_insn (gen_shrd (low[0], high[0], operands[2])); + emit_insn (gen_ashr3 (high[0], high[0], operands[2])); + + if (TARGET_CMOVE && scratch) + { + rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; + + emit_move_insn (scratch, high[0]); + emit_insn (gen_ashr3 (scratch, scratch, + GEN_INT (half_width - 1))); + emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], + scratch)); + } + else + { + rtx (*gen_x86_shift_adj_3)(rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_3 : gen_x86_shiftdi_adj_3; + + emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2])); + } + } +} + +void +ix86_split_lshr (rtx *operands, rtx scratch, enum machine_mode mode) +{ + rtx (*gen_lshr3)(rtx, rtx, rtx) + = mode == DImode ? gen_lshrsi3 : gen_lshrdi3; + rtx (*gen_shrd)(rtx, rtx, rtx); + int half_width = GET_MODE_BITSIZE (mode) >> 1; + + rtx low[2], high[2]; + int count; + + if (CONST_INT_P (operands[2])) + { + split_double_mode (mode, operands, 2, low, high); + count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); + + if (count >= half_width) + { + emit_move_insn (low[0], high[1]); + ix86_expand_clear (high[0]); + + if (count > half_width) + emit_insn (gen_lshr3 (low[0], low[0], + GEN_INT (count - half_width))); + } + else + { + gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + emit_insn (gen_shrd (low[0], high[0], GEN_INT (count))); + emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (count))); + } + } + else + { + gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; + + if (!rtx_equal_p (operands[0], operands[1])) + emit_move_insn (operands[0], operands[1]); + + split_double_mode (mode, operands, 1, low, high); + + emit_insn (gen_shrd (low[0], high[0], operands[2])); + emit_insn (gen_lshr3 (high[0], high[0], operands[2])); + + if (TARGET_CMOVE && scratch) + { + rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; + + ix86_expand_clear (scratch); + emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], + scratch)); + } + else + { + rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx) + = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2; + + emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2])); + } + } +} + +/* Predict just emitted jump instruction to be taken with probability PROB. */ +static void +predict_jump (int prob) +{ + rtx insn = get_last_insn (); + gcc_assert (JUMP_P (insn)); + add_reg_note (insn, REG_BR_PROB, GEN_INT (prob)); +} + +/* Helper function for the string operations below. Dest VARIABLE whether + it is aligned to VALUE bytes. If true, jump to the label. */ +static rtx +ix86_expand_aligntest (rtx variable, int value, bool epilogue) +{ + rtx label = gen_label_rtx (); + rtx tmpcount = gen_reg_rtx (GET_MODE (variable)); + if (GET_MODE (variable) == DImode) + emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value))); + else + emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value))); + emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable), + 1, label); + if (epilogue) + predict_jump (REG_BR_PROB_BASE * 50 / 100); + else + predict_jump (REG_BR_PROB_BASE * 90 / 100); + return label; +} + +/* Adjust COUNTER by the VALUE. */ +static void +ix86_adjust_counter (rtx countreg, HOST_WIDE_INT value) +{ + rtx (*gen_add)(rtx, rtx, rtx) + = GET_MODE (countreg) == DImode ? gen_adddi3 : gen_addsi3; + + emit_insn (gen_add (countreg, countreg, GEN_INT (-value))); +} + +/* Zero extend possibly SImode EXP to Pmode register. */ +rtx +ix86_zero_extend_to_Pmode (rtx exp) +{ + rtx r; + if (GET_MODE (exp) == VOIDmode) + return force_reg (Pmode, exp); + if (GET_MODE (exp) == Pmode) + return copy_to_mode_reg (Pmode, exp); + r = gen_reg_rtx (Pmode); + emit_insn (gen_zero_extendsidi2 (r, exp)); + return r; +} + +/* Divide COUNTREG by SCALE. */ +static rtx +scale_counter (rtx countreg, int scale) +{ + rtx sc; + + if (scale == 1) + return countreg; + if (CONST_INT_P (countreg)) + return GEN_INT (INTVAL (countreg) / scale); + gcc_assert (REG_P (countreg)); + + sc = expand_simple_binop (GET_MODE (countreg), LSHIFTRT, countreg, + GEN_INT (exact_log2 (scale)), + NULL, 1, OPTAB_DIRECT); + return sc; +} + +/* Return mode for the memcpy/memset loop counter. Prefer SImode over + DImode for constant loop counts. */ + +static enum machine_mode +counter_mode (rtx count_exp) +{ + if (GET_MODE (count_exp) != VOIDmode) + return GET_MODE (count_exp); + if (!CONST_INT_P (count_exp)) + return Pmode; + if (TARGET_64BIT && (INTVAL (count_exp) & ~0xffffffff)) + return DImode; + return SImode; +} + +/* When SRCPTR is non-NULL, output simple loop to move memory + pointer to SRCPTR to DESTPTR via chunks of MODE unrolled UNROLL times, + overall size is COUNT specified in bytes. When SRCPTR is NULL, output the + equivalent loop to set memory by VALUE (supposed to be in MODE). + + The size is rounded down to whole number of chunk size moved at once. + SRCMEM and DESTMEM provide MEMrtx to feed proper aliasing info. */ + + +static void +expand_set_or_movmem_via_loop (rtx destmem, rtx srcmem, + rtx destptr, rtx srcptr, rtx value, + rtx count, enum machine_mode mode, int unroll, + int expected_size) +{ + rtx out_label, top_label, iter, tmp; + enum machine_mode iter_mode = counter_mode (count); + rtx piece_size = GEN_INT (GET_MODE_SIZE (mode) * unroll); + rtx piece_size_mask = GEN_INT (~((GET_MODE_SIZE (mode) * unroll) - 1)); + rtx size; + rtx x_addr; + rtx y_addr; + int i; + + top_label = gen_label_rtx (); + out_label = gen_label_rtx (); + iter = gen_reg_rtx (iter_mode); + + size = expand_simple_binop (iter_mode, AND, count, piece_size_mask, + NULL, 1, OPTAB_DIRECT); + /* Those two should combine. */ + if (piece_size == const1_rtx) + { + emit_cmp_and_jump_insns (size, const0_rtx, EQ, NULL_RTX, iter_mode, + true, out_label); + predict_jump (REG_BR_PROB_BASE * 10 / 100); + } + emit_move_insn (iter, const0_rtx); + + emit_label (top_label); + + tmp = convert_modes (Pmode, iter_mode, iter, true); + x_addr = gen_rtx_PLUS (Pmode, destptr, tmp); + destmem = change_address (destmem, mode, x_addr); + + if (srcmem) + { + y_addr = gen_rtx_PLUS (Pmode, srcptr, copy_rtx (tmp)); + srcmem = change_address (srcmem, mode, y_addr); + + /* When unrolling for chips that reorder memory reads and writes, + we can save registers by using single temporary. + Also using 4 temporaries is overkill in 32bit mode. */ + if (!TARGET_64BIT && 0) + { + for (i = 0; i < unroll; i++) + { + if (i) + { + destmem = + adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); + srcmem = + adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); + } + emit_move_insn (destmem, srcmem); + } + } + else + { + rtx tmpreg[4]; + gcc_assert (unroll <= 4); + for (i = 0; i < unroll; i++) + { + tmpreg[i] = gen_reg_rtx (mode); + if (i) + { + srcmem = + adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); + } + emit_move_insn (tmpreg[i], srcmem); + } + for (i = 0; i < unroll; i++) + { + if (i) + { + destmem = + adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); + } + emit_move_insn (destmem, tmpreg[i]); + } + } + } + else + for (i = 0; i < unroll; i++) + { + if (i) + destmem = + adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); + emit_move_insn (destmem, value); + } + + tmp = expand_simple_binop (iter_mode, PLUS, iter, piece_size, iter, + true, OPTAB_LIB_WIDEN); + if (tmp != iter) + emit_move_insn (iter, tmp); + + emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, + true, top_label); + if (expected_size != -1) + { + expected_size /= GET_MODE_SIZE (mode) * unroll; + if (expected_size == 0) + predict_jump (0); + else if (expected_size > REG_BR_PROB_BASE) + predict_jump (REG_BR_PROB_BASE - 1); + else + predict_jump (REG_BR_PROB_BASE - (REG_BR_PROB_BASE + expected_size / 2) / expected_size); + } + else + predict_jump (REG_BR_PROB_BASE * 80 / 100); + iter = ix86_zero_extend_to_Pmode (iter); + tmp = expand_simple_binop (Pmode, PLUS, destptr, iter, destptr, + true, OPTAB_LIB_WIDEN); + if (tmp != destptr) + emit_move_insn (destptr, tmp); + if (srcptr) + { + tmp = expand_simple_binop (Pmode, PLUS, srcptr, iter, srcptr, + true, OPTAB_LIB_WIDEN); + if (tmp != srcptr) + emit_move_insn (srcptr, tmp); + } + emit_label (out_label); +} + +/* Output "rep; mov" instruction. + Arguments have same meaning as for previous function */ +static void +expand_movmem_via_rep_mov (rtx destmem, rtx srcmem, + rtx destptr, rtx srcptr, + rtx count, + enum machine_mode mode) +{ + rtx destexp; + rtx srcexp; + rtx countreg; + + /* If the size is known, it is shorter to use rep movs. */ + if (mode == QImode && CONST_INT_P (count) + && !(INTVAL (count) & 3)) + mode = SImode; + + if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode) + destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0); + if (srcptr != XEXP (srcmem, 0) || GET_MODE (srcmem) != BLKmode) + srcmem = adjust_automodify_address_nv (srcmem, BLKmode, srcptr, 0); + countreg = ix86_zero_extend_to_Pmode (scale_counter (count, GET_MODE_SIZE (mode))); + if (mode != QImode) + { + destexp = gen_rtx_ASHIFT (Pmode, countreg, + GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); + destexp = gen_rtx_PLUS (Pmode, destexp, destptr); + srcexp = gen_rtx_ASHIFT (Pmode, countreg, + GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); + srcexp = gen_rtx_PLUS (Pmode, srcexp, srcptr); + } + else + { + destexp = gen_rtx_PLUS (Pmode, destptr, countreg); + srcexp = gen_rtx_PLUS (Pmode, srcptr, countreg); + } + if (CONST_INT_P (count)) + { + count = GEN_INT (INTVAL (count) + & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); + destmem = shallow_copy_rtx (destmem); + srcmem = shallow_copy_rtx (srcmem); + set_mem_size (destmem, count); + set_mem_size (srcmem, count); + } + else + { + if (MEM_SIZE (destmem)) + set_mem_size (destmem, NULL_RTX); + if (MEM_SIZE (srcmem)) + set_mem_size (srcmem, NULL_RTX); + } + emit_insn (gen_rep_mov (destptr, destmem, srcptr, srcmem, countreg, + destexp, srcexp)); +} + +/* Output "rep; stos" instruction. + Arguments have same meaning as for previous function */ +static void +expand_setmem_via_rep_stos (rtx destmem, rtx destptr, rtx value, + rtx count, enum machine_mode mode, + rtx orig_value) +{ + rtx destexp; + rtx countreg; + + if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode) + destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0); + value = force_reg (mode, gen_lowpart (mode, value)); + countreg = ix86_zero_extend_to_Pmode (scale_counter (count, GET_MODE_SIZE (mode))); + if (mode != QImode) + { + destexp = gen_rtx_ASHIFT (Pmode, countreg, + GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); + destexp = gen_rtx_PLUS (Pmode, destexp, destptr); + } + else + destexp = gen_rtx_PLUS (Pmode, destptr, countreg); + if (orig_value == const0_rtx && CONST_INT_P (count)) + { + count = GEN_INT (INTVAL (count) + & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); + destmem = shallow_copy_rtx (destmem); + set_mem_size (destmem, count); + } + else if (MEM_SIZE (destmem)) + set_mem_size (destmem, NULL_RTX); + emit_insn (gen_rep_stos (destptr, countreg, destmem, value, destexp)); +} + +static void +emit_strmov (rtx destmem, rtx srcmem, + rtx destptr, rtx srcptr, enum machine_mode mode, int offset) +{ + rtx src = adjust_automodify_address_nv (srcmem, mode, srcptr, offset); + rtx dest = adjust_automodify_address_nv (destmem, mode, destptr, offset); + emit_insn (gen_strmov (destptr, dest, srcptr, src)); +} + +/* Output code to copy at most count & (max_size - 1) bytes from SRC to DEST. */ +static void +expand_movmem_epilogue (rtx destmem, rtx srcmem, + rtx destptr, rtx srcptr, rtx count, int max_size) +{ + rtx src, dest; + if (CONST_INT_P (count)) + { + HOST_WIDE_INT countval = INTVAL (count); + int offset = 0; + + if ((countval & 0x10) && max_size > 16) + { + if (TARGET_64BIT) + { + emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset); + emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset + 8); + } + else + gcc_unreachable (); + offset += 16; + } + if ((countval & 0x08) && max_size > 8) + { + if (TARGET_64BIT) + emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset); + else + { + emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset); + emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset + 4); + } + offset += 8; + } + if ((countval & 0x04) && max_size > 4) + { + emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset); + offset += 4; + } + if ((countval & 0x02) && max_size > 2) + { + emit_strmov (destmem, srcmem, destptr, srcptr, HImode, offset); + offset += 2; + } + if ((countval & 0x01) && max_size > 1) + { + emit_strmov (destmem, srcmem, destptr, srcptr, QImode, offset); + offset += 1; + } + return; + } + if (max_size > 8) + { + count = expand_simple_binop (GET_MODE (count), AND, count, GEN_INT (max_size - 1), + count, 1, OPTAB_DIRECT); + expand_set_or_movmem_via_loop (destmem, srcmem, destptr, srcptr, NULL, + count, QImode, 1, 4); + return; + } + + /* When there are stringops, we can cheaply increase dest and src pointers. + Otherwise we save code size by maintaining offset (zero is readily + available from preceding rep operation) and using x86 addressing modes. + */ + if (TARGET_SINGLE_STRINGOP) + { + if (max_size > 4) + { + rtx label = ix86_expand_aligntest (count, 4, true); + src = change_address (srcmem, SImode, srcptr); + dest = change_address (destmem, SImode, destptr); + emit_insn (gen_strmov (destptr, dest, srcptr, src)); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 2) + { + rtx label = ix86_expand_aligntest (count, 2, true); + src = change_address (srcmem, HImode, srcptr); + dest = change_address (destmem, HImode, destptr); + emit_insn (gen_strmov (destptr, dest, srcptr, src)); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 1) + { + rtx label = ix86_expand_aligntest (count, 1, true); + src = change_address (srcmem, QImode, srcptr); + dest = change_address (destmem, QImode, destptr); + emit_insn (gen_strmov (destptr, dest, srcptr, src)); + emit_label (label); + LABEL_NUSES (label) = 1; + } + } + else + { + rtx offset = force_reg (Pmode, const0_rtx); + rtx tmp; + + if (max_size > 4) + { + rtx label = ix86_expand_aligntest (count, 4, true); + src = change_address (srcmem, SImode, srcptr); + dest = change_address (destmem, SImode, destptr); + emit_move_insn (dest, src); + tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (4), NULL, + true, OPTAB_LIB_WIDEN); + if (tmp != offset) + emit_move_insn (offset, tmp); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 2) + { + rtx label = ix86_expand_aligntest (count, 2, true); + tmp = gen_rtx_PLUS (Pmode, srcptr, offset); + src = change_address (srcmem, HImode, tmp); + tmp = gen_rtx_PLUS (Pmode, destptr, offset); + dest = change_address (destmem, HImode, tmp); + emit_move_insn (dest, src); + tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (2), tmp, + true, OPTAB_LIB_WIDEN); + if (tmp != offset) + emit_move_insn (offset, tmp); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 1) + { + rtx label = ix86_expand_aligntest (count, 1, true); + tmp = gen_rtx_PLUS (Pmode, srcptr, offset); + src = change_address (srcmem, QImode, tmp); + tmp = gen_rtx_PLUS (Pmode, destptr, offset); + dest = change_address (destmem, QImode, tmp); + emit_move_insn (dest, src); + emit_label (label); + LABEL_NUSES (label) = 1; + } + } +} + +/* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ +static void +expand_setmem_epilogue_via_loop (rtx destmem, rtx destptr, rtx value, + rtx count, int max_size) +{ + count = + expand_simple_binop (counter_mode (count), AND, count, + GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT); + expand_set_or_movmem_via_loop (destmem, NULL, destptr, NULL, + gen_lowpart (QImode, value), count, QImode, + 1, max_size / 2); +} + +/* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ +static void +expand_setmem_epilogue (rtx destmem, rtx destptr, rtx value, rtx count, int max_size) +{ + rtx dest; + + if (CONST_INT_P (count)) + { + HOST_WIDE_INT countval = INTVAL (count); + int offset = 0; + + if ((countval & 0x10) && max_size > 16) + { + if (TARGET_64BIT) + { + dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, value)); + dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset + 8); + emit_insn (gen_strset (destptr, dest, value)); + } + else + gcc_unreachable (); + offset += 16; + } + if ((countval & 0x08) && max_size > 8) + { + if (TARGET_64BIT) + { + dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, value)); + } + else + { + dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, value)); + dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset + 4); + emit_insn (gen_strset (destptr, dest, value)); + } + offset += 8; + } + if ((countval & 0x04) && max_size > 4) + { + dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value))); + offset += 4; + } + if ((countval & 0x02) && max_size > 2) + { + dest = adjust_automodify_address_nv (destmem, HImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value))); + offset += 2; + } + if ((countval & 0x01) && max_size > 1) + { + dest = adjust_automodify_address_nv (destmem, QImode, destptr, offset); + emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value))); + offset += 1; + } + return; + } + if (max_size > 32) + { + expand_setmem_epilogue_via_loop (destmem, destptr, value, count, max_size); + return; + } + if (max_size > 16) + { + rtx label = ix86_expand_aligntest (count, 16, true); + if (TARGET_64BIT) + { + dest = change_address (destmem, DImode, destptr); + emit_insn (gen_strset (destptr, dest, value)); + emit_insn (gen_strset (destptr, dest, value)); + } + else + { + dest = change_address (destmem, SImode, destptr); + emit_insn (gen_strset (destptr, dest, value)); + emit_insn (gen_strset (destptr, dest, value)); + emit_insn (gen_strset (destptr, dest, value)); + emit_insn (gen_strset (destptr, dest, value)); + } + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 8) + { + rtx label = ix86_expand_aligntest (count, 8, true); + if (TARGET_64BIT) + { + dest = change_address (destmem, DImode, destptr); + emit_insn (gen_strset (destptr, dest, value)); + } + else + { + dest = change_address (destmem, SImode, destptr); + emit_insn (gen_strset (destptr, dest, value)); + emit_insn (gen_strset (destptr, dest, value)); + } + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 4) + { + rtx label = ix86_expand_aligntest (count, 4, true); + dest = change_address (destmem, SImode, destptr); + emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value))); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 2) + { + rtx label = ix86_expand_aligntest (count, 2, true); + dest = change_address (destmem, HImode, destptr); + emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value))); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (max_size > 1) + { + rtx label = ix86_expand_aligntest (count, 1, true); + dest = change_address (destmem, QImode, destptr); + emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value))); + emit_label (label); + LABEL_NUSES (label) = 1; + } +} + +/* Copy enough from DEST to SRC to align DEST known to by aligned by ALIGN to + DESIRED_ALIGNMENT. */ +static void +expand_movmem_prologue (rtx destmem, rtx srcmem, + rtx destptr, rtx srcptr, rtx count, + int align, int desired_alignment) +{ + if (align <= 1 && desired_alignment > 1) + { + rtx label = ix86_expand_aligntest (destptr, 1, false); + srcmem = change_address (srcmem, QImode, srcptr); + destmem = change_address (destmem, QImode, destptr); + emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); + ix86_adjust_counter (count, 1); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (align <= 2 && desired_alignment > 2) + { + rtx label = ix86_expand_aligntest (destptr, 2, false); + srcmem = change_address (srcmem, HImode, srcptr); + destmem = change_address (destmem, HImode, destptr); + emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); + ix86_adjust_counter (count, 2); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (align <= 4 && desired_alignment > 4) + { + rtx label = ix86_expand_aligntest (destptr, 4, false); + srcmem = change_address (srcmem, SImode, srcptr); + destmem = change_address (destmem, SImode, destptr); + emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); + ix86_adjust_counter (count, 4); + emit_label (label); + LABEL_NUSES (label) = 1; + } + gcc_assert (desired_alignment <= 8); +} + +/* Copy enough from DST to SRC to align DST known to DESIRED_ALIGN. + ALIGN_BYTES is how many bytes need to be copied. */ +static rtx +expand_constant_movmem_prologue (rtx dst, rtx *srcp, rtx destreg, rtx srcreg, + int desired_align, int align_bytes) +{ + rtx src = *srcp; + rtx src_size, dst_size; + int off = 0; + int src_align_bytes = get_mem_align_offset (src, desired_align * BITS_PER_UNIT); + if (src_align_bytes >= 0) + src_align_bytes = desired_align - src_align_bytes; + src_size = MEM_SIZE (src); + dst_size = MEM_SIZE (dst); + if (align_bytes & 1) + { + dst = adjust_automodify_address_nv (dst, QImode, destreg, 0); + src = adjust_automodify_address_nv (src, QImode, srcreg, 0); + off = 1; + emit_insn (gen_strmov (destreg, dst, srcreg, src)); + } + if (align_bytes & 2) + { + dst = adjust_automodify_address_nv (dst, HImode, destreg, off); + src = adjust_automodify_address_nv (src, HImode, srcreg, off); + if (MEM_ALIGN (dst) < 2 * BITS_PER_UNIT) + set_mem_align (dst, 2 * BITS_PER_UNIT); + if (src_align_bytes >= 0 + && (src_align_bytes & 1) == (align_bytes & 1) + && MEM_ALIGN (src) < 2 * BITS_PER_UNIT) + set_mem_align (src, 2 * BITS_PER_UNIT); + off = 2; + emit_insn (gen_strmov (destreg, dst, srcreg, src)); + } + if (align_bytes & 4) + { + dst = adjust_automodify_address_nv (dst, SImode, destreg, off); + src = adjust_automodify_address_nv (src, SImode, srcreg, off); + if (MEM_ALIGN (dst) < 4 * BITS_PER_UNIT) + set_mem_align (dst, 4 * BITS_PER_UNIT); + if (src_align_bytes >= 0) + { + unsigned int src_align = 0; + if ((src_align_bytes & 3) == (align_bytes & 3)) + src_align = 4; + else if ((src_align_bytes & 1) == (align_bytes & 1)) + src_align = 2; + if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT) + set_mem_align (src, src_align * BITS_PER_UNIT); + } + off = 4; + emit_insn (gen_strmov (destreg, dst, srcreg, src)); + } + dst = adjust_automodify_address_nv (dst, BLKmode, destreg, off); + src = adjust_automodify_address_nv (src, BLKmode, srcreg, off); + if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT) + set_mem_align (dst, desired_align * BITS_PER_UNIT); + if (src_align_bytes >= 0) + { + unsigned int src_align = 0; + if ((src_align_bytes & 7) == (align_bytes & 7)) + src_align = 8; + else if ((src_align_bytes & 3) == (align_bytes & 3)) + src_align = 4; + else if ((src_align_bytes & 1) == (align_bytes & 1)) + src_align = 2; + if (src_align > (unsigned int) desired_align) + src_align = desired_align; + if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT) + set_mem_align (src, src_align * BITS_PER_UNIT); + } + if (dst_size) + set_mem_size (dst, GEN_INT (INTVAL (dst_size) - align_bytes)); + if (src_size) + set_mem_size (dst, GEN_INT (INTVAL (src_size) - align_bytes)); + *srcp = src; + return dst; +} + +/* Set enough from DEST to align DEST known to by aligned by ALIGN to + DESIRED_ALIGNMENT. */ +static void +expand_setmem_prologue (rtx destmem, rtx destptr, rtx value, rtx count, + int align, int desired_alignment) +{ + if (align <= 1 && desired_alignment > 1) + { + rtx label = ix86_expand_aligntest (destptr, 1, false); + destmem = change_address (destmem, QImode, destptr); + emit_insn (gen_strset (destptr, destmem, gen_lowpart (QImode, value))); + ix86_adjust_counter (count, 1); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (align <= 2 && desired_alignment > 2) + { + rtx label = ix86_expand_aligntest (destptr, 2, false); + destmem = change_address (destmem, HImode, destptr); + emit_insn (gen_strset (destptr, destmem, gen_lowpart (HImode, value))); + ix86_adjust_counter (count, 2); + emit_label (label); + LABEL_NUSES (label) = 1; + } + if (align <= 4 && desired_alignment > 4) + { + rtx label = ix86_expand_aligntest (destptr, 4, false); + destmem = change_address (destmem, SImode, destptr); + emit_insn (gen_strset (destptr, destmem, gen_lowpart (SImode, value))); + ix86_adjust_counter (count, 4); + emit_label (label); + LABEL_NUSES (label) = 1; + } + gcc_assert (desired_alignment <= 8); +} + +/* Set enough from DST to align DST known to by aligned by ALIGN to + DESIRED_ALIGN. ALIGN_BYTES is how many bytes need to be stored. */ +static rtx +expand_constant_setmem_prologue (rtx dst, rtx destreg, rtx value, + int desired_align, int align_bytes) +{ + int off = 0; + rtx dst_size = MEM_SIZE (dst); + if (align_bytes & 1) + { + dst = adjust_automodify_address_nv (dst, QImode, destreg, 0); + off = 1; + emit_insn (gen_strset (destreg, dst, + gen_lowpart (QImode, value))); + } + if (align_bytes & 2) + { + dst = adjust_automodify_address_nv (dst, HImode, destreg, off); + if (MEM_ALIGN (dst) < 2 * BITS_PER_UNIT) + set_mem_align (dst, 2 * BITS_PER_UNIT); + off = 2; + emit_insn (gen_strset (destreg, dst, + gen_lowpart (HImode, value))); + } + if (align_bytes & 4) + { + dst = adjust_automodify_address_nv (dst, SImode, destreg, off); + if (MEM_ALIGN (dst) < 4 * BITS_PER_UNIT) + set_mem_align (dst, 4 * BITS_PER_UNIT); + off = 4; + emit_insn (gen_strset (destreg, dst, + gen_lowpart (SImode, value))); + } + dst = adjust_automodify_address_nv (dst, BLKmode, destreg, off); + if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT) + set_mem_align (dst, desired_align * BITS_PER_UNIT); + if (dst_size) + set_mem_size (dst, GEN_INT (INTVAL (dst_size) - align_bytes)); + return dst; +} + +/* Given COUNT and EXPECTED_SIZE, decide on codegen of string operation. */ +static enum stringop_alg +decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size, bool memset, + int *dynamic_check) +{ + const struct stringop_algs * algs; + bool optimize_for_speed; + /* Algorithms using the rep prefix want at least edi and ecx; + additionally, memset wants eax and memcpy wants esi. Don't + consider such algorithms if the user has appropriated those + registers for their own purposes. */ + bool rep_prefix_usable = !(fixed_regs[CX_REG] || fixed_regs[DI_REG] + || (memset + ? fixed_regs[AX_REG] : fixed_regs[SI_REG])); + +#define ALG_USABLE_P(alg) (rep_prefix_usable \ + || (alg != rep_prefix_1_byte \ + && alg != rep_prefix_4_byte \ + && alg != rep_prefix_8_byte)) + const struct processor_costs *cost; + + /* Even if the string operation call is cold, we still might spend a lot + of time processing large blocks. */ + if (optimize_function_for_size_p (cfun) + || (optimize_insn_for_size_p () + && expected_size != -1 && expected_size < 256)) + optimize_for_speed = false; + else + optimize_for_speed = true; + + cost = optimize_for_speed ? ix86_cost : &ix86_size_cost; + + *dynamic_check = -1; + if (memset) + algs = &cost->memset[TARGET_64BIT != 0]; + else + algs = &cost->memcpy[TARGET_64BIT != 0]; + if (stringop_alg != no_stringop && ALG_USABLE_P (stringop_alg)) + return stringop_alg; + /* rep; movq or rep; movl is the smallest variant. */ + else if (!optimize_for_speed) + { + if (!count || (count & 3)) + return rep_prefix_usable ? rep_prefix_1_byte : loop_1_byte; + else + return rep_prefix_usable ? rep_prefix_4_byte : loop; + } + /* Very tiny blocks are best handled via the loop, REP is expensive to setup. + */ + else if (expected_size != -1 && expected_size < 4) + return loop_1_byte; + else if (expected_size != -1) + { + unsigned int i; + enum stringop_alg alg = libcall; + for (i = 0; i < MAX_STRINGOP_ALGS; i++) + { + /* We get here if the algorithms that were not libcall-based + were rep-prefix based and we are unable to use rep prefixes + based on global register usage. Break out of the loop and + use the heuristic below. */ + if (algs->size[i].max == 0) + break; + if (algs->size[i].max >= expected_size || algs->size[i].max == -1) + { + enum stringop_alg candidate = algs->size[i].alg; + + if (candidate != libcall && ALG_USABLE_P (candidate)) + alg = candidate; + /* Honor TARGET_INLINE_ALL_STRINGOPS by picking + last non-libcall inline algorithm. */ + if (TARGET_INLINE_ALL_STRINGOPS) + { + /* When the current size is best to be copied by a libcall, + but we are still forced to inline, run the heuristic below + that will pick code for medium sized blocks. */ + if (alg != libcall) + return alg; + break; + } + else if (ALG_USABLE_P (candidate)) + return candidate; + } + } + gcc_assert (TARGET_INLINE_ALL_STRINGOPS || !rep_prefix_usable); + } + /* When asked to inline the call anyway, try to pick meaningful choice. + We look for maximal size of block that is faster to copy by hand and + take blocks of at most of that size guessing that average size will + be roughly half of the block. + + If this turns out to be bad, we might simply specify the preferred + choice in ix86_costs. */ + if ((TARGET_INLINE_ALL_STRINGOPS || TARGET_INLINE_STRINGOPS_DYNAMICALLY) + && (algs->unknown_size == libcall || !ALG_USABLE_P (algs->unknown_size))) + { + int max = -1; + enum stringop_alg alg; + int i; + bool any_alg_usable_p = true; + + for (i = 0; i < MAX_STRINGOP_ALGS; i++) + { + enum stringop_alg candidate = algs->size[i].alg; + any_alg_usable_p = any_alg_usable_p && ALG_USABLE_P (candidate); + + if (candidate != libcall && candidate + && ALG_USABLE_P (candidate)) + max = algs->size[i].max; + } + /* If there aren't any usable algorithms, then recursing on + smaller sizes isn't going to find anything. Just return the + simple byte-at-a-time copy loop. */ + if (!any_alg_usable_p) + { + /* Pick something reasonable. */ + if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) + *dynamic_check = 128; + return loop_1_byte; + } + if (max == -1) + max = 4096; + alg = decide_alg (count, max / 2, memset, dynamic_check); + gcc_assert (*dynamic_check == -1); + gcc_assert (alg != libcall); + if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) + *dynamic_check = max; + return alg; + } + return ALG_USABLE_P (algs->unknown_size) ? algs->unknown_size : libcall; +#undef ALG_USABLE_P +} + +/* Decide on alignment. We know that the operand is already aligned to ALIGN + (ALIGN can be based on profile feedback and thus it is not 100% guaranteed). */ +static int +decide_alignment (int align, + enum stringop_alg alg, + int expected_size) +{ + int desired_align = 0; + switch (alg) + { + case no_stringop: + gcc_unreachable (); + case loop: + case unrolled_loop: + desired_align = GET_MODE_SIZE (Pmode); + break; + case rep_prefix_8_byte: + desired_align = 8; + break; + case rep_prefix_4_byte: + /* PentiumPro has special logic triggering for 8 byte aligned blocks. + copying whole cacheline at once. */ + if (TARGET_PENTIUMPRO) + desired_align = 8; + else + desired_align = 4; + break; + case rep_prefix_1_byte: + /* PentiumPro has special logic triggering for 8 byte aligned blocks. + copying whole cacheline at once. */ + if (TARGET_PENTIUMPRO) + desired_align = 8; + else + desired_align = 1; + break; + case loop_1_byte: + desired_align = 1; + break; + case libcall: + return 0; + } + + if (optimize_size) + desired_align = 1; + if (desired_align < align) + desired_align = align; + if (expected_size != -1 && expected_size < 4) + desired_align = align; + return desired_align; +} + +/* Return the smallest power of 2 greater than VAL. */ +static int +smallest_pow2_greater_than (int val) +{ + int ret = 1; + while (ret <= val) + ret <<= 1; + return ret; +} + +/* Expand string move (memcpy) operation. Use i386 string operations when + profitable. expand_setmem contains similar code. The code depends upon + architecture, block size and alignment, but always has the same + overall structure: + + 1) Prologue guard: Conditional that jumps up to epilogues for small + blocks that can be handled by epilogue alone. This is faster but + also needed for correctness, since prologue assume the block is larger + than the desired alignment. + + Optional dynamic check for size and libcall for large + blocks is emitted here too, with -minline-stringops-dynamically. + + 2) Prologue: copy first few bytes in order to get destination aligned + to DESIRED_ALIGN. It is emitted only when ALIGN is less than + DESIRED_ALIGN and and up to DESIRED_ALIGN - ALIGN bytes can be copied. + We emit either a jump tree on power of two sized blocks, or a byte loop. + + 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks + with specified algorithm. + + 4) Epilogue: code copying tail of the block that is too small to be + handled by main body (or up to size guarded by prologue guard). */ + +bool +ix86_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp, + rtx expected_align_exp, rtx expected_size_exp) +{ + rtx destreg; + rtx srcreg; + rtx label = NULL; + rtx tmp; + rtx jump_around_label = NULL; + HOST_WIDE_INT align = 1; + unsigned HOST_WIDE_INT count = 0; + HOST_WIDE_INT expected_size = -1; + int size_needed = 0, epilogue_size_needed; + int desired_align = 0, align_bytes = 0; + enum stringop_alg alg; + int dynamic_check; + bool need_zero_guard = false; + + if (CONST_INT_P (align_exp)) + align = INTVAL (align_exp); + /* i386 can do misaligned access on reasonably increased cost. */ + if (CONST_INT_P (expected_align_exp) + && INTVAL (expected_align_exp) > align) + align = INTVAL (expected_align_exp); + /* ALIGN is the minimum of destination and source alignment, but we care here + just about destination alignment. */ + else if (MEM_ALIGN (dst) > (unsigned HOST_WIDE_INT) align * BITS_PER_UNIT) + align = MEM_ALIGN (dst) / BITS_PER_UNIT; + + if (CONST_INT_P (count_exp)) + count = expected_size = INTVAL (count_exp); + if (CONST_INT_P (expected_size_exp) && count == 0) + expected_size = INTVAL (expected_size_exp); + + /* Make sure we don't need to care about overflow later on. */ + if (count > ((unsigned HOST_WIDE_INT) 1 << 30)) + return false; + + /* Step 0: Decide on preferred algorithm, desired alignment and + size of chunks to be copied by main loop. */ + + alg = decide_alg (count, expected_size, false, &dynamic_check); + desired_align = decide_alignment (align, alg, expected_size); + + if (!TARGET_ALIGN_STRINGOPS) + align = desired_align; + + if (alg == libcall) + return false; + gcc_assert (alg != no_stringop); + if (!count) + count_exp = copy_to_mode_reg (GET_MODE (count_exp), count_exp); + destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); + srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0)); + switch (alg) + { + case libcall: + case no_stringop: + gcc_unreachable (); + case loop: + need_zero_guard = true; + size_needed = GET_MODE_SIZE (Pmode); + break; + case unrolled_loop: + need_zero_guard = true; + size_needed = GET_MODE_SIZE (Pmode) * (TARGET_64BIT ? 4 : 2); + break; + case rep_prefix_8_byte: + size_needed = 8; + break; + case rep_prefix_4_byte: + size_needed = 4; + break; + case rep_prefix_1_byte: + size_needed = 1; + break; + case loop_1_byte: + need_zero_guard = true; + size_needed = 1; + break; + } + + epilogue_size_needed = size_needed; + + /* Step 1: Prologue guard. */ + + /* Alignment code needs count to be in register. */ + if (CONST_INT_P (count_exp) && desired_align > align) + { + if (INTVAL (count_exp) > desired_align + && INTVAL (count_exp) > size_needed) + { + align_bytes + = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT); + if (align_bytes <= 0) + align_bytes = 0; + else + align_bytes = desired_align - align_bytes; + } + if (align_bytes == 0) + count_exp = force_reg (counter_mode (count_exp), count_exp); + } + gcc_assert (desired_align >= 1 && align >= 1); + + /* Ensure that alignment prologue won't copy past end of block. */ + if (size_needed > 1 || (desired_align > 1 && desired_align > align)) + { + epilogue_size_needed = MAX (size_needed - 1, desired_align - align); + /* Epilogue always copies COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. + Make sure it is power of 2. */ + epilogue_size_needed = smallest_pow2_greater_than (epilogue_size_needed); + + if (count) + { + if (count < (unsigned HOST_WIDE_INT)epilogue_size_needed) + { + /* If main algorithm works on QImode, no epilogue is needed. + For small sizes just don't align anything. */ + if (size_needed == 1) + desired_align = align; + else + goto epilogue; + } + } + else + { + label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, + GEN_INT (epilogue_size_needed), + LTU, 0, counter_mode (count_exp), 1, label); + if (expected_size == -1 || expected_size < epilogue_size_needed) + predict_jump (REG_BR_PROB_BASE * 60 / 100); + else + predict_jump (REG_BR_PROB_BASE * 20 / 100); + } + } + + /* Emit code to decide on runtime whether library call or inline should be + used. */ + if (dynamic_check != -1) + { + if (CONST_INT_P (count_exp)) + { + if (UINTVAL (count_exp) >= (unsigned HOST_WIDE_INT)dynamic_check) + { + emit_block_move_via_libcall (dst, src, count_exp, false); + count_exp = const0_rtx; + goto epilogue; + } + } + else + { + rtx hot_label = gen_label_rtx (); + jump_around_label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1), + LEU, 0, GET_MODE (count_exp), 1, hot_label); + predict_jump (REG_BR_PROB_BASE * 90 / 100); + emit_block_move_via_libcall (dst, src, count_exp, false); + emit_jump (jump_around_label); + emit_label (hot_label); + } + } + + /* Step 2: Alignment prologue. */ + + if (desired_align > align) + { + if (align_bytes == 0) + { + /* Except for the first move in epilogue, we no longer know + constant offset in aliasing info. It don't seems to worth + the pain to maintain it for the first move, so throw away + the info early. */ + src = change_address (src, BLKmode, srcreg); + dst = change_address (dst, BLKmode, destreg); + expand_movmem_prologue (dst, src, destreg, srcreg, count_exp, align, + desired_align); + } + else + { + /* If we know how many bytes need to be stored before dst is + sufficiently aligned, maintain aliasing info accurately. */ + dst = expand_constant_movmem_prologue (dst, &src, destreg, srcreg, + desired_align, align_bytes); + count_exp = plus_constant (count_exp, -align_bytes); + count -= align_bytes; + } + if (need_zero_guard + && (count < (unsigned HOST_WIDE_INT) size_needed + || (align_bytes == 0 + && count < ((unsigned HOST_WIDE_INT) size_needed + + desired_align - align)))) + { + /* It is possible that we copied enough so the main loop will not + execute. */ + gcc_assert (size_needed > 1); + if (label == NULL_RTX) + label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, + GEN_INT (size_needed), + LTU, 0, counter_mode (count_exp), 1, label); + if (expected_size == -1 + || expected_size < (desired_align - align) / 2 + size_needed) + predict_jump (REG_BR_PROB_BASE * 20 / 100); + else + predict_jump (REG_BR_PROB_BASE * 60 / 100); + } + } + if (label && size_needed == 1) + { + emit_label (label); + LABEL_NUSES (label) = 1; + label = NULL; + epilogue_size_needed = 1; + } + else if (label == NULL_RTX) + epilogue_size_needed = size_needed; + + /* Step 3: Main loop. */ + + switch (alg) + { + case libcall: + case no_stringop: + gcc_unreachable (); + case loop_1_byte: + expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, + count_exp, QImode, 1, expected_size); + break; + case loop: + expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, + count_exp, Pmode, 1, expected_size); + break; + case unrolled_loop: + /* Unroll only by factor of 2 in 32bit mode, since we don't have enough + registers for 4 temporaries anyway. */ + expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, + count_exp, Pmode, TARGET_64BIT ? 4 : 2, + expected_size); + break; + case rep_prefix_8_byte: + expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, + DImode); + break; + case rep_prefix_4_byte: + expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, + SImode); + break; + case rep_prefix_1_byte: + expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, + QImode); + break; + } + /* Adjust properly the offset of src and dest memory for aliasing. */ + if (CONST_INT_P (count_exp)) + { + src = adjust_automodify_address_nv (src, BLKmode, srcreg, + (count / size_needed) * size_needed); + dst = adjust_automodify_address_nv (dst, BLKmode, destreg, + (count / size_needed) * size_needed); + } + else + { + src = change_address (src, BLKmode, srcreg); + dst = change_address (dst, BLKmode, destreg); + } + + /* Step 4: Epilogue to copy the remaining bytes. */ + epilogue: + if (label) + { + /* When the main loop is done, COUNT_EXP might hold original count, + while we want to copy only COUNT_EXP & SIZE_NEEDED bytes. + Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED + bytes. Compensate if needed. */ + + if (size_needed < epilogue_size_needed) + { + tmp = + expand_simple_binop (counter_mode (count_exp), AND, count_exp, + GEN_INT (size_needed - 1), count_exp, 1, + OPTAB_DIRECT); + if (tmp != count_exp) + emit_move_insn (count_exp, tmp); + } + emit_label (label); + LABEL_NUSES (label) = 1; + } + + if (count_exp != const0_rtx && epilogue_size_needed > 1) + expand_movmem_epilogue (dst, src, destreg, srcreg, count_exp, + epilogue_size_needed); + if (jump_around_label) + emit_label (jump_around_label); + return true; +} + +/* Helper function for memcpy. For QImode value 0xXY produce + 0xXYXYXYXY of wide specified by MODE. This is essentially + a * 0x10101010, but we can do slightly better than + synth_mult by unwinding the sequence by hand on CPUs with + slow multiply. */ +static rtx +promote_duplicated_reg (enum machine_mode mode, rtx val) +{ + enum machine_mode valmode = GET_MODE (val); + rtx tmp; + int nops = mode == DImode ? 3 : 2; + + gcc_assert (mode == SImode || mode == DImode); + if (val == const0_rtx) + return copy_to_mode_reg (mode, const0_rtx); + if (CONST_INT_P (val)) + { + HOST_WIDE_INT v = INTVAL (val) & 255; + + v |= v << 8; + v |= v << 16; + if (mode == DImode) + v |= (v << 16) << 16; + return copy_to_mode_reg (mode, gen_int_mode (v, mode)); + } + + if (valmode == VOIDmode) + valmode = QImode; + if (valmode != QImode) + val = gen_lowpart (QImode, val); + if (mode == QImode) + return val; + if (!TARGET_PARTIAL_REG_STALL) + nops--; + if (ix86_cost->mult_init[mode == DImode ? 3 : 2] + + ix86_cost->mult_bit * (mode == DImode ? 8 : 4) + <= (ix86_cost->shift_const + ix86_cost->add) * nops + + (COSTS_N_INSNS (TARGET_PARTIAL_REG_STALL == 0))) + { + rtx reg = convert_modes (mode, QImode, val, true); + tmp = promote_duplicated_reg (mode, const1_rtx); + return expand_simple_binop (mode, MULT, reg, tmp, NULL, 1, + OPTAB_DIRECT); + } + else + { + rtx reg = convert_modes (mode, QImode, val, true); + + if (!TARGET_PARTIAL_REG_STALL) + if (mode == SImode) + emit_insn (gen_movsi_insv_1 (reg, reg)); + else + emit_insn (gen_movdi_insv_1 (reg, reg)); + else + { + tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (8), + NULL, 1, OPTAB_DIRECT); + reg = + expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); + } + tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (16), + NULL, 1, OPTAB_DIRECT); + reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); + if (mode == SImode) + return reg; + tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (32), + NULL, 1, OPTAB_DIRECT); + reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); + return reg; + } +} + +/* Duplicate value VAL using promote_duplicated_reg into maximal size that will + be needed by main loop copying SIZE_NEEDED chunks and prologue getting + alignment from ALIGN to DESIRED_ALIGN. */ +static rtx +promote_duplicated_reg_to_size (rtx val, int size_needed, int desired_align, int align) +{ + rtx promoted_val; + + if (TARGET_64BIT + && (size_needed > 4 || (desired_align > align && desired_align > 4))) + promoted_val = promote_duplicated_reg (DImode, val); + else if (size_needed > 2 || (desired_align > align && desired_align > 2)) + promoted_val = promote_duplicated_reg (SImode, val); + else if (size_needed > 1 || (desired_align > align && desired_align > 1)) + promoted_val = promote_duplicated_reg (HImode, val); + else + promoted_val = val; + + return promoted_val; +} + +/* Expand string clear operation (bzero). Use i386 string operations when + profitable. See expand_movmem comment for explanation of individual + steps performed. */ +bool +ix86_expand_setmem (rtx dst, rtx count_exp, rtx val_exp, rtx align_exp, + rtx expected_align_exp, rtx expected_size_exp) +{ + rtx destreg; + rtx label = NULL; + rtx tmp; + rtx jump_around_label = NULL; + HOST_WIDE_INT align = 1; + unsigned HOST_WIDE_INT count = 0; + HOST_WIDE_INT expected_size = -1; + int size_needed = 0, epilogue_size_needed; + int desired_align = 0, align_bytes = 0; + enum stringop_alg alg; + rtx promoted_val = NULL; + bool force_loopy_epilogue = false; + int dynamic_check; + bool need_zero_guard = false; + + if (CONST_INT_P (align_exp)) + align = INTVAL (align_exp); + /* i386 can do misaligned access on reasonably increased cost. */ + if (CONST_INT_P (expected_align_exp) + && INTVAL (expected_align_exp) > align) + align = INTVAL (expected_align_exp); + if (CONST_INT_P (count_exp)) + count = expected_size = INTVAL (count_exp); + if (CONST_INT_P (expected_size_exp) && count == 0) + expected_size = INTVAL (expected_size_exp); + + /* Make sure we don't need to care about overflow later on. */ + if (count > ((unsigned HOST_WIDE_INT) 1 << 30)) + return false; + + /* Step 0: Decide on preferred algorithm, desired alignment and + size of chunks to be copied by main loop. */ + + alg = decide_alg (count, expected_size, true, &dynamic_check); + desired_align = decide_alignment (align, alg, expected_size); + + if (!TARGET_ALIGN_STRINGOPS) + align = desired_align; + + if (alg == libcall) + return false; + gcc_assert (alg != no_stringop); + if (!count) + count_exp = copy_to_mode_reg (counter_mode (count_exp), count_exp); + destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); + switch (alg) + { + case libcall: + case no_stringop: + gcc_unreachable (); + case loop: + need_zero_guard = true; + size_needed = GET_MODE_SIZE (Pmode); + break; + case unrolled_loop: + need_zero_guard = true; + size_needed = GET_MODE_SIZE (Pmode) * 4; + break; + case rep_prefix_8_byte: + size_needed = 8; + break; + case rep_prefix_4_byte: + size_needed = 4; + break; + case rep_prefix_1_byte: + size_needed = 1; + break; + case loop_1_byte: + need_zero_guard = true; + size_needed = 1; + break; + } + epilogue_size_needed = size_needed; + + /* Step 1: Prologue guard. */ + + /* Alignment code needs count to be in register. */ + if (CONST_INT_P (count_exp) && desired_align > align) + { + if (INTVAL (count_exp) > desired_align + && INTVAL (count_exp) > size_needed) + { + align_bytes + = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT); + if (align_bytes <= 0) + align_bytes = 0; + else + align_bytes = desired_align - align_bytes; + } + if (align_bytes == 0) + { + enum machine_mode mode = SImode; + if (TARGET_64BIT && (count & ~0xffffffff)) + mode = DImode; + count_exp = force_reg (mode, count_exp); + } + } + /* Do the cheap promotion to allow better CSE across the + main loop and epilogue (ie one load of the big constant in the + front of all code. */ + if (CONST_INT_P (val_exp)) + promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, + desired_align, align); + /* Ensure that alignment prologue won't copy past end of block. */ + if (size_needed > 1 || (desired_align > 1 && desired_align > align)) + { + epilogue_size_needed = MAX (size_needed - 1, desired_align - align); + /* Epilogue always copies COUNT_EXP & (EPILOGUE_SIZE_NEEDED - 1) bytes. + Make sure it is power of 2. */ + epilogue_size_needed = smallest_pow2_greater_than (epilogue_size_needed); + + /* To improve performance of small blocks, we jump around the VAL + promoting mode. This mean that if the promoted VAL is not constant, + we might not use it in the epilogue and have to use byte + loop variant. */ + if (epilogue_size_needed > 2 && !promoted_val) + force_loopy_epilogue = true; + if (count) + { + if (count < (unsigned HOST_WIDE_INT)epilogue_size_needed) + { + /* If main algorithm works on QImode, no epilogue is needed. + For small sizes just don't align anything. */ + if (size_needed == 1) + desired_align = align; + else + goto epilogue; + } + } + else + { + label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, + GEN_INT (epilogue_size_needed), + LTU, 0, counter_mode (count_exp), 1, label); + if (expected_size == -1 || expected_size <= epilogue_size_needed) + predict_jump (REG_BR_PROB_BASE * 60 / 100); + else + predict_jump (REG_BR_PROB_BASE * 20 / 100); + } + } + if (dynamic_check != -1) + { + rtx hot_label = gen_label_rtx (); + jump_around_label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1), + LEU, 0, counter_mode (count_exp), 1, hot_label); + predict_jump (REG_BR_PROB_BASE * 90 / 100); + set_storage_via_libcall (dst, count_exp, val_exp, false); + emit_jump (jump_around_label); + emit_label (hot_label); + } + + /* Step 2: Alignment prologue. */ + + /* Do the expensive promotion once we branched off the small blocks. */ + if (!promoted_val) + promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, + desired_align, align); + gcc_assert (desired_align >= 1 && align >= 1); + + if (desired_align > align) + { + if (align_bytes == 0) + { + /* Except for the first move in epilogue, we no longer know + constant offset in aliasing info. It don't seems to worth + the pain to maintain it for the first move, so throw away + the info early. */ + dst = change_address (dst, BLKmode, destreg); + expand_setmem_prologue (dst, destreg, promoted_val, count_exp, align, + desired_align); + } + else + { + /* If we know how many bytes need to be stored before dst is + sufficiently aligned, maintain aliasing info accurately. */ + dst = expand_constant_setmem_prologue (dst, destreg, promoted_val, + desired_align, align_bytes); + count_exp = plus_constant (count_exp, -align_bytes); + count -= align_bytes; + } + if (need_zero_guard + && (count < (unsigned HOST_WIDE_INT) size_needed + || (align_bytes == 0 + && count < ((unsigned HOST_WIDE_INT) size_needed + + desired_align - align)))) + { + /* It is possible that we copied enough so the main loop will not + execute. */ + gcc_assert (size_needed > 1); + if (label == NULL_RTX) + label = gen_label_rtx (); + emit_cmp_and_jump_insns (count_exp, + GEN_INT (size_needed), + LTU, 0, counter_mode (count_exp), 1, label); + if (expected_size == -1 + || expected_size < (desired_align - align) / 2 + size_needed) + predict_jump (REG_BR_PROB_BASE * 20 / 100); + else + predict_jump (REG_BR_PROB_BASE * 60 / 100); + } + } + if (label && size_needed == 1) + { + emit_label (label); + LABEL_NUSES (label) = 1; + label = NULL; + promoted_val = val_exp; + epilogue_size_needed = 1; + } + else if (label == NULL_RTX) + epilogue_size_needed = size_needed; + + /* Step 3: Main loop. */ + + switch (alg) + { + case libcall: + case no_stringop: + gcc_unreachable (); + case loop_1_byte: + expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, + count_exp, QImode, 1, expected_size); + break; + case loop: + expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, + count_exp, Pmode, 1, expected_size); + break; + case unrolled_loop: + expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, + count_exp, Pmode, 4, expected_size); + break; + case rep_prefix_8_byte: + expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, + DImode, val_exp); + break; + case rep_prefix_4_byte: + expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, + SImode, val_exp); + break; + case rep_prefix_1_byte: + expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, + QImode, val_exp); + break; + } + /* Adjust properly the offset of src and dest memory for aliasing. */ + if (CONST_INT_P (count_exp)) + dst = adjust_automodify_address_nv (dst, BLKmode, destreg, + (count / size_needed) * size_needed); + else + dst = change_address (dst, BLKmode, destreg); + + /* Step 4: Epilogue to copy the remaining bytes. */ + + if (label) + { + /* When the main loop is done, COUNT_EXP might hold original count, + while we want to copy only COUNT_EXP & SIZE_NEEDED bytes. + Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED + bytes. Compensate if needed. */ + + if (size_needed < epilogue_size_needed) + { + tmp = + expand_simple_binop (counter_mode (count_exp), AND, count_exp, + GEN_INT (size_needed - 1), count_exp, 1, + OPTAB_DIRECT); + if (tmp != count_exp) + emit_move_insn (count_exp, tmp); + } + emit_label (label); + LABEL_NUSES (label) = 1; + } + epilogue: + if (count_exp != const0_rtx && epilogue_size_needed > 1) + { + if (force_loopy_epilogue) + expand_setmem_epilogue_via_loop (dst, destreg, val_exp, count_exp, + epilogue_size_needed); + else + expand_setmem_epilogue (dst, destreg, promoted_val, count_exp, + epilogue_size_needed); + } + if (jump_around_label) + emit_label (jump_around_label); + return true; +} + +/* Expand the appropriate insns for doing strlen if not just doing + repnz; scasb + + out = result, initialized with the start address + align_rtx = alignment of the address. + scratch = scratch register, initialized with the startaddress when + not aligned, otherwise undefined + + This is just the body. It needs the initializations mentioned above and + some address computing at the end. These things are done in i386.md. */ + +static void +ix86_expand_strlensi_unroll_1 (rtx out, rtx src, rtx align_rtx) +{ + int align; + rtx tmp; + rtx align_2_label = NULL_RTX; + rtx align_3_label = NULL_RTX; + rtx align_4_label = gen_label_rtx (); + rtx end_0_label = gen_label_rtx (); + rtx mem; + rtx tmpreg = gen_reg_rtx (SImode); + rtx scratch = gen_reg_rtx (SImode); + rtx cmp; + + align = 0; + if (CONST_INT_P (align_rtx)) + align = INTVAL (align_rtx); + + /* Loop to check 1..3 bytes for null to get an aligned pointer. */ + + /* Is there a known alignment and is it less than 4? */ + if (align < 4) + { + rtx scratch1 = gen_reg_rtx (Pmode); + emit_move_insn (scratch1, out); + /* Is there a known alignment and is it not 2? */ + if (align != 2) + { + align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */ + align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */ + + /* Leave just the 3 lower bits. */ + align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3), + NULL_RTX, 0, OPTAB_WIDEN); + + emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, + Pmode, 1, align_4_label); + emit_cmp_and_jump_insns (align_rtx, const2_rtx, EQ, NULL, + Pmode, 1, align_2_label); + emit_cmp_and_jump_insns (align_rtx, const2_rtx, GTU, NULL, + Pmode, 1, align_3_label); + } + else + { + /* Since the alignment is 2, we have to check 2 or 0 bytes; + check if is aligned to 4 - byte. */ + + align_rtx = expand_binop (Pmode, and_optab, scratch1, const2_rtx, + NULL_RTX, 0, OPTAB_WIDEN); + + emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, + Pmode, 1, align_4_label); + } + + mem = change_address (src, QImode, out); + + /* Now compare the bytes. */ + + /* Compare the first n unaligned byte on a byte per byte basis. */ + emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, + QImode, 1, end_0_label); + + /* Increment the address. */ + emit_insn (ix86_gen_add3 (out, out, const1_rtx)); + + /* Not needed with an alignment of 2 */ + if (align != 2) + { + emit_label (align_2_label); + + emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, + end_0_label); + + emit_insn (ix86_gen_add3 (out, out, const1_rtx)); + + emit_label (align_3_label); + } + + emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, + end_0_label); + + emit_insn (ix86_gen_add3 (out, out, const1_rtx)); + } + + /* Generate loop to check 4 bytes at a time. It is not a good idea to + align this loop. It gives only huge programs, but does not help to + speed up. */ + emit_label (align_4_label); + + mem = change_address (src, SImode, out); + emit_move_insn (scratch, mem); + emit_insn (ix86_gen_add3 (out, out, GEN_INT (4))); + + /* This formula yields a nonzero result iff one of the bytes is zero. + This saves three branches inside loop and many cycles. */ + + emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101))); + emit_insn (gen_one_cmplsi2 (scratch, scratch)); + emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch)); + emit_insn (gen_andsi3 (tmpreg, tmpreg, + gen_int_mode (0x80808080, SImode))); + emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1, + align_4_label); + + if (TARGET_CMOVE) + { + rtx reg = gen_reg_rtx (SImode); + rtx reg2 = gen_reg_rtx (Pmode); + emit_move_insn (reg, tmpreg); + emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16))); + + /* If zero is not in the first two bytes, move two bytes forward. */ + emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); + tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); + tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, tmpreg, + gen_rtx_IF_THEN_ELSE (SImode, tmp, + reg, + tmpreg))); + /* Emit lea manually to avoid clobbering of flags. */ + emit_insn (gen_rtx_SET (SImode, reg2, + gen_rtx_PLUS (Pmode, out, const2_rtx))); + + tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); + tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, out, + gen_rtx_IF_THEN_ELSE (Pmode, tmp, + reg2, + out))); + } + else + { + rtx end_2_label = gen_label_rtx (); + /* Is zero in the first two bytes? */ + + emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); + tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); + tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx); + tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, + gen_rtx_LABEL_REF (VOIDmode, end_2_label), + pc_rtx); + tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); + JUMP_LABEL (tmp) = end_2_label; + + /* Not in the first two. Move two bytes forward. */ + emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16))); + emit_insn (ix86_gen_add3 (out, out, const2_rtx)); + + emit_label (end_2_label); + + } + + /* Avoid branch in fixing the byte. */ + tmpreg = gen_lowpart (QImode, tmpreg); + emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg)); + tmp = gen_rtx_REG (CCmode, FLAGS_REG); + cmp = gen_rtx_LTU (VOIDmode, tmp, const0_rtx); + emit_insn (ix86_gen_sub3_carry (out, out, GEN_INT (3), tmp, cmp)); + + emit_label (end_0_label); +} + +/* Expand strlen. */ + +bool +ix86_expand_strlen (rtx out, rtx src, rtx eoschar, rtx align) +{ + rtx addr, scratch1, scratch2, scratch3, scratch4; + + /* The generic case of strlen expander is long. Avoid it's + expanding unless TARGET_INLINE_ALL_STRINGOPS. */ + + if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 + && !TARGET_INLINE_ALL_STRINGOPS + && !optimize_insn_for_size_p () + && (!CONST_INT_P (align) || INTVAL (align) < 4)) + return false; + + addr = force_reg (Pmode, XEXP (src, 0)); + scratch1 = gen_reg_rtx (Pmode); + + if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 + && !optimize_insn_for_size_p ()) + { + /* Well it seems that some optimizer does not combine a call like + foo(strlen(bar), strlen(bar)); + when the move and the subtraction is done here. It does calculate + the length just once when these instructions are done inside of + output_strlen_unroll(). But I think since &bar[strlen(bar)] is + often used and I use one fewer register for the lifetime of + output_strlen_unroll() this is better. */ + + emit_move_insn (out, addr); + + ix86_expand_strlensi_unroll_1 (out, src, align); + + /* strlensi_unroll_1 returns the address of the zero at the end of + the string, like memchr(), so compute the length by subtracting + the start address. */ + emit_insn (ix86_gen_sub3 (out, out, addr)); + } + else + { + rtx unspec; + + /* Can't use this if the user has appropriated eax, ecx, or edi. */ + if (fixed_regs[AX_REG] || fixed_regs[CX_REG] || fixed_regs[DI_REG]) + return false; + + scratch2 = gen_reg_rtx (Pmode); + scratch3 = gen_reg_rtx (Pmode); + scratch4 = force_reg (Pmode, constm1_rtx); + + emit_move_insn (scratch3, addr); + eoschar = force_reg (QImode, eoschar); + + src = replace_equiv_address_nv (src, scratch3); + + /* If .md starts supporting :P, this can be done in .md. */ + unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (4, src, eoschar, align, + scratch4), UNSPEC_SCAS); + emit_insn (gen_strlenqi_1 (scratch1, scratch3, unspec)); + emit_insn (ix86_gen_one_cmpl2 (scratch2, scratch1)); + emit_insn (ix86_gen_add3 (out, scratch2, constm1_rtx)); + } + return true; +} + +/* For given symbol (function) construct code to compute address of it's PLT + entry in large x86-64 PIC model. */ +rtx +construct_plt_address (rtx symbol) +{ + rtx tmp = gen_reg_rtx (Pmode); + rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_PLTOFF); + + gcc_assert (GET_CODE (symbol) == SYMBOL_REF); + gcc_assert (ix86_cmodel == CM_LARGE_PIC); + + emit_move_insn (tmp, gen_rtx_CONST (Pmode, unspec)); + emit_insn (gen_adddi3 (tmp, tmp, pic_offset_table_rtx)); + return tmp; +} + +rtx +ix86_expand_call (rtx retval, rtx fnaddr, rtx callarg1, + rtx callarg2, + rtx pop, int sibcall) +{ + rtx use = NULL, call; + + if (pop == const0_rtx) + pop = NULL; + gcc_assert (!TARGET_64BIT || !pop); + + if (TARGET_MACHO && !TARGET_64BIT) + { +#if TARGET_MACHO + if (flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF) + fnaddr = machopic_indirect_call_target (fnaddr); +#endif + } + else + { + /* Static functions and indirect calls don't need the pic register. */ + if (flag_pic && (!TARGET_64BIT || ix86_cmodel == CM_LARGE_PIC) + && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF + && ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0))) + use_reg (&use, pic_offset_table_rtx); + } + + if (TARGET_64BIT && INTVAL (callarg2) >= 0) + { + rtx al = gen_rtx_REG (QImode, AX_REG); + emit_move_insn (al, callarg2); + use_reg (&use, al); + } + + if (ix86_cmodel == CM_LARGE_PIC + && MEM_P (fnaddr) + && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF + && !local_symbolic_operand (XEXP (fnaddr, 0), VOIDmode)) + fnaddr = gen_rtx_MEM (QImode, construct_plt_address (XEXP (fnaddr, 0))); + else if (sibcall + ? !sibcall_insn_operand (XEXP (fnaddr, 0), Pmode) + : !call_insn_operand (XEXP (fnaddr, 0), Pmode)) + { + fnaddr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0)); + fnaddr = gen_rtx_MEM (QImode, fnaddr); + } + + call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1); + if (retval) + call = gen_rtx_SET (VOIDmode, retval, call); + if (pop) + { + pop = gen_rtx_PLUS (Pmode, stack_pointer_rtx, pop); + pop = gen_rtx_SET (VOIDmode, stack_pointer_rtx, pop); + call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call, pop)); + } + if (TARGET_64BIT + && ix86_cfun_abi () == MS_ABI + && (!callarg2 || INTVAL (callarg2) != -2)) + { + /* We need to represent that SI and DI registers are clobbered + by SYSV calls. */ + static int clobbered_registers[] = { + XMM6_REG, XMM7_REG, XMM8_REG, + XMM9_REG, XMM10_REG, XMM11_REG, + XMM12_REG, XMM13_REG, XMM14_REG, + XMM15_REG, SI_REG, DI_REG + }; + unsigned int i; + rtx vec[ARRAY_SIZE (clobbered_registers) + 2]; + rtx unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), + UNSPEC_MS_TO_SYSV_CALL); + + vec[0] = call; + vec[1] = unspec; + for (i = 0; i < ARRAY_SIZE (clobbered_registers); i++) + vec[i + 2] = gen_rtx_CLOBBER (SSE_REGNO_P (clobbered_registers[i]) + ? TImode : DImode, + gen_rtx_REG + (SSE_REGNO_P (clobbered_registers[i]) + ? TImode : DImode, + clobbered_registers[i])); + + call = gen_rtx_PARALLEL (VOIDmode, + gen_rtvec_v (ARRAY_SIZE (clobbered_registers) + + 2, vec)); + } + + /* Add UNSPEC_CALL_NEEDS_VZEROUPPER decoration. */ + if (TARGET_VZEROUPPER) + { + rtx unspec; + int avx256; + + if (cfun->machine->callee_pass_avx256_p) + { + if (cfun->machine->callee_return_avx256_p) + avx256 = callee_return_pass_avx256; + else + avx256 = callee_pass_avx256; + } + else if (cfun->machine->callee_return_avx256_p) + avx256 = callee_return_avx256; + else + avx256 = call_no_avx256; + + if (reload_completed) + emit_insn (gen_avx_vzeroupper (GEN_INT (avx256))); + else + { + unspec = gen_rtx_UNSPEC (VOIDmode, + gen_rtvec (1, GEN_INT (avx256)), + UNSPEC_CALL_NEEDS_VZEROUPPER); + call = gen_rtx_PARALLEL (VOIDmode, + gen_rtvec (2, call, unspec)); + } + } + + call = emit_call_insn (call); + if (use) + CALL_INSN_FUNCTION_USAGE (call) = use; + + return call; +} + +void +ix86_split_call_vzeroupper (rtx insn, rtx vzeroupper) +{ + rtx call = XVECEXP (PATTERN (insn), 0, 0); + emit_insn (gen_avx_vzeroupper (vzeroupper)); + emit_call_insn (call); +} + +/* Output the assembly for a call instruction. */ + +const char * +ix86_output_call_insn (rtx insn, rtx call_op, int addr_op) +{ + bool direct_p = constant_call_address_operand (call_op, Pmode); + bool seh_nop_p = false; + + gcc_assert (addr_op == 0 || addr_op == 1); + + if (SIBLING_CALL_P (insn)) + { + if (direct_p) + return addr_op ? "jmp\t%P1" : "jmp\t%P0"; + /* SEH epilogue detection requires the indirect branch case + to include REX.W. */ + else if (TARGET_SEH) + return addr_op ? "rex.W jmp %A1" : "rex.W jmp %A0"; + else + return addr_op ? "jmp\t%A1" : "jmp\t%A0"; + } + + /* SEH unwinding can require an extra nop to be emitted in several + circumstances. Determine if we have one of those. */ + if (TARGET_SEH) + { + rtx i; + + for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i)) + { + /* If we get to another real insn, we don't need the nop. */ + if (INSN_P (i)) + break; + + /* If we get to the epilogue note, prevent a catch region from + being adjacent to the standard epilogue sequence. If non- + call-exceptions, we'll have done this during epilogue emission. */ + if (NOTE_P (i) && NOTE_KIND (i) == NOTE_INSN_EPILOGUE_BEG + && !flag_non_call_exceptions + && !can_throw_internal (insn)) + { + seh_nop_p = true; + break; + } + } + + /* If we didn't find a real insn following the call, prevent the + unwinder from looking into the next function. */ + if (i == NULL) + seh_nop_p = true; + } + + if (direct_p) + { + if (seh_nop_p) + return addr_op ? "call\t%P1\n\tnop" : "call\t%P0\n\tnop"; + else + return addr_op ? "call\t%P1" : "call\t%P0"; + } + else + { + if (seh_nop_p) + return addr_op ? "call\t%A1\n\tnop" : "call\t%A0\n\tnop"; + else + return addr_op ? "call\t%A1" : "call\t%A0"; + } +} + +/* Clear stack slot assignments remembered from previous functions. + This is called from INIT_EXPANDERS once before RTL is emitted for each + function. */ + +static struct machine_function * +ix86_init_machine_status (void) +{ + struct machine_function *f; + + f = ggc_alloc_cleared_machine_function (); + f->use_fast_prologue_epilogue_nregs = -1; + f->tls_descriptor_call_expanded_p = 0; + f->call_abi = ix86_abi; + + return f; +} + +/* Return a MEM corresponding to a stack slot with mode MODE. + Allocate a new slot if necessary. + + The RTL for a function can have several slots available: N is + which slot to use. */ + +rtx +assign_386_stack_local (enum machine_mode mode, enum ix86_stack_slot n) +{ + struct stack_local_entry *s; + + gcc_assert (n < MAX_386_STACK_LOCALS); + + /* Virtual slot is valid only before vregs are instantiated. */ + gcc_assert ((n == SLOT_VIRTUAL) == !virtuals_instantiated); + + for (s = ix86_stack_locals; s; s = s->next) + if (s->mode == mode && s->n == n) + return validize_mem (copy_rtx (s->rtl)); + + s = ggc_alloc_stack_local_entry (); + s->n = n; + s->mode = mode; + s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); + + s->next = ix86_stack_locals; + ix86_stack_locals = s; + return validize_mem (s->rtl); +} + +/* Construct the SYMBOL_REF for the tls_get_addr function. */ + +static GTY(()) rtx ix86_tls_symbol; +rtx +ix86_tls_get_addr (void) +{ + + if (!ix86_tls_symbol) + { + ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, + (TARGET_ANY_GNU_TLS + && !TARGET_64BIT) + ? "___tls_get_addr" + : "__tls_get_addr"); + } + + return ix86_tls_symbol; +} + +/* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */ + +static GTY(()) rtx ix86_tls_module_base_symbol; +rtx +ix86_tls_module_base (void) +{ + + if (!ix86_tls_module_base_symbol) + { + ix86_tls_module_base_symbol = gen_rtx_SYMBOL_REF (Pmode, + "_TLS_MODULE_BASE_"); + SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol) + |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT; + } + + return ix86_tls_module_base_symbol; +} + +/* Calculate the length of the memory address in the instruction + encoding. Does not include the one-byte modrm, opcode, or prefix. */ + +int +memory_address_length (rtx addr) +{ + struct ix86_address parts; + rtx base, index, disp; + int len; + int ok; + + if (GET_CODE (addr) == PRE_DEC + || GET_CODE (addr) == POST_INC + || GET_CODE (addr) == PRE_MODIFY + || GET_CODE (addr) == POST_MODIFY) + return 0; + + ok = ix86_decompose_address (addr, &parts); + gcc_assert (ok); + + if (parts.base && GET_CODE (parts.base) == SUBREG) + parts.base = SUBREG_REG (parts.base); + if (parts.index && GET_CODE (parts.index) == SUBREG) + parts.index = SUBREG_REG (parts.index); + + base = parts.base; + index = parts.index; + disp = parts.disp; + len = 0; + + /* Rule of thumb: + - esp as the base always wants an index, + - ebp as the base always wants a displacement, + - r12 as the base always wants an index, + - r13 as the base always wants a displacement. */ + + /* Register Indirect. */ + if (base && !index && !disp) + { + /* esp (for its index) and ebp (for its displacement) need + the two-byte modrm form. Similarly for r12 and r13 in 64-bit + code. */ + if (REG_P (addr) + && (addr == arg_pointer_rtx + || addr == frame_pointer_rtx + || REGNO (addr) == SP_REG + || REGNO (addr) == BP_REG + || REGNO (addr) == R12_REG + || REGNO (addr) == R13_REG)) + len = 1; + } + + /* Direct Addressing. In 64-bit mode mod 00 r/m 5 + is not disp32, but disp32(%rip), so for disp32 + SIB byte is needed, unless print_operand_address + optimizes it into disp32(%rip) or (%rip) is implied + by UNSPEC. */ + else if (disp && !base && !index) + { + len = 4; + if (TARGET_64BIT) + { + rtx symbol = disp; + + if (GET_CODE (disp) == CONST) + symbol = XEXP (disp, 0); + if (GET_CODE (symbol) == PLUS + && CONST_INT_P (XEXP (symbol, 1))) + symbol = XEXP (symbol, 0); + + if (GET_CODE (symbol) != LABEL_REF + && (GET_CODE (symbol) != SYMBOL_REF + || SYMBOL_REF_TLS_MODEL (symbol) != 0) + && (GET_CODE (symbol) != UNSPEC + || (XINT (symbol, 1) != UNSPEC_GOTPCREL + && XINT (symbol, 1) != UNSPEC_PCREL + && XINT (symbol, 1) != UNSPEC_GOTNTPOFF))) + len += 1; + } + } + + else + { + /* Find the length of the displacement constant. */ + if (disp) + { + if (base && satisfies_constraint_K (disp)) + len = 1; + else + len = 4; + } + /* ebp always wants a displacement. Similarly r13. */ + else if (base && REG_P (base) + && (REGNO (base) == BP_REG || REGNO (base) == R13_REG)) + len = 1; + + /* An index requires the two-byte modrm form.... */ + if (index + /* ...like esp (or r12), which always wants an index. */ + || base == arg_pointer_rtx + || base == frame_pointer_rtx + || (base && REG_P (base) + && (REGNO (base) == SP_REG || REGNO (base) == R12_REG))) + len += 1; + } + + switch (parts.seg) + { + case SEG_FS: + case SEG_GS: + len += 1; + break; + default: + break; + } + + return len; +} + +/* Compute default value for "length_immediate" attribute. When SHORTFORM + is set, expect that insn have 8bit immediate alternative. */ +int +ix86_attr_length_immediate_default (rtx insn, int shortform) +{ + int len = 0; + int i; + extract_insn_cached (insn); + for (i = recog_data.n_operands - 1; i >= 0; --i) + if (CONSTANT_P (recog_data.operand[i])) + { + enum attr_mode mode = get_attr_mode (insn); + + gcc_assert (!len); + if (shortform && CONST_INT_P (recog_data.operand[i])) + { + HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]); + switch (mode) + { + case MODE_QI: + len = 1; + continue; + case MODE_HI: + ival = trunc_int_for_mode (ival, HImode); + break; + case MODE_SI: + ival = trunc_int_for_mode (ival, SImode); + break; + default: + break; + } + if (IN_RANGE (ival, -128, 127)) + { + len = 1; + continue; + } + } + switch (mode) + { + case MODE_QI: + len = 1; + break; + case MODE_HI: + len = 2; + break; + case MODE_SI: + len = 4; + break; + /* Immediates for DImode instructions are encoded as 32bit sign extended values. */ + case MODE_DI: + len = 4; + break; + default: + fatal_insn ("unknown insn mode", insn); + } + } + return len; +} +/* Compute default value for "length_address" attribute. */ +int +ix86_attr_length_address_default (rtx insn) +{ + int i; + + if (get_attr_type (insn) == TYPE_LEA) + { + rtx set = PATTERN (insn), addr; + + if (GET_CODE (set) == PARALLEL) + set = XVECEXP (set, 0, 0); + + gcc_assert (GET_CODE (set) == SET); + + addr = SET_SRC (set); + if (TARGET_64BIT && get_attr_mode (insn) == MODE_SI) + { + if (GET_CODE (addr) == ZERO_EXTEND) + addr = XEXP (addr, 0); + if (GET_CODE (addr) == SUBREG) + addr = SUBREG_REG (addr); + } + + return memory_address_length (addr); + } + + extract_insn_cached (insn); + for (i = recog_data.n_operands - 1; i >= 0; --i) + if (MEM_P (recog_data.operand[i])) + { + constrain_operands_cached (reload_completed); + if (which_alternative != -1) + { + const char *constraints = recog_data.constraints[i]; + int alt = which_alternative; + + while (*constraints == '=' || *constraints == '+') + constraints++; + while (alt-- > 0) + while (*constraints++ != ',') + ; + /* Skip ignored operands. */ + if (*constraints == 'X') + continue; + } + return memory_address_length (XEXP (recog_data.operand[i], 0)); + } + return 0; +} + +/* Compute default value for "length_vex" attribute. It includes + 2 or 3 byte VEX prefix and 1 opcode byte. */ + +int +ix86_attr_length_vex_default (rtx insn, int has_0f_opcode, + int has_vex_w) +{ + int i; + + /* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3 + byte VEX prefix. */ + if (!has_0f_opcode || has_vex_w) + return 3 + 1; + + /* We can always use 2 byte VEX prefix in 32bit. */ + if (!TARGET_64BIT) + return 2 + 1; + + extract_insn_cached (insn); + + for (i = recog_data.n_operands - 1; i >= 0; --i) + if (REG_P (recog_data.operand[i])) + { + /* REX.W bit uses 3 byte VEX prefix. */ + if (GET_MODE (recog_data.operand[i]) == DImode + && GENERAL_REG_P (recog_data.operand[i])) + return 3 + 1; + } + else + { + /* REX.X or REX.B bits use 3 byte VEX prefix. */ + if (MEM_P (recog_data.operand[i]) + && x86_extended_reg_mentioned_p (recog_data.operand[i])) + return 3 + 1; + } + + return 2 + 1; +} + +/* Return the maximum number of instructions a cpu can issue. */ + +static int +ix86_issue_rate (void) +{ + switch (ix86_tune) + { + case PROCESSOR_PENTIUM: + case PROCESSOR_ATOM: + case PROCESSOR_K6: + return 2; + + case PROCESSOR_PENTIUMPRO: + case PROCESSOR_PENTIUM4: + case PROCESSOR_CORE2_32: + case PROCESSOR_CORE2_64: + case PROCESSOR_COREI7_32: + case PROCESSOR_COREI7_64: + case PROCESSOR_ATHLON: + case PROCESSOR_K8: + case PROCESSOR_AMDFAM10: + case PROCESSOR_NOCONA: + case PROCESSOR_GENERIC32: + case PROCESSOR_GENERIC64: + case PROCESSOR_BDVER1: + case PROCESSOR_BTVER1: + return 3; + + default: + return 1; + } +} + +/* A subroutine of ix86_adjust_cost -- return true iff INSN reads flags set + by DEP_INSN and nothing set by DEP_INSN. */ + +static int +ix86_flags_dependent (rtx insn, rtx dep_insn, enum attr_type insn_type) +{ + rtx set, set2; + + /* Simplify the test for uninteresting insns. */ + if (insn_type != TYPE_SETCC + && insn_type != TYPE_ICMOV + && insn_type != TYPE_FCMOV + && insn_type != TYPE_IBR) + return 0; + + if ((set = single_set (dep_insn)) != 0) + { + set = SET_DEST (set); + set2 = NULL_RTX; + } + else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL + && XVECLEN (PATTERN (dep_insn), 0) == 2 + && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET + && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET) + { + set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); + set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); + } + else + return 0; + + if (!REG_P (set) || REGNO (set) != FLAGS_REG) + return 0; + + /* This test is true if the dependent insn reads the flags but + not any other potentially set register. */ + if (!reg_overlap_mentioned_p (set, PATTERN (insn))) + return 0; + + if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn))) + return 0; + + return 1; +} + +/* Return true iff USE_INSN has a memory address with operands set by + SET_INSN. */ + +bool +ix86_agi_dependent (rtx set_insn, rtx use_insn) +{ + int i; + extract_insn_cached (use_insn); + for (i = recog_data.n_operands - 1; i >= 0; --i) + if (MEM_P (recog_data.operand[i])) + { + rtx addr = XEXP (recog_data.operand[i], 0); + return modified_in_p (addr, set_insn) != 0; + } + return false; +} + +static int +ix86_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) +{ + enum attr_type insn_type, dep_insn_type; + enum attr_memory memory; + rtx set, set2; + int dep_insn_code_number; + + /* Anti and output dependencies have zero cost on all CPUs. */ + if (REG_NOTE_KIND (link) != 0) + return 0; + + dep_insn_code_number = recog_memoized (dep_insn); + + /* If we can't recognize the insns, we can't really do anything. */ + if (dep_insn_code_number < 0 || recog_memoized (insn) < 0) + return cost; + + insn_type = get_attr_type (insn); + dep_insn_type = get_attr_type (dep_insn); + + switch (ix86_tune) + { + case PROCESSOR_PENTIUM: + /* Address Generation Interlock adds a cycle of latency. */ + if (insn_type == TYPE_LEA) + { + rtx addr = PATTERN (insn); + + if (GET_CODE (addr) == PARALLEL) + addr = XVECEXP (addr, 0, 0); + + gcc_assert (GET_CODE (addr) == SET); + + addr = SET_SRC (addr); + if (modified_in_p (addr, dep_insn)) + cost += 1; + } + else if (ix86_agi_dependent (dep_insn, insn)) + cost += 1; + + /* ??? Compares pair with jump/setcc. */ + if (ix86_flags_dependent (insn, dep_insn, insn_type)) + cost = 0; + + /* Floating point stores require value to be ready one cycle earlier. */ + if (insn_type == TYPE_FMOV + && get_attr_memory (insn) == MEMORY_STORE + && !ix86_agi_dependent (dep_insn, insn)) + cost += 1; + break; + + case PROCESSOR_PENTIUMPRO: + memory = get_attr_memory (insn); + + /* INT->FP conversion is expensive. */ + if (get_attr_fp_int_src (dep_insn)) + cost += 5; + + /* There is one cycle extra latency between an FP op and a store. */ + if (insn_type == TYPE_FMOV + && (set = single_set (dep_insn)) != NULL_RTX + && (set2 = single_set (insn)) != NULL_RTX + && rtx_equal_p (SET_DEST (set), SET_SRC (set2)) + && MEM_P (SET_DEST (set2))) + cost += 1; + + /* Show ability of reorder buffer to hide latency of load by executing + in parallel with previous instruction in case + previous instruction is not needed to compute the address. */ + if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) + && !ix86_agi_dependent (dep_insn, insn)) + { + /* Claim moves to take one cycle, as core can issue one load + at time and the next load can start cycle later. */ + if (dep_insn_type == TYPE_IMOV + || dep_insn_type == TYPE_FMOV) + cost = 1; + else if (cost > 1) + cost--; + } + break; + + case PROCESSOR_K6: + memory = get_attr_memory (insn); + + /* The esp dependency is resolved before the instruction is really + finished. */ + if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) + && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) + return 1; + + /* INT->FP conversion is expensive. */ + if (get_attr_fp_int_src (dep_insn)) + cost += 5; + + /* Show ability of reorder buffer to hide latency of load by executing + in parallel with previous instruction in case + previous instruction is not needed to compute the address. */ + if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) + && !ix86_agi_dependent (dep_insn, insn)) + { + /* Claim moves to take one cycle, as core can issue one load + at time and the next load can start cycle later. */ + if (dep_insn_type == TYPE_IMOV + || dep_insn_type == TYPE_FMOV) + cost = 1; + else if (cost > 2) + cost -= 2; + else + cost = 1; + } + break; + + case PROCESSOR_ATHLON: + case PROCESSOR_K8: + case PROCESSOR_AMDFAM10: + case PROCESSOR_BDVER1: + case PROCESSOR_BTVER1: + case PROCESSOR_ATOM: + case PROCESSOR_GENERIC32: + case PROCESSOR_GENERIC64: + memory = get_attr_memory (insn); + + /* Show ability of reorder buffer to hide latency of load by executing + in parallel with previous instruction in case + previous instruction is not needed to compute the address. */ + if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) + && !ix86_agi_dependent (dep_insn, insn)) + { + enum attr_unit unit = get_attr_unit (insn); + int loadcost = 3; + + /* Because of the difference between the length of integer and + floating unit pipeline preparation stages, the memory operands + for floating point are cheaper. + + ??? For Athlon it the difference is most probably 2. */ + if (unit == UNIT_INTEGER || unit == UNIT_UNKNOWN) + loadcost = 3; + else + loadcost = TARGET_ATHLON ? 2 : 0; + + if (cost >= loadcost) + cost -= loadcost; + else + cost = 0; + } + + default: + break; + } + + return cost; +} + +/* How many alternative schedules to try. This should be as wide as the + scheduling freedom in the DFA, but no wider. Making this value too + large results extra work for the scheduler. */ + +static int +ia32_multipass_dfa_lookahead (void) +{ + switch (ix86_tune) + { + case PROCESSOR_PENTIUM: + return 2; + + case PROCESSOR_PENTIUMPRO: + case PROCESSOR_K6: + return 1; + + case PROCESSOR_CORE2_32: + case PROCESSOR_CORE2_64: + case PROCESSOR_COREI7_32: + case PROCESSOR_COREI7_64: + /* Generally, we want haifa-sched:max_issue() to look ahead as far + as many instructions can be executed on a cycle, i.e., + issue_rate. I wonder why tuning for many CPUs does not do this. */ + return ix86_issue_rate (); + + default: + return 0; + } +} + + + +/* Model decoder of Core 2/i7. + Below hooks for multipass scheduling (see haifa-sched.c:max_issue) + track the instruction fetch block boundaries and make sure that long + (9+ bytes) instructions are assigned to D0. */ + +/* Maximum length of an insn that can be handled by + a secondary decoder unit. '8' for Core 2/i7. */ +static int core2i7_secondary_decoder_max_insn_size; + +/* Ifetch block size, i.e., number of bytes decoder reads per cycle. + '16' for Core 2/i7. */ +static int core2i7_ifetch_block_size; + +/* Maximum number of instructions decoder can handle per cycle. + '6' for Core 2/i7. */ +static int core2i7_ifetch_block_max_insns; + +typedef struct ix86_first_cycle_multipass_data_ * + ix86_first_cycle_multipass_data_t; +typedef const struct ix86_first_cycle_multipass_data_ * + const_ix86_first_cycle_multipass_data_t; + +/* A variable to store target state across calls to max_issue within + one cycle. */ +static struct ix86_first_cycle_multipass_data_ _ix86_first_cycle_multipass_data, + *ix86_first_cycle_multipass_data = &_ix86_first_cycle_multipass_data; + +/* Initialize DATA. */ +static void +core2i7_first_cycle_multipass_init (void *_data) +{ + ix86_first_cycle_multipass_data_t data + = (ix86_first_cycle_multipass_data_t) _data; + + data->ifetch_block_len = 0; + data->ifetch_block_n_insns = 0; + data->ready_try_change = NULL; + data->ready_try_change_size = 0; +} + +/* Advancing the cycle; reset ifetch block counts. */ +static void +core2i7_dfa_post_advance_cycle (void) +{ + ix86_first_cycle_multipass_data_t data = ix86_first_cycle_multipass_data; + + gcc_assert (data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns); + + data->ifetch_block_len = 0; + data->ifetch_block_n_insns = 0; +} + +static int min_insn_size (rtx); + +/* Filter out insns from ready_try that the core will not be able to issue + on current cycle due to decoder. */ +static void +core2i7_first_cycle_multipass_filter_ready_try +(const_ix86_first_cycle_multipass_data_t data, + char *ready_try, int n_ready, bool first_cycle_insn_p) +{ + while (n_ready--) + { + rtx insn; + int insn_size; + + if (ready_try[n_ready]) + continue; + + insn = get_ready_element (n_ready); + insn_size = min_insn_size (insn); + + if (/* If this is a too long an insn for a secondary decoder ... */ + (!first_cycle_insn_p + && insn_size > core2i7_secondary_decoder_max_insn_size) + /* ... or it would not fit into the ifetch block ... */ + || data->ifetch_block_len + insn_size > core2i7_ifetch_block_size + /* ... or the decoder is full already ... */ + || data->ifetch_block_n_insns + 1 > core2i7_ifetch_block_max_insns) + /* ... mask the insn out. */ + { + ready_try[n_ready] = 1; + + if (data->ready_try_change) + SET_BIT (data->ready_try_change, n_ready); + } + } +} + +/* Prepare for a new round of multipass lookahead scheduling. */ +static void +core2i7_first_cycle_multipass_begin (void *_data, char *ready_try, int n_ready, + bool first_cycle_insn_p) +{ + ix86_first_cycle_multipass_data_t data + = (ix86_first_cycle_multipass_data_t) _data; + const_ix86_first_cycle_multipass_data_t prev_data + = ix86_first_cycle_multipass_data; + + /* Restore the state from the end of the previous round. */ + data->ifetch_block_len = prev_data->ifetch_block_len; + data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns; + + /* Filter instructions that cannot be issued on current cycle due to + decoder restrictions. */ + core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready, + first_cycle_insn_p); +} + +/* INSN is being issued in current solution. Account for its impact on + the decoder model. */ +static void +core2i7_first_cycle_multipass_issue (void *_data, char *ready_try, int n_ready, + rtx insn, const void *_prev_data) +{ + ix86_first_cycle_multipass_data_t data + = (ix86_first_cycle_multipass_data_t) _data; + const_ix86_first_cycle_multipass_data_t prev_data + = (const_ix86_first_cycle_multipass_data_t) _prev_data; + + int insn_size = min_insn_size (insn); + + data->ifetch_block_len = prev_data->ifetch_block_len + insn_size; + data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns + 1; + gcc_assert (data->ifetch_block_len <= core2i7_ifetch_block_size + && data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns); + + /* Allocate or resize the bitmap for storing INSN's effect on ready_try. */ + if (!data->ready_try_change) + { + data->ready_try_change = sbitmap_alloc (n_ready); + data->ready_try_change_size = n_ready; + } + else if (data->ready_try_change_size < n_ready) + { + data->ready_try_change = sbitmap_resize (data->ready_try_change, + n_ready, 0); + data->ready_try_change_size = n_ready; + } + sbitmap_zero (data->ready_try_change); + + /* Filter out insns from ready_try that the core will not be able to issue + on current cycle due to decoder. */ + core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready, + false); +} + +/* Revert the effect on ready_try. */ +static void +core2i7_first_cycle_multipass_backtrack (const void *_data, + char *ready_try, + int n_ready ATTRIBUTE_UNUSED) +{ + const_ix86_first_cycle_multipass_data_t data + = (const_ix86_first_cycle_multipass_data_t) _data; + unsigned int i = 0; + sbitmap_iterator sbi; + + gcc_assert (sbitmap_last_set_bit (data->ready_try_change) < n_ready); + EXECUTE_IF_SET_IN_SBITMAP (data->ready_try_change, 0, i, sbi) + { + ready_try[i] = 0; + } +} + +/* Save the result of multipass lookahead scheduling for the next round. */ +static void +core2i7_first_cycle_multipass_end (const void *_data) +{ + const_ix86_first_cycle_multipass_data_t data + = (const_ix86_first_cycle_multipass_data_t) _data; + ix86_first_cycle_multipass_data_t next_data + = ix86_first_cycle_multipass_data; + + if (data != NULL) + { + next_data->ifetch_block_len = data->ifetch_block_len; + next_data->ifetch_block_n_insns = data->ifetch_block_n_insns; + } +} + +/* Deallocate target data. */ +static void +core2i7_first_cycle_multipass_fini (void *_data) +{ + ix86_first_cycle_multipass_data_t data + = (ix86_first_cycle_multipass_data_t) _data; + + if (data->ready_try_change) + { + sbitmap_free (data->ready_try_change); + data->ready_try_change = NULL; + data->ready_try_change_size = 0; + } +} + +/* Prepare for scheduling pass. */ +static void +ix86_sched_init_global (FILE *dump ATTRIBUTE_UNUSED, + int verbose ATTRIBUTE_UNUSED, + int max_uid ATTRIBUTE_UNUSED) +{ + /* Install scheduling hooks for current CPU. Some of these hooks are used + in time-critical parts of the scheduler, so we only set them up when + they are actually used. */ + switch (ix86_tune) + { + case PROCESSOR_CORE2_32: + case PROCESSOR_CORE2_64: + case PROCESSOR_COREI7_32: + case PROCESSOR_COREI7_64: + targetm.sched.dfa_post_advance_cycle + = core2i7_dfa_post_advance_cycle; + targetm.sched.first_cycle_multipass_init + = core2i7_first_cycle_multipass_init; + targetm.sched.first_cycle_multipass_begin + = core2i7_first_cycle_multipass_begin; + targetm.sched.first_cycle_multipass_issue + = core2i7_first_cycle_multipass_issue; + targetm.sched.first_cycle_multipass_backtrack + = core2i7_first_cycle_multipass_backtrack; + targetm.sched.first_cycle_multipass_end + = core2i7_first_cycle_multipass_end; + targetm.sched.first_cycle_multipass_fini + = core2i7_first_cycle_multipass_fini; + + /* Set decoder parameters. */ + core2i7_secondary_decoder_max_insn_size = 8; + core2i7_ifetch_block_size = 16; + core2i7_ifetch_block_max_insns = 6; + break; + + default: + targetm.sched.dfa_post_advance_cycle = NULL; + targetm.sched.first_cycle_multipass_init = NULL; + targetm.sched.first_cycle_multipass_begin = NULL; + targetm.sched.first_cycle_multipass_issue = NULL; + targetm.sched.first_cycle_multipass_backtrack = NULL; + targetm.sched.first_cycle_multipass_end = NULL; + targetm.sched.first_cycle_multipass_fini = NULL; + break; + } +} + + +/* Compute the alignment given to a constant that is being placed in memory. + EXP is the constant and ALIGN is the alignment that the object would + ordinarily have. + The value of this function is used instead of that alignment to align + the object. */ + +int +ix86_constant_alignment (tree exp, int align) +{ + if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST + || TREE_CODE (exp) == INTEGER_CST) + { + if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64) + return 64; + else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128) + return 128; + } + else if (!optimize_size && TREE_CODE (exp) == STRING_CST + && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD) + return BITS_PER_WORD; + + return align; +} + +/* Compute the alignment for a static variable. + TYPE is the data type, and ALIGN is the alignment that + the object would ordinarily have. The value of this function is used + instead of that alignment to align the object. */ + +int +ix86_data_alignment (tree type, int align) +{ + int max_align = optimize_size ? BITS_PER_WORD : MIN (256, MAX_OFILE_ALIGNMENT); + + if (AGGREGATE_TYPE_P (type) + && TYPE_SIZE (type) + && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST + && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= (unsigned) max_align + || TREE_INT_CST_HIGH (TYPE_SIZE (type))) + && align < max_align) + align = max_align; + + /* x86-64 ABI requires arrays greater than 16 bytes to be aligned + to 16byte boundary. */ + if (TARGET_64BIT) + { + if (AGGREGATE_TYPE_P (type) + && TYPE_SIZE (type) + && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST + && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128 + || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) + return 128; + } + + if (TREE_CODE (type) == ARRAY_TYPE) + { + if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) + return 128; + } + else if (TREE_CODE (type) == COMPLEX_TYPE) + { + + if (TYPE_MODE (type) == DCmode && align < 64) + return 64; + if ((TYPE_MODE (type) == XCmode + || TYPE_MODE (type) == TCmode) && align < 128) + return 128; + } + else if ((TREE_CODE (type) == RECORD_TYPE + || TREE_CODE (type) == UNION_TYPE + || TREE_CODE (type) == QUAL_UNION_TYPE) + && TYPE_FIELDS (type)) + { + if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) + return 128; + } + else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE + || TREE_CODE (type) == INTEGER_TYPE) + { + if (TYPE_MODE (type) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) + return 128; + } + + return align; +} + +/* Compute the alignment for a local variable or a stack slot. EXP is + the data type or decl itself, MODE is the widest mode available and + ALIGN is the alignment that the object would ordinarily have. The + value of this macro is used instead of that alignment to align the + object. */ + +unsigned int +ix86_local_alignment (tree exp, enum machine_mode mode, + unsigned int align) +{ + tree type, decl; + + if (exp && DECL_P (exp)) + { + type = TREE_TYPE (exp); + decl = exp; + } + else + { + type = exp; + decl = NULL; + } + + /* Don't do dynamic stack realignment for long long objects with + -mpreferred-stack-boundary=2. */ + if (!TARGET_64BIT + && align == 64 + && ix86_preferred_stack_boundary < 64 + && (mode == DImode || (type && TYPE_MODE (type) == DImode)) + && (!type || !TYPE_USER_ALIGN (type)) + && (!decl || !DECL_USER_ALIGN (decl))) + align = 32; + + /* If TYPE is NULL, we are allocating a stack slot for caller-save + register in MODE. We will return the largest alignment of XF + and DF. */ + if (!type) + { + if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode)) + align = GET_MODE_ALIGNMENT (DFmode); + return align; + } + + /* x86-64 ABI requires arrays greater than 16 bytes to be aligned + to 16byte boundary. Exact wording is: + + An array uses the same alignment as its elements, except that a local or + global array variable of length at least 16 bytes or + a C99 variable-length array variable always has alignment of at least 16 bytes. + + This was added to allow use of aligned SSE instructions at arrays. This + rule is meant for static storage (where compiler can not do the analysis + by itself). We follow it for automatic variables only when convenient. + We fully control everything in the function compiled and functions from + other unit can not rely on the alignment. + + Exclude va_list type. It is the common case of local array where + we can not benefit from the alignment. */ + if (TARGET_64BIT && optimize_function_for_speed_p (cfun) + && TARGET_SSE) + { + if (AGGREGATE_TYPE_P (type) + && (va_list_type_node == NULL_TREE + || (TYPE_MAIN_VARIANT (type) + != TYPE_MAIN_VARIANT (va_list_type_node))) + && TYPE_SIZE (type) + && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST + && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16 + || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) + return 128; + } + if (TREE_CODE (type) == ARRAY_TYPE) + { + if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) + return 128; + } + else if (TREE_CODE (type) == COMPLEX_TYPE) + { + if (TYPE_MODE (type) == DCmode && align < 64) + return 64; + if ((TYPE_MODE (type) == XCmode + || TYPE_MODE (type) == TCmode) && align < 128) + return 128; + } + else if ((TREE_CODE (type) == RECORD_TYPE + || TREE_CODE (type) == UNION_TYPE + || TREE_CODE (type) == QUAL_UNION_TYPE) + && TYPE_FIELDS (type)) + { + if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) + return 128; + } + else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE + || TREE_CODE (type) == INTEGER_TYPE) + { + + if (TYPE_MODE (type) == DFmode && align < 64) + return 64; + if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) + return 128; + } + return align; +} + +/* Compute the minimum required alignment for dynamic stack realignment + purposes for a local variable, parameter or a stack slot. EXP is + the data type or decl itself, MODE is its mode and ALIGN is the + alignment that the object would ordinarily have. */ + +unsigned int +ix86_minimum_alignment (tree exp, enum machine_mode mode, + unsigned int align) +{ + tree type, decl; + + if (exp && DECL_P (exp)) + { + type = TREE_TYPE (exp); + decl = exp; + } + else + { + type = exp; + decl = NULL; + } + + if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64) + return align; + + /* Don't do dynamic stack realignment for long long objects with + -mpreferred-stack-boundary=2. */ + if ((mode == DImode || (type && TYPE_MODE (type) == DImode)) + && (!type || !TYPE_USER_ALIGN (type)) + && (!decl || !DECL_USER_ALIGN (decl))) + return 32; + + return align; +} + +/* Find a location for the static chain incoming to a nested function. + This is a register, unless all free registers are used by arguments. */ + +static rtx +ix86_static_chain (const_tree fndecl, bool incoming_p) +{ + unsigned regno; + + if (!DECL_STATIC_CHAIN (fndecl)) + return NULL; + + if (TARGET_64BIT) + { + /* We always use R10 in 64-bit mode. */ + regno = R10_REG; + } + else + { + tree fntype; + /* By default in 32-bit mode we use ECX to pass the static chain. */ + regno = CX_REG; + + fntype = TREE_TYPE (fndecl); + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype))) + { + /* Fastcall functions use ecx/edx for arguments, which leaves + us with EAX for the static chain. */ + regno = AX_REG; + } + else if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype))) + { + /* Thiscall functions use ecx for arguments, which leaves + us with EAX for the static chain. */ + regno = AX_REG; + } + else if (ix86_function_regparm (fntype, fndecl) == 3) + { + /* For regparm 3, we have no free call-clobbered registers in + which to store the static chain. In order to implement this, + we have the trampoline push the static chain to the stack. + However, we can't push a value below the return address when + we call the nested function directly, so we have to use an + alternate entry point. For this we use ESI, and have the + alternate entry point push ESI, so that things appear the + same once we're executing the nested function. */ + if (incoming_p) + { + if (fndecl == current_function_decl) + ix86_static_chain_on_stack = true; + return gen_frame_mem (SImode, + plus_constant (arg_pointer_rtx, -8)); + } + regno = SI_REG; + } + } + + return gen_rtx_REG (Pmode, regno); +} + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNDECL is the decl of the target address; M_TRAMP is a MEM for + the trampoline, and CHAIN_VALUE is an RTX for the static chain + to be passed to the target function. */ + +static void +ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) +{ + rtx mem, fnaddr; + + fnaddr = XEXP (DECL_RTL (fndecl), 0); + + if (!TARGET_64BIT) + { + rtx disp, chain; + int opcode; + + /* Depending on the static chain location, either load a register + with a constant, or push the constant to the stack. All of the + instructions are the same size. */ + chain = ix86_static_chain (fndecl, true); + if (REG_P (chain)) + { + if (REGNO (chain) == CX_REG) + opcode = 0xb9; + else if (REGNO (chain) == AX_REG) + opcode = 0xb8; + else + gcc_unreachable (); + } + else + opcode = 0x68; + + mem = adjust_address (m_tramp, QImode, 0); + emit_move_insn (mem, gen_int_mode (opcode, QImode)); + + mem = adjust_address (m_tramp, SImode, 1); + emit_move_insn (mem, chain_value); + + /* Compute offset from the end of the jmp to the target function. + In the case in which the trampoline stores the static chain on + the stack, we need to skip the first insn which pushes the + (call-saved) register static chain; this push is 1 byte. */ + disp = expand_binop (SImode, sub_optab, fnaddr, + plus_constant (XEXP (m_tramp, 0), + MEM_P (chain) ? 9 : 10), + NULL_RTX, 1, OPTAB_DIRECT); + + mem = adjust_address (m_tramp, QImode, 5); + emit_move_insn (mem, gen_int_mode (0xe9, QImode)); + + mem = adjust_address (m_tramp, SImode, 6); + emit_move_insn (mem, disp); + } + else + { + int offset = 0; + + /* Load the function address to r11. Try to load address using + the shorter movl instead of movabs. We may want to support + movq for kernel mode, but kernel does not use trampolines at + the moment. */ + if (x86_64_zext_immediate_operand (fnaddr, VOIDmode)) + { + fnaddr = copy_to_mode_reg (DImode, fnaddr); + + mem = adjust_address (m_tramp, HImode, offset); + emit_move_insn (mem, gen_int_mode (0xbb41, HImode)); + + mem = adjust_address (m_tramp, SImode, offset + 2); + emit_move_insn (mem, gen_lowpart (SImode, fnaddr)); + offset += 6; + } + else + { + mem = adjust_address (m_tramp, HImode, offset); + emit_move_insn (mem, gen_int_mode (0xbb49, HImode)); + + mem = adjust_address (m_tramp, DImode, offset + 2); + emit_move_insn (mem, fnaddr); + offset += 10; + } + + /* Load static chain using movabs to r10. */ + mem = adjust_address (m_tramp, HImode, offset); + emit_move_insn (mem, gen_int_mode (0xba49, HImode)); + + mem = adjust_address (m_tramp, DImode, offset + 2); + emit_move_insn (mem, chain_value); + offset += 10; + + /* Jump to r11; the last (unused) byte is a nop, only there to + pad the write out to a single 32-bit store. */ + mem = adjust_address (m_tramp, SImode, offset); + emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode)); + offset += 4; + + gcc_assert (offset <= TRAMPOLINE_SIZE); + } + +#ifdef ENABLE_EXECUTE_STACK +#ifdef CHECK_EXECUTE_STACK_ENABLED + if (CHECK_EXECUTE_STACK_ENABLED) +#endif + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), + LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); +#endif +} + +/* The following file contains several enumerations and data structures + built from the definitions in i386-builtin-types.def. */ + +#include "i386-builtin-types.inc" + +/* Table for the ix86 builtin non-function types. */ +static GTY(()) tree ix86_builtin_type_tab[(int) IX86_BT_LAST_CPTR + 1]; + +/* Retrieve an element from the above table, building some of + the types lazily. */ + +static tree +ix86_get_builtin_type (enum ix86_builtin_type tcode) +{ + unsigned int index; + tree type, itype; + + gcc_assert ((unsigned)tcode < ARRAY_SIZE(ix86_builtin_type_tab)); + + type = ix86_builtin_type_tab[(int) tcode]; + if (type != NULL) + return type; + + gcc_assert (tcode > IX86_BT_LAST_PRIM); + if (tcode <= IX86_BT_LAST_VECT) + { + enum machine_mode mode; + + index = tcode - IX86_BT_LAST_PRIM - 1; + itype = ix86_get_builtin_type (ix86_builtin_type_vect_base[index]); + mode = ix86_builtin_type_vect_mode[index]; + + type = build_vector_type_for_mode (itype, mode); + } + else + { + int quals; + + index = tcode - IX86_BT_LAST_VECT - 1; + if (tcode <= IX86_BT_LAST_PTR) + quals = TYPE_UNQUALIFIED; + else + quals = TYPE_QUAL_CONST; + + itype = ix86_get_builtin_type (ix86_builtin_type_ptr_base[index]); + if (quals != TYPE_UNQUALIFIED) + itype = build_qualified_type (itype, quals); + + type = build_pointer_type (itype); + } + + ix86_builtin_type_tab[(int) tcode] = type; + return type; +} + +/* Table for the ix86 builtin function types. */ +static GTY(()) tree ix86_builtin_func_type_tab[(int) IX86_BT_LAST_ALIAS + 1]; + +/* Retrieve an element from the above table, building some of + the types lazily. */ + +static tree +ix86_get_builtin_func_type (enum ix86_builtin_func_type tcode) +{ + tree type; + + gcc_assert ((unsigned)tcode < ARRAY_SIZE (ix86_builtin_func_type_tab)); + + type = ix86_builtin_func_type_tab[(int) tcode]; + if (type != NULL) + return type; + + if (tcode <= IX86_BT_LAST_FUNC) + { + unsigned start = ix86_builtin_func_start[(int) tcode]; + unsigned after = ix86_builtin_func_start[(int) tcode + 1]; + tree rtype, atype, args = void_list_node; + unsigned i; + + rtype = ix86_get_builtin_type (ix86_builtin_func_args[start]); + for (i = after - 1; i > start; --i) + { + atype = ix86_get_builtin_type (ix86_builtin_func_args[i]); + args = tree_cons (NULL, atype, args); + } + + type = build_function_type (rtype, args); + } + else + { + unsigned index = tcode - IX86_BT_LAST_FUNC - 1; + enum ix86_builtin_func_type icode; + + icode = ix86_builtin_func_alias_base[index]; + type = ix86_get_builtin_func_type (icode); + } + + ix86_builtin_func_type_tab[(int) tcode] = type; + return type; +} + + +/* Codes for all the SSE/MMX builtins. */ +enum ix86_builtins +{ + IX86_BUILTIN_ADDPS, + IX86_BUILTIN_ADDSS, + IX86_BUILTIN_DIVPS, + IX86_BUILTIN_DIVSS, + IX86_BUILTIN_MULPS, + IX86_BUILTIN_MULSS, + IX86_BUILTIN_SUBPS, + IX86_BUILTIN_SUBSS, + + IX86_BUILTIN_CMPEQPS, + IX86_BUILTIN_CMPLTPS, + IX86_BUILTIN_CMPLEPS, + IX86_BUILTIN_CMPGTPS, + IX86_BUILTIN_CMPGEPS, + IX86_BUILTIN_CMPNEQPS, + IX86_BUILTIN_CMPNLTPS, + IX86_BUILTIN_CMPNLEPS, + IX86_BUILTIN_CMPNGTPS, + IX86_BUILTIN_CMPNGEPS, + IX86_BUILTIN_CMPORDPS, + IX86_BUILTIN_CMPUNORDPS, + IX86_BUILTIN_CMPEQSS, + IX86_BUILTIN_CMPLTSS, + IX86_BUILTIN_CMPLESS, + IX86_BUILTIN_CMPNEQSS, + IX86_BUILTIN_CMPNLTSS, + IX86_BUILTIN_CMPNLESS, + IX86_BUILTIN_CMPNGTSS, + IX86_BUILTIN_CMPNGESS, + IX86_BUILTIN_CMPORDSS, + IX86_BUILTIN_CMPUNORDSS, + + IX86_BUILTIN_COMIEQSS, + IX86_BUILTIN_COMILTSS, + IX86_BUILTIN_COMILESS, + IX86_BUILTIN_COMIGTSS, + IX86_BUILTIN_COMIGESS, + IX86_BUILTIN_COMINEQSS, + IX86_BUILTIN_UCOMIEQSS, + IX86_BUILTIN_UCOMILTSS, + IX86_BUILTIN_UCOMILESS, + IX86_BUILTIN_UCOMIGTSS, + IX86_BUILTIN_UCOMIGESS, + IX86_BUILTIN_UCOMINEQSS, + + IX86_BUILTIN_CVTPI2PS, + IX86_BUILTIN_CVTPS2PI, + IX86_BUILTIN_CVTSI2SS, + IX86_BUILTIN_CVTSI642SS, + IX86_BUILTIN_CVTSS2SI, + IX86_BUILTIN_CVTSS2SI64, + IX86_BUILTIN_CVTTPS2PI, + IX86_BUILTIN_CVTTSS2SI, + IX86_BUILTIN_CVTTSS2SI64, + + IX86_BUILTIN_MAXPS, + IX86_BUILTIN_MAXSS, + IX86_BUILTIN_MINPS, + IX86_BUILTIN_MINSS, + + IX86_BUILTIN_LOADUPS, + IX86_BUILTIN_STOREUPS, + IX86_BUILTIN_MOVSS, + + IX86_BUILTIN_MOVHLPS, + IX86_BUILTIN_MOVLHPS, + IX86_BUILTIN_LOADHPS, + IX86_BUILTIN_LOADLPS, + IX86_BUILTIN_STOREHPS, + IX86_BUILTIN_STORELPS, + + IX86_BUILTIN_MASKMOVQ, + IX86_BUILTIN_MOVMSKPS, + IX86_BUILTIN_PMOVMSKB, + + IX86_BUILTIN_MOVNTPS, + IX86_BUILTIN_MOVNTQ, + + IX86_BUILTIN_LOADDQU, + IX86_BUILTIN_STOREDQU, + + IX86_BUILTIN_PACKSSWB, + IX86_BUILTIN_PACKSSDW, + IX86_BUILTIN_PACKUSWB, + + IX86_BUILTIN_PADDB, + IX86_BUILTIN_PADDW, + IX86_BUILTIN_PADDD, + IX86_BUILTIN_PADDQ, + IX86_BUILTIN_PADDSB, + IX86_BUILTIN_PADDSW, + IX86_BUILTIN_PADDUSB, + IX86_BUILTIN_PADDUSW, + IX86_BUILTIN_PSUBB, + IX86_BUILTIN_PSUBW, + IX86_BUILTIN_PSUBD, + IX86_BUILTIN_PSUBQ, + IX86_BUILTIN_PSUBSB, + IX86_BUILTIN_PSUBSW, + IX86_BUILTIN_PSUBUSB, + IX86_BUILTIN_PSUBUSW, + + IX86_BUILTIN_PAND, + IX86_BUILTIN_PANDN, + IX86_BUILTIN_POR, + IX86_BUILTIN_PXOR, + + IX86_BUILTIN_PAVGB, + IX86_BUILTIN_PAVGW, + + IX86_BUILTIN_PCMPEQB, + IX86_BUILTIN_PCMPEQW, + IX86_BUILTIN_PCMPEQD, + IX86_BUILTIN_PCMPGTB, + IX86_BUILTIN_PCMPGTW, + IX86_BUILTIN_PCMPGTD, + + IX86_BUILTIN_PMADDWD, + + IX86_BUILTIN_PMAXSW, + IX86_BUILTIN_PMAXUB, + IX86_BUILTIN_PMINSW, + IX86_BUILTIN_PMINUB, + + IX86_BUILTIN_PMULHUW, + IX86_BUILTIN_PMULHW, + IX86_BUILTIN_PMULLW, + + IX86_BUILTIN_PSADBW, + IX86_BUILTIN_PSHUFW, + + IX86_BUILTIN_PSLLW, + IX86_BUILTIN_PSLLD, + IX86_BUILTIN_PSLLQ, + IX86_BUILTIN_PSRAW, + IX86_BUILTIN_PSRAD, + IX86_BUILTIN_PSRLW, + IX86_BUILTIN_PSRLD, + IX86_BUILTIN_PSRLQ, + IX86_BUILTIN_PSLLWI, + IX86_BUILTIN_PSLLDI, + IX86_BUILTIN_PSLLQI, + IX86_BUILTIN_PSRAWI, + IX86_BUILTIN_PSRADI, + IX86_BUILTIN_PSRLWI, + IX86_BUILTIN_PSRLDI, + IX86_BUILTIN_PSRLQI, + + IX86_BUILTIN_PUNPCKHBW, + IX86_BUILTIN_PUNPCKHWD, + IX86_BUILTIN_PUNPCKHDQ, + IX86_BUILTIN_PUNPCKLBW, + IX86_BUILTIN_PUNPCKLWD, + IX86_BUILTIN_PUNPCKLDQ, + + IX86_BUILTIN_SHUFPS, + + IX86_BUILTIN_RCPPS, + IX86_BUILTIN_RCPSS, + IX86_BUILTIN_RSQRTPS, + IX86_BUILTIN_RSQRTPS_NR, + IX86_BUILTIN_RSQRTSS, + IX86_BUILTIN_RSQRTF, + IX86_BUILTIN_SQRTPS, + IX86_BUILTIN_SQRTPS_NR, + IX86_BUILTIN_SQRTSS, + + IX86_BUILTIN_UNPCKHPS, + IX86_BUILTIN_UNPCKLPS, + + IX86_BUILTIN_ANDPS, + IX86_BUILTIN_ANDNPS, + IX86_BUILTIN_ORPS, + IX86_BUILTIN_XORPS, + + IX86_BUILTIN_EMMS, + IX86_BUILTIN_LDMXCSR, + IX86_BUILTIN_STMXCSR, + IX86_BUILTIN_SFENCE, + + /* 3DNow! Original */ + IX86_BUILTIN_FEMMS, + IX86_BUILTIN_PAVGUSB, + IX86_BUILTIN_PF2ID, + IX86_BUILTIN_PFACC, + IX86_BUILTIN_PFADD, + IX86_BUILTIN_PFCMPEQ, + IX86_BUILTIN_PFCMPGE, + IX86_BUILTIN_PFCMPGT, + IX86_BUILTIN_PFMAX, + IX86_BUILTIN_PFMIN, + IX86_BUILTIN_PFMUL, + IX86_BUILTIN_PFRCP, + IX86_BUILTIN_PFRCPIT1, + IX86_BUILTIN_PFRCPIT2, + IX86_BUILTIN_PFRSQIT1, + IX86_BUILTIN_PFRSQRT, + IX86_BUILTIN_PFSUB, + IX86_BUILTIN_PFSUBR, + IX86_BUILTIN_PI2FD, + IX86_BUILTIN_PMULHRW, + + /* 3DNow! Athlon Extensions */ + IX86_BUILTIN_PF2IW, + IX86_BUILTIN_PFNACC, + IX86_BUILTIN_PFPNACC, + IX86_BUILTIN_PI2FW, + IX86_BUILTIN_PSWAPDSI, + IX86_BUILTIN_PSWAPDSF, + + /* SSE2 */ + IX86_BUILTIN_ADDPD, + IX86_BUILTIN_ADDSD, + IX86_BUILTIN_DIVPD, + IX86_BUILTIN_DIVSD, + IX86_BUILTIN_MULPD, + IX86_BUILTIN_MULSD, + IX86_BUILTIN_SUBPD, + IX86_BUILTIN_SUBSD, + + IX86_BUILTIN_CMPEQPD, + IX86_BUILTIN_CMPLTPD, + IX86_BUILTIN_CMPLEPD, + IX86_BUILTIN_CMPGTPD, + IX86_BUILTIN_CMPGEPD, + IX86_BUILTIN_CMPNEQPD, + IX86_BUILTIN_CMPNLTPD, + IX86_BUILTIN_CMPNLEPD, + IX86_BUILTIN_CMPNGTPD, + IX86_BUILTIN_CMPNGEPD, + IX86_BUILTIN_CMPORDPD, + IX86_BUILTIN_CMPUNORDPD, + IX86_BUILTIN_CMPEQSD, + IX86_BUILTIN_CMPLTSD, + IX86_BUILTIN_CMPLESD, + IX86_BUILTIN_CMPNEQSD, + IX86_BUILTIN_CMPNLTSD, + IX86_BUILTIN_CMPNLESD, + IX86_BUILTIN_CMPORDSD, + IX86_BUILTIN_CMPUNORDSD, + + IX86_BUILTIN_COMIEQSD, + IX86_BUILTIN_COMILTSD, + IX86_BUILTIN_COMILESD, + IX86_BUILTIN_COMIGTSD, + IX86_BUILTIN_COMIGESD, + IX86_BUILTIN_COMINEQSD, + IX86_BUILTIN_UCOMIEQSD, + IX86_BUILTIN_UCOMILTSD, + IX86_BUILTIN_UCOMILESD, + IX86_BUILTIN_UCOMIGTSD, + IX86_BUILTIN_UCOMIGESD, + IX86_BUILTIN_UCOMINEQSD, + + IX86_BUILTIN_MAXPD, + IX86_BUILTIN_MAXSD, + IX86_BUILTIN_MINPD, + IX86_BUILTIN_MINSD, + + IX86_BUILTIN_ANDPD, + IX86_BUILTIN_ANDNPD, + IX86_BUILTIN_ORPD, + IX86_BUILTIN_XORPD, + + IX86_BUILTIN_SQRTPD, + IX86_BUILTIN_SQRTSD, + + IX86_BUILTIN_UNPCKHPD, + IX86_BUILTIN_UNPCKLPD, + + IX86_BUILTIN_SHUFPD, + + IX86_BUILTIN_LOADUPD, + IX86_BUILTIN_STOREUPD, + IX86_BUILTIN_MOVSD, + + IX86_BUILTIN_LOADHPD, + IX86_BUILTIN_LOADLPD, + + IX86_BUILTIN_CVTDQ2PD, + IX86_BUILTIN_CVTDQ2PS, + + IX86_BUILTIN_CVTPD2DQ, + IX86_BUILTIN_CVTPD2PI, + IX86_BUILTIN_CVTPD2PS, + IX86_BUILTIN_CVTTPD2DQ, + IX86_BUILTIN_CVTTPD2PI, + + IX86_BUILTIN_CVTPI2PD, + IX86_BUILTIN_CVTSI2SD, + IX86_BUILTIN_CVTSI642SD, + + IX86_BUILTIN_CVTSD2SI, + IX86_BUILTIN_CVTSD2SI64, + IX86_BUILTIN_CVTSD2SS, + IX86_BUILTIN_CVTSS2SD, + IX86_BUILTIN_CVTTSD2SI, + IX86_BUILTIN_CVTTSD2SI64, + + IX86_BUILTIN_CVTPS2DQ, + IX86_BUILTIN_CVTPS2PD, + IX86_BUILTIN_CVTTPS2DQ, + + IX86_BUILTIN_MOVNTI, + IX86_BUILTIN_MOVNTPD, + IX86_BUILTIN_MOVNTDQ, + + IX86_BUILTIN_MOVQ128, + + /* SSE2 MMX */ + IX86_BUILTIN_MASKMOVDQU, + IX86_BUILTIN_MOVMSKPD, + IX86_BUILTIN_PMOVMSKB128, + + IX86_BUILTIN_PACKSSWB128, + IX86_BUILTIN_PACKSSDW128, + IX86_BUILTIN_PACKUSWB128, + + IX86_BUILTIN_PADDB128, + IX86_BUILTIN_PADDW128, + IX86_BUILTIN_PADDD128, + IX86_BUILTIN_PADDQ128, + IX86_BUILTIN_PADDSB128, + IX86_BUILTIN_PADDSW128, + IX86_BUILTIN_PADDUSB128, + IX86_BUILTIN_PADDUSW128, + IX86_BUILTIN_PSUBB128, + IX86_BUILTIN_PSUBW128, + IX86_BUILTIN_PSUBD128, + IX86_BUILTIN_PSUBQ128, + IX86_BUILTIN_PSUBSB128, + IX86_BUILTIN_PSUBSW128, + IX86_BUILTIN_PSUBUSB128, + IX86_BUILTIN_PSUBUSW128, + + IX86_BUILTIN_PAND128, + IX86_BUILTIN_PANDN128, + IX86_BUILTIN_POR128, + IX86_BUILTIN_PXOR128, + + IX86_BUILTIN_PAVGB128, + IX86_BUILTIN_PAVGW128, + + IX86_BUILTIN_PCMPEQB128, + IX86_BUILTIN_PCMPEQW128, + IX86_BUILTIN_PCMPEQD128, + IX86_BUILTIN_PCMPGTB128, + IX86_BUILTIN_PCMPGTW128, + IX86_BUILTIN_PCMPGTD128, + + IX86_BUILTIN_PMADDWD128, + + IX86_BUILTIN_PMAXSW128, + IX86_BUILTIN_PMAXUB128, + IX86_BUILTIN_PMINSW128, + IX86_BUILTIN_PMINUB128, + + IX86_BUILTIN_PMULUDQ, + IX86_BUILTIN_PMULUDQ128, + IX86_BUILTIN_PMULHUW128, + IX86_BUILTIN_PMULHW128, + IX86_BUILTIN_PMULLW128, + + IX86_BUILTIN_PSADBW128, + IX86_BUILTIN_PSHUFHW, + IX86_BUILTIN_PSHUFLW, + IX86_BUILTIN_PSHUFD, + + IX86_BUILTIN_PSLLDQI128, + IX86_BUILTIN_PSLLWI128, + IX86_BUILTIN_PSLLDI128, + IX86_BUILTIN_PSLLQI128, + IX86_BUILTIN_PSRAWI128, + IX86_BUILTIN_PSRADI128, + IX86_BUILTIN_PSRLDQI128, + IX86_BUILTIN_PSRLWI128, + IX86_BUILTIN_PSRLDI128, + IX86_BUILTIN_PSRLQI128, + + IX86_BUILTIN_PSLLDQ128, + IX86_BUILTIN_PSLLW128, + IX86_BUILTIN_PSLLD128, + IX86_BUILTIN_PSLLQ128, + IX86_BUILTIN_PSRAW128, + IX86_BUILTIN_PSRAD128, + IX86_BUILTIN_PSRLW128, + IX86_BUILTIN_PSRLD128, + IX86_BUILTIN_PSRLQ128, + + IX86_BUILTIN_PUNPCKHBW128, + IX86_BUILTIN_PUNPCKHWD128, + IX86_BUILTIN_PUNPCKHDQ128, + IX86_BUILTIN_PUNPCKHQDQ128, + IX86_BUILTIN_PUNPCKLBW128, + IX86_BUILTIN_PUNPCKLWD128, + IX86_BUILTIN_PUNPCKLDQ128, + IX86_BUILTIN_PUNPCKLQDQ128, + + IX86_BUILTIN_CLFLUSH, + IX86_BUILTIN_MFENCE, + IX86_BUILTIN_LFENCE, + + IX86_BUILTIN_BSRSI, + IX86_BUILTIN_BSRDI, + IX86_BUILTIN_RDPMC, + IX86_BUILTIN_RDTSC, + IX86_BUILTIN_RDTSCP, + IX86_BUILTIN_ROLQI, + IX86_BUILTIN_ROLHI, + IX86_BUILTIN_RORQI, + IX86_BUILTIN_RORHI, + + /* SSE3. */ + IX86_BUILTIN_ADDSUBPS, + IX86_BUILTIN_HADDPS, + IX86_BUILTIN_HSUBPS, + IX86_BUILTIN_MOVSHDUP, + IX86_BUILTIN_MOVSLDUP, + IX86_BUILTIN_ADDSUBPD, + IX86_BUILTIN_HADDPD, + IX86_BUILTIN_HSUBPD, + IX86_BUILTIN_LDDQU, + + IX86_BUILTIN_MONITOR, + IX86_BUILTIN_MWAIT, + + /* SSSE3. */ + IX86_BUILTIN_PHADDW, + IX86_BUILTIN_PHADDD, + IX86_BUILTIN_PHADDSW, + IX86_BUILTIN_PHSUBW, + IX86_BUILTIN_PHSUBD, + IX86_BUILTIN_PHSUBSW, + IX86_BUILTIN_PMADDUBSW, + IX86_BUILTIN_PMULHRSW, + IX86_BUILTIN_PSHUFB, + IX86_BUILTIN_PSIGNB, + IX86_BUILTIN_PSIGNW, + IX86_BUILTIN_PSIGND, + IX86_BUILTIN_PALIGNR, + IX86_BUILTIN_PABSB, + IX86_BUILTIN_PABSW, + IX86_BUILTIN_PABSD, + + IX86_BUILTIN_PHADDW128, + IX86_BUILTIN_PHADDD128, + IX86_BUILTIN_PHADDSW128, + IX86_BUILTIN_PHSUBW128, + IX86_BUILTIN_PHSUBD128, + IX86_BUILTIN_PHSUBSW128, + IX86_BUILTIN_PMADDUBSW128, + IX86_BUILTIN_PMULHRSW128, + IX86_BUILTIN_PSHUFB128, + IX86_BUILTIN_PSIGNB128, + IX86_BUILTIN_PSIGNW128, + IX86_BUILTIN_PSIGND128, + IX86_BUILTIN_PALIGNR128, + IX86_BUILTIN_PABSB128, + IX86_BUILTIN_PABSW128, + IX86_BUILTIN_PABSD128, + + /* AMDFAM10 - SSE4A New Instructions. */ + IX86_BUILTIN_MOVNTSD, + IX86_BUILTIN_MOVNTSS, + IX86_BUILTIN_EXTRQI, + IX86_BUILTIN_EXTRQ, + IX86_BUILTIN_INSERTQI, + IX86_BUILTIN_INSERTQ, + + /* SSE4.1. */ + IX86_BUILTIN_BLENDPD, + IX86_BUILTIN_BLENDPS, + IX86_BUILTIN_BLENDVPD, + IX86_BUILTIN_BLENDVPS, + IX86_BUILTIN_PBLENDVB128, + IX86_BUILTIN_PBLENDW128, + + IX86_BUILTIN_DPPD, + IX86_BUILTIN_DPPS, + + IX86_BUILTIN_INSERTPS128, + + IX86_BUILTIN_MOVNTDQA, + IX86_BUILTIN_MPSADBW128, + IX86_BUILTIN_PACKUSDW128, + IX86_BUILTIN_PCMPEQQ, + IX86_BUILTIN_PHMINPOSUW128, + + IX86_BUILTIN_PMAXSB128, + IX86_BUILTIN_PMAXSD128, + IX86_BUILTIN_PMAXUD128, + IX86_BUILTIN_PMAXUW128, + + IX86_BUILTIN_PMINSB128, + IX86_BUILTIN_PMINSD128, + IX86_BUILTIN_PMINUD128, + IX86_BUILTIN_PMINUW128, + + IX86_BUILTIN_PMOVSXBW128, + IX86_BUILTIN_PMOVSXBD128, + IX86_BUILTIN_PMOVSXBQ128, + IX86_BUILTIN_PMOVSXWD128, + IX86_BUILTIN_PMOVSXWQ128, + IX86_BUILTIN_PMOVSXDQ128, + + IX86_BUILTIN_PMOVZXBW128, + IX86_BUILTIN_PMOVZXBD128, + IX86_BUILTIN_PMOVZXBQ128, + IX86_BUILTIN_PMOVZXWD128, + IX86_BUILTIN_PMOVZXWQ128, + IX86_BUILTIN_PMOVZXDQ128, + + IX86_BUILTIN_PMULDQ128, + IX86_BUILTIN_PMULLD128, + + IX86_BUILTIN_ROUNDPD, + IX86_BUILTIN_ROUNDPS, + IX86_BUILTIN_ROUNDSD, + IX86_BUILTIN_ROUNDSS, + + IX86_BUILTIN_PTESTZ, + IX86_BUILTIN_PTESTC, + IX86_BUILTIN_PTESTNZC, + + IX86_BUILTIN_VEC_INIT_V2SI, + IX86_BUILTIN_VEC_INIT_V4HI, + IX86_BUILTIN_VEC_INIT_V8QI, + IX86_BUILTIN_VEC_EXT_V2DF, + IX86_BUILTIN_VEC_EXT_V2DI, + IX86_BUILTIN_VEC_EXT_V4SF, + IX86_BUILTIN_VEC_EXT_V4SI, + IX86_BUILTIN_VEC_EXT_V8HI, + IX86_BUILTIN_VEC_EXT_V2SI, + IX86_BUILTIN_VEC_EXT_V4HI, + IX86_BUILTIN_VEC_EXT_V16QI, + IX86_BUILTIN_VEC_SET_V2DI, + IX86_BUILTIN_VEC_SET_V4SF, + IX86_BUILTIN_VEC_SET_V4SI, + IX86_BUILTIN_VEC_SET_V8HI, + IX86_BUILTIN_VEC_SET_V4HI, + IX86_BUILTIN_VEC_SET_V16QI, + + IX86_BUILTIN_VEC_PACK_SFIX, + + /* SSE4.2. */ + IX86_BUILTIN_CRC32QI, + IX86_BUILTIN_CRC32HI, + IX86_BUILTIN_CRC32SI, + IX86_BUILTIN_CRC32DI, + + IX86_BUILTIN_PCMPESTRI128, + IX86_BUILTIN_PCMPESTRM128, + IX86_BUILTIN_PCMPESTRA128, + IX86_BUILTIN_PCMPESTRC128, + IX86_BUILTIN_PCMPESTRO128, + IX86_BUILTIN_PCMPESTRS128, + IX86_BUILTIN_PCMPESTRZ128, + IX86_BUILTIN_PCMPISTRI128, + IX86_BUILTIN_PCMPISTRM128, + IX86_BUILTIN_PCMPISTRA128, + IX86_BUILTIN_PCMPISTRC128, + IX86_BUILTIN_PCMPISTRO128, + IX86_BUILTIN_PCMPISTRS128, + IX86_BUILTIN_PCMPISTRZ128, + + IX86_BUILTIN_PCMPGTQ, + + /* AES instructions */ + IX86_BUILTIN_AESENC128, + IX86_BUILTIN_AESENCLAST128, + IX86_BUILTIN_AESDEC128, + IX86_BUILTIN_AESDECLAST128, + IX86_BUILTIN_AESIMC128, + IX86_BUILTIN_AESKEYGENASSIST128, + + /* PCLMUL instruction */ + IX86_BUILTIN_PCLMULQDQ128, + + /* AVX */ + IX86_BUILTIN_ADDPD256, + IX86_BUILTIN_ADDPS256, + IX86_BUILTIN_ADDSUBPD256, + IX86_BUILTIN_ADDSUBPS256, + IX86_BUILTIN_ANDPD256, + IX86_BUILTIN_ANDPS256, + IX86_BUILTIN_ANDNPD256, + IX86_BUILTIN_ANDNPS256, + IX86_BUILTIN_BLENDPD256, + IX86_BUILTIN_BLENDPS256, + IX86_BUILTIN_BLENDVPD256, + IX86_BUILTIN_BLENDVPS256, + IX86_BUILTIN_DIVPD256, + IX86_BUILTIN_DIVPS256, + IX86_BUILTIN_DPPS256, + IX86_BUILTIN_HADDPD256, + IX86_BUILTIN_HADDPS256, + IX86_BUILTIN_HSUBPD256, + IX86_BUILTIN_HSUBPS256, + IX86_BUILTIN_MAXPD256, + IX86_BUILTIN_MAXPS256, + IX86_BUILTIN_MINPD256, + IX86_BUILTIN_MINPS256, + IX86_BUILTIN_MULPD256, + IX86_BUILTIN_MULPS256, + IX86_BUILTIN_ORPD256, + IX86_BUILTIN_ORPS256, + IX86_BUILTIN_SHUFPD256, + IX86_BUILTIN_SHUFPS256, + IX86_BUILTIN_SUBPD256, + IX86_BUILTIN_SUBPS256, + IX86_BUILTIN_XORPD256, + IX86_BUILTIN_XORPS256, + IX86_BUILTIN_CMPSD, + IX86_BUILTIN_CMPSS, + IX86_BUILTIN_CMPPD, + IX86_BUILTIN_CMPPS, + IX86_BUILTIN_CMPPD256, + IX86_BUILTIN_CMPPS256, + IX86_BUILTIN_CVTDQ2PD256, + IX86_BUILTIN_CVTDQ2PS256, + IX86_BUILTIN_CVTPD2PS256, + IX86_BUILTIN_CVTPS2DQ256, + IX86_BUILTIN_CVTPS2PD256, + IX86_BUILTIN_CVTTPD2DQ256, + IX86_BUILTIN_CVTPD2DQ256, + IX86_BUILTIN_CVTTPS2DQ256, + IX86_BUILTIN_EXTRACTF128PD256, + IX86_BUILTIN_EXTRACTF128PS256, + IX86_BUILTIN_EXTRACTF128SI256, + IX86_BUILTIN_VZEROALL, + IX86_BUILTIN_VZEROUPPER, + IX86_BUILTIN_VPERMILVARPD, + IX86_BUILTIN_VPERMILVARPS, + IX86_BUILTIN_VPERMILVARPD256, + IX86_BUILTIN_VPERMILVARPS256, + IX86_BUILTIN_VPERMILPD, + IX86_BUILTIN_VPERMILPS, + IX86_BUILTIN_VPERMILPD256, + IX86_BUILTIN_VPERMILPS256, + IX86_BUILTIN_VPERMIL2PD, + IX86_BUILTIN_VPERMIL2PS, + IX86_BUILTIN_VPERMIL2PD256, + IX86_BUILTIN_VPERMIL2PS256, + IX86_BUILTIN_VPERM2F128PD256, + IX86_BUILTIN_VPERM2F128PS256, + IX86_BUILTIN_VPERM2F128SI256, + IX86_BUILTIN_VBROADCASTSS, + IX86_BUILTIN_VBROADCASTSD256, + IX86_BUILTIN_VBROADCASTSS256, + IX86_BUILTIN_VBROADCASTPD256, + IX86_BUILTIN_VBROADCASTPS256, + IX86_BUILTIN_VINSERTF128PD256, + IX86_BUILTIN_VINSERTF128PS256, + IX86_BUILTIN_VINSERTF128SI256, + IX86_BUILTIN_LOADUPD256, + IX86_BUILTIN_LOADUPS256, + IX86_BUILTIN_STOREUPD256, + IX86_BUILTIN_STOREUPS256, + IX86_BUILTIN_LDDQU256, + IX86_BUILTIN_MOVNTDQ256, + IX86_BUILTIN_MOVNTPD256, + IX86_BUILTIN_MOVNTPS256, + IX86_BUILTIN_LOADDQU256, + IX86_BUILTIN_STOREDQU256, + IX86_BUILTIN_MASKLOADPD, + IX86_BUILTIN_MASKLOADPS, + IX86_BUILTIN_MASKSTOREPD, + IX86_BUILTIN_MASKSTOREPS, + IX86_BUILTIN_MASKLOADPD256, + IX86_BUILTIN_MASKLOADPS256, + IX86_BUILTIN_MASKSTOREPD256, + IX86_BUILTIN_MASKSTOREPS256, + IX86_BUILTIN_MOVSHDUP256, + IX86_BUILTIN_MOVSLDUP256, + IX86_BUILTIN_MOVDDUP256, + + IX86_BUILTIN_SQRTPD256, + IX86_BUILTIN_SQRTPS256, + IX86_BUILTIN_SQRTPS_NR256, + IX86_BUILTIN_RSQRTPS256, + IX86_BUILTIN_RSQRTPS_NR256, + + IX86_BUILTIN_RCPPS256, + + IX86_BUILTIN_ROUNDPD256, + IX86_BUILTIN_ROUNDPS256, + + IX86_BUILTIN_UNPCKHPD256, + IX86_BUILTIN_UNPCKLPD256, + IX86_BUILTIN_UNPCKHPS256, + IX86_BUILTIN_UNPCKLPS256, + + IX86_BUILTIN_SI256_SI, + IX86_BUILTIN_PS256_PS, + IX86_BUILTIN_PD256_PD, + IX86_BUILTIN_SI_SI256, + IX86_BUILTIN_PS_PS256, + IX86_BUILTIN_PD_PD256, + + IX86_BUILTIN_VTESTZPD, + IX86_BUILTIN_VTESTCPD, + IX86_BUILTIN_VTESTNZCPD, + IX86_BUILTIN_VTESTZPS, + IX86_BUILTIN_VTESTCPS, + IX86_BUILTIN_VTESTNZCPS, + IX86_BUILTIN_VTESTZPD256, + IX86_BUILTIN_VTESTCPD256, + IX86_BUILTIN_VTESTNZCPD256, + IX86_BUILTIN_VTESTZPS256, + IX86_BUILTIN_VTESTCPS256, + IX86_BUILTIN_VTESTNZCPS256, + IX86_BUILTIN_PTESTZ256, + IX86_BUILTIN_PTESTC256, + IX86_BUILTIN_PTESTNZC256, + + IX86_BUILTIN_MOVMSKPD256, + IX86_BUILTIN_MOVMSKPS256, + + /* TFmode support builtins. */ + IX86_BUILTIN_INFQ, + IX86_BUILTIN_HUGE_VALQ, + IX86_BUILTIN_FABSQ, + IX86_BUILTIN_COPYSIGNQ, + + /* Vectorizer support builtins. */ + IX86_BUILTIN_CPYSGNPS, + IX86_BUILTIN_CPYSGNPD, + IX86_BUILTIN_CPYSGNPS256, + IX86_BUILTIN_CPYSGNPD256, + + IX86_BUILTIN_CVTUDQ2PS, + + IX86_BUILTIN_VEC_PERM_V2DF, + IX86_BUILTIN_VEC_PERM_V4SF, + IX86_BUILTIN_VEC_PERM_V2DI, + IX86_BUILTIN_VEC_PERM_V4SI, + IX86_BUILTIN_VEC_PERM_V8HI, + IX86_BUILTIN_VEC_PERM_V16QI, + IX86_BUILTIN_VEC_PERM_V2DI_U, + IX86_BUILTIN_VEC_PERM_V4SI_U, + IX86_BUILTIN_VEC_PERM_V8HI_U, + IX86_BUILTIN_VEC_PERM_V16QI_U, + IX86_BUILTIN_VEC_PERM_V4DF, + IX86_BUILTIN_VEC_PERM_V8SF, + + /* FMA4 and XOP instructions. */ + IX86_BUILTIN_VFMADDSS, + IX86_BUILTIN_VFMADDSD, + IX86_BUILTIN_VFMADDPS, + IX86_BUILTIN_VFMADDPD, + IX86_BUILTIN_VFMADDPS256, + IX86_BUILTIN_VFMADDPD256, + IX86_BUILTIN_VFMADDSUBPS, + IX86_BUILTIN_VFMADDSUBPD, + IX86_BUILTIN_VFMADDSUBPS256, + IX86_BUILTIN_VFMADDSUBPD256, + + IX86_BUILTIN_VPCMOV, + IX86_BUILTIN_VPCMOV_V2DI, + IX86_BUILTIN_VPCMOV_V4SI, + IX86_BUILTIN_VPCMOV_V8HI, + IX86_BUILTIN_VPCMOV_V16QI, + IX86_BUILTIN_VPCMOV_V4SF, + IX86_BUILTIN_VPCMOV_V2DF, + IX86_BUILTIN_VPCMOV256, + IX86_BUILTIN_VPCMOV_V4DI256, + IX86_BUILTIN_VPCMOV_V8SI256, + IX86_BUILTIN_VPCMOV_V16HI256, + IX86_BUILTIN_VPCMOV_V32QI256, + IX86_BUILTIN_VPCMOV_V8SF256, + IX86_BUILTIN_VPCMOV_V4DF256, + + IX86_BUILTIN_VPPERM, + + IX86_BUILTIN_VPMACSSWW, + IX86_BUILTIN_VPMACSWW, + IX86_BUILTIN_VPMACSSWD, + IX86_BUILTIN_VPMACSWD, + IX86_BUILTIN_VPMACSSDD, + IX86_BUILTIN_VPMACSDD, + IX86_BUILTIN_VPMACSSDQL, + IX86_BUILTIN_VPMACSSDQH, + IX86_BUILTIN_VPMACSDQL, + IX86_BUILTIN_VPMACSDQH, + IX86_BUILTIN_VPMADCSSWD, + IX86_BUILTIN_VPMADCSWD, + + IX86_BUILTIN_VPHADDBW, + IX86_BUILTIN_VPHADDBD, + IX86_BUILTIN_VPHADDBQ, + IX86_BUILTIN_VPHADDWD, + IX86_BUILTIN_VPHADDWQ, + IX86_BUILTIN_VPHADDDQ, + IX86_BUILTIN_VPHADDUBW, + IX86_BUILTIN_VPHADDUBD, + IX86_BUILTIN_VPHADDUBQ, + IX86_BUILTIN_VPHADDUWD, + IX86_BUILTIN_VPHADDUWQ, + IX86_BUILTIN_VPHADDUDQ, + IX86_BUILTIN_VPHSUBBW, + IX86_BUILTIN_VPHSUBWD, + IX86_BUILTIN_VPHSUBDQ, + + IX86_BUILTIN_VPROTB, + IX86_BUILTIN_VPROTW, + IX86_BUILTIN_VPROTD, + IX86_BUILTIN_VPROTQ, + IX86_BUILTIN_VPROTB_IMM, + IX86_BUILTIN_VPROTW_IMM, + IX86_BUILTIN_VPROTD_IMM, + IX86_BUILTIN_VPROTQ_IMM, + + IX86_BUILTIN_VPSHLB, + IX86_BUILTIN_VPSHLW, + IX86_BUILTIN_VPSHLD, + IX86_BUILTIN_VPSHLQ, + IX86_BUILTIN_VPSHAB, + IX86_BUILTIN_VPSHAW, + IX86_BUILTIN_VPSHAD, + IX86_BUILTIN_VPSHAQ, + + IX86_BUILTIN_VFRCZSS, + IX86_BUILTIN_VFRCZSD, + IX86_BUILTIN_VFRCZPS, + IX86_BUILTIN_VFRCZPD, + IX86_BUILTIN_VFRCZPS256, + IX86_BUILTIN_VFRCZPD256, + + IX86_BUILTIN_VPCOMEQUB, + IX86_BUILTIN_VPCOMNEUB, + IX86_BUILTIN_VPCOMLTUB, + IX86_BUILTIN_VPCOMLEUB, + IX86_BUILTIN_VPCOMGTUB, + IX86_BUILTIN_VPCOMGEUB, + IX86_BUILTIN_VPCOMFALSEUB, + IX86_BUILTIN_VPCOMTRUEUB, + + IX86_BUILTIN_VPCOMEQUW, + IX86_BUILTIN_VPCOMNEUW, + IX86_BUILTIN_VPCOMLTUW, + IX86_BUILTIN_VPCOMLEUW, + IX86_BUILTIN_VPCOMGTUW, + IX86_BUILTIN_VPCOMGEUW, + IX86_BUILTIN_VPCOMFALSEUW, + IX86_BUILTIN_VPCOMTRUEUW, + + IX86_BUILTIN_VPCOMEQUD, + IX86_BUILTIN_VPCOMNEUD, + IX86_BUILTIN_VPCOMLTUD, + IX86_BUILTIN_VPCOMLEUD, + IX86_BUILTIN_VPCOMGTUD, + IX86_BUILTIN_VPCOMGEUD, + IX86_BUILTIN_VPCOMFALSEUD, + IX86_BUILTIN_VPCOMTRUEUD, + + IX86_BUILTIN_VPCOMEQUQ, + IX86_BUILTIN_VPCOMNEUQ, + IX86_BUILTIN_VPCOMLTUQ, + IX86_BUILTIN_VPCOMLEUQ, + IX86_BUILTIN_VPCOMGTUQ, + IX86_BUILTIN_VPCOMGEUQ, + IX86_BUILTIN_VPCOMFALSEUQ, + IX86_BUILTIN_VPCOMTRUEUQ, + + IX86_BUILTIN_VPCOMEQB, + IX86_BUILTIN_VPCOMNEB, + IX86_BUILTIN_VPCOMLTB, + IX86_BUILTIN_VPCOMLEB, + IX86_BUILTIN_VPCOMGTB, + IX86_BUILTIN_VPCOMGEB, + IX86_BUILTIN_VPCOMFALSEB, + IX86_BUILTIN_VPCOMTRUEB, + + IX86_BUILTIN_VPCOMEQW, + IX86_BUILTIN_VPCOMNEW, + IX86_BUILTIN_VPCOMLTW, + IX86_BUILTIN_VPCOMLEW, + IX86_BUILTIN_VPCOMGTW, + IX86_BUILTIN_VPCOMGEW, + IX86_BUILTIN_VPCOMFALSEW, + IX86_BUILTIN_VPCOMTRUEW, + + IX86_BUILTIN_VPCOMEQD, + IX86_BUILTIN_VPCOMNED, + IX86_BUILTIN_VPCOMLTD, + IX86_BUILTIN_VPCOMLED, + IX86_BUILTIN_VPCOMGTD, + IX86_BUILTIN_VPCOMGED, + IX86_BUILTIN_VPCOMFALSED, + IX86_BUILTIN_VPCOMTRUED, + + IX86_BUILTIN_VPCOMEQQ, + IX86_BUILTIN_VPCOMNEQ, + IX86_BUILTIN_VPCOMLTQ, + IX86_BUILTIN_VPCOMLEQ, + IX86_BUILTIN_VPCOMGTQ, + IX86_BUILTIN_VPCOMGEQ, + IX86_BUILTIN_VPCOMFALSEQ, + IX86_BUILTIN_VPCOMTRUEQ, + + /* LWP instructions. */ + IX86_BUILTIN_LLWPCB, + IX86_BUILTIN_SLWPCB, + IX86_BUILTIN_LWPVAL32, + IX86_BUILTIN_LWPVAL64, + IX86_BUILTIN_LWPINS32, + IX86_BUILTIN_LWPINS64, + + IX86_BUILTIN_CLZS, + + /* BMI instructions. */ + IX86_BUILTIN_BEXTR32, + IX86_BUILTIN_BEXTR64, + IX86_BUILTIN_CTZS, + + /* TBM instructions. */ + IX86_BUILTIN_BEXTRI32, + IX86_BUILTIN_BEXTRI64, + + + /* FSGSBASE instructions. */ + IX86_BUILTIN_RDFSBASE32, + IX86_BUILTIN_RDFSBASE64, + IX86_BUILTIN_RDGSBASE32, + IX86_BUILTIN_RDGSBASE64, + IX86_BUILTIN_WRFSBASE32, + IX86_BUILTIN_WRFSBASE64, + IX86_BUILTIN_WRGSBASE32, + IX86_BUILTIN_WRGSBASE64, + + /* RDRND instructions. */ + IX86_BUILTIN_RDRAND16_STEP, + IX86_BUILTIN_RDRAND32_STEP, + IX86_BUILTIN_RDRAND64_STEP, + + /* F16C instructions. */ + IX86_BUILTIN_CVTPH2PS, + IX86_BUILTIN_CVTPH2PS256, + IX86_BUILTIN_CVTPS2PH, + IX86_BUILTIN_CVTPS2PH256, + + /* CFString built-in for darwin */ + IX86_BUILTIN_CFSTRING, + + IX86_BUILTIN_MAX +}; + +/* Table for the ix86 builtin decls. */ +static GTY(()) tree ix86_builtins[(int) IX86_BUILTIN_MAX]; + +/* Table of all of the builtin functions that are possible with different ISA's + but are waiting to be built until a function is declared to use that + ISA. */ +struct builtin_isa { + const char *name; /* function name */ + enum ix86_builtin_func_type tcode; /* type to use in the declaration */ + int isa; /* isa_flags this builtin is defined for */ + bool const_p; /* true if the declaration is constant */ + bool set_and_not_built_p; +}; + +static struct builtin_isa ix86_builtins_isa[(int) IX86_BUILTIN_MAX]; + + +/* Add an ix86 target builtin function with CODE, NAME and TYPE. Save the MASK + of which isa_flags to use in the ix86_builtins_isa array. Stores the + function decl in the ix86_builtins array. Returns the function decl or + NULL_TREE, if the builtin was not added. + + If the front end has a special hook for builtin functions, delay adding + builtin functions that aren't in the current ISA until the ISA is changed + with function specific optimization. Doing so, can save about 300K for the + default compiler. When the builtin is expanded, check at that time whether + it is valid. + + If the front end doesn't have a special hook, record all builtins, even if + it isn't an instruction set in the current ISA in case the user uses + function specific options for a different ISA, so that we don't get scope + errors if a builtin is added in the middle of a function scope. */ + +static inline tree +def_builtin (int mask, const char *name, enum ix86_builtin_func_type tcode, + enum ix86_builtins code) +{ + tree decl = NULL_TREE; + + if (!(mask & OPTION_MASK_ISA_64BIT) || TARGET_64BIT) + { + ix86_builtins_isa[(int) code].isa = mask; + + mask &= ~OPTION_MASK_ISA_64BIT; + if (mask == 0 + || (mask & ix86_isa_flags) != 0 + || (lang_hooks.builtin_function + == lang_hooks.builtin_function_ext_scope)) + + { + tree type = ix86_get_builtin_func_type (tcode); + decl = add_builtin_function (name, type, code, BUILT_IN_MD, + NULL, NULL_TREE); + ix86_builtins[(int) code] = decl; + ix86_builtins_isa[(int) code].set_and_not_built_p = false; + } + else + { + ix86_builtins[(int) code] = NULL_TREE; + ix86_builtins_isa[(int) code].tcode = tcode; + ix86_builtins_isa[(int) code].name = name; + ix86_builtins_isa[(int) code].const_p = false; + ix86_builtins_isa[(int) code].set_and_not_built_p = true; + } + } + + return decl; +} + +/* Like def_builtin, but also marks the function decl "const". */ + +static inline tree +def_builtin_const (int mask, const char *name, + enum ix86_builtin_func_type tcode, enum ix86_builtins code) +{ + tree decl = def_builtin (mask, name, tcode, code); + if (decl) + TREE_READONLY (decl) = 1; + else + ix86_builtins_isa[(int) code].const_p = true; + + return decl; +} + +/* Add any new builtin functions for a given ISA that may not have been + declared. This saves a bit of space compared to adding all of the + declarations to the tree, even if we didn't use them. */ + +static void +ix86_add_new_builtins (int isa) +{ + int i; + + for (i = 0; i < (int)IX86_BUILTIN_MAX; i++) + { + if ((ix86_builtins_isa[i].isa & isa) != 0 + && ix86_builtins_isa[i].set_and_not_built_p) + { + tree decl, type; + + /* Don't define the builtin again. */ + ix86_builtins_isa[i].set_and_not_built_p = false; + + type = ix86_get_builtin_func_type (ix86_builtins_isa[i].tcode); + decl = add_builtin_function_ext_scope (ix86_builtins_isa[i].name, + type, i, BUILT_IN_MD, NULL, + NULL_TREE); + + ix86_builtins[i] = decl; + if (ix86_builtins_isa[i].const_p) + TREE_READONLY (decl) = 1; + } + } +} + +/* Bits for builtin_description.flag. */ + +/* Set when we don't support the comparison natively, and should + swap_comparison in order to support it. */ +#define BUILTIN_DESC_SWAP_OPERANDS 1 + +struct builtin_description +{ + const unsigned int mask; + const enum insn_code icode; + const char *const name; + const enum ix86_builtins code; + const enum rtx_code comparison; + const int flag; +}; + +static const struct builtin_description bdesc_comi[] = +{ + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, UNEQ, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, UNLT, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, UNLE, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, GT, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, GE, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, LTGT, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, UNEQ, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, UNLT, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, UNLE, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, GT, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, GE, 0 }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, LTGT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdeq", IX86_BUILTIN_COMIEQSD, UNEQ, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdlt", IX86_BUILTIN_COMILTSD, UNLT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdle", IX86_BUILTIN_COMILESD, UNLE, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdgt", IX86_BUILTIN_COMIGTSD, GT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdge", IX86_BUILTIN_COMIGESD, GE, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdneq", IX86_BUILTIN_COMINEQSD, LTGT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdeq", IX86_BUILTIN_UCOMIEQSD, UNEQ, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdlt", IX86_BUILTIN_UCOMILTSD, UNLT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdle", IX86_BUILTIN_UCOMILESD, UNLE, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdgt", IX86_BUILTIN_UCOMIGTSD, GT, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdge", IX86_BUILTIN_UCOMIGESD, GE, 0 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdneq", IX86_BUILTIN_UCOMINEQSD, LTGT, 0 }, +}; + +static const struct builtin_description bdesc_pcmpestr[] = +{ + /* SSE4.2 */ + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestri128", IX86_BUILTIN_PCMPESTRI128, UNKNOWN, 0 }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrm128", IX86_BUILTIN_PCMPESTRM128, UNKNOWN, 0 }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestria128", IX86_BUILTIN_PCMPESTRA128, UNKNOWN, (int) CCAmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestric128", IX86_BUILTIN_PCMPESTRC128, UNKNOWN, (int) CCCmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrio128", IX86_BUILTIN_PCMPESTRO128, UNKNOWN, (int) CCOmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestris128", IX86_BUILTIN_PCMPESTRS128, UNKNOWN, (int) CCSmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestriz128", IX86_BUILTIN_PCMPESTRZ128, UNKNOWN, (int) CCZmode }, +}; + +static const struct builtin_description bdesc_pcmpistr[] = +{ + /* SSE4.2 */ + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistri128", IX86_BUILTIN_PCMPISTRI128, UNKNOWN, 0 }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrm128", IX86_BUILTIN_PCMPISTRM128, UNKNOWN, 0 }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistria128", IX86_BUILTIN_PCMPISTRA128, UNKNOWN, (int) CCAmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistric128", IX86_BUILTIN_PCMPISTRC128, UNKNOWN, (int) CCCmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrio128", IX86_BUILTIN_PCMPISTRO128, UNKNOWN, (int) CCOmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistris128", IX86_BUILTIN_PCMPISTRS128, UNKNOWN, (int) CCSmode }, + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistriz128", IX86_BUILTIN_PCMPISTRZ128, UNKNOWN, (int) CCZmode }, +}; + +/* Special builtins with variable number of arguments. */ +static const struct builtin_description bdesc_special_args[] = +{ + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdtsc, "__builtin_ia32_rdtsc", IX86_BUILTIN_RDTSC, UNKNOWN, (int) UINT64_FTYPE_VOID }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdtscp, "__builtin_ia32_rdtscp", IX86_BUILTIN_RDTSCP, UNKNOWN, (int) UINT64_FTYPE_PUNSIGNED }, + + /* MMX */ + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_emms, "__builtin_ia32_emms", IX86_BUILTIN_EMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, + + /* 3DNow! */ + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_femms, "__builtin_ia32_femms", IX86_BUILTIN_FEMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, + + /* SSE */ + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movups, "__builtin_ia32_storeups", IX86_BUILTIN_STOREUPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movntv4sf, "__builtin_ia32_movntps", IX86_BUILTIN_MOVNTPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movups, "__builtin_ia32_loadups", IX86_BUILTIN_LOADUPS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadhps_exp, "__builtin_ia32_loadhps", IX86_BUILTIN_LOADHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadlps_exp, "__builtin_ia32_loadlps", IX86_BUILTIN_LOADLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storehps, "__builtin_ia32_storehps", IX86_BUILTIN_STOREHPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storelps, "__builtin_ia32_storelps", IX86_BUILTIN_STORELPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, + + /* SSE or 3DNow!A */ + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_sfence, "__builtin_ia32_sfence", IX86_BUILTIN_SFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_movntdi, "__builtin_ia32_movntq", IX86_BUILTIN_MOVNTQ, UNKNOWN, (int) VOID_FTYPE_PULONGLONG_ULONGLONG }, + + /* SSE2 */ + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lfence, "__builtin_ia32_lfence", IX86_BUILTIN_LFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_mfence, 0, IX86_BUILTIN_MFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movupd, "__builtin_ia32_storeupd", IX86_BUILTIN_STOREUPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movdqu, "__builtin_ia32_storedqu", IX86_BUILTIN_STOREDQU, UNKNOWN, (int) VOID_FTYPE_PCHAR_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2df, "__builtin_ia32_movntpd", IX86_BUILTIN_MOVNTPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2di, "__builtin_ia32_movntdq", IX86_BUILTIN_MOVNTDQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntsi, "__builtin_ia32_movnti", IX86_BUILTIN_MOVNTI, UNKNOWN, (int) VOID_FTYPE_PINT_INT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movupd, "__builtin_ia32_loadupd", IX86_BUILTIN_LOADUPD, UNKNOWN, (int) V2DF_FTYPE_PCDOUBLE }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movdqu, "__builtin_ia32_loaddqu", IX86_BUILTIN_LOADDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadhpd_exp, "__builtin_ia32_loadhpd", IX86_BUILTIN_LOADHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadlpd_exp, "__builtin_ia32_loadlpd", IX86_BUILTIN_LOADLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, + + /* SSE3 */ + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_lddqu, "__builtin_ia32_lddqu", IX86_BUILTIN_LDDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, + + /* SSE4.1 */ + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_movntdqa, "__builtin_ia32_movntdqa", IX86_BUILTIN_MOVNTDQA, UNKNOWN, (int) V2DI_FTYPE_PV2DI }, + + /* SSE4A */ + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv2df, "__builtin_ia32_movntsd", IX86_BUILTIN_MOVNTSD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv4sf, "__builtin_ia32_movntss", IX86_BUILTIN_MOVNTSS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, + + /* AVX */ + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroall, "__builtin_ia32_vzeroall", IX86_BUILTIN_VZEROALL, UNKNOWN, (int) VOID_FTYPE_VOID }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroupper, "__builtin_ia32_vzeroupper", IX86_BUILTIN_VZEROUPPER, UNKNOWN, (int) VOID_FTYPE_VOID }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4sf, "__builtin_ia32_vbroadcastss", IX86_BUILTIN_VBROADCASTSS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4df, "__builtin_ia32_vbroadcastsd256", IX86_BUILTIN_VBROADCASTSD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv8sf, "__builtin_ia32_vbroadcastss256", IX86_BUILTIN_VBROADCASTSS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v4df, "__builtin_ia32_vbroadcastf128_pd256", IX86_BUILTIN_VBROADCASTPD256, UNKNOWN, (int) V4DF_FTYPE_PCV2DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v8sf, "__builtin_ia32_vbroadcastf128_ps256", IX86_BUILTIN_VBROADCASTPS256, UNKNOWN, (int) V8SF_FTYPE_PCV4SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movupd256, "__builtin_ia32_loadupd256", IX86_BUILTIN_LOADUPD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movups256, "__builtin_ia32_loadups256", IX86_BUILTIN_LOADUPS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movupd256, "__builtin_ia32_storeupd256", IX86_BUILTIN_STOREUPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movups256, "__builtin_ia32_storeups256", IX86_BUILTIN_STOREUPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movdqu256, "__builtin_ia32_loaddqu256", IX86_BUILTIN_LOADDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movdqu256, "__builtin_ia32_storedqu256", IX86_BUILTIN_STOREDQU256, UNKNOWN, (int) VOID_FTYPE_PCHAR_V32QI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_lddqu256, "__builtin_ia32_lddqu256", IX86_BUILTIN_LDDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4di, "__builtin_ia32_movntdq256", IX86_BUILTIN_MOVNTDQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4df, "__builtin_ia32_movntpd256", IX86_BUILTIN_MOVNTPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv8sf, "__builtin_ia32_movntps256", IX86_BUILTIN_MOVNTPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd, "__builtin_ia32_maskloadpd", IX86_BUILTIN_MASKLOADPD, UNKNOWN, (int) V2DF_FTYPE_PCV2DF_V2DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps, "__builtin_ia32_maskloadps", IX86_BUILTIN_MASKLOADPS, UNKNOWN, (int) V4SF_FTYPE_PCV4SF_V4SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd256, "__builtin_ia32_maskloadpd256", IX86_BUILTIN_MASKLOADPD256, UNKNOWN, (int) V4DF_FTYPE_PCV4DF_V4DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps256, "__builtin_ia32_maskloadps256", IX86_BUILTIN_MASKLOADPS256, UNKNOWN, (int) V8SF_FTYPE_PCV8SF_V8SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd, "__builtin_ia32_maskstorepd", IX86_BUILTIN_MASKSTOREPD, UNKNOWN, (int) VOID_FTYPE_PV2DF_V2DI_V2DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps, "__builtin_ia32_maskstoreps", IX86_BUILTIN_MASKSTOREPS, UNKNOWN, (int) VOID_FTYPE_PV4SF_V4SI_V4SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd256, "__builtin_ia32_maskstorepd256", IX86_BUILTIN_MASKSTOREPD256, UNKNOWN, (int) VOID_FTYPE_PV4DF_V4DI_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps256, "__builtin_ia32_maskstoreps256", IX86_BUILTIN_MASKSTOREPS256, UNKNOWN, (int) VOID_FTYPE_PV8SF_V8SI_V8SF }, + + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID }, + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID }, + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT }, + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT }, + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT }, + { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT }, + + /* FSGSBASE */ + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasesi, "__builtin_ia32_rdfsbase32", IX86_BUILTIN_RDFSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasedi, "__builtin_ia32_rdfsbase64", IX86_BUILTIN_RDFSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasesi, "__builtin_ia32_rdgsbase32", IX86_BUILTIN_RDGSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasedi, "__builtin_ia32_rdgsbase64", IX86_BUILTIN_RDGSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasesi, "__builtin_ia32_wrfsbase32", IX86_BUILTIN_WRFSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasedi, "__builtin_ia32_wrfsbase64", IX86_BUILTIN_WRFSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasesi, "__builtin_ia32_wrgsbase32", IX86_BUILTIN_WRGSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED }, + { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasedi, "__builtin_ia32_wrgsbase64", IX86_BUILTIN_WRGSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 }, +}; + +/* Builtins with variable number of arguments. */ +static const struct builtin_description bdesc_args[] = +{ + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_bsr, "__builtin_ia32_bsrsi", IX86_BUILTIN_BSRSI, UNKNOWN, (int) INT_FTYPE_INT }, + { OPTION_MASK_ISA_64BIT, CODE_FOR_bsr_rex64, "__builtin_ia32_bsrdi", IX86_BUILTIN_BSRDI, UNKNOWN, (int) INT64_FTYPE_INT64 }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdpmc, "__builtin_ia32_rdpmc", IX86_BUILTIN_RDPMC, UNKNOWN, (int) UINT64_FTYPE_INT }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlqi3, "__builtin_ia32_rolqi", IX86_BUILTIN_ROLQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlhi3, "__builtin_ia32_rolhi", IX86_BUILTIN_ROLHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrqi3, "__builtin_ia32_rorqi", IX86_BUILTIN_RORQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, + { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrhi3, "__builtin_ia32_rorhi", IX86_BUILTIN_RORHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, + + /* MMX */ + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andv2si3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andnotv2si3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_iorv2si3, "__builtin_ia32_por", IX86_BUILTIN_POR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_xorv2si3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI}, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI}, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packsswb, "__builtin_ia32_packsswb", IX86_BUILTIN_PACKSSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packssdw, "__builtin_ia32_packssdw", IX86_BUILTIN_PACKSSDW, UNKNOWN, (int) V4HI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packuswb, "__builtin_ia32_packuswb", IX86_BUILTIN_PACKUSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_pmaddwd, "__builtin_ia32_pmaddwd", IX86_BUILTIN_PMADDWD, UNKNOWN, (int) V2SI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllwi", IX86_BUILTIN_PSLLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslldi", IX86_BUILTIN_PSLLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllqi", IX86_BUILTIN_PSLLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllw", IX86_BUILTIN_PSLLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslld", IX86_BUILTIN_PSLLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllq", IX86_BUILTIN_PSLLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlwi", IX86_BUILTIN_PSRLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrldi", IX86_BUILTIN_PSRLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlqi", IX86_BUILTIN_PSRLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlw", IX86_BUILTIN_PSRLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrld", IX86_BUILTIN_PSRLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlq", IX86_BUILTIN_PSRLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, + + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psrawi", IX86_BUILTIN_PSRAWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psradi", IX86_BUILTIN_PSRADI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psraw", IX86_BUILTIN_PSRAW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, + { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psrad", IX86_BUILTIN_PSRAD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, + + /* 3DNow! */ + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pf2id, "__builtin_ia32_pf2id", IX86_BUILTIN_PF2ID, UNKNOWN, (int) V2SI_FTYPE_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_floatv2si2, "__builtin_ia32_pi2fd", IX86_BUILTIN_PI2FD, UNKNOWN, (int) V2SF_FTYPE_V2SI }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpv2sf2, "__builtin_ia32_pfrcp", IX86_BUILTIN_PFRCP, UNKNOWN, (int) V2SF_FTYPE_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqrtv2sf2, "__builtin_ia32_pfrsqrt", IX86_BUILTIN_PFRSQRT, UNKNOWN, (int) V2SF_FTYPE_V2SF }, + + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgusb", IX86_BUILTIN_PAVGUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_haddv2sf3, "__builtin_ia32_pfacc", IX86_BUILTIN_PFACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_addv2sf3, "__builtin_ia32_pfadd", IX86_BUILTIN_PFADD, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_eqv2sf3, "__builtin_ia32_pfcmpeq", IX86_BUILTIN_PFCMPEQ, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gev2sf3, "__builtin_ia32_pfcmpge", IX86_BUILTIN_PFCMPGE, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gtv2sf3, "__builtin_ia32_pfcmpgt", IX86_BUILTIN_PFCMPGT, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_smaxv2sf3, "__builtin_ia32_pfmax", IX86_BUILTIN_PFMAX, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_sminv2sf3, "__builtin_ia32_pfmin", IX86_BUILTIN_PFMIN, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_mulv2sf3, "__builtin_ia32_pfmul", IX86_BUILTIN_PFMUL, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit1v2sf3, "__builtin_ia32_pfrcpit1", IX86_BUILTIN_PFRCPIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit2v2sf3, "__builtin_ia32_pfrcpit2", IX86_BUILTIN_PFRCPIT2, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqit1v2sf3, "__builtin_ia32_pfrsqit1", IX86_BUILTIN_PFRSQIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subv2sf3, "__builtin_ia32_pfsub", IX86_BUILTIN_PFSUB, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subrv2sf3, "__builtin_ia32_pfsubr", IX86_BUILTIN_PFSUBR, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pmulhrwv4hi3, "__builtin_ia32_pmulhrw", IX86_BUILTIN_PMULHRW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + + /* 3DNow!A */ + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pf2iw, "__builtin_ia32_pf2iw", IX86_BUILTIN_PF2IW, UNKNOWN, (int) V2SI_FTYPE_V2SF }, + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pi2fw, "__builtin_ia32_pi2fw", IX86_BUILTIN_PI2FW, UNKNOWN, (int) V2SF_FTYPE_V2SI }, + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2si2, "__builtin_ia32_pswapdsi", IX86_BUILTIN_PSWAPDSI, UNKNOWN, (int) V2SI_FTYPE_V2SI }, + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2sf2, "__builtin_ia32_pswapdsf", IX86_BUILTIN_PSWAPDSF, UNKNOWN, (int) V2SF_FTYPE_V2SF }, + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_hsubv2sf3, "__builtin_ia32_pfnacc", IX86_BUILTIN_PFNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_addsubv2sf3, "__builtin_ia32_pfpnacc", IX86_BUILTIN_PFPNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, + + /* SSE */ + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movmskps, "__builtin_ia32_movmskps", IX86_BUILTIN_MOVMSKPS, UNKNOWN, (int) INT_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_sqrtv4sf2, "__builtin_ia32_sqrtps", IX86_BUILTIN_SQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sqrtv4sf2, "__builtin_ia32_sqrtps_nr", IX86_BUILTIN_SQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rsqrtv4sf2, "__builtin_ia32_rsqrtps", IX86_BUILTIN_RSQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtv4sf2, "__builtin_ia32_rsqrtps_nr", IX86_BUILTIN_RSQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rcpv4sf2, "__builtin_ia32_rcpps", IX86_BUILTIN_RCPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtps2pi, "__builtin_ia32_cvtps2pi", IX86_BUILTIN_CVTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtss2si, "__builtin_ia32_cvtss2si", IX86_BUILTIN_CVTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtss2siq, "__builtin_ia32_cvtss2si64", IX86_BUILTIN_CVTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttps2pi, "__builtin_ia32_cvttps2pi", IX86_BUILTIN_CVTTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttss2si, "__builtin_ia32_cvttss2si", IX86_BUILTIN_CVTTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvttss2siq, "__builtin_ia32_cvttss2si64", IX86_BUILTIN_CVTTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_shufps, "__builtin_ia32_shufps", IX86_BUILTIN_SHUFPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP}, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngtss", IX86_BUILTIN_CMPNGTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngess", IX86_BUILTIN_CMPNGESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_andv4sf3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_andnotv4sf3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_iorv4sf3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_xorv4sf3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_copysignv4sf3, "__builtin_ia32_copysignps", IX86_BUILTIN_CPYSGNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movhlps_exp, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movlhps_exp, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_highv4sf, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_lowv4sf, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtpi2ps, "__builtin_ia32_cvtpi2ps", IX86_BUILTIN_CVTPI2PS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2SI }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtsi2ss, "__builtin_ia32_cvtsi2ss", IX86_BUILTIN_CVTSI2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_SI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtsi2ssq, "__builtin_ia32_cvtsi642ss", IX86_BUILTIN_CVTSI642SS, UNKNOWN, V4SF_FTYPE_V4SF_DI }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtsf2, "__builtin_ia32_rsqrtf", IX86_BUILTIN_RSQRTF, UNKNOWN, (int) FLOAT_FTYPE_FLOAT }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsqrtv4sf2, "__builtin_ia32_sqrtss", IX86_BUILTIN_SQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrsqrtv4sf2, "__builtin_ia32_rsqrtss", IX86_BUILTIN_RSQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, + { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrcpv4sf2, "__builtin_ia32_rcpss", IX86_BUILTIN_RCPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, + + /* SSE MMX or 3Dnow!A */ + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_psadbw, "__builtin_ia32_psadbw", IX86_BUILTIN_PSADBW, UNKNOWN, (int) V1DI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pmovmskb, "__builtin_ia32_pmovmskb", IX86_BUILTIN_PMOVMSKB, UNKNOWN, (int) INT_FTYPE_V8QI }, + + { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pshufw, "__builtin_ia32_pshufw", IX86_BUILTIN_PSHUFW, UNKNOWN, (int) V4HI_FTYPE_V4HI_INT }, + + /* SSE2 */ + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_shufpd, "__builtin_ia32_shufpd", IX86_BUILTIN_SHUFPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2df", IX86_BUILTIN_VEC_PERM_V2DF, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DI }, + { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4sf", IX86_BUILTIN_VEC_PERM_V4SF, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2di", IX86_BUILTIN_VEC_PERM_V2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4si", IX86_BUILTIN_VEC_PERM_V4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8hi", IX86_BUILTIN_VEC_PERM_V8HI, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v16qi", IX86_BUILTIN_VEC_PERM_V16QI, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2di_u", IX86_BUILTIN_VEC_PERM_V2DI_U, UNKNOWN, (int) V2UDI_FTYPE_V2UDI_V2UDI_V2UDI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4si_u", IX86_BUILTIN_VEC_PERM_V4SI_U, UNKNOWN, (int) V4USI_FTYPE_V4USI_V4USI_V4USI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8hi_u", IX86_BUILTIN_VEC_PERM_V8HI_U, UNKNOWN, (int) V8UHI_FTYPE_V8UHI_V8UHI_V8UHI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v16qi_u", IX86_BUILTIN_VEC_PERM_V16QI_U, UNKNOWN, (int) V16UQI_FTYPE_V16UQI_V16UQI_V16UQI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4df", IX86_BUILTIN_VEC_PERM_V4DF, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8sf", IX86_BUILTIN_VEC_PERM_V8SF, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movmskpd, "__builtin_ia32_movmskpd", IX86_BUILTIN_MOVMSKPD, UNKNOWN, (int) INT_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmovmskb, "__builtin_ia32_pmovmskb128", IX86_BUILTIN_PMOVMSKB128, UNKNOWN, (int) INT_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sqrtv2df2, "__builtin_ia32_sqrtpd", IX86_BUILTIN_SQRTPD, UNKNOWN, (int) V2DF_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2pd, "__builtin_ia32_cvtdq2pd", IX86_BUILTIN_CVTDQ2PD, UNKNOWN, (int) V2DF_FTYPE_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2ps, "__builtin_ia32_cvtdq2ps", IX86_BUILTIN_CVTDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtudq2ps, "__builtin_ia32_cvtudq2ps", IX86_BUILTIN_CVTUDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2dq, "__builtin_ia32_cvtpd2dq", IX86_BUILTIN_CVTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2pi, "__builtin_ia32_cvtpd2pi", IX86_BUILTIN_CVTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2ps, "__builtin_ia32_cvtpd2ps", IX86_BUILTIN_CVTPD2PS, UNKNOWN, (int) V4SF_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2dq, "__builtin_ia32_cvttpd2dq", IX86_BUILTIN_CVTTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2pi, "__builtin_ia32_cvttpd2pi", IX86_BUILTIN_CVTTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpi2pd, "__builtin_ia32_cvtpi2pd", IX86_BUILTIN_CVTPI2PD, UNKNOWN, (int) V2DF_FTYPE_V2SI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2si, "__builtin_ia32_cvtsd2si", IX86_BUILTIN_CVTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttsd2si, "__builtin_ia32_cvttsd2si", IX86_BUILTIN_CVTTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsd2siq, "__builtin_ia32_cvtsd2si64", IX86_BUILTIN_CVTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, + { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvttsd2siq, "__builtin_ia32_cvttsd2si64", IX86_BUILTIN_CVTTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2dq, "__builtin_ia32_cvtps2dq", IX86_BUILTIN_CVTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2pd, "__builtin_ia32_cvtps2pd", IX86_BUILTIN_CVTPS2PD, UNKNOWN, (int) V2DF_FTYPE_V4SF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttps2dq, "__builtin_ia32_cvttps2dq", IX86_BUILTIN_CVTTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2df3, "__builtin_ia32_addpd", IX86_BUILTIN_ADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2df3, "__builtin_ia32_subpd", IX86_BUILTIN_SUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv2df3, "__builtin_ia32_mulpd", IX86_BUILTIN_MULPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_divv2df3, "__builtin_ia32_divpd", IX86_BUILTIN_DIVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmaddv2df3, "__builtin_ia32_addsd", IX86_BUILTIN_ADDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsubv2df3, "__builtin_ia32_subsd", IX86_BUILTIN_SUBSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmulv2df3, "__builtin_ia32_mulsd", IX86_BUILTIN_MULSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmdivv2df3, "__builtin_ia32_divsd", IX86_BUILTIN_DIVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpeqpd", IX86_BUILTIN_CMPEQPD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpltpd", IX86_BUILTIN_CMPLTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmplepd", IX86_BUILTIN_CMPLEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgtpd", IX86_BUILTIN_CMPGTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgepd", IX86_BUILTIN_CMPGEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP}, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpunordpd", IX86_BUILTIN_CMPUNORDPD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpneqpd", IX86_BUILTIN_CMPNEQPD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnltpd", IX86_BUILTIN_CMPNLTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnlepd", IX86_BUILTIN_CMPNLEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngtpd", IX86_BUILTIN_CMPNGTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngepd", IX86_BUILTIN_CMPNGEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpordpd", IX86_BUILTIN_CMPORDPD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpeqsd", IX86_BUILTIN_CMPEQSD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpltsd", IX86_BUILTIN_CMPLTSD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmplesd", IX86_BUILTIN_CMPLESD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpunordsd", IX86_BUILTIN_CMPUNORDSD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpneqsd", IX86_BUILTIN_CMPNEQSD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnltsd", IX86_BUILTIN_CMPNLTSD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnlesd", IX86_BUILTIN_CMPNLESD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpordsd", IX86_BUILTIN_CMPORDSD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv2df3, "__builtin_ia32_minpd", IX86_BUILTIN_MINPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv2df3, "__builtin_ia32_maxpd", IX86_BUILTIN_MAXPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsminv2df3, "__builtin_ia32_minsd", IX86_BUILTIN_MINSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsmaxv2df3, "__builtin_ia32_maxsd", IX86_BUILTIN_MAXSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2df3, "__builtin_ia32_andpd", IX86_BUILTIN_ANDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2df3, "__builtin_ia32_andnpd", IX86_BUILTIN_ANDNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2df3, "__builtin_ia32_orpd", IX86_BUILTIN_ORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2df3, "__builtin_ia32_xorpd", IX86_BUILTIN_XORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_copysignv2df3, "__builtin_ia32_copysignpd", IX86_BUILTIN_CPYSGNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movsd, "__builtin_ia32_movsd", IX86_BUILTIN_MOVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2df, "__builtin_ia32_unpckhpd", IX86_BUILTIN_UNPCKHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2df, "__builtin_ia32_unpcklpd", IX86_BUILTIN_UNPCKLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_pack_sfix_v2df, "__builtin_ia32_vec_pack_sfix", IX86_BUILTIN_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_addv16qi3, "__builtin_ia32_paddb128", IX86_BUILTIN_PADDB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_addv8hi3, "__builtin_ia32_paddw128", IX86_BUILTIN_PADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_addv4si3, "__builtin_ia32_paddd128", IX86_BUILTIN_PADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2di3, "__builtin_ia32_paddq128", IX86_BUILTIN_PADDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_subv16qi3, "__builtin_ia32_psubb128", IX86_BUILTIN_PSUBB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_subv8hi3, "__builtin_ia32_psubw128", IX86_BUILTIN_PSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_subv4si3, "__builtin_ia32_psubd128", IX86_BUILTIN_PSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2di3, "__builtin_ia32_psubq128", IX86_BUILTIN_PSUBQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv16qi3, "__builtin_ia32_paddsb128", IX86_BUILTIN_PADDSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv8hi3, "__builtin_ia32_paddsw128", IX86_BUILTIN_PADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv16qi3, "__builtin_ia32_psubsb128", IX86_BUILTIN_PSUBSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv8hi3, "__builtin_ia32_psubsw128", IX86_BUILTIN_PSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv16qi3, "__builtin_ia32_paddusb128", IX86_BUILTIN_PADDUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv8hi3, "__builtin_ia32_paddusw128", IX86_BUILTIN_PADDUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv16qi3, "__builtin_ia32_psubusb128", IX86_BUILTIN_PSUBUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv8hi3, "__builtin_ia32_psubusw128", IX86_BUILTIN_PSUBUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv8hi3, "__builtin_ia32_pmullw128", IX86_BUILTIN_PMULLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_smulv8hi3_highpart, "__builtin_ia32_pmulhw128", IX86_BUILTIN_PMULHW128, UNKNOWN,(int) V8HI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2di3, "__builtin_ia32_pand128", IX86_BUILTIN_PAND128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2di3, "__builtin_ia32_pandn128", IX86_BUILTIN_PANDN128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2di3, "__builtin_ia32_por128", IX86_BUILTIN_POR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2di3, "__builtin_ia32_pxor128", IX86_BUILTIN_PXOR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv16qi3, "__builtin_ia32_pavgb128", IX86_BUILTIN_PAVGB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv8hi3, "__builtin_ia32_pavgw128", IX86_BUILTIN_PAVGW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv16qi3, "__builtin_ia32_pcmpeqb128", IX86_BUILTIN_PCMPEQB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv8hi3, "__builtin_ia32_pcmpeqw128", IX86_BUILTIN_PCMPEQW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv4si3, "__builtin_ia32_pcmpeqd128", IX86_BUILTIN_PCMPEQD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv16qi3, "__builtin_ia32_pcmpgtb128", IX86_BUILTIN_PCMPGTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv8hi3, "__builtin_ia32_pcmpgtw128", IX86_BUILTIN_PCMPGTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv4si3, "__builtin_ia32_pcmpgtd128", IX86_BUILTIN_PCMPGTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_umaxv16qi3, "__builtin_ia32_pmaxub128", IX86_BUILTIN_PMAXUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv8hi3, "__builtin_ia32_pmaxsw128", IX86_BUILTIN_PMAXSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_uminv16qi3, "__builtin_ia32_pminub128", IX86_BUILTIN_PMINUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv8hi3, "__builtin_ia32_pminsw128", IX86_BUILTIN_PMINSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv16qi, "__builtin_ia32_punpckhbw128", IX86_BUILTIN_PUNPCKHBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv8hi, "__builtin_ia32_punpckhwd128", IX86_BUILTIN_PUNPCKHWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv4si, "__builtin_ia32_punpckhdq128", IX86_BUILTIN_PUNPCKHDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2di, "__builtin_ia32_punpckhqdq128", IX86_BUILTIN_PUNPCKHQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv16qi, "__builtin_ia32_punpcklbw128", IX86_BUILTIN_PUNPCKLBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv8hi, "__builtin_ia32_punpcklwd128", IX86_BUILTIN_PUNPCKLWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv4si, "__builtin_ia32_punpckldq128", IX86_BUILTIN_PUNPCKLDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2di, "__builtin_ia32_punpcklqdq128", IX86_BUILTIN_PUNPCKLQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packsswb, "__builtin_ia32_packsswb128", IX86_BUILTIN_PACKSSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packssdw, "__builtin_ia32_packssdw128", IX86_BUILTIN_PACKSSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packuswb, "__builtin_ia32_packuswb128", IX86_BUILTIN_PACKUSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_umulv8hi3_highpart, "__builtin_ia32_pmulhuw128", IX86_BUILTIN_PMULHUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_psadbw, "__builtin_ia32_psadbw128", IX86_BUILTIN_PSADBW128, UNKNOWN, (int) V2DI_FTYPE_V16QI_V16QI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv1siv1di3, "__builtin_ia32_pmuludq", IX86_BUILTIN_PMULUDQ, UNKNOWN, (int) V1DI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv2siv2di3, "__builtin_ia32_pmuludq128", IX86_BUILTIN_PMULUDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmaddwd, "__builtin_ia32_pmaddwd128", IX86_BUILTIN_PMADDWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI_V8HI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsi2sd, "__builtin_ia32_cvtsi2sd", IX86_BUILTIN_CVTSI2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_SI }, + { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsi2sdq, "__builtin_ia32_cvtsi642sd", IX86_BUILTIN_CVTSI642SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2ss, "__builtin_ia32_cvtsd2ss", IX86_BUILTIN_CVTSD2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2DF }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtss2sd, "__builtin_ia32_cvtss2sd", IX86_BUILTIN_CVTSS2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V4SF }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ashlv1ti3, "__builtin_ia32_pslldqi128", IX86_BUILTIN_PSLLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllwi128", IX86_BUILTIN_PSLLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslldi128", IX86_BUILTIN_PSLLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllqi128", IX86_BUILTIN_PSLLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllw128", IX86_BUILTIN_PSLLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslld128", IX86_BUILTIN_PSLLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllq128", IX86_BUILTIN_PSLLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lshrv1ti3, "__builtin_ia32_psrldqi128", IX86_BUILTIN_PSRLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlwi128", IX86_BUILTIN_PSRLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrldi128", IX86_BUILTIN_PSRLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlqi128", IX86_BUILTIN_PSRLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlw128", IX86_BUILTIN_PSRLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrld128", IX86_BUILTIN_PSRLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlq128", IX86_BUILTIN_PSRLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psrawi128", IX86_BUILTIN_PSRAWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psradi128", IX86_BUILTIN_PSRADI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psraw128", IX86_BUILTIN_PSRAW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psrad128", IX86_BUILTIN_PSRAD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufd, "__builtin_ia32_pshufd", IX86_BUILTIN_PSHUFD, UNKNOWN, (int) V4SI_FTYPE_V4SI_INT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshuflw, "__builtin_ia32_pshuflw", IX86_BUILTIN_PSHUFLW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufhw, "__builtin_ia32_pshufhw", IX86_BUILTIN_PSHUFHW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsqrtv2df2, "__builtin_ia32_sqrtsd", IX86_BUILTIN_SQRTSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_VEC_MERGE }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_abstf2, 0, IX86_BUILTIN_FABSQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128 }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_copysigntf3, 0, IX86_BUILTIN_COPYSIGNQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128_FLOAT128 }, + + { OPTION_MASK_ISA_SSE, CODE_FOR_sse2_movq128, "__builtin_ia32_movq128", IX86_BUILTIN_MOVQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, + + /* SSE2 MMX */ + { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_addv1di3, "__builtin_ia32_paddq", IX86_BUILTIN_PADDQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_subv1di3, "__builtin_ia32_psubq", IX86_BUILTIN_PSUBQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, + + /* SSE3 */ + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movshdup, "__builtin_ia32_movshdup", IX86_BUILTIN_MOVSHDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF}, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movsldup, "__builtin_ia32_movsldup", IX86_BUILTIN_MOVSLDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF }, + + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv4sf3, "__builtin_ia32_addsubps", IX86_BUILTIN_ADDSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv2df3, "__builtin_ia32_addsubpd", IX86_BUILTIN_ADDSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv4sf3, "__builtin_ia32_haddps", IX86_BUILTIN_HADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv2df3, "__builtin_ia32_haddpd", IX86_BUILTIN_HADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv4sf3, "__builtin_ia32_hsubps", IX86_BUILTIN_HSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv2df3, "__builtin_ia32_hsubpd", IX86_BUILTIN_HSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, + + /* SSSE3 */ + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv16qi2, "__builtin_ia32_pabsb128", IX86_BUILTIN_PABSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8qi2, "__builtin_ia32_pabsb", IX86_BUILTIN_PABSB, UNKNOWN, (int) V8QI_FTYPE_V8QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8hi2, "__builtin_ia32_pabsw128", IX86_BUILTIN_PABSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4hi2, "__builtin_ia32_pabsw", IX86_BUILTIN_PABSW, UNKNOWN, (int) V4HI_FTYPE_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4si2, "__builtin_ia32_pabsd128", IX86_BUILTIN_PABSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv2si2, "__builtin_ia32_pabsd", IX86_BUILTIN_PABSD, UNKNOWN, (int) V2SI_FTYPE_V2SI }, + + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv8hi3, "__builtin_ia32_phaddw128", IX86_BUILTIN_PHADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv4hi3, "__builtin_ia32_phaddw", IX86_BUILTIN_PHADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv4si3, "__builtin_ia32_phaddd128", IX86_BUILTIN_PHADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv2si3, "__builtin_ia32_phaddd", IX86_BUILTIN_PHADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv8hi3, "__builtin_ia32_phaddsw128", IX86_BUILTIN_PHADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv4hi3, "__builtin_ia32_phaddsw", IX86_BUILTIN_PHADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv8hi3, "__builtin_ia32_phsubw128", IX86_BUILTIN_PHSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv4hi3, "__builtin_ia32_phsubw", IX86_BUILTIN_PHSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv4si3, "__builtin_ia32_phsubd128", IX86_BUILTIN_PHSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv2si3, "__builtin_ia32_phsubd", IX86_BUILTIN_PHSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv8hi3, "__builtin_ia32_phsubsw128", IX86_BUILTIN_PHSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv4hi3, "__builtin_ia32_phsubsw", IX86_BUILTIN_PHSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw128, "__builtin_ia32_pmaddubsw128", IX86_BUILTIN_PMADDUBSW128, UNKNOWN, (int) V8HI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw, "__builtin_ia32_pmaddubsw", IX86_BUILTIN_PMADDUBSW, UNKNOWN, (int) V4HI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv8hi3, "__builtin_ia32_pmulhrsw128", IX86_BUILTIN_PMULHRSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv4hi3, "__builtin_ia32_pmulhrsw", IX86_BUILTIN_PMULHRSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv16qi3, "__builtin_ia32_pshufb128", IX86_BUILTIN_PSHUFB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv8qi3, "__builtin_ia32_pshufb", IX86_BUILTIN_PSHUFB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv16qi3, "__builtin_ia32_psignb128", IX86_BUILTIN_PSIGNB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8qi3, "__builtin_ia32_psignb", IX86_BUILTIN_PSIGNB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8hi3, "__builtin_ia32_psignw128", IX86_BUILTIN_PSIGNW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4hi3, "__builtin_ia32_psignw", IX86_BUILTIN_PSIGNW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4si3, "__builtin_ia32_psignd128", IX86_BUILTIN_PSIGND128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv2si3, "__builtin_ia32_psignd", IX86_BUILTIN_PSIGND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, + + /* SSSE3. */ + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrti, "__builtin_ia32_palignr128", IX86_BUILTIN_PALIGNR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT_CONVERT }, + { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrdi, "__builtin_ia32_palignr", IX86_BUILTIN_PALIGNR, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_INT_CONVERT }, + + /* SSE4.1 */ + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendpd, "__builtin_ia32_blendpd", IX86_BUILTIN_BLENDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendps, "__builtin_ia32_blendps", IX86_BUILTIN_BLENDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvpd, "__builtin_ia32_blendvpd", IX86_BUILTIN_BLENDVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DF }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvps, "__builtin_ia32_blendvps", IX86_BUILTIN_BLENDVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SF }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dppd, "__builtin_ia32_dppd", IX86_BUILTIN_DPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dpps, "__builtin_ia32_dpps", IX86_BUILTIN_DPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_insertps, "__builtin_ia32_insertps128", IX86_BUILTIN_INSERTPS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mpsadbw, "__builtin_ia32_mpsadbw128", IX86_BUILTIN_MPSADBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_INT }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendvb, "__builtin_ia32_pblendvb128", IX86_BUILTIN_PBLENDVB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendw, "__builtin_ia32_pblendw128", IX86_BUILTIN_PBLENDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_INT }, + + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv8qiv8hi2, "__builtin_ia32_pmovsxbw128", IX86_BUILTIN_PMOVSXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4qiv4si2, "__builtin_ia32_pmovsxbd128", IX86_BUILTIN_PMOVSXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2qiv2di2, "__builtin_ia32_pmovsxbq128", IX86_BUILTIN_PMOVSXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4hiv4si2, "__builtin_ia32_pmovsxwd128", IX86_BUILTIN_PMOVSXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2hiv2di2, "__builtin_ia32_pmovsxwq128", IX86_BUILTIN_PMOVSXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2siv2di2, "__builtin_ia32_pmovsxdq128", IX86_BUILTIN_PMOVSXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv8qiv8hi2, "__builtin_ia32_pmovzxbw128", IX86_BUILTIN_PMOVZXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4qiv4si2, "__builtin_ia32_pmovzxbd128", IX86_BUILTIN_PMOVZXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2qiv2di2, "__builtin_ia32_pmovzxbq128", IX86_BUILTIN_PMOVZXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4hiv4si2, "__builtin_ia32_pmovzxwd128", IX86_BUILTIN_PMOVZXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2hiv2di2, "__builtin_ia32_pmovzxwq128", IX86_BUILTIN_PMOVZXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2siv2di2, "__builtin_ia32_pmovzxdq128", IX86_BUILTIN_PMOVZXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_phminposuw, "__builtin_ia32_phminposuw128", IX86_BUILTIN_PHMINPOSUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, + + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_packusdw, "__builtin_ia32_packusdw128", IX86_BUILTIN_PACKUSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_eqv2di3, "__builtin_ia32_pcmpeqq", IX86_BUILTIN_PCMPEQQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv16qi3, "__builtin_ia32_pmaxsb128", IX86_BUILTIN_PMAXSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv4si3, "__builtin_ia32_pmaxsd128", IX86_BUILTIN_PMAXSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv4si3, "__builtin_ia32_pmaxud128", IX86_BUILTIN_PMAXUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv8hi3, "__builtin_ia32_pmaxuw128", IX86_BUILTIN_PMAXUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv16qi3, "__builtin_ia32_pminsb128", IX86_BUILTIN_PMINSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv4si3, "__builtin_ia32_pminsd128", IX86_BUILTIN_PMINSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv4si3, "__builtin_ia32_pminud128", IX86_BUILTIN_PMINUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv8hi3, "__builtin_ia32_pminuw128", IX86_BUILTIN_PMINUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mulv2siv2di3, "__builtin_ia32_pmuldq128", IX86_BUILTIN_PMULDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, + { OPTION_MASK_ISA_SSE4_1, CODE_FOR_mulv4si3, "__builtin_ia32_pmulld128", IX86_BUILTIN_PMULLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, + + /* SSE4.1 */ + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_roundpd", IX86_BUILTIN_ROUNDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_roundps", IX86_BUILTIN_ROUNDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundsd, "__builtin_ia32_roundsd", IX86_BUILTIN_ROUNDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundss, "__builtin_ia32_roundss", IX86_BUILTIN_ROUNDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestz128", IX86_BUILTIN_PTESTZ, EQ, (int) INT_FTYPE_V2DI_V2DI_PTEST }, + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestc128", IX86_BUILTIN_PTESTC, LTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, + { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestnzc128", IX86_BUILTIN_PTESTNZC, GTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, + + /* SSE4.2 */ + { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_gtv2di3, "__builtin_ia32_pcmpgtq", IX86_BUILTIN_PCMPGTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32qi, "__builtin_ia32_crc32qi", IX86_BUILTIN_CRC32QI, UNKNOWN, (int) UINT_FTYPE_UINT_UCHAR }, + { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32hi, "__builtin_ia32_crc32hi", IX86_BUILTIN_CRC32HI, UNKNOWN, (int) UINT_FTYPE_UINT_USHORT }, + { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32si, "__builtin_ia32_crc32si", IX86_BUILTIN_CRC32SI, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, + { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse4_2_crc32di, "__builtin_ia32_crc32di", IX86_BUILTIN_CRC32DI, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, + + /* SSE4A */ + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrqi, "__builtin_ia32_extrqi", IX86_BUILTIN_EXTRQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_UINT_UINT }, + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrq, "__builtin_ia32_extrq", IX86_BUILTIN_EXTRQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V16QI }, + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertqi, "__builtin_ia32_insertqi", IX86_BUILTIN_INSERTQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_UINT_UINT }, + { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertq, "__builtin_ia32_insertq", IX86_BUILTIN_INSERTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + + /* AES */ + { OPTION_MASK_ISA_SSE2, CODE_FOR_aeskeygenassist, 0, IX86_BUILTIN_AESKEYGENASSIST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_aesimc, 0, IX86_BUILTIN_AESIMC128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, + + { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenc, 0, IX86_BUILTIN_AESENC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenclast, 0, IX86_BUILTIN_AESENCLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdec, 0, IX86_BUILTIN_AESDEC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdeclast, 0, IX86_BUILTIN_AESDECLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, + + /* PCLMUL */ + { OPTION_MASK_ISA_SSE2, CODE_FOR_pclmulqdq, 0, IX86_BUILTIN_PCLMULQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT }, + + /* AVX */ + { OPTION_MASK_ISA_AVX, CODE_FOR_addv4df3, "__builtin_ia32_addpd256", IX86_BUILTIN_ADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_addv8sf3, "__builtin_ia32_addps256", IX86_BUILTIN_ADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv4df3, "__builtin_ia32_addsubpd256", IX86_BUILTIN_ADDSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv8sf3, "__builtin_ia32_addsubps256", IX86_BUILTIN_ADDSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_andv4df3, "__builtin_ia32_andpd256", IX86_BUILTIN_ANDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_andv8sf3, "__builtin_ia32_andps256", IX86_BUILTIN_ANDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv4df3, "__builtin_ia32_andnpd256", IX86_BUILTIN_ANDNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv8sf3, "__builtin_ia32_andnps256", IX86_BUILTIN_ANDNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_divv4df3, "__builtin_ia32_divpd256", IX86_BUILTIN_DIVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_divv8sf3, "__builtin_ia32_divps256", IX86_BUILTIN_DIVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv4df3, "__builtin_ia32_haddpd256", IX86_BUILTIN_HADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv8sf3, "__builtin_ia32_hsubps256", IX86_BUILTIN_HSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv4df3, "__builtin_ia32_hsubpd256", IX86_BUILTIN_HSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv8sf3, "__builtin_ia32_haddps256", IX86_BUILTIN_HADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv4df3, "__builtin_ia32_maxpd256", IX86_BUILTIN_MAXPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv8sf3, "__builtin_ia32_maxps256", IX86_BUILTIN_MAXPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_sminv4df3, "__builtin_ia32_minpd256", IX86_BUILTIN_MINPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_sminv8sf3, "__builtin_ia32_minps256", IX86_BUILTIN_MINPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_mulv4df3, "__builtin_ia32_mulpd256", IX86_BUILTIN_MULPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_mulv8sf3, "__builtin_ia32_mulps256", IX86_BUILTIN_MULPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_iorv4df3, "__builtin_ia32_orpd256", IX86_BUILTIN_ORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_iorv8sf3, "__builtin_ia32_orps256", IX86_BUILTIN_ORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_subv4df3, "__builtin_ia32_subpd256", IX86_BUILTIN_SUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_subv8sf3, "__builtin_ia32_subps256", IX86_BUILTIN_SUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_xorv4df3, "__builtin_ia32_xorpd256", IX86_BUILTIN_XORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_xorv8sf3, "__builtin_ia32_xorps256", IX86_BUILTIN_XORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv2df3, "__builtin_ia32_vpermilvarpd", IX86_BUILTIN_VPERMILVARPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4sf3, "__builtin_ia32_vpermilvarps", IX86_BUILTIN_VPERMILVARPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4df3, "__builtin_ia32_vpermilvarpd256", IX86_BUILTIN_VPERMILVARPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv8sf3, "__builtin_ia32_vpermilvarps256", IX86_BUILTIN_VPERMILVARPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendpd256, "__builtin_ia32_blendpd256", IX86_BUILTIN_BLENDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendps256, "__builtin_ia32_blendps256", IX86_BUILTIN_BLENDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvpd256, "__builtin_ia32_blendvpd256", IX86_BUILTIN_BLENDVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvps256, "__builtin_ia32_blendvps256", IX86_BUILTIN_BLENDVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_dpps256, "__builtin_ia32_dpps256", IX86_BUILTIN_DPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufpd256, "__builtin_ia32_shufpd256", IX86_BUILTIN_SHUFPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufps256, "__builtin_ia32_shufps256", IX86_BUILTIN_SHUFPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpsdv2df3, "__builtin_ia32_cmpsd", IX86_BUILTIN_CMPSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpssv4sf3, "__builtin_ia32_cmpss", IX86_BUILTIN_CMPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppdv2df3, "__builtin_ia32_cmppd", IX86_BUILTIN_CMPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppsv4sf3, "__builtin_ia32_cmpps", IX86_BUILTIN_CMPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppdv4df3, "__builtin_ia32_cmppd256", IX86_BUILTIN_CMPPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppsv8sf3, "__builtin_ia32_cmpps256", IX86_BUILTIN_CMPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v4df, "__builtin_ia32_vextractf128_pd256", IX86_BUILTIN_EXTRACTF128PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8sf, "__builtin_ia32_vextractf128_ps256", IX86_BUILTIN_EXTRACTF128PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8si, "__builtin_ia32_vextractf128_si256", IX86_BUILTIN_EXTRACTF128SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtdq2pd256, "__builtin_ia32_cvtdq2pd256", IX86_BUILTIN_CVTDQ2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtdq2ps256, "__builtin_ia32_cvtdq2ps256", IX86_BUILTIN_CVTDQ2PS256, UNKNOWN, (int) V8SF_FTYPE_V8SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2ps256, "__builtin_ia32_cvtpd2ps256", IX86_BUILTIN_CVTPD2PS256, UNKNOWN, (int) V4SF_FTYPE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2dq256, "__builtin_ia32_cvtps2dq256", IX86_BUILTIN_CVTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2pd256, "__builtin_ia32_cvtps2pd256", IX86_BUILTIN_CVTPS2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvttpd2dq256, "__builtin_ia32_cvttpd2dq256", IX86_BUILTIN_CVTTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2dq256, "__builtin_ia32_cvtpd2dq256", IX86_BUILTIN_CVTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvttps2dq256, "__builtin_ia32_cvttps2dq256", IX86_BUILTIN_CVTTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v4df3, "__builtin_ia32_vperm2f128_pd256", IX86_BUILTIN_VPERM2F128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8sf3, "__builtin_ia32_vperm2f128_ps256", IX86_BUILTIN_VPERM2F128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8si3, "__builtin_ia32_vperm2f128_si256", IX86_BUILTIN_VPERM2F128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv2df, "__builtin_ia32_vpermilpd", IX86_BUILTIN_VPERMILPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4sf, "__builtin_ia32_vpermilps", IX86_BUILTIN_VPERMILPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4df, "__builtin_ia32_vpermilpd256", IX86_BUILTIN_VPERMILPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv8sf, "__builtin_ia32_vpermilps256", IX86_BUILTIN_VPERMILPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v4df, "__builtin_ia32_vinsertf128_pd256", IX86_BUILTIN_VINSERTF128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V2DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8sf, "__builtin_ia32_vinsertf128_ps256", IX86_BUILTIN_VINSERTF128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V4SF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8si, "__builtin_ia32_vinsertf128_si256", IX86_BUILTIN_VINSERTF128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_INT }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movshdup256, "__builtin_ia32_movshdup256", IX86_BUILTIN_MOVSHDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movsldup256, "__builtin_ia32_movsldup256", IX86_BUILTIN_MOVSLDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movddup256, "__builtin_ia32_movddup256", IX86_BUILTIN_MOVDDUP256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv4df2, "__builtin_ia32_sqrtpd256", IX86_BUILTIN_SQRTPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_sqrtv8sf2, "__builtin_ia32_sqrtps256", IX86_BUILTIN_SQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv8sf2, "__builtin_ia32_sqrtps_nr256", IX86_BUILTIN_SQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rsqrtv8sf2, "__builtin_ia32_rsqrtps256", IX86_BUILTIN_RSQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_rsqrtv8sf2, "__builtin_ia32_rsqrtps_nr256", IX86_BUILTIN_RSQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rcpv8sf2, "__builtin_ia32_rcpps256", IX86_BUILTIN_RCPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_roundpd256", IX86_BUILTIN_ROUNDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_roundps256", IX86_BUILTIN_ROUNDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhpd256, "__builtin_ia32_unpckhpd256", IX86_BUILTIN_UNPCKHPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklpd256, "__builtin_ia32_unpcklpd256", IX86_BUILTIN_UNPCKLPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhps256, "__builtin_ia32_unpckhps256", IX86_BUILTIN_UNPCKHPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklps256, "__builtin_ia32_unpcklps256", IX86_BUILTIN_UNPCKLPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_si256_si, "__builtin_ia32_si256_si", IX86_BUILTIN_SI256_SI, UNKNOWN, (int) V8SI_FTYPE_V4SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ps256_ps, "__builtin_ia32_ps256_ps", IX86_BUILTIN_PS256_PS, UNKNOWN, (int) V8SF_FTYPE_V4SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_pd256_pd, "__builtin_ia32_pd256_pd", IX86_BUILTIN_PD256_PD, UNKNOWN, (int) V4DF_FTYPE_V2DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8si, "__builtin_ia32_si_si256", IX86_BUILTIN_SI_SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI }, + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8sf, "__builtin_ia32_ps_ps256", IX86_BUILTIN_PS_PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v4df, "__builtin_ia32_pd_pd256", IX86_BUILTIN_PD_PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestzpd", IX86_BUILTIN_VTESTZPD, EQ, (int) INT_FTYPE_V2DF_V2DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestcpd", IX86_BUILTIN_VTESTCPD, LTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestnzcpd", IX86_BUILTIN_VTESTNZCPD, GTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestzps", IX86_BUILTIN_VTESTZPS, EQ, (int) INT_FTYPE_V4SF_V4SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestcps", IX86_BUILTIN_VTESTCPS, LTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestnzcps", IX86_BUILTIN_VTESTNZCPS, GTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestzpd256", IX86_BUILTIN_VTESTZPD256, EQ, (int) INT_FTYPE_V4DF_V4DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestcpd256", IX86_BUILTIN_VTESTCPD256, LTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestnzcpd256", IX86_BUILTIN_VTESTNZCPD256, GTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestzps256", IX86_BUILTIN_VTESTZPS256, EQ, (int) INT_FTYPE_V8SF_V8SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestcps256", IX86_BUILTIN_VTESTCPS256, LTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestnzcps256", IX86_BUILTIN_VTESTNZCPS256, GTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestz256", IX86_BUILTIN_PTESTZ256, EQ, (int) INT_FTYPE_V4DI_V4DI_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestc256", IX86_BUILTIN_PTESTC256, LTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestnzc256", IX86_BUILTIN_PTESTNZC256, GTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskpd256, "__builtin_ia32_movmskpd256", IX86_BUILTIN_MOVMSKPD256, UNKNOWN, (int) INT_FTYPE_V4DF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskps256, "__builtin_ia32_movmskps256", IX86_BUILTIN_MOVMSKPS256, UNKNOWN, (int) INT_FTYPE_V8SF }, + + { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv8sf3, "__builtin_ia32_copysignps256", IX86_BUILTIN_CPYSGNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, + { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv4df3, "__builtin_ia32_copysignpd256", IX86_BUILTIN_CPYSGNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, + + { OPTION_MASK_ISA_ABM, CODE_FOR_clzhi2_abm, "__builtin_clzs", IX86_BUILTIN_CLZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, + + /* BMI */ + { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_si, "__builtin_ia32_bextr_u32", IX86_BUILTIN_BEXTR32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, + { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_di, "__builtin_ia32_bextr_u64", IX86_BUILTIN_BEXTR64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, + { OPTION_MASK_ISA_BMI, CODE_FOR_ctzhi2, "__builtin_ctzs", IX86_BUILTIN_CTZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, + + /* TBM */ + { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_si, "__builtin_ia32_bextri_u32", IX86_BUILTIN_BEXTRI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, + { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_di, "__builtin_ia32_bextri_u64", IX86_BUILTIN_BEXTRI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, + + /* F16C */ + { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps, "__builtin_ia32_vcvtph2ps", IX86_BUILTIN_CVTPH2PS, UNKNOWN, (int) V4SF_FTYPE_V8HI }, + { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps256, "__builtin_ia32_vcvtph2ps256", IX86_BUILTIN_CVTPH2PS256, UNKNOWN, (int) V8SF_FTYPE_V8HI }, + { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph, "__builtin_ia32_vcvtps2ph", IX86_BUILTIN_CVTPS2PH, UNKNOWN, (int) V8HI_FTYPE_V4SF_INT }, + { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph256, "__builtin_ia32_vcvtps2ph256", IX86_BUILTIN_CVTPS2PH256, UNKNOWN, (int) V8HI_FTYPE_V8SF_INT }, +}; + +/* FMA4 and XOP. */ +#define MULTI_ARG_4_DF2_DI_I V2DF_FTYPE_V2DF_V2DF_V2DI_INT +#define MULTI_ARG_4_DF2_DI_I1 V4DF_FTYPE_V4DF_V4DF_V4DI_INT +#define MULTI_ARG_4_SF2_SI_I V4SF_FTYPE_V4SF_V4SF_V4SI_INT +#define MULTI_ARG_4_SF2_SI_I1 V8SF_FTYPE_V8SF_V8SF_V8SI_INT +#define MULTI_ARG_3_SF V4SF_FTYPE_V4SF_V4SF_V4SF +#define MULTI_ARG_3_DF V2DF_FTYPE_V2DF_V2DF_V2DF +#define MULTI_ARG_3_SF2 V8SF_FTYPE_V8SF_V8SF_V8SF +#define MULTI_ARG_3_DF2 V4DF_FTYPE_V4DF_V4DF_V4DF +#define MULTI_ARG_3_DI V2DI_FTYPE_V2DI_V2DI_V2DI +#define MULTI_ARG_3_SI V4SI_FTYPE_V4SI_V4SI_V4SI +#define MULTI_ARG_3_SI_DI V4SI_FTYPE_V4SI_V4SI_V2DI +#define MULTI_ARG_3_HI V8HI_FTYPE_V8HI_V8HI_V8HI +#define MULTI_ARG_3_HI_SI V8HI_FTYPE_V8HI_V8HI_V4SI +#define MULTI_ARG_3_QI V16QI_FTYPE_V16QI_V16QI_V16QI +#define MULTI_ARG_3_DI2 V4DI_FTYPE_V4DI_V4DI_V4DI +#define MULTI_ARG_3_SI2 V8SI_FTYPE_V8SI_V8SI_V8SI +#define MULTI_ARG_3_HI2 V16HI_FTYPE_V16HI_V16HI_V16HI +#define MULTI_ARG_3_QI2 V32QI_FTYPE_V32QI_V32QI_V32QI +#define MULTI_ARG_2_SF V4SF_FTYPE_V4SF_V4SF +#define MULTI_ARG_2_DF V2DF_FTYPE_V2DF_V2DF +#define MULTI_ARG_2_DI V2DI_FTYPE_V2DI_V2DI +#define MULTI_ARG_2_SI V4SI_FTYPE_V4SI_V4SI +#define MULTI_ARG_2_HI V8HI_FTYPE_V8HI_V8HI +#define MULTI_ARG_2_QI V16QI_FTYPE_V16QI_V16QI +#define MULTI_ARG_2_DI_IMM V2DI_FTYPE_V2DI_SI +#define MULTI_ARG_2_SI_IMM V4SI_FTYPE_V4SI_SI +#define MULTI_ARG_2_HI_IMM V8HI_FTYPE_V8HI_SI +#define MULTI_ARG_2_QI_IMM V16QI_FTYPE_V16QI_SI +#define MULTI_ARG_2_DI_CMP V2DI_FTYPE_V2DI_V2DI_CMP +#define MULTI_ARG_2_SI_CMP V4SI_FTYPE_V4SI_V4SI_CMP +#define MULTI_ARG_2_HI_CMP V8HI_FTYPE_V8HI_V8HI_CMP +#define MULTI_ARG_2_QI_CMP V16QI_FTYPE_V16QI_V16QI_CMP +#define MULTI_ARG_2_SF_TF V4SF_FTYPE_V4SF_V4SF_TF +#define MULTI_ARG_2_DF_TF V2DF_FTYPE_V2DF_V2DF_TF +#define MULTI_ARG_2_DI_TF V2DI_FTYPE_V2DI_V2DI_TF +#define MULTI_ARG_2_SI_TF V4SI_FTYPE_V4SI_V4SI_TF +#define MULTI_ARG_2_HI_TF V8HI_FTYPE_V8HI_V8HI_TF +#define MULTI_ARG_2_QI_TF V16QI_FTYPE_V16QI_V16QI_TF +#define MULTI_ARG_1_SF V4SF_FTYPE_V4SF +#define MULTI_ARG_1_DF V2DF_FTYPE_V2DF +#define MULTI_ARG_1_SF2 V8SF_FTYPE_V8SF +#define MULTI_ARG_1_DF2 V4DF_FTYPE_V4DF +#define MULTI_ARG_1_DI V2DI_FTYPE_V2DI +#define MULTI_ARG_1_SI V4SI_FTYPE_V4SI +#define MULTI_ARG_1_HI V8HI_FTYPE_V8HI +#define MULTI_ARG_1_QI V16QI_FTYPE_V16QI +#define MULTI_ARG_1_SI_DI V2DI_FTYPE_V4SI +#define MULTI_ARG_1_HI_DI V2DI_FTYPE_V8HI +#define MULTI_ARG_1_HI_SI V4SI_FTYPE_V8HI +#define MULTI_ARG_1_QI_DI V2DI_FTYPE_V16QI +#define MULTI_ARG_1_QI_SI V4SI_FTYPE_V16QI +#define MULTI_ARG_1_QI_HI V8HI_FTYPE_V16QI + +static const struct builtin_description bdesc_multi_arg[] = +{ + { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v4sf, + "__builtin_ia32_vfmaddss", IX86_BUILTIN_VFMADDSS, + UNKNOWN, (int)MULTI_ARG_3_SF }, + { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v2df, + "__builtin_ia32_vfmaddsd", IX86_BUILTIN_VFMADDSD, + UNKNOWN, (int)MULTI_ARG_3_DF }, + + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4sf, + "__builtin_ia32_vfmaddps", IX86_BUILTIN_VFMADDPS, + UNKNOWN, (int)MULTI_ARG_3_SF }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v2df, + "__builtin_ia32_vfmaddpd", IX86_BUILTIN_VFMADDPD, + UNKNOWN, (int)MULTI_ARG_3_DF }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v8sf, + "__builtin_ia32_vfmaddps256", IX86_BUILTIN_VFMADDPS256, + UNKNOWN, (int)MULTI_ARG_3_SF2 }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4df, + "__builtin_ia32_vfmaddpd256", IX86_BUILTIN_VFMADDPD256, + UNKNOWN, (int)MULTI_ARG_3_DF2 }, + + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4sf, + "__builtin_ia32_vfmaddsubps", IX86_BUILTIN_VFMADDSUBPS, + UNKNOWN, (int)MULTI_ARG_3_SF }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v2df, + "__builtin_ia32_vfmaddsubpd", IX86_BUILTIN_VFMADDSUBPD, + UNKNOWN, (int)MULTI_ARG_3_DF }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v8sf, + "__builtin_ia32_vfmaddsubps256", IX86_BUILTIN_VFMADDSUBPS256, + UNKNOWN, (int)MULTI_ARG_3_SF2 }, + { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4df, + "__builtin_ia32_vfmaddsubpd256", IX86_BUILTIN_VFMADDSUBPD256, + UNKNOWN, (int)MULTI_ARG_3_DF2 }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov", IX86_BUILTIN_VPCMOV, UNKNOWN, (int)MULTI_ARG_3_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov_v2di", IX86_BUILTIN_VPCMOV_V2DI, UNKNOWN, (int)MULTI_ARG_3_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4si, "__builtin_ia32_vpcmov_v4si", IX86_BUILTIN_VPCMOV_V4SI, UNKNOWN, (int)MULTI_ARG_3_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8hi, "__builtin_ia32_vpcmov_v8hi", IX86_BUILTIN_VPCMOV_V8HI, UNKNOWN, (int)MULTI_ARG_3_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16qi, "__builtin_ia32_vpcmov_v16qi",IX86_BUILTIN_VPCMOV_V16QI,UNKNOWN, (int)MULTI_ARG_3_QI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2df, "__builtin_ia32_vpcmov_v2df", IX86_BUILTIN_VPCMOV_V2DF, UNKNOWN, (int)MULTI_ARG_3_DF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4sf, "__builtin_ia32_vpcmov_v4sf", IX86_BUILTIN_VPCMOV_V4SF, UNKNOWN, (int)MULTI_ARG_3_SF }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov256", IX86_BUILTIN_VPCMOV256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov_v4di256", IX86_BUILTIN_VPCMOV_V4DI256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8si256, "__builtin_ia32_vpcmov_v8si256", IX86_BUILTIN_VPCMOV_V8SI256, UNKNOWN, (int)MULTI_ARG_3_SI2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16hi256, "__builtin_ia32_vpcmov_v16hi256", IX86_BUILTIN_VPCMOV_V16HI256, UNKNOWN, (int)MULTI_ARG_3_HI2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v32qi256, "__builtin_ia32_vpcmov_v32qi256", IX86_BUILTIN_VPCMOV_V32QI256, UNKNOWN, (int)MULTI_ARG_3_QI2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4df256, "__builtin_ia32_vpcmov_v4df256", IX86_BUILTIN_VPCMOV_V4DF256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8sf256, "__builtin_ia32_vpcmov_v8sf256", IX86_BUILTIN_VPCMOV_V8SF256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pperm, "__builtin_ia32_vpperm", IX86_BUILTIN_VPPERM, UNKNOWN, (int)MULTI_ARG_3_QI }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssww, "__builtin_ia32_vpmacssww", IX86_BUILTIN_VPMACSSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsww, "__builtin_ia32_vpmacsww", IX86_BUILTIN_VPMACSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsswd, "__builtin_ia32_vpmacsswd", IX86_BUILTIN_VPMACSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacswd, "__builtin_ia32_vpmacswd", IX86_BUILTIN_VPMACSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdd, "__builtin_ia32_vpmacssdd", IX86_BUILTIN_VPMACSSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdd, "__builtin_ia32_vpmacsdd", IX86_BUILTIN_VPMACSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdql, "__builtin_ia32_vpmacssdql", IX86_BUILTIN_VPMACSSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdqh, "__builtin_ia32_vpmacssdqh", IX86_BUILTIN_VPMACSSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdql, "__builtin_ia32_vpmacsdql", IX86_BUILTIN_VPMACSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdqh, "__builtin_ia32_vpmacsdqh", IX86_BUILTIN_VPMACSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcsswd, "__builtin_ia32_vpmadcsswd", IX86_BUILTIN_VPMADCSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcswd, "__builtin_ia32_vpmadcswd", IX86_BUILTIN_VPMADCSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv2di3, "__builtin_ia32_vprotq", IX86_BUILTIN_VPROTQ, UNKNOWN, (int)MULTI_ARG_2_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv4si3, "__builtin_ia32_vprotd", IX86_BUILTIN_VPROTD, UNKNOWN, (int)MULTI_ARG_2_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv8hi3, "__builtin_ia32_vprotw", IX86_BUILTIN_VPROTW, UNKNOWN, (int)MULTI_ARG_2_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv16qi3, "__builtin_ia32_vprotb", IX86_BUILTIN_VPROTB, UNKNOWN, (int)MULTI_ARG_2_QI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv2di3, "__builtin_ia32_vprotqi", IX86_BUILTIN_VPROTQ_IMM, UNKNOWN, (int)MULTI_ARG_2_DI_IMM }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv4si3, "__builtin_ia32_vprotdi", IX86_BUILTIN_VPROTD_IMM, UNKNOWN, (int)MULTI_ARG_2_SI_IMM }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv8hi3, "__builtin_ia32_vprotwi", IX86_BUILTIN_VPROTW_IMM, UNKNOWN, (int)MULTI_ARG_2_HI_IMM }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv16qi3, "__builtin_ia32_vprotbi", IX86_BUILTIN_VPROTB_IMM, UNKNOWN, (int)MULTI_ARG_2_QI_IMM }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv2di3, "__builtin_ia32_vpshaq", IX86_BUILTIN_VPSHAQ, UNKNOWN, (int)MULTI_ARG_2_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv4si3, "__builtin_ia32_vpshad", IX86_BUILTIN_VPSHAD, UNKNOWN, (int)MULTI_ARG_2_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv8hi3, "__builtin_ia32_vpshaw", IX86_BUILTIN_VPSHAW, UNKNOWN, (int)MULTI_ARG_2_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv16qi3, "__builtin_ia32_vpshab", IX86_BUILTIN_VPSHAB, UNKNOWN, (int)MULTI_ARG_2_QI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv2di3, "__builtin_ia32_vpshlq", IX86_BUILTIN_VPSHLQ, UNKNOWN, (int)MULTI_ARG_2_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv4si3, "__builtin_ia32_vpshld", IX86_BUILTIN_VPSHLD, UNKNOWN, (int)MULTI_ARG_2_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv8hi3, "__builtin_ia32_vpshlw", IX86_BUILTIN_VPSHLW, UNKNOWN, (int)MULTI_ARG_2_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv16qi3, "__builtin_ia32_vpshlb", IX86_BUILTIN_VPSHLB, UNKNOWN, (int)MULTI_ARG_2_QI }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv4sf2, "__builtin_ia32_vfrczss", IX86_BUILTIN_VFRCZSS, UNKNOWN, (int)MULTI_ARG_2_SF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv2df2, "__builtin_ia32_vfrczsd", IX86_BUILTIN_VFRCZSD, UNKNOWN, (int)MULTI_ARG_2_DF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4sf2, "__builtin_ia32_vfrczps", IX86_BUILTIN_VFRCZPS, UNKNOWN, (int)MULTI_ARG_1_SF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv2df2, "__builtin_ia32_vfrczpd", IX86_BUILTIN_VFRCZPD, UNKNOWN, (int)MULTI_ARG_1_DF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv8sf2, "__builtin_ia32_vfrczps256", IX86_BUILTIN_VFRCZPS256, UNKNOWN, (int)MULTI_ARG_1_SF2 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4df2, "__builtin_ia32_vfrczpd256", IX86_BUILTIN_VFRCZPD256, UNKNOWN, (int)MULTI_ARG_1_DF2 }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbw, "__builtin_ia32_vphaddbw", IX86_BUILTIN_VPHADDBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbd, "__builtin_ia32_vphaddbd", IX86_BUILTIN_VPHADDBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbq, "__builtin_ia32_vphaddbq", IX86_BUILTIN_VPHADDBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwd, "__builtin_ia32_vphaddwd", IX86_BUILTIN_VPHADDWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwq, "__builtin_ia32_vphaddwq", IX86_BUILTIN_VPHADDWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadddq, "__builtin_ia32_vphadddq", IX86_BUILTIN_VPHADDDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubw, "__builtin_ia32_vphaddubw", IX86_BUILTIN_VPHADDUBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubd, "__builtin_ia32_vphaddubd", IX86_BUILTIN_VPHADDUBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubq, "__builtin_ia32_vphaddubq", IX86_BUILTIN_VPHADDUBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwd, "__builtin_ia32_vphadduwd", IX86_BUILTIN_VPHADDUWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwq, "__builtin_ia32_vphadduwq", IX86_BUILTIN_VPHADDUWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddudq, "__builtin_ia32_vphaddudq", IX86_BUILTIN_VPHADDUDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubbw, "__builtin_ia32_vphsubbw", IX86_BUILTIN_VPHSUBBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubwd, "__builtin_ia32_vphsubwd", IX86_BUILTIN_VPHSUBWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubdq, "__builtin_ia32_vphsubdq", IX86_BUILTIN_VPHSUBDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomeqb", IX86_BUILTIN_VPCOMEQB, EQ, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneqb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomltb", IX86_BUILTIN_VPCOMLTB, LT, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomleb", IX86_BUILTIN_VPCOMLEB, LE, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgtb", IX86_BUILTIN_VPCOMGTB, GT, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgeb", IX86_BUILTIN_VPCOMGEB, GE, (int)MULTI_ARG_2_QI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomeqw", IX86_BUILTIN_VPCOMEQW, EQ, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomnew", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomneqw", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomltw", IX86_BUILTIN_VPCOMLTW, LT, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomlew", IX86_BUILTIN_VPCOMLEW, LE, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgtw", IX86_BUILTIN_VPCOMGTW, GT, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgew", IX86_BUILTIN_VPCOMGEW, GE, (int)MULTI_ARG_2_HI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomeqd", IX86_BUILTIN_VPCOMEQD, EQ, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomned", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomneqd", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomltd", IX86_BUILTIN_VPCOMLTD, LT, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomled", IX86_BUILTIN_VPCOMLED, LE, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomgtd", IX86_BUILTIN_VPCOMGTD, GT, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomged", IX86_BUILTIN_VPCOMGED, GE, (int)MULTI_ARG_2_SI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomeqq", IX86_BUILTIN_VPCOMEQQ, EQ, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneqq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomltq", IX86_BUILTIN_VPCOMLTQ, LT, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomleq", IX86_BUILTIN_VPCOMLEQ, LE, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgtq", IX86_BUILTIN_VPCOMGTQ, GT, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgeq", IX86_BUILTIN_VPCOMGEQ, GE, (int)MULTI_ARG_2_DI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomequb", IX86_BUILTIN_VPCOMEQUB, EQ, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomneub", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomnequb", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomltub", IX86_BUILTIN_VPCOMLTUB, LTU, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomleub", IX86_BUILTIN_VPCOMLEUB, LEU, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgtub", IX86_BUILTIN_VPCOMGTUB, GTU, (int)MULTI_ARG_2_QI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgeub", IX86_BUILTIN_VPCOMGEUB, GEU, (int)MULTI_ARG_2_QI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomequw", IX86_BUILTIN_VPCOMEQUW, EQ, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomneuw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomnequw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomltuw", IX86_BUILTIN_VPCOMLTUW, LTU, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomleuw", IX86_BUILTIN_VPCOMLEUW, LEU, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgtuw", IX86_BUILTIN_VPCOMGTUW, GTU, (int)MULTI_ARG_2_HI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgeuw", IX86_BUILTIN_VPCOMGEUW, GEU, (int)MULTI_ARG_2_HI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomequd", IX86_BUILTIN_VPCOMEQUD, EQ, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomneud", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomnequd", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomltud", IX86_BUILTIN_VPCOMLTUD, LTU, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomleud", IX86_BUILTIN_VPCOMLEUD, LEU, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgtud", IX86_BUILTIN_VPCOMGTUD, GTU, (int)MULTI_ARG_2_SI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgeud", IX86_BUILTIN_VPCOMGEUD, GEU, (int)MULTI_ARG_2_SI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomequq", IX86_BUILTIN_VPCOMEQUQ, EQ, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomneuq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomnequq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomltuq", IX86_BUILTIN_VPCOMLTUQ, LTU, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomleuq", IX86_BUILTIN_VPCOMLEUQ, LEU, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgtuq", IX86_BUILTIN_VPCOMGTUQ, GTU, (int)MULTI_ARG_2_DI_CMP }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgeuq", IX86_BUILTIN_VPCOMGEUQ, GEU, (int)MULTI_ARG_2_DI_CMP }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseb", IX86_BUILTIN_VPCOMFALSEB, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalsew", IX86_BUILTIN_VPCOMFALSEW, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalsed", IX86_BUILTIN_VPCOMFALSED, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseq", IX86_BUILTIN_VPCOMFALSEQ, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseub",IX86_BUILTIN_VPCOMFALSEUB,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalseuw",IX86_BUILTIN_VPCOMFALSEUW,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalseud",IX86_BUILTIN_VPCOMFALSEUD,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseuq",IX86_BUILTIN_VPCOMFALSEUQ,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueb", IX86_BUILTIN_VPCOMTRUEB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtruew", IX86_BUILTIN_VPCOMTRUEW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrued", IX86_BUILTIN_VPCOMTRUED, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueq", IX86_BUILTIN_VPCOMTRUEQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueub", IX86_BUILTIN_VPCOMTRUEUB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtrueuw", IX86_BUILTIN_VPCOMTRUEUW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrueud", IX86_BUILTIN_VPCOMTRUEUD, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueuq", IX86_BUILTIN_VPCOMTRUEUQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, + + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v2df3, "__builtin_ia32_vpermil2pd", IX86_BUILTIN_VPERMIL2PD, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4sf3, "__builtin_ia32_vpermil2ps", IX86_BUILTIN_VPERMIL2PS, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4df3, "__builtin_ia32_vpermil2pd256", IX86_BUILTIN_VPERMIL2PD256, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I1 }, + { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v8sf3, "__builtin_ia32_vpermil2ps256", IX86_BUILTIN_VPERMIL2PS256, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I1 }, + +}; + +/* Set up all the MMX/SSE builtins, even builtins for instructions that are not + in the current target ISA to allow the user to compile particular modules + with different target specific options that differ from the command line + options. */ +static void +ix86_init_mmx_sse_builtins (void) +{ + const struct builtin_description * d; + enum ix86_builtin_func_type ftype; + size_t i; + + /* Add all special builtins with variable number of operands. */ + for (i = 0, d = bdesc_special_args; + i < ARRAY_SIZE (bdesc_special_args); + i++, d++) + { + if (d->name == 0) + continue; + + ftype = (enum ix86_builtin_func_type) d->flag; + def_builtin (d->mask, d->name, ftype, d->code); + } + + /* Add all builtins with variable number of operands. */ + for (i = 0, d = bdesc_args; + i < ARRAY_SIZE (bdesc_args); + i++, d++) + { + if (d->name == 0) + continue; + + ftype = (enum ix86_builtin_func_type) d->flag; + def_builtin_const (d->mask, d->name, ftype, d->code); + } + + /* pcmpestr[im] insns. */ + for (i = 0, d = bdesc_pcmpestr; + i < ARRAY_SIZE (bdesc_pcmpestr); + i++, d++) + { + if (d->code == IX86_BUILTIN_PCMPESTRM128) + ftype = V16QI_FTYPE_V16QI_INT_V16QI_INT_INT; + else + ftype = INT_FTYPE_V16QI_INT_V16QI_INT_INT; + def_builtin_const (d->mask, d->name, ftype, d->code); + } + + /* pcmpistr[im] insns. */ + for (i = 0, d = bdesc_pcmpistr; + i < ARRAY_SIZE (bdesc_pcmpistr); + i++, d++) + { + if (d->code == IX86_BUILTIN_PCMPISTRM128) + ftype = V16QI_FTYPE_V16QI_V16QI_INT; + else + ftype = INT_FTYPE_V16QI_V16QI_INT; + def_builtin_const (d->mask, d->name, ftype, d->code); + } + + /* comi/ucomi insns. */ + for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) + { + if (d->mask == OPTION_MASK_ISA_SSE2) + ftype = INT_FTYPE_V2DF_V2DF; + else + ftype = INT_FTYPE_V4SF_V4SF; + def_builtin_const (d->mask, d->name, ftype, d->code); + } + + /* SSE */ + def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_ldmxcsr", + VOID_FTYPE_UNSIGNED, IX86_BUILTIN_LDMXCSR); + def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_stmxcsr", + UNSIGNED_FTYPE_VOID, IX86_BUILTIN_STMXCSR); + + /* SSE or 3DNow!A */ + def_builtin (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, + "__builtin_ia32_maskmovq", VOID_FTYPE_V8QI_V8QI_PCHAR, + IX86_BUILTIN_MASKMOVQ); + + /* SSE2 */ + def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_maskmovdqu", + VOID_FTYPE_V16QI_V16QI_PCHAR, IX86_BUILTIN_MASKMOVDQU); + + def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_clflush", + VOID_FTYPE_PCVOID, IX86_BUILTIN_CLFLUSH); + x86_mfence = def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_mfence", + VOID_FTYPE_VOID, IX86_BUILTIN_MFENCE); + + /* SSE3. */ + def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_monitor", + VOID_FTYPE_PCVOID_UNSIGNED_UNSIGNED, IX86_BUILTIN_MONITOR); + def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_mwait", + VOID_FTYPE_UNSIGNED_UNSIGNED, IX86_BUILTIN_MWAIT); + + /* AES */ + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenc128", + V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENC128); + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenclast128", + V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENCLAST128); + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdec128", + V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDEC128); + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdeclast128", + V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDECLAST128); + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesimc128", + V2DI_FTYPE_V2DI, IX86_BUILTIN_AESIMC128); + def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aeskeygenassist128", + V2DI_FTYPE_V2DI_INT, IX86_BUILTIN_AESKEYGENASSIST128); + + /* PCLMUL */ + def_builtin_const (OPTION_MASK_ISA_PCLMUL, "__builtin_ia32_pclmulqdq128", + V2DI_FTYPE_V2DI_V2DI_INT, IX86_BUILTIN_PCLMULQDQ128); + + /* RDRND */ + def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand16_step", + INT_FTYPE_PUSHORT, IX86_BUILTIN_RDRAND16_STEP); + def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand32_step", + INT_FTYPE_PUNSIGNED, IX86_BUILTIN_RDRAND32_STEP); + def_builtin (OPTION_MASK_ISA_RDRND | OPTION_MASK_ISA_64BIT, + "__builtin_ia32_rdrand64_step", INT_FTYPE_PULONGLONG, + IX86_BUILTIN_RDRAND64_STEP); + + /* MMX access to the vec_init patterns. */ + def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v2si", + V2SI_FTYPE_INT_INT, IX86_BUILTIN_VEC_INIT_V2SI); + + def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v4hi", + V4HI_FTYPE_HI_HI_HI_HI, + IX86_BUILTIN_VEC_INIT_V4HI); + + def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v8qi", + V8QI_FTYPE_QI_QI_QI_QI_QI_QI_QI_QI, + IX86_BUILTIN_VEC_INIT_V8QI); + + /* Access to the vec_extract patterns. */ + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2df", + DOUBLE_FTYPE_V2DF_INT, IX86_BUILTIN_VEC_EXT_V2DF); + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2di", + DI_FTYPE_V2DI_INT, IX86_BUILTIN_VEC_EXT_V2DI); + def_builtin_const (OPTION_MASK_ISA_SSE, "__builtin_ia32_vec_ext_v4sf", + FLOAT_FTYPE_V4SF_INT, IX86_BUILTIN_VEC_EXT_V4SF); + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v4si", + SI_FTYPE_V4SI_INT, IX86_BUILTIN_VEC_EXT_V4SI); + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v8hi", + HI_FTYPE_V8HI_INT, IX86_BUILTIN_VEC_EXT_V8HI); + + def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, + "__builtin_ia32_vec_ext_v4hi", + HI_FTYPE_V4HI_INT, IX86_BUILTIN_VEC_EXT_V4HI); + + def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_ext_v2si", + SI_FTYPE_V2SI_INT, IX86_BUILTIN_VEC_EXT_V2SI); + + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v16qi", + QI_FTYPE_V16QI_INT, IX86_BUILTIN_VEC_EXT_V16QI); + + /* Access to the vec_set patterns. */ + def_builtin_const (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_64BIT, + "__builtin_ia32_vec_set_v2di", + V2DI_FTYPE_V2DI_DI_INT, IX86_BUILTIN_VEC_SET_V2DI); + + def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4sf", + V4SF_FTYPE_V4SF_FLOAT_INT, IX86_BUILTIN_VEC_SET_V4SF); + + def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4si", + V4SI_FTYPE_V4SI_SI_INT, IX86_BUILTIN_VEC_SET_V4SI); + + def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_set_v8hi", + V8HI_FTYPE_V8HI_HI_INT, IX86_BUILTIN_VEC_SET_V8HI); + + def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, + "__builtin_ia32_vec_set_v4hi", + V4HI_FTYPE_V4HI_HI_INT, IX86_BUILTIN_VEC_SET_V4HI); + + def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v16qi", + V16QI_FTYPE_V16QI_QI_INT, IX86_BUILTIN_VEC_SET_V16QI); + + /* Add FMA4 multi-arg argument instructions */ + for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) + { + if (d->name == 0) + continue; + + ftype = (enum ix86_builtin_func_type) d->flag; + def_builtin_const (d->mask, d->name, ftype, d->code); + } +} + +/* Internal method for ix86_init_builtins. */ + +static void +ix86_init_builtins_va_builtins_abi (void) +{ + tree ms_va_ref, sysv_va_ref; + tree fnvoid_va_end_ms, fnvoid_va_end_sysv; + tree fnvoid_va_start_ms, fnvoid_va_start_sysv; + tree fnvoid_va_copy_ms, fnvoid_va_copy_sysv; + tree fnattr_ms = NULL_TREE, fnattr_sysv = NULL_TREE; + + if (!TARGET_64BIT) + return; + fnattr_ms = build_tree_list (get_identifier ("ms_abi"), NULL_TREE); + fnattr_sysv = build_tree_list (get_identifier ("sysv_abi"), NULL_TREE); + ms_va_ref = build_reference_type (ms_va_list_type_node); + sysv_va_ref = + build_pointer_type (TREE_TYPE (sysv_va_list_type_node)); + + fnvoid_va_end_ms = + build_function_type_list (void_type_node, ms_va_ref, NULL_TREE); + fnvoid_va_start_ms = + build_varargs_function_type_list (void_type_node, ms_va_ref, NULL_TREE); + fnvoid_va_end_sysv = + build_function_type_list (void_type_node, sysv_va_ref, NULL_TREE); + fnvoid_va_start_sysv = + build_varargs_function_type_list (void_type_node, sysv_va_ref, + NULL_TREE); + fnvoid_va_copy_ms = + build_function_type_list (void_type_node, ms_va_ref, ms_va_list_type_node, + NULL_TREE); + fnvoid_va_copy_sysv = + build_function_type_list (void_type_node, sysv_va_ref, + sysv_va_ref, NULL_TREE); + + add_builtin_function ("__builtin_ms_va_start", fnvoid_va_start_ms, + BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_ms); + add_builtin_function ("__builtin_ms_va_end", fnvoid_va_end_ms, + BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_ms); + add_builtin_function ("__builtin_ms_va_copy", fnvoid_va_copy_ms, + BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_ms); + add_builtin_function ("__builtin_sysv_va_start", fnvoid_va_start_sysv, + BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_sysv); + add_builtin_function ("__builtin_sysv_va_end", fnvoid_va_end_sysv, + BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_sysv); + add_builtin_function ("__builtin_sysv_va_copy", fnvoid_va_copy_sysv, + BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_sysv); +} + +static void +ix86_init_builtin_types (void) +{ + tree float128_type_node, float80_type_node; + + /* The __float80 type. */ + float80_type_node = long_double_type_node; + if (TYPE_MODE (float80_type_node) != XFmode) + { + /* The __float80 type. */ + float80_type_node = make_node (REAL_TYPE); + + TYPE_PRECISION (float80_type_node) = 80; + layout_type (float80_type_node); + } + lang_hooks.types.register_builtin_type (float80_type_node, "__float80"); + + /* The __float128 type. */ + float128_type_node = make_node (REAL_TYPE); + TYPE_PRECISION (float128_type_node) = 128; + layout_type (float128_type_node); + lang_hooks.types.register_builtin_type (float128_type_node, "__float128"); + + /* This macro is built by i386-builtin-types.awk. */ + DEFINE_BUILTIN_PRIMITIVE_TYPES; +} + +static void +ix86_init_builtins (void) +{ + tree t; + + ix86_init_builtin_types (); + + /* TFmode support builtins. */ + def_builtin_const (0, "__builtin_infq", + FLOAT128_FTYPE_VOID, IX86_BUILTIN_INFQ); + def_builtin_const (0, "__builtin_huge_valq", + FLOAT128_FTYPE_VOID, IX86_BUILTIN_HUGE_VALQ); + + /* We will expand them to normal call if SSE2 isn't available since + they are used by libgcc. */ + t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128); + t = add_builtin_function ("__builtin_fabsq", t, IX86_BUILTIN_FABSQ, + BUILT_IN_MD, "__fabstf2", NULL_TREE); + TREE_READONLY (t) = 1; + ix86_builtins[(int) IX86_BUILTIN_FABSQ] = t; + + t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128_FLOAT128); + t = add_builtin_function ("__builtin_copysignq", t, IX86_BUILTIN_COPYSIGNQ, + BUILT_IN_MD, "__copysigntf3", NULL_TREE); + TREE_READONLY (t) = 1; + ix86_builtins[(int) IX86_BUILTIN_COPYSIGNQ] = t; + + ix86_init_mmx_sse_builtins (); + + if (TARGET_64BIT) + ix86_init_builtins_va_builtins_abi (); + +#ifdef SUBTARGET_INIT_BUILTINS + SUBTARGET_INIT_BUILTINS; +#endif +} + +/* Return the ix86 builtin for CODE. */ + +static tree +ix86_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) +{ + if (code >= IX86_BUILTIN_MAX) + return error_mark_node; + + return ix86_builtins[code]; +} + +/* Errors in the source file can cause expand_expr to return const0_rtx + where we expect a vector. To avoid crashing, use one of the vector + clear instructions. */ +static rtx +safe_vector_operand (rtx x, enum machine_mode mode) +{ + if (x == const0_rtx) + x = CONST0_RTX (mode); + return x; +} + +/* Subroutine of ix86_expand_builtin to take care of binop insns. */ + +static rtx +ix86_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + enum machine_mode tmode = insn_data[icode].operand[0].mode; + enum machine_mode mode0 = insn_data[icode].operand[1].mode; + enum machine_mode mode1 = insn_data[icode].operand[2].mode; + + if (VECTOR_MODE_P (mode0)) + op0 = safe_vector_operand (op0, mode0); + if (VECTOR_MODE_P (mode1)) + op1 = safe_vector_operand (op1, mode1); + + if (optimize || !target + || GET_MODE (target) != tmode + || !insn_data[icode].operand[0].predicate (target, tmode)) + target = gen_reg_rtx (tmode); + + if (GET_MODE (op1) == SImode && mode1 == TImode) + { + rtx x = gen_reg_rtx (V4SImode); + emit_insn (gen_sse2_loadd (x, op1)); + op1 = gen_lowpart (TImode, x); + } + + if (!insn_data[icode].operand[1].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + if (!insn_data[icode].operand[2].predicate (op1, mode1)) + op1 = copy_to_mode_reg (mode1, op1); + + pat = GEN_FCN (icode) (target, op0, op1); + if (! pat) + return 0; + + emit_insn (pat); + + return target; +} + +/* Subroutine of ix86_expand_builtin to take care of 2-4 argument insns. */ + +static rtx +ix86_expand_multi_arg_builtin (enum insn_code icode, tree exp, rtx target, + enum ix86_builtin_func_type m_type, + enum rtx_code sub_code) +{ + rtx pat; + int i; + int nargs; + bool comparison_p = false; + bool tf_p = false; + bool last_arg_constant = false; + int num_memory = 0; + struct { + rtx op; + enum machine_mode mode; + } args[4]; + + enum machine_mode tmode = insn_data[icode].operand[0].mode; + + switch (m_type) + { + case MULTI_ARG_4_DF2_DI_I: + case MULTI_ARG_4_DF2_DI_I1: + case MULTI_ARG_4_SF2_SI_I: + case MULTI_ARG_4_SF2_SI_I1: + nargs = 4; + last_arg_constant = true; + break; + + case MULTI_ARG_3_SF: + case MULTI_ARG_3_DF: + case MULTI_ARG_3_SF2: + case MULTI_ARG_3_DF2: + case MULTI_ARG_3_DI: + case MULTI_ARG_3_SI: + case MULTI_ARG_3_SI_DI: + case MULTI_ARG_3_HI: + case MULTI_ARG_3_HI_SI: + case MULTI_ARG_3_QI: + case MULTI_ARG_3_DI2: + case MULTI_ARG_3_SI2: + case MULTI_ARG_3_HI2: + case MULTI_ARG_3_QI2: + nargs = 3; + break; + + case MULTI_ARG_2_SF: + case MULTI_ARG_2_DF: + case MULTI_ARG_2_DI: + case MULTI_ARG_2_SI: + case MULTI_ARG_2_HI: + case MULTI_ARG_2_QI: + nargs = 2; + break; + + case MULTI_ARG_2_DI_IMM: + case MULTI_ARG_2_SI_IMM: + case MULTI_ARG_2_HI_IMM: + case MULTI_ARG_2_QI_IMM: + nargs = 2; + last_arg_constant = true; + break; + + case MULTI_ARG_1_SF: + case MULTI_ARG_1_DF: + case MULTI_ARG_1_SF2: + case MULTI_ARG_1_DF2: + case MULTI_ARG_1_DI: + case MULTI_ARG_1_SI: + case MULTI_ARG_1_HI: + case MULTI_ARG_1_QI: + case MULTI_ARG_1_SI_DI: + case MULTI_ARG_1_HI_DI: + case MULTI_ARG_1_HI_SI: + case MULTI_ARG_1_QI_DI: + case MULTI_ARG_1_QI_SI: + case MULTI_ARG_1_QI_HI: + nargs = 1; + break; + + case MULTI_ARG_2_DI_CMP: + case MULTI_ARG_2_SI_CMP: + case MULTI_ARG_2_HI_CMP: + case MULTI_ARG_2_QI_CMP: + nargs = 2; + comparison_p = true; + break; + + case MULTI_ARG_2_SF_TF: + case MULTI_ARG_2_DF_TF: + case MULTI_ARG_2_DI_TF: + case MULTI_ARG_2_SI_TF: + case MULTI_ARG_2_HI_TF: + case MULTI_ARG_2_QI_TF: + nargs = 2; + tf_p = true; + break; + + default: + gcc_unreachable (); + } + + if (optimize || !target + || GET_MODE (target) != tmode + || !insn_data[icode].operand[0].predicate (target, tmode)) + target = gen_reg_rtx (tmode); + + gcc_assert (nargs <= 4); + + for (i = 0; i < nargs; i++) + { + tree arg = CALL_EXPR_ARG (exp, i); + rtx op = expand_normal (arg); + int adjust = (comparison_p) ? 1 : 0; + enum machine_mode mode = insn_data[icode].operand[i+adjust+1].mode; + + if (last_arg_constant && i == nargs - 1) + { + if (!insn_data[icode].operand[i + 1].predicate (op, mode)) + { + enum insn_code new_icode = icode; + switch (icode) + { + case CODE_FOR_xop_vpermil2v2df3: + case CODE_FOR_xop_vpermil2v4sf3: + case CODE_FOR_xop_vpermil2v4df3: + case CODE_FOR_xop_vpermil2v8sf3: + error ("the last argument must be a 2-bit immediate"); + return gen_reg_rtx (tmode); + case CODE_FOR_xop_rotlv2di3: + new_icode = CODE_FOR_rotlv2di3; + goto xop_rotl; + case CODE_FOR_xop_rotlv4si3: + new_icode = CODE_FOR_rotlv4si3; + goto xop_rotl; + case CODE_FOR_xop_rotlv8hi3: + new_icode = CODE_FOR_rotlv8hi3; + goto xop_rotl; + case CODE_FOR_xop_rotlv16qi3: + new_icode = CODE_FOR_rotlv16qi3; + xop_rotl: + if (CONST_INT_P (op)) + { + int mask = GET_MODE_BITSIZE (GET_MODE_INNER (tmode)) - 1; + op = GEN_INT (INTVAL (op) & mask); + gcc_checking_assert + (insn_data[icode].operand[i + 1].predicate (op, mode)); + } + else + { + gcc_checking_assert + (nargs == 2 + && insn_data[new_icode].operand[0].mode == tmode + && insn_data[new_icode].operand[1].mode == tmode + && insn_data[new_icode].operand[2].mode == mode + && insn_data[new_icode].operand[0].predicate + == insn_data[icode].operand[0].predicate + && insn_data[new_icode].operand[1].predicate + == insn_data[icode].operand[1].predicate); + icode = new_icode; + goto non_constant; + } + break; + default: + gcc_unreachable (); + } + } + } + else + { + non_constant: + if (VECTOR_MODE_P (mode)) + op = safe_vector_operand (op, mode); + + /* If we aren't optimizing, only allow one memory operand to be + generated. */ + if (memory_operand (op, mode)) + num_memory++; + + gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); + + if (optimize + || !insn_data[icode].operand[i+adjust+1].predicate (op, mode) + || num_memory > 1) + op = force_reg (mode, op); + } + + args[i].op = op; + args[i].mode = mode; + } + + switch (nargs) + { + case 1: + pat = GEN_FCN (icode) (target, args[0].op); + break; + + case 2: + if (tf_p) + pat = GEN_FCN (icode) (target, args[0].op, args[1].op, + GEN_INT ((int)sub_code)); + else if (! comparison_p) + pat = GEN_FCN (icode) (target, args[0].op, args[1].op); + else + { + rtx cmp_op = gen_rtx_fmt_ee (sub_code, GET_MODE (target), + args[0].op, + args[1].op); + + pat = GEN_FCN (icode) (target, cmp_op, args[0].op, args[1].op); + } + break; + + case 3: + pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); + break; + + case 4: + pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op); + break; + + default: + gcc_unreachable (); + } + + if (! pat) + return 0; + + emit_insn (pat); + return target; +} + +/* Subroutine of ix86_expand_args_builtin to take care of scalar unop + insns with vec_merge. */ + +static rtx +ix86_expand_unop_vec_merge_builtin (enum insn_code icode, tree exp, + rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + rtx op1, op0 = expand_normal (arg0); + enum machine_mode tmode = insn_data[icode].operand[0].mode; + enum machine_mode mode0 = insn_data[icode].operand[1].mode; + + if (optimize || !target + || GET_MODE (target) != tmode + || !insn_data[icode].operand[0].predicate (target, tmode)) + target = gen_reg_rtx (tmode); + + if (VECTOR_MODE_P (mode0)) + op0 = safe_vector_operand (op0, mode0); + + if ((optimize && !register_operand (op0, mode0)) + || !insn_data[icode].operand[1].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + + op1 = op0; + if (!insn_data[icode].operand[2].predicate (op1, mode0)) + op1 = copy_to_mode_reg (mode0, op1); + + pat = GEN_FCN (icode) (target, op0, op1); + if (! pat) + return 0; + emit_insn (pat); + return target; +} + +/* Subroutine of ix86_expand_builtin to take care of comparison insns. */ + +static rtx +ix86_expand_sse_compare (const struct builtin_description *d, + tree exp, rtx target, bool swap) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + rtx op2; + enum machine_mode tmode = insn_data[d->icode].operand[0].mode; + enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; + enum machine_mode mode1 = insn_data[d->icode].operand[2].mode; + enum rtx_code comparison = d->comparison; + + if (VECTOR_MODE_P (mode0)) + op0 = safe_vector_operand (op0, mode0); + if (VECTOR_MODE_P (mode1)) + op1 = safe_vector_operand (op1, mode1); + + /* Swap operands if we have a comparison that isn't available in + hardware. */ + if (swap) + { + rtx tmp = gen_reg_rtx (mode1); + emit_move_insn (tmp, op1); + op1 = op0; + op0 = tmp; + } + + if (optimize || !target + || GET_MODE (target) != tmode + || !insn_data[d->icode].operand[0].predicate (target, tmode)) + target = gen_reg_rtx (tmode); + + if ((optimize && !register_operand (op0, mode0)) + || !insn_data[d->icode].operand[1].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + if ((optimize && !register_operand (op1, mode1)) + || !insn_data[d->icode].operand[2].predicate (op1, mode1)) + op1 = copy_to_mode_reg (mode1, op1); + + op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1); + pat = GEN_FCN (d->icode) (target, op0, op1, op2); + if (! pat) + return 0; + emit_insn (pat); + return target; +} + +/* Subroutine of ix86_expand_builtin to take care of comi insns. */ + +static rtx +ix86_expand_sse_comi (const struct builtin_description *d, tree exp, + rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; + enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; + enum rtx_code comparison = d->comparison; + + if (VECTOR_MODE_P (mode0)) + op0 = safe_vector_operand (op0, mode0); + if (VECTOR_MODE_P (mode1)) + op1 = safe_vector_operand (op1, mode1); + + /* Swap operands if we have a comparison that isn't available in + hardware. */ + if (d->flag & BUILTIN_DESC_SWAP_OPERANDS) + { + rtx tmp = op1; + op1 = op0; + op0 = tmp; + } + + target = gen_reg_rtx (SImode); + emit_move_insn (target, const0_rtx); + target = gen_rtx_SUBREG (QImode, target, 0); + + if ((optimize && !register_operand (op0, mode0)) + || !insn_data[d->icode].operand[0].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + if ((optimize && !register_operand (op1, mode1)) + || !insn_data[d->icode].operand[1].predicate (op1, mode1)) + op1 = copy_to_mode_reg (mode1, op1); + + pat = GEN_FCN (d->icode) (op0, op1); + if (! pat) + return 0; + emit_insn (pat); + emit_insn (gen_rtx_SET (VOIDmode, + gen_rtx_STRICT_LOW_PART (VOIDmode, target), + gen_rtx_fmt_ee (comparison, QImode, + SET_DEST (pat), + const0_rtx))); + + return SUBREG_REG (target); +} + +/* Subroutine of ix86_expand_builtin to take care of ptest insns. */ + +static rtx +ix86_expand_sse_ptest (const struct builtin_description *d, tree exp, + rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; + enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; + enum rtx_code comparison = d->comparison; + + if (VECTOR_MODE_P (mode0)) + op0 = safe_vector_operand (op0, mode0); + if (VECTOR_MODE_P (mode1)) + op1 = safe_vector_operand (op1, mode1); + + target = gen_reg_rtx (SImode); + emit_move_insn (target, const0_rtx); + target = gen_rtx_SUBREG (QImode, target, 0); + + if ((optimize && !register_operand (op0, mode0)) + || !insn_data[d->icode].operand[0].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + if ((optimize && !register_operand (op1, mode1)) + || !insn_data[d->icode].operand[1].predicate (op1, mode1)) + op1 = copy_to_mode_reg (mode1, op1); + + pat = GEN_FCN (d->icode) (op0, op1); + if (! pat) + return 0; + emit_insn (pat); + emit_insn (gen_rtx_SET (VOIDmode, + gen_rtx_STRICT_LOW_PART (VOIDmode, target), + gen_rtx_fmt_ee (comparison, QImode, + SET_DEST (pat), + const0_rtx))); + + return SUBREG_REG (target); +} + +/* Subroutine of ix86_expand_builtin to take care of pcmpestr[im] insns. */ + +static rtx +ix86_expand_sse_pcmpestr (const struct builtin_description *d, + tree exp, rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + tree arg2 = CALL_EXPR_ARG (exp, 2); + tree arg3 = CALL_EXPR_ARG (exp, 3); + tree arg4 = CALL_EXPR_ARG (exp, 4); + rtx scratch0, scratch1; + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + rtx op2 = expand_normal (arg2); + rtx op3 = expand_normal (arg3); + rtx op4 = expand_normal (arg4); + enum machine_mode tmode0, tmode1, modev2, modei3, modev4, modei5, modeimm; + + tmode0 = insn_data[d->icode].operand[0].mode; + tmode1 = insn_data[d->icode].operand[1].mode; + modev2 = insn_data[d->icode].operand[2].mode; + modei3 = insn_data[d->icode].operand[3].mode; + modev4 = insn_data[d->icode].operand[4].mode; + modei5 = insn_data[d->icode].operand[5].mode; + modeimm = insn_data[d->icode].operand[6].mode; + + if (VECTOR_MODE_P (modev2)) + op0 = safe_vector_operand (op0, modev2); + if (VECTOR_MODE_P (modev4)) + op2 = safe_vector_operand (op2, modev4); + + if (!insn_data[d->icode].operand[2].predicate (op0, modev2)) + op0 = copy_to_mode_reg (modev2, op0); + if (!insn_data[d->icode].operand[3].predicate (op1, modei3)) + op1 = copy_to_mode_reg (modei3, op1); + if ((optimize && !register_operand (op2, modev4)) + || !insn_data[d->icode].operand[4].predicate (op2, modev4)) + op2 = copy_to_mode_reg (modev4, op2); + if (!insn_data[d->icode].operand[5].predicate (op3, modei5)) + op3 = copy_to_mode_reg (modei5, op3); + + if (!insn_data[d->icode].operand[6].predicate (op4, modeimm)) + { + error ("the fifth argument must be an 8-bit immediate"); + return const0_rtx; + } + + if (d->code == IX86_BUILTIN_PCMPESTRI128) + { + if (optimize || !target + || GET_MODE (target) != tmode0 + || !insn_data[d->icode].operand[0].predicate (target, tmode0)) + target = gen_reg_rtx (tmode0); + + scratch1 = gen_reg_rtx (tmode1); + + pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2, op3, op4); + } + else if (d->code == IX86_BUILTIN_PCMPESTRM128) + { + if (optimize || !target + || GET_MODE (target) != tmode1 + || !insn_data[d->icode].operand[1].predicate (target, tmode1)) + target = gen_reg_rtx (tmode1); + + scratch0 = gen_reg_rtx (tmode0); + + pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2, op3, op4); + } + else + { + gcc_assert (d->flag); + + scratch0 = gen_reg_rtx (tmode0); + scratch1 = gen_reg_rtx (tmode1); + + pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2, op3, op4); + } + + if (! pat) + return 0; + + emit_insn (pat); + + if (d->flag) + { + target = gen_reg_rtx (SImode); + emit_move_insn (target, const0_rtx); + target = gen_rtx_SUBREG (QImode, target, 0); + + emit_insn + (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), + gen_rtx_fmt_ee (EQ, QImode, + gen_rtx_REG ((enum machine_mode) d->flag, + FLAGS_REG), + const0_rtx))); + return SUBREG_REG (target); + } + else + return target; +} + + +/* Subroutine of ix86_expand_builtin to take care of pcmpistr[im] insns. */ + +static rtx +ix86_expand_sse_pcmpistr (const struct builtin_description *d, + tree exp, rtx target) +{ + rtx pat; + tree arg0 = CALL_EXPR_ARG (exp, 0); + tree arg1 = CALL_EXPR_ARG (exp, 1); + tree arg2 = CALL_EXPR_ARG (exp, 2); + rtx scratch0, scratch1; + rtx op0 = expand_normal (arg0); + rtx op1 = expand_normal (arg1); + rtx op2 = expand_normal (arg2); + enum machine_mode tmode0, tmode1, modev2, modev3, modeimm; + + tmode0 = insn_data[d->icode].operand[0].mode; + tmode1 = insn_data[d->icode].operand[1].mode; + modev2 = insn_data[d->icode].operand[2].mode; + modev3 = insn_data[d->icode].operand[3].mode; + modeimm = insn_data[d->icode].operand[4].mode; + + if (VECTOR_MODE_P (modev2)) + op0 = safe_vector_operand (op0, modev2); + if (VECTOR_MODE_P (modev3)) + op1 = safe_vector_operand (op1, modev3); + + if (!insn_data[d->icode].operand[2].predicate (op0, modev2)) + op0 = copy_to_mode_reg (modev2, op0); + if ((optimize && !register_operand (op1, modev3)) + || !insn_data[d->icode].operand[3].predicate (op1, modev3)) + op1 = copy_to_mode_reg (modev3, op1); + + if (!insn_data[d->icode].operand[4].predicate (op2, modeimm)) + { + error ("the third argument must be an 8-bit immediate"); + return const0_rtx; + } + + if (d->code == IX86_BUILTIN_PCMPISTRI128) + { + if (optimize || !target + || GET_MODE (target) != tmode0 + || !insn_data[d->icode].operand[0].predicate (target, tmode0)) + target = gen_reg_rtx (tmode0); + + scratch1 = gen_reg_rtx (tmode1); + + pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2); + } + else if (d->code == IX86_BUILTIN_PCMPISTRM128) + { + if (optimize || !target + || GET_MODE (target) != tmode1 + || !insn_data[d->icode].operand[1].predicate (target, tmode1)) + target = gen_reg_rtx (tmode1); + + scratch0 = gen_reg_rtx (tmode0); + + pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2); + } + else + { + gcc_assert (d->flag); + + scratch0 = gen_reg_rtx (tmode0); + scratch1 = gen_reg_rtx (tmode1); + + pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2); + } + + if (! pat) + return 0; + + emit_insn (pat); + + if (d->flag) + { + target = gen_reg_rtx (SImode); + emit_move_insn (target, const0_rtx); + target = gen_rtx_SUBREG (QImode, target, 0); + + emit_insn + (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), + gen_rtx_fmt_ee (EQ, QImode, + gen_rtx_REG ((enum machine_mode) d->flag, + FLAGS_REG), + const0_rtx))); + return SUBREG_REG (target); + } + else + return target; +} + +/* Subroutine of ix86_expand_builtin to take care of insns with + variable number of operands. */ + +static rtx +ix86_expand_args_builtin (const struct builtin_description *d, + tree exp, rtx target) +{ + rtx pat, real_target; + unsigned int i, nargs; + unsigned int nargs_constant = 0; + int num_memory = 0; + struct + { + rtx op; + enum machine_mode mode; + } args[4]; + bool last_arg_count = false; + enum insn_code icode = d->icode; + const struct insn_data_d *insn_p = &insn_data[icode]; + enum machine_mode tmode = insn_p->operand[0].mode; + enum machine_mode rmode = VOIDmode; + bool swap = false; + enum rtx_code comparison = d->comparison; + + switch ((enum ix86_builtin_func_type) d->flag) + { + case INT_FTYPE_V8SF_V8SF_PTEST: + case INT_FTYPE_V4DI_V4DI_PTEST: + case INT_FTYPE_V4DF_V4DF_PTEST: + case INT_FTYPE_V4SF_V4SF_PTEST: + case INT_FTYPE_V2DI_V2DI_PTEST: + case INT_FTYPE_V2DF_V2DF_PTEST: + return ix86_expand_sse_ptest (d, exp, target); + case FLOAT128_FTYPE_FLOAT128: + case FLOAT_FTYPE_FLOAT: + case INT_FTYPE_INT: + case UINT64_FTYPE_INT: + case UINT16_FTYPE_UINT16: + case INT64_FTYPE_INT64: + case INT64_FTYPE_V4SF: + case INT64_FTYPE_V2DF: + case INT_FTYPE_V16QI: + case INT_FTYPE_V8QI: + case INT_FTYPE_V8SF: + case INT_FTYPE_V4DF: + case INT_FTYPE_V4SF: + case INT_FTYPE_V2DF: + case V16QI_FTYPE_V16QI: + case V8SI_FTYPE_V8SF: + case V8SI_FTYPE_V4SI: + case V8HI_FTYPE_V8HI: + case V8HI_FTYPE_V16QI: + case V8QI_FTYPE_V8QI: + case V8SF_FTYPE_V8SF: + case V8SF_FTYPE_V8SI: + case V8SF_FTYPE_V4SF: + case V8SF_FTYPE_V8HI: + case V4SI_FTYPE_V4SI: + case V4SI_FTYPE_V16QI: + case V4SI_FTYPE_V4SF: + case V4SI_FTYPE_V8SI: + case V4SI_FTYPE_V8HI: + case V4SI_FTYPE_V4DF: + case V4SI_FTYPE_V2DF: + case V4HI_FTYPE_V4HI: + case V4DF_FTYPE_V4DF: + case V4DF_FTYPE_V4SI: + case V4DF_FTYPE_V4SF: + case V4DF_FTYPE_V2DF: + case V4SF_FTYPE_V4SF: + case V4SF_FTYPE_V4SI: + case V4SF_FTYPE_V8SF: + case V4SF_FTYPE_V4DF: + case V4SF_FTYPE_V8HI: + case V4SF_FTYPE_V2DF: + case V2DI_FTYPE_V2DI: + case V2DI_FTYPE_V16QI: + case V2DI_FTYPE_V8HI: + case V2DI_FTYPE_V4SI: + case V2DF_FTYPE_V2DF: + case V2DF_FTYPE_V4SI: + case V2DF_FTYPE_V4DF: + case V2DF_FTYPE_V4SF: + case V2DF_FTYPE_V2SI: + case V2SI_FTYPE_V2SI: + case V2SI_FTYPE_V4SF: + case V2SI_FTYPE_V2SF: + case V2SI_FTYPE_V2DF: + case V2SF_FTYPE_V2SF: + case V2SF_FTYPE_V2SI: + nargs = 1; + break; + case V4SF_FTYPE_V4SF_VEC_MERGE: + case V2DF_FTYPE_V2DF_VEC_MERGE: + return ix86_expand_unop_vec_merge_builtin (icode, exp, target); + case FLOAT128_FTYPE_FLOAT128_FLOAT128: + case V16QI_FTYPE_V16QI_V16QI: + case V16QI_FTYPE_V8HI_V8HI: + case V8QI_FTYPE_V8QI_V8QI: + case V8QI_FTYPE_V4HI_V4HI: + case V8HI_FTYPE_V8HI_V8HI: + case V8HI_FTYPE_V16QI_V16QI: + case V8HI_FTYPE_V4SI_V4SI: + case V8SF_FTYPE_V8SF_V8SF: + case V8SF_FTYPE_V8SF_V8SI: + case V4SI_FTYPE_V4SI_V4SI: + case V4SI_FTYPE_V8HI_V8HI: + case V4SI_FTYPE_V4SF_V4SF: + case V4SI_FTYPE_V2DF_V2DF: + case V4HI_FTYPE_V4HI_V4HI: + case V4HI_FTYPE_V8QI_V8QI: + case V4HI_FTYPE_V2SI_V2SI: + case V4DF_FTYPE_V4DF_V4DF: + case V4DF_FTYPE_V4DF_V4DI: + case V4SF_FTYPE_V4SF_V4SF: + case V4SF_FTYPE_V4SF_V4SI: + case V4SF_FTYPE_V4SF_V2SI: + case V4SF_FTYPE_V4SF_V2DF: + case V4SF_FTYPE_V4SF_DI: + case V4SF_FTYPE_V4SF_SI: + case V2DI_FTYPE_V2DI_V2DI: + case V2DI_FTYPE_V16QI_V16QI: + case V2DI_FTYPE_V4SI_V4SI: + case V2DI_FTYPE_V2DI_V16QI: + case V2DI_FTYPE_V2DF_V2DF: + case V2SI_FTYPE_V2SI_V2SI: + case V2SI_FTYPE_V4HI_V4HI: + case V2SI_FTYPE_V2SF_V2SF: + case V2DF_FTYPE_V2DF_V2DF: + case V2DF_FTYPE_V2DF_V4SF: + case V2DF_FTYPE_V2DF_V2DI: + case V2DF_FTYPE_V2DF_DI: + case V2DF_FTYPE_V2DF_SI: + case V2SF_FTYPE_V2SF_V2SF: + case V1DI_FTYPE_V1DI_V1DI: + case V1DI_FTYPE_V8QI_V8QI: + case V1DI_FTYPE_V2SI_V2SI: + if (comparison == UNKNOWN) + return ix86_expand_binop_builtin (icode, exp, target); + nargs = 2; + break; + case V4SF_FTYPE_V4SF_V4SF_SWAP: + case V2DF_FTYPE_V2DF_V2DF_SWAP: + gcc_assert (comparison != UNKNOWN); + nargs = 2; + swap = true; + break; + case V8HI_FTYPE_V8HI_V8HI_COUNT: + case V8HI_FTYPE_V8HI_SI_COUNT: + case V4SI_FTYPE_V4SI_V4SI_COUNT: + case V4SI_FTYPE_V4SI_SI_COUNT: + case V4HI_FTYPE_V4HI_V4HI_COUNT: + case V4HI_FTYPE_V4HI_SI_COUNT: + case V2DI_FTYPE_V2DI_V2DI_COUNT: + case V2DI_FTYPE_V2DI_SI_COUNT: + case V2SI_FTYPE_V2SI_V2SI_COUNT: + case V2SI_FTYPE_V2SI_SI_COUNT: + case V1DI_FTYPE_V1DI_V1DI_COUNT: + case V1DI_FTYPE_V1DI_SI_COUNT: + nargs = 2; + last_arg_count = true; + break; + case UINT64_FTYPE_UINT64_UINT64: + case UINT_FTYPE_UINT_UINT: + case UINT_FTYPE_UINT_USHORT: + case UINT_FTYPE_UINT_UCHAR: + case UINT16_FTYPE_UINT16_INT: + case UINT8_FTYPE_UINT8_INT: + nargs = 2; + break; + case V2DI_FTYPE_V2DI_INT_CONVERT: + nargs = 2; + rmode = V1TImode; + nargs_constant = 1; + break; + case V8HI_FTYPE_V8HI_INT: + case V8HI_FTYPE_V8SF_INT: + case V8HI_FTYPE_V4SF_INT: + case V8SF_FTYPE_V8SF_INT: + case V4SI_FTYPE_V4SI_INT: + case V4SI_FTYPE_V8SI_INT: + case V4HI_FTYPE_V4HI_INT: + case V4DF_FTYPE_V4DF_INT: + case V4SF_FTYPE_V4SF_INT: + case V4SF_FTYPE_V8SF_INT: + case V2DI_FTYPE_V2DI_INT: + case V2DF_FTYPE_V2DF_INT: + case V2DF_FTYPE_V4DF_INT: + nargs = 2; + nargs_constant = 1; + break; + case V16QI_FTYPE_V16QI_V16QI_V16QI: + case V8SF_FTYPE_V8SF_V8SF_V8SF: + case V4DF_FTYPE_V4DF_V4DF_V4DF: + case V4SF_FTYPE_V4SF_V4SF_V4SF: + case V2DF_FTYPE_V2DF_V2DF_V2DF: + nargs = 3; + break; + case V16QI_FTYPE_V16QI_V16QI_INT: + case V8HI_FTYPE_V8HI_V8HI_INT: + case V8SI_FTYPE_V8SI_V8SI_INT: + case V8SI_FTYPE_V8SI_V4SI_INT: + case V8SF_FTYPE_V8SF_V8SF_INT: + case V8SF_FTYPE_V8SF_V4SF_INT: + case V4SI_FTYPE_V4SI_V4SI_INT: + case V4DF_FTYPE_V4DF_V4DF_INT: + case V4DF_FTYPE_V4DF_V2DF_INT: + case V4SF_FTYPE_V4SF_V4SF_INT: + case V2DI_FTYPE_V2DI_V2DI_INT: + case V2DF_FTYPE_V2DF_V2DF_INT: + nargs = 3; + nargs_constant = 1; + break; + case V2DI_FTYPE_V2DI_V2DI_INT_CONVERT: + nargs = 3; + rmode = V2DImode; + nargs_constant = 1; + break; + case V1DI_FTYPE_V1DI_V1DI_INT_CONVERT: + nargs = 3; + rmode = DImode; + nargs_constant = 1; + break; + case V2DI_FTYPE_V2DI_UINT_UINT: + nargs = 3; + nargs_constant = 2; + break; + case V2DF_FTYPE_V2DF_V2DF_V2DI_INT: + case V4DF_FTYPE_V4DF_V4DF_V4DI_INT: + case V4SF_FTYPE_V4SF_V4SF_V4SI_INT: + case V8SF_FTYPE_V8SF_V8SF_V8SI_INT: + nargs = 4; + nargs_constant = 1; + break; + case V2DI_FTYPE_V2DI_V2DI_UINT_UINT: + nargs = 4; + nargs_constant = 2; + break; + default: + gcc_unreachable (); + } + + gcc_assert (nargs <= ARRAY_SIZE (args)); + + if (comparison != UNKNOWN) + { + gcc_assert (nargs == 2); + return ix86_expand_sse_compare (d, exp, target, swap); + } + + if (rmode == VOIDmode || rmode == tmode) + { + if (optimize + || target == 0 + || GET_MODE (target) != tmode + || !insn_p->operand[0].predicate (target, tmode)) + target = gen_reg_rtx (tmode); + real_target = target; + } + else + { + target = gen_reg_rtx (rmode); + real_target = simplify_gen_subreg (tmode, target, rmode, 0); + } + + for (i = 0; i < nargs; i++) + { + tree arg = CALL_EXPR_ARG (exp, i); + rtx op = expand_normal (arg); + enum machine_mode mode = insn_p->operand[i + 1].mode; + bool match = insn_p->operand[i + 1].predicate (op, mode); + + if (last_arg_count && (i + 1) == nargs) + { + /* SIMD shift insns take either an 8-bit immediate or + register as count. But builtin functions take int as + count. If count doesn't match, we put it in register. */ + if (!match) + { + op = simplify_gen_subreg (SImode, op, GET_MODE (op), 0); + if (!insn_p->operand[i + 1].predicate (op, mode)) + op = copy_to_reg (op); + } + } + else if ((nargs - i) <= nargs_constant) + { + if (!match) + switch (icode) + { + case CODE_FOR_sse4_1_roundpd: + case CODE_FOR_sse4_1_roundps: + case CODE_FOR_sse4_1_roundsd: + case CODE_FOR_sse4_1_roundss: + case CODE_FOR_sse4_1_blendps: + case CODE_FOR_avx_blendpd256: + case CODE_FOR_avx_vpermilv4df: + case CODE_FOR_avx_roundpd256: + case CODE_FOR_avx_roundps256: + error ("the last argument must be a 4-bit immediate"); + return const0_rtx; + + case CODE_FOR_sse4_1_blendpd: + case CODE_FOR_avx_vpermilv2df: + case CODE_FOR_xop_vpermil2v2df3: + case CODE_FOR_xop_vpermil2v4sf3: + case CODE_FOR_xop_vpermil2v4df3: + case CODE_FOR_xop_vpermil2v8sf3: + error ("the last argument must be a 2-bit immediate"); + return const0_rtx; + + case CODE_FOR_avx_vextractf128v4df: + case CODE_FOR_avx_vextractf128v8sf: + case CODE_FOR_avx_vextractf128v8si: + case CODE_FOR_avx_vinsertf128v4df: + case CODE_FOR_avx_vinsertf128v8sf: + case CODE_FOR_avx_vinsertf128v8si: + error ("the last argument must be a 1-bit immediate"); + return const0_rtx; + + case CODE_FOR_avx_cmpsdv2df3: + case CODE_FOR_avx_cmpssv4sf3: + case CODE_FOR_avx_cmppdv2df3: + case CODE_FOR_avx_cmppsv4sf3: + case CODE_FOR_avx_cmppdv4df3: + case CODE_FOR_avx_cmppsv8sf3: + error ("the last argument must be a 5-bit immediate"); + return const0_rtx; + + default: + switch (nargs_constant) + { + case 2: + if ((nargs - i) == nargs_constant) + { + error ("the next to last argument must be an 8-bit immediate"); + break; + } + case 1: + error ("the last argument must be an 8-bit immediate"); + break; + default: + gcc_unreachable (); + } + return const0_rtx; + } + } + else + { + if (VECTOR_MODE_P (mode)) + op = safe_vector_operand (op, mode); + + /* If we aren't optimizing, only allow one memory operand to + be generated. */ + if (memory_operand (op, mode)) + num_memory++; + + if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) + { + if (optimize || !match || num_memory > 1) + op = copy_to_mode_reg (mode, op); + } + else + { + op = copy_to_reg (op); + op = simplify_gen_subreg (mode, op, GET_MODE (op), 0); + } + } + + args[i].op = op; + args[i].mode = mode; + } + + switch (nargs) + { + case 1: + pat = GEN_FCN (icode) (real_target, args[0].op); + break; + case 2: + pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op); + break; + case 3: + pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, + args[2].op); + break; + case 4: + pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, + args[2].op, args[3].op); + break; + default: + gcc_unreachable (); + } + + if (! pat) + return 0; + + emit_insn (pat); + return target; +} + +/* Subroutine of ix86_expand_builtin to take care of special insns + with variable number of operands. */ + +static rtx +ix86_expand_special_args_builtin (const struct builtin_description *d, + tree exp, rtx target) +{ + tree arg; + rtx pat, op; + unsigned int i, nargs, arg_adjust, memory; + struct + { + rtx op; + enum machine_mode mode; + } args[3]; + enum insn_code icode = d->icode; + bool last_arg_constant = false; + const struct insn_data_d *insn_p = &insn_data[icode]; + enum machine_mode tmode = insn_p->operand[0].mode; + enum { load, store } klass; + + switch ((enum ix86_builtin_func_type) d->flag) + { + case VOID_FTYPE_VOID: + if (icode == CODE_FOR_avx_vzeroupper) + target = GEN_INT (vzeroupper_intrinsic); + emit_insn (GEN_FCN (icode) (target)); + return 0; + case VOID_FTYPE_UINT64: + case VOID_FTYPE_UNSIGNED: + nargs = 0; + klass = store; + memory = 0; + break; + break; + case UINT64_FTYPE_VOID: + case UNSIGNED_FTYPE_VOID: + nargs = 0; + klass = load; + memory = 0; + break; + case UINT64_FTYPE_PUNSIGNED: + case V2DI_FTYPE_PV2DI: + case V32QI_FTYPE_PCCHAR: + case V16QI_FTYPE_PCCHAR: + case V8SF_FTYPE_PCV4SF: + case V8SF_FTYPE_PCFLOAT: + case V4SF_FTYPE_PCFLOAT: + case V4DF_FTYPE_PCV2DF: + case V4DF_FTYPE_PCDOUBLE: + case V2DF_FTYPE_PCDOUBLE: + case VOID_FTYPE_PVOID: + nargs = 1; + klass = load; + memory = 0; + break; + case VOID_FTYPE_PV2SF_V4SF: + case VOID_FTYPE_PV4DI_V4DI: + case VOID_FTYPE_PV2DI_V2DI: + case VOID_FTYPE_PCHAR_V32QI: + case VOID_FTYPE_PCHAR_V16QI: + case VOID_FTYPE_PFLOAT_V8SF: + case VOID_FTYPE_PFLOAT_V4SF: + case VOID_FTYPE_PDOUBLE_V4DF: + case VOID_FTYPE_PDOUBLE_V2DF: + case VOID_FTYPE_PULONGLONG_ULONGLONG: + case VOID_FTYPE_PINT_INT: + nargs = 1; + klass = store; + /* Reserve memory operand for target. */ + memory = ARRAY_SIZE (args); + break; + case V4SF_FTYPE_V4SF_PCV2SF: + case V2DF_FTYPE_V2DF_PCDOUBLE: + nargs = 2; + klass = load; + memory = 1; + break; + case V8SF_FTYPE_PCV8SF_V8SI: + case V4DF_FTYPE_PCV4DF_V4DI: + case V4SF_FTYPE_PCV4SF_V4SI: + case V2DF_FTYPE_PCV2DF_V2DI: + nargs = 2; + klass = load; + memory = 0; + break; + case VOID_FTYPE_PV8SF_V8SI_V8SF: + case VOID_FTYPE_PV4DF_V4DI_V4DF: + case VOID_FTYPE_PV4SF_V4SI_V4SF: + case VOID_FTYPE_PV2DF_V2DI_V2DF: + nargs = 2; + klass = store; + /* Reserve memory operand for target. */ + memory = ARRAY_SIZE (args); + break; + case VOID_FTYPE_UINT_UINT_UINT: + case VOID_FTYPE_UINT64_UINT_UINT: + case UCHAR_FTYPE_UINT_UINT_UINT: + case UCHAR_FTYPE_UINT64_UINT_UINT: + nargs = 3; + klass = load; + memory = ARRAY_SIZE (args); + last_arg_constant = true; + break; + default: + gcc_unreachable (); + } + + gcc_assert (nargs <= ARRAY_SIZE (args)); + + if (klass == store) + { + arg = CALL_EXPR_ARG (exp, 0); + op = expand_normal (arg); + gcc_assert (target == 0); + if (memory) + target = gen_rtx_MEM (tmode, copy_to_mode_reg (Pmode, op)); + else + target = force_reg (tmode, op); + arg_adjust = 1; + } + else + { + arg_adjust = 0; + if (optimize + || target == 0 + || !register_operand (target, tmode) + || GET_MODE (target) != tmode) + target = gen_reg_rtx (tmode); + } + + for (i = 0; i < nargs; i++) + { + enum machine_mode mode = insn_p->operand[i + 1].mode; + bool match; + + arg = CALL_EXPR_ARG (exp, i + arg_adjust); + op = expand_normal (arg); + match = insn_p->operand[i + 1].predicate (op, mode); + + if (last_arg_constant && (i + 1) == nargs) + { + if (!match) + { + if (icode == CODE_FOR_lwp_lwpvalsi3 + || icode == CODE_FOR_lwp_lwpinssi3 + || icode == CODE_FOR_lwp_lwpvaldi3 + || icode == CODE_FOR_lwp_lwpinsdi3) + error ("the last argument must be a 32-bit immediate"); + else + error ("the last argument must be an 8-bit immediate"); + return const0_rtx; + } + } + else + { + if (i == memory) + { + /* This must be the memory operand. */ + op = gen_rtx_MEM (mode, copy_to_mode_reg (Pmode, op)); + gcc_assert (GET_MODE (op) == mode + || GET_MODE (op) == VOIDmode); + } + else + { + /* This must be register. */ + if (VECTOR_MODE_P (mode)) + op = safe_vector_operand (op, mode); + + gcc_assert (GET_MODE (op) == mode + || GET_MODE (op) == VOIDmode); + op = copy_to_mode_reg (mode, op); + } + } + + args[i].op = op; + args[i].mode = mode; + } + + switch (nargs) + { + case 0: + pat = GEN_FCN (icode) (target); + break; + case 1: + pat = GEN_FCN (icode) (target, args[0].op); + break; + case 2: + pat = GEN_FCN (icode) (target, args[0].op, args[1].op); + break; + case 3: + pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); + break; + default: + gcc_unreachable (); + } + + if (! pat) + return 0; + emit_insn (pat); + return klass == store ? 0 : target; +} + +/* Return the integer constant in ARG. Constrain it to be in the range + of the subparts of VEC_TYPE; issue an error if not. */ + +static int +get_element_number (tree vec_type, tree arg) +{ + unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1; + + if (!host_integerp (arg, 1) + || (elt = tree_low_cst (arg, 1), elt > max)) + { + error ("selector must be an integer constant in the range 0..%wi", max); + return 0; + } + + return elt; +} + +/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around + ix86_expand_vector_init. We DO have language-level syntax for this, in + the form of (type){ init-list }. Except that since we can't place emms + instructions from inside the compiler, we can't allow the use of MMX + registers unless the user explicitly asks for it. So we do *not* define + vec_set/vec_extract/vec_init patterns for MMX modes in mmx.md. Instead + we have builtins invoked by mmintrin.h that gives us license to emit + these sorts of instructions. */ + +static rtx +ix86_expand_vec_init_builtin (tree type, tree exp, rtx target) +{ + enum machine_mode tmode = TYPE_MODE (type); + enum machine_mode inner_mode = GET_MODE_INNER (tmode); + int i, n_elt = GET_MODE_NUNITS (tmode); + rtvec v = rtvec_alloc (n_elt); + + gcc_assert (VECTOR_MODE_P (tmode)); + gcc_assert (call_expr_nargs (exp) == n_elt); + + for (i = 0; i < n_elt; ++i) + { + rtx x = expand_normal (CALL_EXPR_ARG (exp, i)); + RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x); + } + + if (!target || !register_operand (target, tmode)) + target = gen_reg_rtx (tmode); + + ix86_expand_vector_init (true, target, gen_rtx_PARALLEL (tmode, v)); + return target; +} + +/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around + ix86_expand_vector_extract. They would be redundant (for non-MMX) if we + had a language-level syntax for referencing vector elements. */ + +static rtx +ix86_expand_vec_ext_builtin (tree exp, rtx target) +{ + enum machine_mode tmode, mode0; + tree arg0, arg1; + int elt; + rtx op0; + + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + + op0 = expand_normal (arg0); + elt = get_element_number (TREE_TYPE (arg0), arg1); + + tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); + mode0 = TYPE_MODE (TREE_TYPE (arg0)); + gcc_assert (VECTOR_MODE_P (mode0)); + + op0 = force_reg (mode0, op0); + + if (optimize || !target || !register_operand (target, tmode)) + target = gen_reg_rtx (tmode); + + ix86_expand_vector_extract (true, target, op0, elt); + + return target; +} + +/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around + ix86_expand_vector_set. They would be redundant (for non-MMX) if we had + a language-level syntax for referencing vector elements. */ + +static rtx +ix86_expand_vec_set_builtin (tree exp) +{ + enum machine_mode tmode, mode1; + tree arg0, arg1, arg2; + int elt; + rtx op0, op1, target; + + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + arg2 = CALL_EXPR_ARG (exp, 2); + + tmode = TYPE_MODE (TREE_TYPE (arg0)); + mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); + gcc_assert (VECTOR_MODE_P (tmode)); + + op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL); + op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL); + elt = get_element_number (TREE_TYPE (arg0), arg2); + + if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode) + op1 = convert_modes (mode1, GET_MODE (op1), op1, true); + + op0 = force_reg (tmode, op0); + op1 = force_reg (mode1, op1); + + /* OP0 is the source of these builtin functions and shouldn't be + modified. Create a copy, use it and return it as target. */ + target = gen_reg_rtx (tmode); + emit_move_insn (target, op0); + ix86_expand_vector_set (true, target, op1, elt); + + return target; +} + +/* Expand an expression EXP that calls a built-in function, + with result going to TARGET if that's convenient + (and in mode MODE if that's convenient). + SUBTARGET may be used as the target for computing one of EXP's operands. + IGNORE is nonzero if the value is to be ignored. */ + +static rtx +ix86_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) +{ + const struct builtin_description *d; + size_t i; + enum insn_code icode; + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + tree arg0, arg1, arg2; + rtx op0, op1, op2, pat; + enum machine_mode mode0, mode1, mode2; + unsigned int fcode = DECL_FUNCTION_CODE (fndecl); + + /* Determine whether the builtin function is available under the current ISA. + Originally the builtin was not created if it wasn't applicable to the + current ISA based on the command line switches. With function specific + options, we need to check in the context of the function making the call + whether it is supported. */ + if (ix86_builtins_isa[fcode].isa + && !(ix86_builtins_isa[fcode].isa & ix86_isa_flags)) + { + char *opts = ix86_target_string (ix86_builtins_isa[fcode].isa, 0, NULL, + NULL, NULL, false); + + if (!opts) + error ("%qE needs unknown isa option", fndecl); + else + { + gcc_assert (opts != NULL); + error ("%qE needs isa option %s", fndecl, opts); + free (opts); + } + return const0_rtx; + } + + switch (fcode) + { + case IX86_BUILTIN_MASKMOVQ: + case IX86_BUILTIN_MASKMOVDQU: + icode = (fcode == IX86_BUILTIN_MASKMOVQ + ? CODE_FOR_mmx_maskmovq + : CODE_FOR_sse2_maskmovdqu); + /* Note the arg order is different from the operand order. */ + arg1 = CALL_EXPR_ARG (exp, 0); + arg2 = CALL_EXPR_ARG (exp, 1); + arg0 = CALL_EXPR_ARG (exp, 2); + op0 = expand_normal (arg0); + op1 = expand_normal (arg1); + op2 = expand_normal (arg2); + mode0 = insn_data[icode].operand[0].mode; + mode1 = insn_data[icode].operand[1].mode; + mode2 = insn_data[icode].operand[2].mode; + + op0 = force_reg (Pmode, op0); + op0 = gen_rtx_MEM (mode1, op0); + + if (!insn_data[icode].operand[0].predicate (op0, mode0)) + op0 = copy_to_mode_reg (mode0, op0); + if (!insn_data[icode].operand[1].predicate (op1, mode1)) + op1 = copy_to_mode_reg (mode1, op1); + if (!insn_data[icode].operand[2].predicate (op2, mode2)) + op2 = copy_to_mode_reg (mode2, op2); + pat = GEN_FCN (icode) (op0, op1, op2); + if (! pat) + return 0; + emit_insn (pat); + return 0; + + case IX86_BUILTIN_LDMXCSR: + op0 = expand_normal (CALL_EXPR_ARG (exp, 0)); + target = assign_386_stack_local (SImode, SLOT_VIRTUAL); + emit_move_insn (target, op0); + emit_insn (gen_sse_ldmxcsr (target)); + return 0; + + case IX86_BUILTIN_STMXCSR: + target = assign_386_stack_local (SImode, SLOT_VIRTUAL); + emit_insn (gen_sse_stmxcsr (target)); + return copy_to_mode_reg (SImode, target); + + case IX86_BUILTIN_CLFLUSH: + arg0 = CALL_EXPR_ARG (exp, 0); + op0 = expand_normal (arg0); + icode = CODE_FOR_sse2_clflush; + if (!insn_data[icode].operand[0].predicate (op0, Pmode)) + op0 = copy_to_mode_reg (Pmode, op0); + + emit_insn (gen_sse2_clflush (op0)); + return 0; + + case IX86_BUILTIN_MONITOR: + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + arg2 = CALL_EXPR_ARG (exp, 2); + op0 = expand_normal (arg0); + op1 = expand_normal (arg1); + op2 = expand_normal (arg2); + if (!REG_P (op0)) + op0 = copy_to_mode_reg (Pmode, op0); + if (!REG_P (op1)) + op1 = copy_to_mode_reg (SImode, op1); + if (!REG_P (op2)) + op2 = copy_to_mode_reg (SImode, op2); + emit_insn (ix86_gen_monitor (op0, op1, op2)); + return 0; + + case IX86_BUILTIN_MWAIT: + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + op0 = expand_normal (arg0); + op1 = expand_normal (arg1); + if (!REG_P (op0)) + op0 = copy_to_mode_reg (SImode, op0); + if (!REG_P (op1)) + op1 = copy_to_mode_reg (SImode, op1); + emit_insn (gen_sse3_mwait (op0, op1)); + return 0; + + case IX86_BUILTIN_VEC_INIT_V2SI: + case IX86_BUILTIN_VEC_INIT_V4HI: + case IX86_BUILTIN_VEC_INIT_V8QI: + return ix86_expand_vec_init_builtin (TREE_TYPE (exp), exp, target); + + case IX86_BUILTIN_VEC_EXT_V2DF: + case IX86_BUILTIN_VEC_EXT_V2DI: + case IX86_BUILTIN_VEC_EXT_V4SF: + case IX86_BUILTIN_VEC_EXT_V4SI: + case IX86_BUILTIN_VEC_EXT_V8HI: + case IX86_BUILTIN_VEC_EXT_V2SI: + case IX86_BUILTIN_VEC_EXT_V4HI: + case IX86_BUILTIN_VEC_EXT_V16QI: + return ix86_expand_vec_ext_builtin (exp, target); + + case IX86_BUILTIN_VEC_SET_V2DI: + case IX86_BUILTIN_VEC_SET_V4SF: + case IX86_BUILTIN_VEC_SET_V4SI: + case IX86_BUILTIN_VEC_SET_V8HI: + case IX86_BUILTIN_VEC_SET_V4HI: + case IX86_BUILTIN_VEC_SET_V16QI: + return ix86_expand_vec_set_builtin (exp); + + case IX86_BUILTIN_VEC_PERM_V2DF: + case IX86_BUILTIN_VEC_PERM_V4SF: + case IX86_BUILTIN_VEC_PERM_V2DI: + case IX86_BUILTIN_VEC_PERM_V4SI: + case IX86_BUILTIN_VEC_PERM_V8HI: + case IX86_BUILTIN_VEC_PERM_V16QI: + case IX86_BUILTIN_VEC_PERM_V2DI_U: + case IX86_BUILTIN_VEC_PERM_V4SI_U: + case IX86_BUILTIN_VEC_PERM_V8HI_U: + case IX86_BUILTIN_VEC_PERM_V16QI_U: + case IX86_BUILTIN_VEC_PERM_V4DF: + case IX86_BUILTIN_VEC_PERM_V8SF: + return ix86_expand_vec_perm_builtin (exp); + + case IX86_BUILTIN_INFQ: + case IX86_BUILTIN_HUGE_VALQ: + { + REAL_VALUE_TYPE inf; + rtx tmp; + + real_inf (&inf); + tmp = CONST_DOUBLE_FROM_REAL_VALUE (inf, mode); + + tmp = validize_mem (force_const_mem (mode, tmp)); + + if (target == 0) + target = gen_reg_rtx (mode); + + emit_move_insn (target, tmp); + return target; + } + + case IX86_BUILTIN_LLWPCB: + arg0 = CALL_EXPR_ARG (exp, 0); + op0 = expand_normal (arg0); + icode = CODE_FOR_lwp_llwpcb; + if (!insn_data[icode].operand[0].predicate (op0, Pmode)) + op0 = copy_to_mode_reg (Pmode, op0); + emit_insn (gen_lwp_llwpcb (op0)); + return 0; + + case IX86_BUILTIN_SLWPCB: + icode = CODE_FOR_lwp_slwpcb; + if (!target + || !insn_data[icode].operand[0].predicate (target, Pmode)) + target = gen_reg_rtx (Pmode); + emit_insn (gen_lwp_slwpcb (target)); + return target; + + case IX86_BUILTIN_BEXTRI32: + case IX86_BUILTIN_BEXTRI64: + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + op0 = expand_normal (arg0); + op1 = expand_normal (arg1); + icode = (fcode == IX86_BUILTIN_BEXTRI32 + ? CODE_FOR_tbm_bextri_si + : CODE_FOR_tbm_bextri_di); + if (!CONST_INT_P (op1)) + { + error ("last argument must be an immediate"); + return const0_rtx; + } + else + { + unsigned char length = (INTVAL (op1) >> 8) & 0xFF; + unsigned char lsb_index = INTVAL (op1) & 0xFF; + op1 = GEN_INT (length); + op2 = GEN_INT (lsb_index); + pat = GEN_FCN (icode) (target, op0, op1, op2); + if (pat) + emit_insn (pat); + return target; + } + + case IX86_BUILTIN_RDRAND16_STEP: + icode = CODE_FOR_rdrandhi_1; + mode0 = HImode; + goto rdrand_step; + + case IX86_BUILTIN_RDRAND32_STEP: + icode = CODE_FOR_rdrandsi_1; + mode0 = SImode; + goto rdrand_step; + + case IX86_BUILTIN_RDRAND64_STEP: + icode = CODE_FOR_rdranddi_1; + mode0 = DImode; + +rdrand_step: + op0 = gen_reg_rtx (mode0); + emit_insn (GEN_FCN (icode) (op0)); + + arg0 = CALL_EXPR_ARG (exp, 0); + op1 = expand_normal (arg0); + if (!address_operand (op1, VOIDmode)) + op1 = copy_addr_to_reg (op1); + emit_move_insn (gen_rtx_MEM (mode0, op1), op0); + + op1 = gen_reg_rtx (SImode); + emit_move_insn (op1, CONST1_RTX (SImode)); + + /* Emit SImode conditional move. */ + if (mode0 == HImode) + { + op2 = gen_reg_rtx (SImode); + emit_insn (gen_zero_extendhisi2 (op2, op0)); + } + else if (mode0 == SImode) + op2 = op0; + else + op2 = gen_rtx_SUBREG (SImode, op0, 0); + + if (target == 0) + target = gen_reg_rtx (SImode); + + pat = gen_rtx_GEU (VOIDmode, gen_rtx_REG (CCCmode, FLAGS_REG), + const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, target, + gen_rtx_IF_THEN_ELSE (SImode, pat, op2, op1))); + return target; + + default: + break; + } + + for (i = 0, d = bdesc_special_args; + i < ARRAY_SIZE (bdesc_special_args); + i++, d++) + if (d->code == fcode) + return ix86_expand_special_args_builtin (d, exp, target); + + for (i = 0, d = bdesc_args; + i < ARRAY_SIZE (bdesc_args); + i++, d++) + if (d->code == fcode) + switch (fcode) + { + case IX86_BUILTIN_FABSQ: + case IX86_BUILTIN_COPYSIGNQ: + if (!TARGET_SSE2) + /* Emit a normal call if SSE2 isn't available. */ + return expand_call (exp, target, ignore); + default: + return ix86_expand_args_builtin (d, exp, target); + } + + for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) + if (d->code == fcode) + return ix86_expand_sse_comi (d, exp, target); + + for (i = 0, d = bdesc_pcmpestr; + i < ARRAY_SIZE (bdesc_pcmpestr); + i++, d++) + if (d->code == fcode) + return ix86_expand_sse_pcmpestr (d, exp, target); + + for (i = 0, d = bdesc_pcmpistr; + i < ARRAY_SIZE (bdesc_pcmpistr); + i++, d++) + if (d->code == fcode) + return ix86_expand_sse_pcmpistr (d, exp, target); + + for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) + if (d->code == fcode) + return ix86_expand_multi_arg_builtin (d->icode, exp, target, + (enum ix86_builtin_func_type) + d->flag, d->comparison); + + gcc_unreachable (); +} + +/* Returns a function decl for a vectorized version of the builtin function + with builtin function code FN and the result vector type TYPE, or NULL_TREE + if it is not available. */ + +static tree +ix86_builtin_vectorized_function (tree fndecl, tree type_out, + tree type_in) +{ + enum machine_mode in_mode, out_mode; + int in_n, out_n; + enum built_in_function fn = DECL_FUNCTION_CODE (fndecl); + + if (TREE_CODE (type_out) != VECTOR_TYPE + || TREE_CODE (type_in) != VECTOR_TYPE + || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) + return NULL_TREE; + + out_mode = TYPE_MODE (TREE_TYPE (type_out)); + out_n = TYPE_VECTOR_SUBPARTS (type_out); + in_mode = TYPE_MODE (TREE_TYPE (type_in)); + in_n = TYPE_VECTOR_SUBPARTS (type_in); + + switch (fn) + { + case BUILT_IN_SQRT: + if (out_mode == DFmode && in_mode == DFmode) + { + if (out_n == 2 && in_n == 2) + return ix86_builtins[IX86_BUILTIN_SQRTPD]; + else if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_SQRTPD256]; + } + break; + + case BUILT_IN_SQRTF: + if (out_mode == SFmode && in_mode == SFmode) + { + if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_SQRTPS_NR]; + else if (out_n == 8 && in_n == 8) + return ix86_builtins[IX86_BUILTIN_SQRTPS_NR256]; + } + break; + + case BUILT_IN_LRINT: + if (out_mode == SImode && out_n == 4 + && in_mode == DFmode && in_n == 2) + return ix86_builtins[IX86_BUILTIN_VEC_PACK_SFIX]; + break; + + case BUILT_IN_LRINTF: + if (out_mode == SImode && in_mode == SFmode) + { + if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_CVTPS2DQ]; + else if (out_n == 8 && in_n == 8) + return ix86_builtins[IX86_BUILTIN_CVTPS2DQ256]; + } + break; + + case BUILT_IN_COPYSIGN: + if (out_mode == DFmode && in_mode == DFmode) + { + if (out_n == 2 && in_n == 2) + return ix86_builtins[IX86_BUILTIN_CPYSGNPD]; + else if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_CPYSGNPD256]; + } + break; + + case BUILT_IN_COPYSIGNF: + if (out_mode == SFmode && in_mode == SFmode) + { + if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_CPYSGNPS]; + else if (out_n == 8 && in_n == 8) + return ix86_builtins[IX86_BUILTIN_CPYSGNPS256]; + } + break; + + case BUILT_IN_FMA: + if (out_mode == DFmode && in_mode == DFmode) + { + if (out_n == 2 && in_n == 2) + return ix86_builtins[IX86_BUILTIN_VFMADDPD]; + if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_VFMADDPD256]; + } + break; + + case BUILT_IN_FMAF: + if (out_mode == SFmode && in_mode == SFmode) + { + if (out_n == 4 && in_n == 4) + return ix86_builtins[IX86_BUILTIN_VFMADDPS]; + if (out_n == 8 && in_n == 8) + return ix86_builtins[IX86_BUILTIN_VFMADDPS256]; + } + break; + + default: + break; + } + + /* Dispatch to a handler for a vectorization library. */ + if (ix86_veclib_handler) + return ix86_veclib_handler ((enum built_in_function) fn, type_out, + type_in); + + return NULL_TREE; +} + +/* Handler for an SVML-style interface to + a library with vectorized intrinsics. */ + +static tree +ix86_veclibabi_svml (enum built_in_function fn, tree type_out, tree type_in) +{ + char name[20]; + tree fntype, new_fndecl, args; + unsigned arity; + const char *bname; + enum machine_mode el_mode, in_mode; + int n, in_n; + + /* The SVML is suitable for unsafe math only. */ + if (!flag_unsafe_math_optimizations) + return NULL_TREE; + + el_mode = TYPE_MODE (TREE_TYPE (type_out)); + n = TYPE_VECTOR_SUBPARTS (type_out); + in_mode = TYPE_MODE (TREE_TYPE (type_in)); + in_n = TYPE_VECTOR_SUBPARTS (type_in); + if (el_mode != in_mode + || n != in_n) + return NULL_TREE; + + switch (fn) + { + case BUILT_IN_EXP: + case BUILT_IN_LOG: + case BUILT_IN_LOG10: + case BUILT_IN_POW: + case BUILT_IN_TANH: + case BUILT_IN_TAN: + case BUILT_IN_ATAN: + case BUILT_IN_ATAN2: + case BUILT_IN_ATANH: + case BUILT_IN_CBRT: + case BUILT_IN_SINH: + case BUILT_IN_SIN: + case BUILT_IN_ASINH: + case BUILT_IN_ASIN: + case BUILT_IN_COSH: + case BUILT_IN_COS: + case BUILT_IN_ACOSH: + case BUILT_IN_ACOS: + if (el_mode != DFmode || n != 2) + return NULL_TREE; + break; + + case BUILT_IN_EXPF: + case BUILT_IN_LOGF: + case BUILT_IN_LOG10F: + case BUILT_IN_POWF: + case BUILT_IN_TANHF: + case BUILT_IN_TANF: + case BUILT_IN_ATANF: + case BUILT_IN_ATAN2F: + case BUILT_IN_ATANHF: + case BUILT_IN_CBRTF: + case BUILT_IN_SINHF: + case BUILT_IN_SINF: + case BUILT_IN_ASINHF: + case BUILT_IN_ASINF: + case BUILT_IN_COSHF: + case BUILT_IN_COSF: + case BUILT_IN_ACOSHF: + case BUILT_IN_ACOSF: + if (el_mode != SFmode || n != 4) + return NULL_TREE; + break; + + default: + return NULL_TREE; + } + + bname = IDENTIFIER_POINTER (DECL_NAME (implicit_built_in_decls[fn])); + + if (fn == BUILT_IN_LOGF) + strcpy (name, "vmlsLn4"); + else if (fn == BUILT_IN_LOG) + strcpy (name, "vmldLn2"); + else if (n == 4) + { + sprintf (name, "vmls%s", bname+10); + name[strlen (name)-1] = '4'; + } + else + sprintf (name, "vmld%s2", bname+10); + + /* Convert to uppercase. */ + name[4] &= ~0x20; + + arity = 0; + for (args = DECL_ARGUMENTS (implicit_built_in_decls[fn]); args; + args = TREE_CHAIN (args)) + arity++; + + if (arity == 1) + fntype = build_function_type_list (type_out, type_in, NULL); + else + fntype = build_function_type_list (type_out, type_in, type_in, NULL); + + /* Build a function declaration for the vectorized function. */ + new_fndecl = build_decl (BUILTINS_LOCATION, + FUNCTION_DECL, get_identifier (name), fntype); + TREE_PUBLIC (new_fndecl) = 1; + DECL_EXTERNAL (new_fndecl) = 1; + DECL_IS_NOVOPS (new_fndecl) = 1; + TREE_READONLY (new_fndecl) = 1; + + return new_fndecl; +} + +/* Handler for an ACML-style interface to + a library with vectorized intrinsics. */ + +static tree +ix86_veclibabi_acml (enum built_in_function fn, tree type_out, tree type_in) +{ + char name[20] = "__vr.._"; + tree fntype, new_fndecl, args; + unsigned arity; + const char *bname; + enum machine_mode el_mode, in_mode; + int n, in_n; + + /* The ACML is 64bits only and suitable for unsafe math only as + it does not correctly support parts of IEEE with the required + precision such as denormals. */ + if (!TARGET_64BIT + || !flag_unsafe_math_optimizations) + return NULL_TREE; + + el_mode = TYPE_MODE (TREE_TYPE (type_out)); + n = TYPE_VECTOR_SUBPARTS (type_out); + in_mode = TYPE_MODE (TREE_TYPE (type_in)); + in_n = TYPE_VECTOR_SUBPARTS (type_in); + if (el_mode != in_mode + || n != in_n) + return NULL_TREE; + + switch (fn) + { + case BUILT_IN_SIN: + case BUILT_IN_COS: + case BUILT_IN_EXP: + case BUILT_IN_LOG: + case BUILT_IN_LOG2: + case BUILT_IN_LOG10: + name[4] = 'd'; + name[5] = '2'; + if (el_mode != DFmode + || n != 2) + return NULL_TREE; + break; + + case BUILT_IN_SINF: + case BUILT_IN_COSF: + case BUILT_IN_EXPF: + case BUILT_IN_POWF: + case BUILT_IN_LOGF: + case BUILT_IN_LOG2F: + case BUILT_IN_LOG10F: + name[4] = 's'; + name[5] = '4'; + if (el_mode != SFmode + || n != 4) + return NULL_TREE; + break; + + default: + return NULL_TREE; + } + + bname = IDENTIFIER_POINTER (DECL_NAME (implicit_built_in_decls[fn])); + sprintf (name + 7, "%s", bname+10); + + arity = 0; + for (args = DECL_ARGUMENTS (implicit_built_in_decls[fn]); args; + args = TREE_CHAIN (args)) + arity++; + + if (arity == 1) + fntype = build_function_type_list (type_out, type_in, NULL); + else + fntype = build_function_type_list (type_out, type_in, type_in, NULL); + + /* Build a function declaration for the vectorized function. */ + new_fndecl = build_decl (BUILTINS_LOCATION, + FUNCTION_DECL, get_identifier (name), fntype); + TREE_PUBLIC (new_fndecl) = 1; + DECL_EXTERNAL (new_fndecl) = 1; + DECL_IS_NOVOPS (new_fndecl) = 1; + TREE_READONLY (new_fndecl) = 1; + + return new_fndecl; +} + + +/* Returns a decl of a function that implements conversion of an integer vector + into a floating-point vector, or vice-versa. DEST_TYPE and SRC_TYPE + are the types involved when converting according to CODE. + Return NULL_TREE if it is not available. */ + +static tree +ix86_vectorize_builtin_conversion (unsigned int code, + tree dest_type, tree src_type) +{ + if (! TARGET_SSE2) + return NULL_TREE; + + switch (code) + { + case FLOAT_EXPR: + switch (TYPE_MODE (src_type)) + { + case V4SImode: + switch (TYPE_MODE (dest_type)) + { + case V4SFmode: + return (TYPE_UNSIGNED (src_type) + ? ix86_builtins[IX86_BUILTIN_CVTUDQ2PS] + : ix86_builtins[IX86_BUILTIN_CVTDQ2PS]); + case V4DFmode: + return (TYPE_UNSIGNED (src_type) + ? NULL_TREE + : ix86_builtins[IX86_BUILTIN_CVTDQ2PD256]); + default: + return NULL_TREE; + } + break; + case V8SImode: + switch (TYPE_MODE (dest_type)) + { + case V8SFmode: + return (TYPE_UNSIGNED (src_type) + ? NULL_TREE + : ix86_builtins[IX86_BUILTIN_CVTDQ2PS256]); + default: + return NULL_TREE; + } + break; + default: + return NULL_TREE; + } + + case FIX_TRUNC_EXPR: + switch (TYPE_MODE (dest_type)) + { + case V4SImode: + switch (TYPE_MODE (src_type)) + { + case V4SFmode: + return (TYPE_UNSIGNED (dest_type) + ? NULL_TREE + : ix86_builtins[IX86_BUILTIN_CVTTPS2DQ]); + case V4DFmode: + return (TYPE_UNSIGNED (dest_type) + ? NULL_TREE + : ix86_builtins[IX86_BUILTIN_CVTTPD2DQ256]); + default: + return NULL_TREE; + } + break; + + case V8SImode: + switch (TYPE_MODE (src_type)) + { + case V8SFmode: + return (TYPE_UNSIGNED (dest_type) + ? NULL_TREE + : ix86_builtins[IX86_BUILTIN_CVTTPS2DQ256]); + default: + return NULL_TREE; + } + break; + + default: + return NULL_TREE; + } + + default: + return NULL_TREE; + } + + return NULL_TREE; +} + +/* Returns a code for a target-specific builtin that implements + reciprocal of the function, or NULL_TREE if not available. */ + +static tree +ix86_builtin_reciprocal (unsigned int fn, bool md_fn, + bool sqrt ATTRIBUTE_UNUSED) +{ + if (! (TARGET_SSE_MATH && !optimize_insn_for_size_p () + && flag_finite_math_only && !flag_trapping_math + && flag_unsafe_math_optimizations)) + return NULL_TREE; + + if (md_fn) + /* Machine dependent builtins. */ + switch (fn) + { + /* Vectorized version of sqrt to rsqrt conversion. */ + case IX86_BUILTIN_SQRTPS_NR: + return ix86_builtins[IX86_BUILTIN_RSQRTPS_NR]; + + case IX86_BUILTIN_SQRTPS_NR256: + return ix86_builtins[IX86_BUILTIN_RSQRTPS_NR256]; + + default: + return NULL_TREE; + } + else + /* Normal builtins. */ + switch (fn) + { + /* Sqrt to rsqrt conversion. */ + case BUILT_IN_SQRTF: + return ix86_builtins[IX86_BUILTIN_RSQRTF]; + + default: + return NULL_TREE; + } +} + +/* Helper for avx_vpermilps256_operand et al. This is also used by + the expansion functions to turn the parallel back into a mask. + The return value is 0 for no match and the imm8+1 for a match. */ + +int +avx_vpermilp_parallel (rtx par, enum machine_mode mode) +{ + unsigned i, nelt = GET_MODE_NUNITS (mode); + unsigned mask = 0; + unsigned char ipar[8]; + + if (XVECLEN (par, 0) != (int) nelt) + return 0; + + /* Validate that all of the elements are constants, and not totally + out of range. Copy the data into an integral array to make the + subsequent checks easier. */ + for (i = 0; i < nelt; ++i) + { + rtx er = XVECEXP (par, 0, i); + unsigned HOST_WIDE_INT ei; + + if (!CONST_INT_P (er)) + return 0; + ei = INTVAL (er); + if (ei >= nelt) + return 0; + ipar[i] = ei; + } + + switch (mode) + { + case V4DFmode: + /* In the 256-bit DFmode case, we can only move elements within + a 128-bit lane. */ + for (i = 0; i < 2; ++i) + { + if (ipar[i] >= 2) + return 0; + mask |= ipar[i] << i; + } + for (i = 2; i < 4; ++i) + { + if (ipar[i] < 2) + return 0; + mask |= (ipar[i] - 2) << i; + } + break; + + case V8SFmode: + /* In the 256-bit SFmode case, we have full freedom of movement + within the low 128-bit lane, but the high 128-bit lane must + mirror the exact same pattern. */ + for (i = 0; i < 4; ++i) + if (ipar[i] + 4 != ipar[i + 4]) + return 0; + nelt = 4; + /* FALLTHRU */ + + case V2DFmode: + case V4SFmode: + /* In the 128-bit case, we've full freedom in the placement of + the elements from the source operand. */ + for (i = 0; i < nelt; ++i) + mask |= ipar[i] << (i * (nelt / 2)); + break; + + default: + gcc_unreachable (); + } + + /* Make sure success has a non-zero value by adding one. */ + return mask + 1; +} + +/* Helper for avx_vperm2f128_v4df_operand et al. This is also used by + the expansion functions to turn the parallel back into a mask. + The return value is 0 for no match and the imm8+1 for a match. */ + +int +avx_vperm2f128_parallel (rtx par, enum machine_mode mode) +{ + unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2; + unsigned mask = 0; + unsigned char ipar[8]; + + if (XVECLEN (par, 0) != (int) nelt) + return 0; + + /* Validate that all of the elements are constants, and not totally + out of range. Copy the data into an integral array to make the + subsequent checks easier. */ + for (i = 0; i < nelt; ++i) + { + rtx er = XVECEXP (par, 0, i); + unsigned HOST_WIDE_INT ei; + + if (!CONST_INT_P (er)) + return 0; + ei = INTVAL (er); + if (ei >= 2 * nelt) + return 0; + ipar[i] = ei; + } + + /* Validate that the halves of the permute are halves. */ + for (i = 0; i < nelt2 - 1; ++i) + if (ipar[i] + 1 != ipar[i + 1]) + return 0; + for (i = nelt2; i < nelt - 1; ++i) + if (ipar[i] + 1 != ipar[i + 1]) + return 0; + + /* Reconstruct the mask. */ + for (i = 0; i < 2; ++i) + { + unsigned e = ipar[i * nelt2]; + if (e % nelt2) + return 0; + e /= nelt2; + mask |= e << (i * 4); + } + + /* Make sure success has a non-zero value by adding one. */ + return mask + 1; +} + + +/* Store OPERAND to the memory after reload is completed. This means + that we can't easily use assign_stack_local. */ +rtx +ix86_force_to_memory (enum machine_mode mode, rtx operand) +{ + rtx result; + + gcc_assert (reload_completed); + if (ix86_using_red_zone ()) + { + result = gen_rtx_MEM (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (-RED_ZONE_SIZE))); + emit_move_insn (result, operand); + } + else if (TARGET_64BIT) + { + switch (mode) + { + case HImode: + case SImode: + operand = gen_lowpart (DImode, operand); + /* FALLTHRU */ + case DImode: + emit_insn ( + gen_rtx_SET (VOIDmode, + gen_rtx_MEM (DImode, + gen_rtx_PRE_DEC (DImode, + stack_pointer_rtx)), + operand)); + break; + default: + gcc_unreachable (); + } + result = gen_rtx_MEM (mode, stack_pointer_rtx); + } + else + { + switch (mode) + { + case DImode: + { + rtx operands[2]; + split_double_mode (mode, &operand, 1, operands, operands + 1); + emit_insn ( + gen_rtx_SET (VOIDmode, + gen_rtx_MEM (SImode, + gen_rtx_PRE_DEC (Pmode, + stack_pointer_rtx)), + operands[1])); + emit_insn ( + gen_rtx_SET (VOIDmode, + gen_rtx_MEM (SImode, + gen_rtx_PRE_DEC (Pmode, + stack_pointer_rtx)), + operands[0])); + } + break; + case HImode: + /* Store HImodes as SImodes. */ + operand = gen_lowpart (SImode, operand); + /* FALLTHRU */ + case SImode: + emit_insn ( + gen_rtx_SET (VOIDmode, + gen_rtx_MEM (GET_MODE (operand), + gen_rtx_PRE_DEC (SImode, + stack_pointer_rtx)), + operand)); + break; + default: + gcc_unreachable (); + } + result = gen_rtx_MEM (mode, stack_pointer_rtx); + } + return result; +} + +/* Free operand from the memory. */ +void +ix86_free_from_memory (enum machine_mode mode) +{ + if (!ix86_using_red_zone ()) + { + int size; + + if (mode == DImode || TARGET_64BIT) + size = 8; + else + size = 4; + /* Use LEA to deallocate stack space. In peephole2 it will be converted + to pop or add instruction if registers are available. */ + emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + GEN_INT (size)))); + } +} + +/* Implement TARGET_IRA_COVER_CLASSES. If -mfpmath=sse, we prefer + SSE_REGS to FLOAT_REGS if their costs for a pseudo are the + same. */ +static const reg_class_t * +i386_ira_cover_classes (void) +{ + static const reg_class_t sse_fpmath_classes[] = { + GENERAL_REGS, SSE_REGS, MMX_REGS, FLOAT_REGS, LIM_REG_CLASSES + }; + static const reg_class_t no_sse_fpmath_classes[] = { + GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES + }; + + return TARGET_SSE_MATH ? sse_fpmath_classes : no_sse_fpmath_classes; +} + +/* Implement TARGET_PREFERRED_RELOAD_CLASS. + + Put float CONST_DOUBLE in the constant pool instead of fp regs. + QImode must go into class Q_REGS. + Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and + movdf to do mem-to-mem moves through integer regs. */ + +static reg_class_t +ix86_preferred_reload_class (rtx x, reg_class_t regclass) +{ + enum machine_mode mode = GET_MODE (x); + + /* We're only allowed to return a subclass of CLASS. Many of the + following checks fail for NO_REGS, so eliminate that early. */ + if (regclass == NO_REGS) + return NO_REGS; + + /* All classes can load zeros. */ + if (x == CONST0_RTX (mode)) + return regclass; + + /* Force constants into memory if we are loading a (nonzero) constant into + an MMX or SSE register. This is because there are no MMX/SSE instructions + to load from a constant. */ + if (CONSTANT_P (x) + && (MAYBE_MMX_CLASS_P (regclass) || MAYBE_SSE_CLASS_P (regclass))) + return NO_REGS; + + /* Prefer SSE regs only, if we can use them for math. */ + if (TARGET_SSE_MATH && !TARGET_MIX_SSE_I387 && SSE_FLOAT_MODE_P (mode)) + return SSE_CLASS_P (regclass) ? regclass : NO_REGS; + + /* Floating-point constants need more complex checks. */ + if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode) + { + /* General regs can load everything. */ + if (reg_class_subset_p (regclass, GENERAL_REGS)) + return regclass; + + /* Floats can load 0 and 1 plus some others. Note that we eliminated + zero above. We only want to wind up preferring 80387 registers if + we plan on doing computation with them. */ + if (TARGET_80387 + && standard_80387_constant_p (x) > 0) + { + /* Limit class to non-sse. */ + if (regclass == FLOAT_SSE_REGS) + return FLOAT_REGS; + if (regclass == FP_TOP_SSE_REGS) + return FP_TOP_REG; + if (regclass == FP_SECOND_SSE_REGS) + return FP_SECOND_REG; + if (regclass == FLOAT_INT_REGS || regclass == FLOAT_REGS) + return regclass; + } + + return NO_REGS; + } + + /* Generally when we see PLUS here, it's the function invariant + (plus soft-fp const_int). Which can only be computed into general + regs. */ + if (GET_CODE (x) == PLUS) + return reg_class_subset_p (regclass, GENERAL_REGS) ? regclass : NO_REGS; + + /* QImode constants are easy to load, but non-constant QImode data + must go into Q_REGS. */ + if (GET_MODE (x) == QImode && !CONSTANT_P (x)) + { + if (reg_class_subset_p (regclass, Q_REGS)) + return regclass; + if (reg_class_subset_p (Q_REGS, regclass)) + return Q_REGS; + return NO_REGS; + } + + return regclass; +} + +/* Discourage putting floating-point values in SSE registers unless + SSE math is being used, and likewise for the 387 registers. */ +static reg_class_t +ix86_preferred_output_reload_class (rtx x, reg_class_t regclass) +{ + enum machine_mode mode = GET_MODE (x); + + /* Restrict the output reload class to the register bank that we are doing + math on. If we would like not to return a subset of CLASS, reject this + alternative: if reload cannot do this, it will still use its choice. */ + mode = GET_MODE (x); + if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) + return MAYBE_SSE_CLASS_P (regclass) ? SSE_REGS : NO_REGS; + + if (X87_FLOAT_MODE_P (mode)) + { + if (regclass == FP_TOP_SSE_REGS) + return FP_TOP_REG; + else if (regclass == FP_SECOND_SSE_REGS) + return FP_SECOND_REG; + else + return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS; + } + + return regclass; +} + +static reg_class_t +ix86_secondary_reload (bool in_p, rtx x, reg_class_t rclass, + enum machine_mode mode, + secondary_reload_info *sri ATTRIBUTE_UNUSED) +{ + /* QImode spills from non-QI registers require + intermediate register on 32bit targets. */ + if (!TARGET_64BIT + && !in_p && mode == QImode + && (rclass == GENERAL_REGS + || rclass == LEGACY_REGS + || rclass == INDEX_REGS)) + { + int regno; + + if (REG_P (x)) + regno = REGNO (x); + else + regno = -1; + + if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG) + regno = true_regnum (x); + + /* Return Q_REGS if the operand is in memory. */ + if (regno == -1) + return Q_REGS; + } + + /* This condition handles corner case where an expression involving + pointers gets vectorized. We're trying to use the address of a + stack slot as a vector initializer. + + (set (reg:V2DI 74 [ vect_cst_.2 ]) + (vec_duplicate:V2DI (reg/f:DI 20 frame))) + + Eventually frame gets turned into sp+offset like this: + + (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) + (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) + (const_int 392 [0x188])))) + + That later gets turned into: + + (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) + (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) + (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])))) + + We'll have the following reload recorded: + + Reload 0: reload_in (DI) = + (plus:DI (reg/f:DI 7 sp) + (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])) + reload_out (V2DI) = (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) + SSE_REGS, RELOAD_OTHER (opnum = 0), can't combine + reload_in_reg: (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188])) + reload_out_reg: (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) + reload_reg_rtx: (reg:V2DI 22 xmm1) + + Which isn't going to work since SSE instructions can't handle scalar + additions. Returning GENERAL_REGS forces the addition into integer + register and reload can handle subsequent reloads without problems. */ + + if (in_p && GET_CODE (x) == PLUS + && SSE_CLASS_P (rclass) + && SCALAR_INT_MODE_P (mode)) + return GENERAL_REGS; + + return NO_REGS; +} + +/* Implement TARGET_CLASS_LIKELY_SPILLED_P. */ + +static bool +ix86_class_likely_spilled_p (reg_class_t rclass) +{ + switch (rclass) + { + case AREG: + case DREG: + case CREG: + case BREG: + case AD_REGS: + case SIREG: + case DIREG: + case SSE_FIRST_REG: + case FP_TOP_REG: + case FP_SECOND_REG: + return true; + + default: + break; + } + + return false; +} + +/* If we are copying between general and FP registers, we need a memory + location. The same is true for SSE and MMX registers. + + To optimize register_move_cost performance, allow inline variant. + + The macro can't work reliably when one of the CLASSES is class containing + registers from multiple units (SSE, MMX, integer). We avoid this by never + combining those units in single alternative in the machine description. + Ensure that this constraint holds to avoid unexpected surprises. + + When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not + enforce these sanity checks. */ + +static inline bool +inline_secondary_memory_needed (enum reg_class class1, enum reg_class class2, + enum machine_mode mode, int strict) +{ + if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1) + || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2) + || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1) + || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2) + || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1) + || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2)) + { + gcc_assert (!strict); + return true; + } + + if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)) + return true; + + /* ??? This is a lie. We do have moves between mmx/general, and for + mmx/sse2. But by saying we need secondary memory we discourage the + register allocator from using the mmx registers unless needed. */ + if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) + return true; + + if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) + { + /* SSE1 doesn't have any direct moves from other classes. */ + if (!TARGET_SSE2) + return true; + + /* If the target says that inter-unit moves are more expensive + than moving through memory, then don't generate them. */ + if (!TARGET_INTER_UNIT_MOVES) + return true; + + /* Between SSE and general, we have moves no larger than word size. */ + if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) + return true; + } + + return false; +} + +bool +ix86_secondary_memory_needed (enum reg_class class1, enum reg_class class2, + enum machine_mode mode, int strict) +{ + return inline_secondary_memory_needed (class1, class2, mode, strict); +} + +/* Return true if the registers in CLASS cannot represent the change from + modes FROM to TO. */ + +bool +ix86_cannot_change_mode_class (enum machine_mode from, enum machine_mode to, + enum reg_class regclass) +{ + if (from == to) + return false; + + /* x87 registers can't do subreg at all, as all values are reformatted + to extended precision. */ + if (MAYBE_FLOAT_CLASS_P (regclass)) + return true; + + if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass)) + { + /* Vector registers do not support QI or HImode loads. If we don't + disallow a change to these modes, reload will assume it's ok to + drop the subreg from (subreg:SI (reg:HI 100) 0). This affects + the vec_dupv4hi pattern. */ + if (GET_MODE_SIZE (from) < 4) + return true; + + /* Vector registers do not support subreg with nonzero offsets, which + are otherwise valid for integer registers. Since we can't see + whether we have a nonzero offset from here, prohibit all + nonparadoxical subregs changing size. */ + if (GET_MODE_SIZE (to) < GET_MODE_SIZE (from)) + return true; + } + + return false; +} + +/* Return the cost of moving data of mode M between a + register and memory. A value of 2 is the default; this cost is + relative to those in `REGISTER_MOVE_COST'. + + This function is used extensively by register_move_cost that is used to + build tables at startup. Make it inline in this case. + When IN is 2, return maximum of in and out move cost. + + If moving between registers and memory is more expensive than + between two registers, you should define this macro to express the + relative cost. + + Model also increased moving costs of QImode registers in non + Q_REGS classes. + */ +static inline int +inline_memory_move_cost (enum machine_mode mode, enum reg_class regclass, + int in) +{ + int cost; + if (FLOAT_CLASS_P (regclass)) + { + int index; + switch (mode) + { + case SFmode: + index = 0; + break; + case DFmode: + index = 1; + break; + case XFmode: + index = 2; + break; + default: + return 100; + } + if (in == 2) + return MAX (ix86_cost->fp_load [index], ix86_cost->fp_store [index]); + return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index]; + } + if (SSE_CLASS_P (regclass)) + { + int index; + switch (GET_MODE_SIZE (mode)) + { + case 4: + index = 0; + break; + case 8: + index = 1; + break; + case 16: + index = 2; + break; + default: + return 100; + } + if (in == 2) + return MAX (ix86_cost->sse_load [index], ix86_cost->sse_store [index]); + return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index]; + } + if (MMX_CLASS_P (regclass)) + { + int index; + switch (GET_MODE_SIZE (mode)) + { + case 4: + index = 0; + break; + case 8: + index = 1; + break; + default: + return 100; + } + if (in) + return MAX (ix86_cost->mmx_load [index], ix86_cost->mmx_store [index]); + return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index]; + } + switch (GET_MODE_SIZE (mode)) + { + case 1: + if (Q_CLASS_P (regclass) || TARGET_64BIT) + { + if (!in) + return ix86_cost->int_store[0]; + if (TARGET_PARTIAL_REG_DEPENDENCY + && optimize_function_for_speed_p (cfun)) + cost = ix86_cost->movzbl_load; + else + cost = ix86_cost->int_load[0]; + if (in == 2) + return MAX (cost, ix86_cost->int_store[0]); + return cost; + } + else + { + if (in == 2) + return MAX (ix86_cost->movzbl_load, ix86_cost->int_store[0] + 4); + if (in) + return ix86_cost->movzbl_load; + else + return ix86_cost->int_store[0] + 4; + } + break; + case 2: + if (in == 2) + return MAX (ix86_cost->int_load[1], ix86_cost->int_store[1]); + return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1]; + default: + /* Compute number of 32bit moves needed. TFmode is moved as XFmode. */ + if (mode == TFmode) + mode = XFmode; + if (in == 2) + cost = MAX (ix86_cost->int_load[2] , ix86_cost->int_store[2]); + else if (in) + cost = ix86_cost->int_load[2]; + else + cost = ix86_cost->int_store[2]; + return (cost * (((int) GET_MODE_SIZE (mode) + + UNITS_PER_WORD - 1) / UNITS_PER_WORD)); + } +} + +static int +ix86_memory_move_cost (enum machine_mode mode, reg_class_t regclass, + bool in) +{ + return inline_memory_move_cost (mode, (enum reg_class) regclass, in ? 1 : 0); +} + + +/* Return the cost of moving data from a register in class CLASS1 to + one in class CLASS2. + + It is not required that the cost always equal 2 when FROM is the same as TO; + on some machines it is expensive to move between registers if they are not + general registers. */ + +static int +ix86_register_move_cost (enum machine_mode mode, reg_class_t class1_i, + reg_class_t class2_i) +{ + enum reg_class class1 = (enum reg_class) class1_i; + enum reg_class class2 = (enum reg_class) class2_i; + + /* In case we require secondary memory, compute cost of the store followed + by load. In order to avoid bad register allocation choices, we need + for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */ + + if (inline_secondary_memory_needed (class1, class2, mode, 0)) + { + int cost = 1; + + cost += inline_memory_move_cost (mode, class1, 2); + cost += inline_memory_move_cost (mode, class2, 2); + + /* In case of copying from general_purpose_register we may emit multiple + stores followed by single load causing memory size mismatch stall. + Count this as arbitrarily high cost of 20. */ + if (CLASS_MAX_NREGS (class1, mode) > CLASS_MAX_NREGS (class2, mode)) + cost += 20; + + /* In the case of FP/MMX moves, the registers actually overlap, and we + have to switch modes in order to treat them differently. */ + if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2)) + || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1))) + cost += 20; + + return cost; + } + + /* Moves between SSE/MMX and integer unit are expensive. */ + if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2) + || SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) + + /* ??? By keeping returned value relatively high, we limit the number + of moves between integer and MMX/SSE registers for all targets. + Additionally, high value prevents problem with x86_modes_tieable_p(), + where integer modes in MMX/SSE registers are not tieable + because of missing QImode and HImode moves to, from or between + MMX/SSE registers. */ + return MAX (8, ix86_cost->mmxsse_to_integer); + + if (MAYBE_FLOAT_CLASS_P (class1)) + return ix86_cost->fp_move; + if (MAYBE_SSE_CLASS_P (class1)) + return ix86_cost->sse_move; + if (MAYBE_MMX_CLASS_P (class1)) + return ix86_cost->mmx_move; + return 2; +} + +/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */ + +bool +ix86_hard_regno_mode_ok (int regno, enum machine_mode mode) +{ + /* Flags and only flags can only hold CCmode values. */ + if (CC_REGNO_P (regno)) + return GET_MODE_CLASS (mode) == MODE_CC; + if (GET_MODE_CLASS (mode) == MODE_CC + || GET_MODE_CLASS (mode) == MODE_RANDOM + || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) + return 0; + if (FP_REGNO_P (regno)) + return VALID_FP_MODE_P (mode); + if (SSE_REGNO_P (regno)) + { + /* We implement the move patterns for all vector modes into and + out of SSE registers, even when no operation instructions + are available. OImode move is available only when AVX is + enabled. */ + return ((TARGET_AVX && mode == OImode) + || VALID_AVX256_REG_MODE (mode) + || VALID_SSE_REG_MODE (mode) + || VALID_SSE2_REG_MODE (mode) + || VALID_MMX_REG_MODE (mode) + || VALID_MMX_REG_MODE_3DNOW (mode)); + } + if (MMX_REGNO_P (regno)) + { + /* We implement the move patterns for 3DNOW modes even in MMX mode, + so if the register is available at all, then we can move data of + the given mode into or out of it. */ + return (VALID_MMX_REG_MODE (mode) + || VALID_MMX_REG_MODE_3DNOW (mode)); + } + + if (mode == QImode) + { + /* Take care for QImode values - they can be in non-QI regs, + but then they do cause partial register stalls. */ + if (regno <= BX_REG || TARGET_64BIT) + return 1; + if (!TARGET_PARTIAL_REG_STALL) + return 1; + return reload_in_progress || reload_completed; + } + /* We handle both integer and floats in the general purpose registers. */ + else if (VALID_INT_MODE_P (mode)) + return 1; + else if (VALID_FP_MODE_P (mode)) + return 1; + else if (VALID_DFP_MODE_P (mode)) + return 1; + /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go + on to use that value in smaller contexts, this can easily force a + pseudo to be allocated to GENERAL_REGS. Since this is no worse than + supporting DImode, allow it. */ + else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode)) + return 1; + + return 0; +} + +/* A subroutine of ix86_modes_tieable_p. Return true if MODE is a + tieable integer mode. */ + +static bool +ix86_tieable_integer_mode_p (enum machine_mode mode) +{ + switch (mode) + { + case HImode: + case SImode: + return true; + + case QImode: + return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL; + + case DImode: + return TARGET_64BIT; + + default: + return false; + } +} + +/* Return true if MODE1 is accessible in a register that can hold MODE2 + without copying. That is, all register classes that can hold MODE2 + can also hold MODE1. */ + +bool +ix86_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2) +{ + if (mode1 == mode2) + return true; + + if (ix86_tieable_integer_mode_p (mode1) + && ix86_tieable_integer_mode_p (mode2)) + return true; + + /* MODE2 being XFmode implies fp stack or general regs, which means we + can tie any smaller floating point modes to it. Note that we do not + tie this with TFmode. */ + if (mode2 == XFmode) + return mode1 == SFmode || mode1 == DFmode; + + /* MODE2 being DFmode implies fp stack, general or sse regs, which means + that we can tie it with SFmode. */ + if (mode2 == DFmode) + return mode1 == SFmode; + + /* If MODE2 is only appropriate for an SSE register, then tie with + any other mode acceptable to SSE registers. */ + if (GET_MODE_SIZE (mode2) == 16 + && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) + return (GET_MODE_SIZE (mode1) == 16 + && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); + + /* If MODE2 is appropriate for an MMX register, then tie + with any other mode acceptable to MMX registers. */ + if (GET_MODE_SIZE (mode2) == 8 + && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2)) + return (GET_MODE_SIZE (mode1) == 8 + && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1)); + + return false; +} + +/* Compute a (partial) cost for rtx X. Return true if the complete + cost has been computed, and false if subexpressions should be + scanned. In either case, *TOTAL contains the cost result. */ + +static bool +ix86_rtx_costs (rtx x, int code, int outer_code_i, int *total, bool speed) +{ + enum rtx_code outer_code = (enum rtx_code) outer_code_i; + enum machine_mode mode = GET_MODE (x); + const struct processor_costs *cost = speed ? ix86_cost : &ix86_size_cost; + + switch (code) + { + case CONST_INT: + case CONST: + case LABEL_REF: + case SYMBOL_REF: + if (TARGET_64BIT && !x86_64_immediate_operand (x, VOIDmode)) + *total = 3; + else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode)) + *total = 2; + else if (flag_pic && SYMBOLIC_CONST (x) + && (!TARGET_64BIT + || (!GET_CODE (x) != LABEL_REF + && (GET_CODE (x) != SYMBOL_REF + || !SYMBOL_REF_LOCAL_P (x))))) + *total = 1; + else + *total = 0; + return true; + + case CONST_DOUBLE: + if (mode == VOIDmode) + *total = 0; + else + switch (standard_80387_constant_p (x)) + { + case 1: /* 0.0 */ + *total = 1; + break; + default: /* Other constants */ + *total = 2; + break; + case 0: + case -1: + /* Start with (MEM (SYMBOL_REF)), since that's where + it'll probably end up. Add a penalty for size. */ + *total = (COSTS_N_INSNS (1) + + (flag_pic != 0 && !TARGET_64BIT) + + (mode == SFmode ? 0 : mode == DFmode ? 1 : 2)); + break; + } + return true; + + case ZERO_EXTEND: + /* The zero extensions is often completely free on x86_64, so make + it as cheap as possible. */ + if (TARGET_64BIT && mode == DImode + && GET_MODE (XEXP (x, 0)) == SImode) + *total = 1; + else if (TARGET_ZERO_EXTEND_WITH_AND) + *total = cost->add; + else + *total = cost->movzx; + return false; + + case SIGN_EXTEND: + *total = cost->movsx; + return false; + + case ASHIFT: + if (CONST_INT_P (XEXP (x, 1)) + && (GET_MODE (XEXP (x, 0)) != DImode || TARGET_64BIT)) + { + HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); + if (value == 1) + { + *total = cost->add; + return false; + } + if ((value == 2 || value == 3) + && cost->lea <= cost->shift_const) + { + *total = cost->lea; + return false; + } + } + /* FALLTHRU */ + + case ROTATE: + case ASHIFTRT: + case LSHIFTRT: + case ROTATERT: + if (!TARGET_64BIT && GET_MODE (XEXP (x, 0)) == DImode) + { + if (CONST_INT_P (XEXP (x, 1))) + { + if (INTVAL (XEXP (x, 1)) > 32) + *total = cost->shift_const + COSTS_N_INSNS (2); + else + *total = cost->shift_const * 2; + } + else + { + if (GET_CODE (XEXP (x, 1)) == AND) + *total = cost->shift_var * 2; + else + *total = cost->shift_var * 6 + COSTS_N_INSNS (2); + } + } + else + { + if (CONST_INT_P (XEXP (x, 1))) + *total = cost->shift_const; + else if (GET_CODE (XEXP (x, 1)) == SUBREG + && GET_CODE (XEXP (XEXP (x, 1), 0)) == AND) + { + /* Return the cost after shift-and truncation. */ + *total = cost->shift_var; + return true; + } + else + *total = cost->shift_var; + } + return false; + + case FMA: + { + rtx sub; + + gcc_assert (FLOAT_MODE_P (mode)); + gcc_assert (TARGET_FMA || TARGET_FMA4); + + /* ??? SSE scalar/vector cost should be used here. */ + /* ??? Bald assumption that fma has the same cost as fmul. */ + *total = cost->fmul; + *total += rtx_cost (XEXP (x, 1), FMA, speed); + + /* Negate in op0 or op2 is free: FMS, FNMA, FNMS. */ + sub = XEXP (x, 0); + if (GET_CODE (sub) == NEG) + sub = XEXP (sub, 0); + *total += rtx_cost (sub, FMA, speed); + + sub = XEXP (x, 2); + if (GET_CODE (sub) == NEG) + sub = XEXP (sub, 0); + *total += rtx_cost (sub, FMA, speed); + return true; + } + + case MULT: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + { + /* ??? SSE scalar cost should be used here. */ + *total = cost->fmul; + return false; + } + else if (X87_FLOAT_MODE_P (mode)) + { + *total = cost->fmul; + return false; + } + else if (FLOAT_MODE_P (mode)) + { + /* ??? SSE vector cost should be used here. */ + *total = cost->fmul; + return false; + } + else + { + rtx op0 = XEXP (x, 0); + rtx op1 = XEXP (x, 1); + int nbits; + if (CONST_INT_P (XEXP (x, 1))) + { + unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); + for (nbits = 0; value != 0; value &= value - 1) + nbits++; + } + else + /* This is arbitrary. */ + nbits = 7; + + /* Compute costs correctly for widening multiplication. */ + if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) + && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2 + == GET_MODE_SIZE (mode)) + { + int is_mulwiden = 0; + enum machine_mode inner_mode = GET_MODE (op0); + + if (GET_CODE (op0) == GET_CODE (op1)) + is_mulwiden = 1, op1 = XEXP (op1, 0); + else if (CONST_INT_P (op1)) + { + if (GET_CODE (op0) == SIGN_EXTEND) + is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode) + == INTVAL (op1); + else + is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode)); + } + + if (is_mulwiden) + op0 = XEXP (op0, 0), mode = GET_MODE (op0); + } + + *total = (cost->mult_init[MODE_INDEX (mode)] + + nbits * cost->mult_bit + + rtx_cost (op0, outer_code, speed) + rtx_cost (op1, outer_code, speed)); + + return true; + } + + case DIV: + case UDIV: + case MOD: + case UMOD: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + /* ??? SSE cost should be used here. */ + *total = cost->fdiv; + else if (X87_FLOAT_MODE_P (mode)) + *total = cost->fdiv; + else if (FLOAT_MODE_P (mode)) + /* ??? SSE vector cost should be used here. */ + *total = cost->fdiv; + else + *total = cost->divide[MODE_INDEX (mode)]; + return false; + + case PLUS: + if (GET_MODE_CLASS (mode) == MODE_INT + && GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (Pmode)) + { + if (GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT + && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)) + && CONSTANT_P (XEXP (x, 1))) + { + HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)); + if (val == 2 || val == 4 || val == 8) + { + *total = cost->lea; + *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, speed); + *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), + outer_code, speed); + *total += rtx_cost (XEXP (x, 1), outer_code, speed); + return true; + } + } + else if (GET_CODE (XEXP (x, 0)) == MULT + && CONST_INT_P (XEXP (XEXP (x, 0), 1))) + { + HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1)); + if (val == 2 || val == 4 || val == 8) + { + *total = cost->lea; + *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed); + *total += rtx_cost (XEXP (x, 1), outer_code, speed); + return true; + } + } + else if (GET_CODE (XEXP (x, 0)) == PLUS) + { + *total = cost->lea; + *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed); + *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, speed); + *total += rtx_cost (XEXP (x, 1), outer_code, speed); + return true; + } + } + /* FALLTHRU */ + + case MINUS: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + { + /* ??? SSE cost should be used here. */ + *total = cost->fadd; + return false; + } + else if (X87_FLOAT_MODE_P (mode)) + { + *total = cost->fadd; + return false; + } + else if (FLOAT_MODE_P (mode)) + { + /* ??? SSE vector cost should be used here. */ + *total = cost->fadd; + return false; + } + /* FALLTHRU */ + + case AND: + case IOR: + case XOR: + if (!TARGET_64BIT && mode == DImode) + { + *total = (cost->add * 2 + + (rtx_cost (XEXP (x, 0), outer_code, speed) + << (GET_MODE (XEXP (x, 0)) != DImode)) + + (rtx_cost (XEXP (x, 1), outer_code, speed) + << (GET_MODE (XEXP (x, 1)) != DImode))); + return true; + } + /* FALLTHRU */ + + case NEG: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + { + /* ??? SSE cost should be used here. */ + *total = cost->fchs; + return false; + } + else if (X87_FLOAT_MODE_P (mode)) + { + *total = cost->fchs; + return false; + } + else if (FLOAT_MODE_P (mode)) + { + /* ??? SSE vector cost should be used here. */ + *total = cost->fchs; + return false; + } + /* FALLTHRU */ + + case NOT: + if (!TARGET_64BIT && mode == DImode) + *total = cost->add * 2; + else + *total = cost->add; + return false; + + case COMPARE: + if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT + && XEXP (XEXP (x, 0), 1) == const1_rtx + && CONST_INT_P (XEXP (XEXP (x, 0), 2)) + && XEXP (x, 1) == const0_rtx) + { + /* This kind of construct is implemented using test[bwl]. + Treat it as if we had an AND. */ + *total = (cost->add + + rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed) + + rtx_cost (const1_rtx, outer_code, speed)); + return true; + } + return false; + + case FLOAT_EXTEND: + if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)) + *total = 0; + return false; + + case ABS: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + /* ??? SSE cost should be used here. */ + *total = cost->fabs; + else if (X87_FLOAT_MODE_P (mode)) + *total = cost->fabs; + else if (FLOAT_MODE_P (mode)) + /* ??? SSE vector cost should be used here. */ + *total = cost->fabs; + return false; + + case SQRT: + if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) + /* ??? SSE cost should be used here. */ + *total = cost->fsqrt; + else if (X87_FLOAT_MODE_P (mode)) + *total = cost->fsqrt; + else if (FLOAT_MODE_P (mode)) + /* ??? SSE vector cost should be used here. */ + *total = cost->fsqrt; + return false; + + case UNSPEC: + if (XINT (x, 1) == UNSPEC_TP) + *total = 0; + return false; + + case VEC_SELECT: + case VEC_CONCAT: + case VEC_MERGE: + case VEC_DUPLICATE: + /* ??? Assume all of these vector manipulation patterns are + recognizable. In which case they all pretty much have the + same cost. */ + *total = COSTS_N_INSNS (1); + return true; + + default: + return false; + } +} + +#if TARGET_MACHO + +static int current_machopic_label_num; + +/* Given a symbol name and its associated stub, write out the + definition of the stub. */ + +void +machopic_output_stub (FILE *file, const char *symb, const char *stub) +{ + unsigned int length; + char *binder_name, *symbol_name, lazy_ptr_name[32]; + int label = ++current_machopic_label_num; + + /* For 64-bit we shouldn't get here. */ + gcc_assert (!TARGET_64BIT); + + /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ + symb = targetm.strip_name_encoding (symb); + + length = strlen (stub); + binder_name = XALLOCAVEC (char, length + 32); + GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length); + + length = strlen (symb); + symbol_name = XALLOCAVEC (char, length + 32); + GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); + + sprintf (lazy_ptr_name, "L%d$lz", label); + + if (MACHOPIC_ATT_STUB) + switch_to_section (darwin_sections[machopic_picsymbol_stub3_section]); + else if (MACHOPIC_PURE) + { + if (TARGET_DEEP_BRANCH_PREDICTION) + switch_to_section (darwin_sections[machopic_picsymbol_stub2_section]); + else + switch_to_section (darwin_sections[machopic_picsymbol_stub_section]); + } + else + switch_to_section (darwin_sections[machopic_symbol_stub_section]); + + fprintf (file, "%s:\n", stub); + fprintf (file, "\t.indirect_symbol %s\n", symbol_name); + + if (MACHOPIC_ATT_STUB) + { + fprintf (file, "\thlt ; hlt ; hlt ; hlt ; hlt\n"); + } + else if (MACHOPIC_PURE) + { + /* PIC stub. */ + if (TARGET_DEEP_BRANCH_PREDICTION) + { + /* 25-byte PIC stub using "CALL get_pc_thunk". */ + rtx tmp = gen_rtx_REG (SImode, 2 /* ECX */); + output_set_got (tmp, NULL_RTX); /* "CALL ___<cpu>.get_pc_thunk.cx". */ + fprintf (file, "LPC$%d:\tmovl\t%s-LPC$%d(%%ecx),%%ecx\n", label, lazy_ptr_name, label); + } + else + { + /* 26-byte PIC stub using inline picbase: "CALL L42 ! L42: pop %eax". */ + fprintf (file, "\tcall LPC$%d\nLPC$%d:\tpopl %%ecx\n", label, label); + fprintf (file, "\tmovl %s-LPC$%d(%%ecx),%%ecx\n", lazy_ptr_name, label); + } + fprintf (file, "\tjmp\t*%%ecx\n"); + } + else + fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name); + + /* The AT&T-style ("self-modifying") stub is not lazily bound, thus + it needs no stub-binding-helper. */ + if (MACHOPIC_ATT_STUB) + return; + + fprintf (file, "%s:\n", binder_name); + + if (MACHOPIC_PURE) + { + fprintf (file, "\tlea\t%s-%s(%%ecx),%%ecx\n", lazy_ptr_name, binder_name); + fprintf (file, "\tpushl\t%%ecx\n"); + } + else + fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name); + + fputs ("\tjmp\tdyld_stub_binding_helper\n", file); + + /* N.B. Keep the correspondence of these + 'symbol_ptr/symbol_ptr2/symbol_ptr3' sections consistent with the + old-pic/new-pic/non-pic stubs; altering this will break + compatibility with existing dylibs. */ + if (MACHOPIC_PURE) + { + /* PIC stubs. */ + if (TARGET_DEEP_BRANCH_PREDICTION) + /* 25-byte PIC stub using "CALL get_pc_thunk". */ + switch_to_section (darwin_sections[machopic_lazy_symbol_ptr2_section]); + else + /* 26-byte PIC stub using inline picbase: "CALL L42 ! L42: pop %ebx". */ + switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]); + } + else + /* 16-byte -mdynamic-no-pic stub. */ + switch_to_section(darwin_sections[machopic_lazy_symbol_ptr3_section]); + + fprintf (file, "%s:\n", lazy_ptr_name); + fprintf (file, "\t.indirect_symbol %s\n", symbol_name); + fprintf (file, ASM_LONG "%s\n", binder_name); +} +#endif /* TARGET_MACHO */ + +/* Order the registers for register allocator. */ + +void +x86_order_regs_for_local_alloc (void) +{ + int pos = 0; + int i; + + /* First allocate the local general purpose registers. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (GENERAL_REGNO_P (i) && call_used_regs[i]) + reg_alloc_order [pos++] = i; + + /* Global general purpose registers. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (GENERAL_REGNO_P (i) && !call_used_regs[i]) + reg_alloc_order [pos++] = i; + + /* x87 registers come first in case we are doing FP math + using them. */ + if (!TARGET_SSE_MATH) + for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) + reg_alloc_order [pos++] = i; + + /* SSE registers. */ + for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) + reg_alloc_order [pos++] = i; + for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) + reg_alloc_order [pos++] = i; + + /* x87 registers. */ + if (TARGET_SSE_MATH) + for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) + reg_alloc_order [pos++] = i; + + for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++) + reg_alloc_order [pos++] = i; + + /* Initialize the rest of array as we do not allocate some registers + at all. */ + while (pos < FIRST_PSEUDO_REGISTER) + reg_alloc_order [pos++] = 0; +} + +/* Handle a "callee_pop_aggregate_return" attribute; arguments as + in struct attribute_spec handler. */ +static tree +ix86_handle_callee_pop_aggregate_return (tree *node, tree name, + tree args, + int flags ATTRIBUTE_UNUSED, + bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_TYPE + && TREE_CODE (*node) != METHOD_TYPE + && TREE_CODE (*node) != FIELD_DECL + && TREE_CODE (*node) != TYPE_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + return NULL_TREE; + } + if (TARGET_64BIT) + { + warning (OPT_Wattributes, "%qE attribute only available for 32-bit", + name); + *no_add_attrs = true; + return NULL_TREE; + } + if (is_attribute_p ("callee_pop_aggregate_return", name)) + { + tree cst; + + cst = TREE_VALUE (args); + if (TREE_CODE (cst) != INTEGER_CST) + { + warning (OPT_Wattributes, + "%qE attribute requires an integer constant argument", + name); + *no_add_attrs = true; + } + else if (compare_tree_int (cst, 0) != 0 + && compare_tree_int (cst, 1) != 0) + { + warning (OPT_Wattributes, + "argument to %qE attribute is neither zero, nor one", + name); + *no_add_attrs = true; + } + + return NULL_TREE; + } + + return NULL_TREE; +} + +/* Handle a "ms_abi" or "sysv" attribute; arguments as in + struct attribute_spec.handler. */ +static tree +ix86_handle_abi_attribute (tree *node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_TYPE + && TREE_CODE (*node) != METHOD_TYPE + && TREE_CODE (*node) != FIELD_DECL + && TREE_CODE (*node) != TYPE_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + return NULL_TREE; + } + if (!TARGET_64BIT) + { + warning (OPT_Wattributes, "%qE attribute only available for 64-bit", + name); + *no_add_attrs = true; + return NULL_TREE; + } + + /* Can combine regparm with all attributes but fastcall. */ + if (is_attribute_p ("ms_abi", name)) + { + if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (*node))) + { + error ("ms_abi and sysv_abi attributes are not compatible"); + } + + return NULL_TREE; + } + else if (is_attribute_p ("sysv_abi", name)) + { + if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (*node))) + { + error ("ms_abi and sysv_abi attributes are not compatible"); + } + + return NULL_TREE; + } + + return NULL_TREE; +} + +/* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in + struct attribute_spec.handler. */ +static tree +ix86_handle_struct_attribute (tree *node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) +{ + tree *type = NULL; + if (DECL_P (*node)) + { + if (TREE_CODE (*node) == TYPE_DECL) + type = &TREE_TYPE (*node); + } + else + type = node; + + if (!(type && (TREE_CODE (*type) == RECORD_TYPE + || TREE_CODE (*type) == UNION_TYPE))) + { + warning (OPT_Wattributes, "%qE attribute ignored", + name); + *no_add_attrs = true; + } + + else if ((is_attribute_p ("ms_struct", name) + && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type))) + || ((is_attribute_p ("gcc_struct", name) + && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type))))) + { + warning (OPT_Wattributes, "%qE incompatible attribute ignored", + name); + *no_add_attrs = true; + } + + return NULL_TREE; +} + +static tree +ix86_handle_fndecl_attribute (tree *node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + return NULL_TREE; +} + +static bool +ix86_ms_bitfield_layout_p (const_tree record_type) +{ + return ((TARGET_MS_BITFIELD_LAYOUT + && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type))) + || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type))); +} + +/* Returns an expression indicating where the this parameter is + located on entry to the FUNCTION. */ + +static rtx +x86_this_parameter (tree function) +{ + tree type = TREE_TYPE (function); + bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0; + int nregs; + + if (TARGET_64BIT) + { + const int *parm_regs; + + if (ix86_function_type_abi (type) == MS_ABI) + parm_regs = x86_64_ms_abi_int_parameter_registers; + else + parm_regs = x86_64_int_parameter_registers; + return gen_rtx_REG (DImode, parm_regs[aggr]); + } + + nregs = ix86_function_regparm (type, function); + + if (nregs > 0 && !stdarg_p (type)) + { + int regno; + + if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) + regno = aggr ? DX_REG : CX_REG; + else if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (type))) + { + regno = CX_REG; + if (aggr) + return gen_rtx_MEM (SImode, + plus_constant (stack_pointer_rtx, 4)); + } + else + { + regno = AX_REG; + if (aggr) + { + regno = DX_REG; + if (nregs == 1) + return gen_rtx_MEM (SImode, + plus_constant (stack_pointer_rtx, 4)); + } + } + return gen_rtx_REG (SImode, regno); + } + + return gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, aggr ? 8 : 4)); +} + +/* Determine whether x86_output_mi_thunk can succeed. */ + +static bool +x86_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta ATTRIBUTE_UNUSED, + HOST_WIDE_INT vcall_offset, const_tree function) +{ + /* 64-bit can handle anything. */ + if (TARGET_64BIT) + return true; + + /* For 32-bit, everything's fine if we have one free register. */ + if (ix86_function_regparm (TREE_TYPE (function), function) < 3) + return true; + + /* Need a free register for vcall_offset. */ + if (vcall_offset) + return false; + + /* Need a free register for GOT references. */ + if (flag_pic && !targetm.binds_local_p (function)) + return false; + + /* Otherwise ok. */ + return true; +} + +/* Output the assembler code for a thunk function. THUNK_DECL is the + declaration for the thunk function itself, FUNCTION is the decl for + the target function. DELTA is an immediate constant offset to be + added to THIS. If VCALL_OFFSET is nonzero, the word at + *(*this + vcall_offset) should be added to THIS. */ + +static void +x86_output_mi_thunk (FILE *file, + tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, + HOST_WIDE_INT vcall_offset, tree function) +{ + rtx xops[3]; + rtx this_param = x86_this_parameter (function); + rtx this_reg, tmp; + + /* Make sure unwind info is emitted for the thunk if needed. */ + final_start_function (emit_barrier (), file, 1); + + /* If VCALL_OFFSET, we'll need THIS in a register. Might as well + pull it in now and let DELTA benefit. */ + if (REG_P (this_param)) + this_reg = this_param; + else if (vcall_offset) + { + /* Put the this parameter into %eax. */ + xops[0] = this_param; + xops[1] = this_reg = gen_rtx_REG (Pmode, AX_REG); + output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); + } + else + this_reg = NULL_RTX; + + /* Adjust the this parameter by a fixed constant. */ + if (delta) + { + xops[0] = GEN_INT (delta); + xops[1] = this_reg ? this_reg : this_param; + if (TARGET_64BIT) + { + if (!x86_64_general_operand (xops[0], DImode)) + { + tmp = gen_rtx_REG (DImode, R10_REG); + xops[1] = tmp; + output_asm_insn ("mov{q}\t{%1, %0|%0, %1}", xops); + xops[0] = tmp; + xops[1] = this_param; + } + if (x86_maybe_negate_const_int (&xops[0], DImode)) + output_asm_insn ("sub{q}\t{%0, %1|%1, %0}", xops); + else + output_asm_insn ("add{q}\t{%0, %1|%1, %0}", xops); + } + else if (x86_maybe_negate_const_int (&xops[0], SImode)) + output_asm_insn ("sub{l}\t{%0, %1|%1, %0}", xops); + else + output_asm_insn ("add{l}\t{%0, %1|%1, %0}", xops); + } + + /* Adjust the this parameter by a value stored in the vtable. */ + if (vcall_offset) + { + if (TARGET_64BIT) + tmp = gen_rtx_REG (DImode, R10_REG); + else + { + int tmp_regno = CX_REG; + if (lookup_attribute ("fastcall", + TYPE_ATTRIBUTES (TREE_TYPE (function))) + || lookup_attribute ("thiscall", + TYPE_ATTRIBUTES (TREE_TYPE (function)))) + tmp_regno = AX_REG; + tmp = gen_rtx_REG (SImode, tmp_regno); + } + + xops[0] = gen_rtx_MEM (Pmode, this_reg); + xops[1] = tmp; + output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); + + /* Adjust the this parameter. */ + xops[0] = gen_rtx_MEM (Pmode, plus_constant (tmp, vcall_offset)); + if (TARGET_64BIT && !memory_operand (xops[0], Pmode)) + { + rtx tmp2 = gen_rtx_REG (DImode, R11_REG); + xops[0] = GEN_INT (vcall_offset); + xops[1] = tmp2; + output_asm_insn ("mov{q}\t{%0, %1|%1, %0}", xops); + xops[0] = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, tmp, tmp2)); + } + xops[1] = this_reg; + output_asm_insn ("add%z1\t{%0, %1|%1, %0}", xops); + } + + /* If necessary, drop THIS back to its stack slot. */ + if (this_reg && this_reg != this_param) + { + xops[0] = this_reg; + xops[1] = this_param; + output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); + } + + xops[0] = XEXP (DECL_RTL (function), 0); + if (TARGET_64BIT) + { + if (!flag_pic || targetm.binds_local_p (function) + || DEFAULT_ABI == MS_ABI) + output_asm_insn ("jmp\t%P0", xops); + /* All thunks should be in the same object as their target, + and thus binds_local_p should be true. */ + else if (TARGET_64BIT && cfun->machine->call_abi == MS_ABI) + gcc_unreachable (); + else + { + tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xops[0]), UNSPEC_GOTPCREL); + tmp = gen_rtx_CONST (Pmode, tmp); + tmp = gen_rtx_MEM (QImode, tmp); + xops[0] = tmp; + output_asm_insn ("jmp\t%A0", xops); + } + } + else + { + if (!flag_pic || targetm.binds_local_p (function)) + output_asm_insn ("jmp\t%P0", xops); + else +#if TARGET_MACHO + if (TARGET_MACHO) + { + rtx sym_ref = XEXP (DECL_RTL (function), 0); + if (TARGET_MACHO_BRANCH_ISLANDS) + sym_ref = (gen_rtx_SYMBOL_REF + (Pmode, + machopic_indirection_name (sym_ref, /*stub_p=*/true))); + tmp = gen_rtx_MEM (QImode, sym_ref); + xops[0] = tmp; + output_asm_insn ("jmp\t%0", xops); + } + else +#endif /* TARGET_MACHO */ + { + tmp = gen_rtx_REG (SImode, CX_REG); + output_set_got (tmp, NULL_RTX); + + xops[1] = tmp; + output_asm_insn ("mov{l}\t{%0@GOT(%1), %1|%1, %0@GOT[%1]}", xops); + output_asm_insn ("jmp\t{*}%1", xops); + } + } + final_end_function (); +} + +static void +x86_file_start (void) +{ + default_file_start (); +#if TARGET_MACHO + darwin_file_start (); +#endif + if (X86_FILE_START_VERSION_DIRECTIVE) + fputs ("\t.version\t\"01.01\"\n", asm_out_file); + if (X86_FILE_START_FLTUSED) + fputs ("\t.global\t__fltused\n", asm_out_file); + if (ix86_asm_dialect == ASM_INTEL) + fputs ("\t.intel_syntax noprefix\n", asm_out_file); +} + +int +x86_field_alignment (tree field, int computed) +{ + enum machine_mode mode; + tree type = TREE_TYPE (field); + + if (TARGET_64BIT || TARGET_ALIGN_DOUBLE) + return computed; + mode = TYPE_MODE (strip_array_types (type)); + if (mode == DFmode || mode == DCmode + || GET_MODE_CLASS (mode) == MODE_INT + || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) + return MIN (32, computed); + return computed; +} + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ +void +x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) +{ + const char *mcount_name = (flag_fentry ? MCOUNT_NAME_BEFORE_PROLOGUE + : MCOUNT_NAME); + + if (TARGET_64BIT) + { +#ifndef NO_PROFILE_COUNTERS + fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno); +#endif + + if (DEFAULT_ABI == SYSV_ABI && flag_pic) + fprintf (file, "\tcall\t*%s@GOTPCREL(%%rip)\n", mcount_name); + else + fprintf (file, "\tcall\t%s\n", mcount_name); + } + else if (flag_pic) + { +#ifndef NO_PROFILE_COUNTERS + fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n", + LPREFIX, labelno); +#endif + fprintf (file, "\tcall\t*%s@GOT(%%ebx)\n", mcount_name); + } + else + { +#ifndef NO_PROFILE_COUNTERS + fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n", + LPREFIX, labelno); +#endif + fprintf (file, "\tcall\t%s\n", mcount_name); + } +} + +/* We don't have exact information about the insn sizes, but we may assume + quite safely that we are informed about all 1 byte insns and memory + address sizes. This is enough to eliminate unnecessary padding in + 99% of cases. */ + +static int +min_insn_size (rtx insn) +{ + int l = 0, len; + + if (!INSN_P (insn) || !active_insn_p (insn)) + return 0; + + /* Discard alignments we've emit and jump instructions. */ + if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE + && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN) + return 0; + if (JUMP_TABLE_DATA_P (insn)) + return 0; + + /* Important case - calls are always 5 bytes. + It is common to have many calls in the row. */ + if (CALL_P (insn) + && symbolic_reference_mentioned_p (PATTERN (insn)) + && !SIBLING_CALL_P (insn)) + return 5; + len = get_attr_length (insn); + if (len <= 1) + return 1; + + /* For normal instructions we rely on get_attr_length being exact, + with a few exceptions. */ + if (!JUMP_P (insn)) + { + enum attr_type type = get_attr_type (insn); + + switch (type) + { + case TYPE_MULTI: + if (GET_CODE (PATTERN (insn)) == ASM_INPUT + || asm_noperands (PATTERN (insn)) >= 0) + return 0; + break; + case TYPE_OTHER: + case TYPE_FCMP: + break; + default: + /* Otherwise trust get_attr_length. */ + return len; + } + + l = get_attr_length_address (insn); + if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn))) + l = 4; + } + if (l) + return 1+l; + else + return 2; +} + +#ifdef ASM_OUTPUT_MAX_SKIP_PAD + +/* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte + window. */ + +static void +ix86_avoid_jump_mispredicts (void) +{ + rtx insn, start = get_insns (); + int nbytes = 0, njumps = 0; + int isjump = 0; + + /* Look for all minimal intervals of instructions containing 4 jumps. + The intervals are bounded by START and INSN. NBYTES is the total + size of instructions in the interval including INSN and not including + START. When the NBYTES is smaller than 16 bytes, it is possible + that the end of START and INSN ends up in the same 16byte page. + + The smallest offset in the page INSN can start is the case where START + ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN). + We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN). + */ + for (insn = start; insn; insn = NEXT_INSN (insn)) + { + int min_size; + + if (LABEL_P (insn)) + { + int align = label_to_alignment (insn); + int max_skip = label_to_max_skip (insn); + + if (max_skip > 15) + max_skip = 15; + /* If align > 3, only up to 16 - max_skip - 1 bytes can be + already in the current 16 byte page, because otherwise + ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer + bytes to reach 16 byte boundary. */ + if (align <= 0 + || (align <= 3 && max_skip != (1 << align) - 1)) + max_skip = 0; + if (dump_file) + fprintf (dump_file, "Label %i with max_skip %i\n", + INSN_UID (insn), max_skip); + if (max_skip) + { + while (nbytes + max_skip >= 16) + { + start = NEXT_INSN (start); + if ((JUMP_P (start) + && GET_CODE (PATTERN (start)) != ADDR_VEC + && GET_CODE (PATTERN (start)) != ADDR_DIFF_VEC) + || CALL_P (start)) + njumps--, isjump = 1; + else + isjump = 0; + nbytes -= min_insn_size (start); + } + } + continue; + } + + min_size = min_insn_size (insn); + nbytes += min_size; + if (dump_file) + fprintf (dump_file, "Insn %i estimated to %i bytes\n", + INSN_UID (insn), min_size); + if ((JUMP_P (insn) + && GET_CODE (PATTERN (insn)) != ADDR_VEC + && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) + || CALL_P (insn)) + njumps++; + else + continue; + + while (njumps > 3) + { + start = NEXT_INSN (start); + if ((JUMP_P (start) + && GET_CODE (PATTERN (start)) != ADDR_VEC + && GET_CODE (PATTERN (start)) != ADDR_DIFF_VEC) + || CALL_P (start)) + njumps--, isjump = 1; + else + isjump = 0; + nbytes -= min_insn_size (start); + } + gcc_assert (njumps >= 0); + if (dump_file) + fprintf (dump_file, "Interval %i to %i has %i bytes\n", + INSN_UID (start), INSN_UID (insn), nbytes); + + if (njumps == 3 && isjump && nbytes < 16) + { + int padsize = 15 - nbytes + min_insn_size (insn); + + if (dump_file) + fprintf (dump_file, "Padding insn %i by %i bytes!\n", + INSN_UID (insn), padsize); + emit_insn_before (gen_pad (GEN_INT (padsize)), insn); + } + } +} +#endif + +/* AMD Athlon works faster + when RET is not destination of conditional jump or directly preceded + by other jump instruction. We avoid the penalty by inserting NOP just + before the RET instructions in such cases. */ +static void +ix86_pad_returns (void) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + { + basic_block bb = e->src; + rtx ret = BB_END (bb); + rtx prev; + bool replace = false; + + if (!JUMP_P (ret) || GET_CODE (PATTERN (ret)) != RETURN + || optimize_bb_for_size_p (bb)) + continue; + for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev)) + if (active_insn_p (prev) || LABEL_P (prev)) + break; + if (prev && LABEL_P (prev)) + { + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->preds) + if (EDGE_FREQUENCY (e) && e->src->index >= 0 + && !(e->flags & EDGE_FALLTHRU)) + replace = true; + } + if (!replace) + { + prev = prev_active_insn (ret); + if (prev + && ((JUMP_P (prev) && any_condjump_p (prev)) + || CALL_P (prev))) + replace = true; + /* Empty functions get branch mispredict even when + the jump destination is not visible to us. */ + if (!prev && !optimize_function_for_size_p (cfun)) + replace = true; + } + if (replace) + { + emit_jump_insn_before (gen_return_internal_long (), ret); + delete_insn (ret); + } + } +} + +/* Count the minimum number of instructions in BB. Return 4 if the + number of instructions >= 4. */ + +static int +ix86_count_insn_bb (basic_block bb) +{ + rtx insn; + int insn_count = 0; + + /* Count number of instructions in this block. Return 4 if the number + of instructions >= 4. */ + FOR_BB_INSNS (bb, insn) + { + /* Only happen in exit blocks. */ + if (JUMP_P (insn) + && GET_CODE (PATTERN (insn)) == RETURN) + break; + + if (NONDEBUG_INSN_P (insn) + && GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER) + { + insn_count++; + if (insn_count >= 4) + return insn_count; + } + } + + return insn_count; +} + + +/* Count the minimum number of instructions in code path in BB. + Return 4 if the number of instructions >= 4. */ + +static int +ix86_count_insn (basic_block bb) +{ + edge e; + edge_iterator ei; + int min_prev_count; + + /* Only bother counting instructions along paths with no + more than 2 basic blocks between entry and exit. Given + that BB has an edge to exit, determine if a predecessor + of BB has an edge from entry. If so, compute the number + of instructions in the predecessor block. If there + happen to be multiple such blocks, compute the minimum. */ + min_prev_count = 4; + FOR_EACH_EDGE (e, ei, bb->preds) + { + edge prev_e; + edge_iterator prev_ei; + + if (e->src == ENTRY_BLOCK_PTR) + { + min_prev_count = 0; + break; + } + FOR_EACH_EDGE (prev_e, prev_ei, e->src->preds) + { + if (prev_e->src == ENTRY_BLOCK_PTR) + { + int count = ix86_count_insn_bb (e->src); + if (count < min_prev_count) + min_prev_count = count; + break; + } + } + } + + if (min_prev_count < 4) + min_prev_count += ix86_count_insn_bb (bb); + + return min_prev_count; +} + +/* Pad short funtion to 4 instructions. */ + +static void +ix86_pad_short_function (void) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + { + rtx ret = BB_END (e->src); + if (JUMP_P (ret) && GET_CODE (PATTERN (ret)) == RETURN) + { + int insn_count = ix86_count_insn (e->src); + + /* Pad short function. */ + if (insn_count < 4) + { + rtx insn = ret; + + /* Find epilogue. */ + while (insn + && (!NOTE_P (insn) + || NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG)) + insn = PREV_INSN (insn); + + if (!insn) + insn = ret; + + /* Two NOPs count as one instruction. */ + insn_count = 2 * (4 - insn_count); + emit_insn_before (gen_nops (GEN_INT (insn_count)), insn); + } + } + } +} + +/* Implement machine specific optimizations. We implement padding of returns + for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ +static void +ix86_reorg (void) +{ + /* We are freeing block_for_insn in the toplev to keep compatibility + with old MDEP_REORGS that are not CFG based. Recompute it now. */ + compute_bb_for_insn (); + + if (optimize && optimize_function_for_speed_p (cfun)) + { + if (TARGET_PAD_SHORT_FUNCTION) + ix86_pad_short_function (); + else if (TARGET_PAD_RETURNS) + ix86_pad_returns (); +#ifdef ASM_OUTPUT_MAX_SKIP_PAD + if (TARGET_FOUR_JUMP_LIMIT) + ix86_avoid_jump_mispredicts (); +#endif + } + + /* Run the vzeroupper optimization if needed. */ + if (TARGET_VZEROUPPER) + move_or_delete_vzeroupper (); +} + +/* Return nonzero when QImode register that must be represented via REX prefix + is used. */ +bool +x86_extended_QIreg_mentioned_p (rtx insn) +{ + int i; + extract_insn_cached (insn); + for (i = 0; i < recog_data.n_operands; i++) + if (REG_P (recog_data.operand[i]) + && REGNO (recog_data.operand[i]) > BX_REG) + return true; + return false; +} + +/* Return nonzero when P points to register encoded via REX prefix. + Called via for_each_rtx. */ +static int +extended_reg_mentioned_1 (rtx *p, void *data ATTRIBUTE_UNUSED) +{ + unsigned int regno; + if (!REG_P (*p)) + return 0; + regno = REGNO (*p); + return REX_INT_REGNO_P (regno) || REX_SSE_REGNO_P (regno); +} + +/* Return true when INSN mentions register that must be encoded using REX + prefix. */ +bool +x86_extended_reg_mentioned_p (rtx insn) +{ + return for_each_rtx (INSN_P (insn) ? &PATTERN (insn) : &insn, + extended_reg_mentioned_1, NULL); +} + +/* If profitable, negate (without causing overflow) integer constant + of mode MODE at location LOC. Return true in this case. */ +bool +x86_maybe_negate_const_int (rtx *loc, enum machine_mode mode) +{ + HOST_WIDE_INT val; + + if (!CONST_INT_P (*loc)) + return false; + + switch (mode) + { + case DImode: + /* DImode x86_64 constants must fit in 32 bits. */ + gcc_assert (x86_64_immediate_operand (*loc, mode)); + + mode = SImode; + break; + + case SImode: + case HImode: + case QImode: + break; + + default: + gcc_unreachable (); + } + + /* Avoid overflows. */ + if (mode_signbit_p (mode, *loc)) + return false; + + val = INTVAL (*loc); + + /* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'. + Exceptions: -128 encodes smaller than 128, so swap sign and op. */ + if ((val < 0 && val != -128) + || val == 128) + { + *loc = GEN_INT (-val); + return true; + } + + return false; +} + +/* Generate an unsigned DImode/SImode to FP conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. */ + +void +x86_emit_floatuns (rtx operands[2]) +{ + rtx neglab, donelab, i0, i1, f0, in, out; + enum machine_mode mode, inmode; + + inmode = GET_MODE (operands[1]); + gcc_assert (inmode == SImode || inmode == DImode); + + out = operands[0]; + in = force_reg (inmode, operands[1]); + mode = GET_MODE (out); + neglab = gen_label_rtx (); + donelab = gen_label_rtx (); + f0 = gen_reg_rtx (mode); + + emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab); + + expand_float (out, in, 0); + + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL, + 1, OPTAB_DIRECT); + i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL, + 1, OPTAB_DIRECT); + i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT); + + expand_float (f0, i0, 0); + + emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); + + emit_label (donelab); +} + +/* AVX does not support 32-byte integer vector operations, + thus the longest vector we are faced with is V16QImode. */ +#define MAX_VECT_LEN 16 + +struct expand_vec_perm_d +{ + rtx target, op0, op1; + unsigned char perm[MAX_VECT_LEN]; + enum machine_mode vmode; + unsigned char nelt; + bool testing_p; +}; + +static bool expand_vec_perm_1 (struct expand_vec_perm_d *d); +static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d); + +/* Get a vector mode of the same size as the original but with elements + twice as wide. This is only guaranteed to apply to integral vectors. */ + +static inline enum machine_mode +get_mode_wider_vector (enum machine_mode o) +{ + /* ??? Rely on the ordering that genmodes.c gives to vectors. */ + enum machine_mode n = GET_MODE_WIDER_MODE (o); + gcc_assert (GET_MODE_NUNITS (o) == GET_MODE_NUNITS (n) * 2); + gcc_assert (GET_MODE_SIZE (o) == GET_MODE_SIZE (n)); + return n; +} + +/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector + with all elements equal to VAR. Return true if successful. */ + +static bool +ix86_expand_vector_init_duplicate (bool mmx_ok, enum machine_mode mode, + rtx target, rtx val) +{ + bool ok; + + switch (mode) + { + case V2SImode: + case V2SFmode: + if (!mmx_ok) + return false; + /* FALLTHRU */ + + case V4DFmode: + case V4DImode: + case V8SFmode: + case V8SImode: + case V2DFmode: + case V2DImode: + case V4SFmode: + case V4SImode: + { + rtx insn, dup; + + /* First attempt to recognize VAL as-is. */ + dup = gen_rtx_VEC_DUPLICATE (mode, val); + insn = emit_insn (gen_rtx_SET (VOIDmode, target, dup)); + if (recog_memoized (insn) < 0) + { + rtx seq; + /* If that fails, force VAL into a register. */ + + start_sequence (); + XEXP (dup, 0) = force_reg (GET_MODE_INNER (mode), val); + seq = get_insns (); + end_sequence (); + if (seq) + emit_insn_before (seq, insn); + + ok = recog_memoized (insn) >= 0; + gcc_assert (ok); + } + } + return true; + + case V4HImode: + if (!mmx_ok) + return false; + if (TARGET_SSE || TARGET_3DNOW_A) + { + rtx x; + + val = gen_lowpart (SImode, val); + x = gen_rtx_TRUNCATE (HImode, val); + x = gen_rtx_VEC_DUPLICATE (mode, x); + emit_insn (gen_rtx_SET (VOIDmode, target, x)); + return true; + } + goto widen; + + case V8QImode: + if (!mmx_ok) + return false; + goto widen; + + case V8HImode: + if (TARGET_SSE2) + { + struct expand_vec_perm_d dperm; + rtx tmp1, tmp2; + + permute: + memset (&dperm, 0, sizeof (dperm)); + dperm.target = target; + dperm.vmode = mode; + dperm.nelt = GET_MODE_NUNITS (mode); + dperm.op0 = dperm.op1 = gen_reg_rtx (mode); + + /* Extend to SImode using a paradoxical SUBREG. */ + tmp1 = gen_reg_rtx (SImode); + emit_move_insn (tmp1, gen_lowpart (SImode, val)); + + /* Insert the SImode value as low element of a V4SImode vector. */ + tmp2 = gen_lowpart (V4SImode, dperm.op0); + emit_insn (gen_vec_setv4si_0 (tmp2, CONST0_RTX (V4SImode), tmp1)); + + ok = (expand_vec_perm_1 (&dperm) + || expand_vec_perm_broadcast_1 (&dperm)); + gcc_assert (ok); + return ok; + } + goto widen; + + case V16QImode: + if (TARGET_SSE2) + goto permute; + goto widen; + + widen: + /* Replicate the value once into the next wider mode and recurse. */ + { + enum machine_mode smode, wsmode, wvmode; + rtx x; + + smode = GET_MODE_INNER (mode); + wvmode = get_mode_wider_vector (mode); + wsmode = GET_MODE_INNER (wvmode); + + val = convert_modes (wsmode, smode, val, true); + x = expand_simple_binop (wsmode, ASHIFT, val, + GEN_INT (GET_MODE_BITSIZE (smode)), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + val = expand_simple_binop (wsmode, IOR, val, x, x, 1, OPTAB_LIB_WIDEN); + + x = gen_lowpart (wvmode, target); + ok = ix86_expand_vector_init_duplicate (mmx_ok, wvmode, x, val); + gcc_assert (ok); + return ok; + } + + case V16HImode: + case V32QImode: + { + enum machine_mode hvmode = (mode == V16HImode ? V8HImode : V16QImode); + rtx x = gen_reg_rtx (hvmode); + + ok = ix86_expand_vector_init_duplicate (false, hvmode, x, val); + gcc_assert (ok); + + x = gen_rtx_VEC_CONCAT (mode, x, x); + emit_insn (gen_rtx_SET (VOIDmode, target, x)); + } + return true; + + default: + return false; + } +} + +/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector + whose ONE_VAR element is VAR, and other elements are zero. Return true + if successful. */ + +static bool +ix86_expand_vector_init_one_nonzero (bool mmx_ok, enum machine_mode mode, + rtx target, rtx var, int one_var) +{ + enum machine_mode vsimode; + rtx new_target; + rtx x, tmp; + bool use_vector_set = false; + + switch (mode) + { + case V2DImode: + /* For SSE4.1, we normally use vector set. But if the second + element is zero and inter-unit moves are OK, we use movq + instead. */ + use_vector_set = (TARGET_64BIT + && TARGET_SSE4_1 + && !(TARGET_INTER_UNIT_MOVES + && one_var == 0)); + break; + case V16QImode: + case V4SImode: + case V4SFmode: + use_vector_set = TARGET_SSE4_1; + break; + case V8HImode: + use_vector_set = TARGET_SSE2; + break; + case V4HImode: + use_vector_set = TARGET_SSE || TARGET_3DNOW_A; + break; + case V32QImode: + case V16HImode: + case V8SImode: + case V8SFmode: + case V4DFmode: + use_vector_set = TARGET_AVX; + break; + case V4DImode: + /* Use ix86_expand_vector_set in 64bit mode only. */ + use_vector_set = TARGET_AVX && TARGET_64BIT; + break; + default: + break; + } + + if (use_vector_set) + { + emit_insn (gen_rtx_SET (VOIDmode, target, CONST0_RTX (mode))); + var = force_reg (GET_MODE_INNER (mode), var); + ix86_expand_vector_set (mmx_ok, target, var, one_var); + return true; + } + + switch (mode) + { + case V2SFmode: + case V2SImode: + if (!mmx_ok) + return false; + /* FALLTHRU */ + + case V2DFmode: + case V2DImode: + if (one_var != 0) + return false; + var = force_reg (GET_MODE_INNER (mode), var); + x = gen_rtx_VEC_CONCAT (mode, var, CONST0_RTX (GET_MODE_INNER (mode))); + emit_insn (gen_rtx_SET (VOIDmode, target, x)); + return true; + + case V4SFmode: + case V4SImode: + if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER) + new_target = gen_reg_rtx (mode); + else + new_target = target; + var = force_reg (GET_MODE_INNER (mode), var); + x = gen_rtx_VEC_DUPLICATE (mode, var); + x = gen_rtx_VEC_MERGE (mode, x, CONST0_RTX (mode), const1_rtx); + emit_insn (gen_rtx_SET (VOIDmode, new_target, x)); + if (one_var != 0) + { + /* We need to shuffle the value to the correct position, so + create a new pseudo to store the intermediate result. */ + + /* With SSE2, we can use the integer shuffle insns. */ + if (mode != V4SFmode && TARGET_SSE2) + { + emit_insn (gen_sse2_pshufd_1 (new_target, new_target, + const1_rtx, + GEN_INT (one_var == 1 ? 0 : 1), + GEN_INT (one_var == 2 ? 0 : 1), + GEN_INT (one_var == 3 ? 0 : 1))); + if (target != new_target) + emit_move_insn (target, new_target); + return true; + } + + /* Otherwise convert the intermediate result to V4SFmode and + use the SSE1 shuffle instructions. */ + if (mode != V4SFmode) + { + tmp = gen_reg_rtx (V4SFmode); + emit_move_insn (tmp, gen_lowpart (V4SFmode, new_target)); + } + else + tmp = new_target; + + emit_insn (gen_sse_shufps_v4sf (tmp, tmp, tmp, + const1_rtx, + GEN_INT (one_var == 1 ? 0 : 1), + GEN_INT (one_var == 2 ? 0+4 : 1+4), + GEN_INT (one_var == 3 ? 0+4 : 1+4))); + + if (mode != V4SFmode) + emit_move_insn (target, gen_lowpart (V4SImode, tmp)); + else if (tmp != target) + emit_move_insn (target, tmp); + } + else if (target != new_target) + emit_move_insn (target, new_target); + return true; + + case V8HImode: + case V16QImode: + vsimode = V4SImode; + goto widen; + case V4HImode: + case V8QImode: + if (!mmx_ok) + return false; + vsimode = V2SImode; + goto widen; + widen: + if (one_var != 0) + return false; + + /* Zero extend the variable element to SImode and recurse. */ + var = convert_modes (SImode, GET_MODE_INNER (mode), var, true); + + x = gen_reg_rtx (vsimode); + if (!ix86_expand_vector_init_one_nonzero (mmx_ok, vsimode, x, + var, one_var)) + gcc_unreachable (); + + emit_move_insn (target, gen_lowpart (mode, x)); + return true; + + default: + return false; + } +} + +/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector + consisting of the values in VALS. It is known that all elements + except ONE_VAR are constants. Return true if successful. */ + +static bool +ix86_expand_vector_init_one_var (bool mmx_ok, enum machine_mode mode, + rtx target, rtx vals, int one_var) +{ + rtx var = XVECEXP (vals, 0, one_var); + enum machine_mode wmode; + rtx const_vec, x; + + const_vec = copy_rtx (vals); + XVECEXP (const_vec, 0, one_var) = CONST0_RTX (GET_MODE_INNER (mode)); + const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (const_vec, 0)); + + switch (mode) + { + case V2DFmode: + case V2DImode: + case V2SFmode: + case V2SImode: + /* For the two element vectors, it's just as easy to use + the general case. */ + return false; + + case V4DImode: + /* Use ix86_expand_vector_set in 64bit mode only. */ + if (!TARGET_64BIT) + return false; + case V4DFmode: + case V8SFmode: + case V8SImode: + case V16HImode: + case V32QImode: + case V4SFmode: + case V4SImode: + case V8HImode: + case V4HImode: + break; + + case V16QImode: + if (TARGET_SSE4_1) + break; + wmode = V8HImode; + goto widen; + case V8QImode: + wmode = V4HImode; + goto widen; + widen: + /* There's no way to set one QImode entry easily. Combine + the variable value with its adjacent constant value, and + promote to an HImode set. */ + x = XVECEXP (vals, 0, one_var ^ 1); + if (one_var & 1) + { + var = convert_modes (HImode, QImode, var, true); + var = expand_simple_binop (HImode, ASHIFT, var, GEN_INT (8), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + x = GEN_INT (INTVAL (x) & 0xff); + } + else + { + var = convert_modes (HImode, QImode, var, true); + x = gen_int_mode (INTVAL (x) << 8, HImode); + } + if (x != const0_rtx) + var = expand_simple_binop (HImode, IOR, var, x, var, + 1, OPTAB_LIB_WIDEN); + + x = gen_reg_rtx (wmode); + emit_move_insn (x, gen_lowpart (wmode, const_vec)); + ix86_expand_vector_set (mmx_ok, x, var, one_var >> 1); + + emit_move_insn (target, gen_lowpart (mode, x)); + return true; + + default: + return false; + } + + emit_move_insn (target, const_vec); + ix86_expand_vector_set (mmx_ok, target, var, one_var); + return true; +} + +/* A subroutine of ix86_expand_vector_init_general. Use vector + concatenate to handle the most general case: all values variable, + and none identical. */ + +static void +ix86_expand_vector_init_concat (enum machine_mode mode, + rtx target, rtx *ops, int n) +{ + enum machine_mode cmode, hmode = VOIDmode; + rtx first[8], second[4]; + rtvec v; + int i, j; + + switch (n) + { + case 2: + switch (mode) + { + case V8SImode: + cmode = V4SImode; + break; + case V8SFmode: + cmode = V4SFmode; + break; + case V4DImode: + cmode = V2DImode; + break; + case V4DFmode: + cmode = V2DFmode; + break; + case V4SImode: + cmode = V2SImode; + break; + case V4SFmode: + cmode = V2SFmode; + break; + case V2DImode: + cmode = DImode; + break; + case V2SImode: + cmode = SImode; + break; + case V2DFmode: + cmode = DFmode; + break; + case V2SFmode: + cmode = SFmode; + break; + default: + gcc_unreachable (); + } + + if (!register_operand (ops[1], cmode)) + ops[1] = force_reg (cmode, ops[1]); + if (!register_operand (ops[0], cmode)) + ops[0] = force_reg (cmode, ops[0]); + emit_insn (gen_rtx_SET (VOIDmode, target, + gen_rtx_VEC_CONCAT (mode, ops[0], + ops[1]))); + break; + + case 4: + switch (mode) + { + case V4DImode: + cmode = V2DImode; + break; + case V4DFmode: + cmode = V2DFmode; + break; + case V4SImode: + cmode = V2SImode; + break; + case V4SFmode: + cmode = V2SFmode; + break; + default: + gcc_unreachable (); + } + goto half; + + case 8: + switch (mode) + { + case V8SImode: + cmode = V2SImode; + hmode = V4SImode; + break; + case V8SFmode: + cmode = V2SFmode; + hmode = V4SFmode; + break; + default: + gcc_unreachable (); + } + goto half; + +half: + /* FIXME: We process inputs backward to help RA. PR 36222. */ + i = n - 1; + j = (n >> 1) - 1; + for (; i > 0; i -= 2, j--) + { + first[j] = gen_reg_rtx (cmode); + v = gen_rtvec (2, ops[i - 1], ops[i]); + ix86_expand_vector_init (false, first[j], + gen_rtx_PARALLEL (cmode, v)); + } + + n >>= 1; + if (n > 2) + { + gcc_assert (hmode != VOIDmode); + for (i = j = 0; i < n; i += 2, j++) + { + second[j] = gen_reg_rtx (hmode); + ix86_expand_vector_init_concat (hmode, second [j], + &first [i], 2); + } + n >>= 1; + ix86_expand_vector_init_concat (mode, target, second, n); + } + else + ix86_expand_vector_init_concat (mode, target, first, n); + break; + + default: + gcc_unreachable (); + } +} + +/* A subroutine of ix86_expand_vector_init_general. Use vector + interleave to handle the most general case: all values variable, + and none identical. */ + +static void +ix86_expand_vector_init_interleave (enum machine_mode mode, + rtx target, rtx *ops, int n) +{ + enum machine_mode first_imode, second_imode, third_imode, inner_mode; + int i, j; + rtx op0, op1; + rtx (*gen_load_even) (rtx, rtx, rtx); + rtx (*gen_interleave_first_low) (rtx, rtx, rtx); + rtx (*gen_interleave_second_low) (rtx, rtx, rtx); + + switch (mode) + { + case V8HImode: + gen_load_even = gen_vec_setv8hi; + gen_interleave_first_low = gen_vec_interleave_lowv4si; + gen_interleave_second_low = gen_vec_interleave_lowv2di; + inner_mode = HImode; + first_imode = V4SImode; + second_imode = V2DImode; + third_imode = VOIDmode; + break; + case V16QImode: + gen_load_even = gen_vec_setv16qi; + gen_interleave_first_low = gen_vec_interleave_lowv8hi; + gen_interleave_second_low = gen_vec_interleave_lowv4si; + inner_mode = QImode; + first_imode = V8HImode; + second_imode = V4SImode; + third_imode = V2DImode; + break; + default: + gcc_unreachable (); + } + + for (i = 0; i < n; i++) + { + /* Extend the odd elment to SImode using a paradoxical SUBREG. */ + op0 = gen_reg_rtx (SImode); + emit_move_insn (op0, gen_lowpart (SImode, ops [i + i])); + + /* Insert the SImode value as low element of V4SImode vector. */ + op1 = gen_reg_rtx (V4SImode); + op0 = gen_rtx_VEC_MERGE (V4SImode, + gen_rtx_VEC_DUPLICATE (V4SImode, + op0), + CONST0_RTX (V4SImode), + const1_rtx); + emit_insn (gen_rtx_SET (VOIDmode, op1, op0)); + + /* Cast the V4SImode vector back to a vector in orignal mode. */ + op0 = gen_reg_rtx (mode); + emit_move_insn (op0, gen_lowpart (mode, op1)); + + /* Load even elements into the second positon. */ + emit_insn (gen_load_even (op0, + force_reg (inner_mode, + ops [i + i + 1]), + const1_rtx)); + + /* Cast vector to FIRST_IMODE vector. */ + ops[i] = gen_reg_rtx (first_imode); + emit_move_insn (ops[i], gen_lowpart (first_imode, op0)); + } + + /* Interleave low FIRST_IMODE vectors. */ + for (i = j = 0; i < n; i += 2, j++) + { + op0 = gen_reg_rtx (first_imode); + emit_insn (gen_interleave_first_low (op0, ops[i], ops[i + 1])); + + /* Cast FIRST_IMODE vector to SECOND_IMODE vector. */ + ops[j] = gen_reg_rtx (second_imode); + emit_move_insn (ops[j], gen_lowpart (second_imode, op0)); + } + + /* Interleave low SECOND_IMODE vectors. */ + switch (second_imode) + { + case V4SImode: + for (i = j = 0; i < n / 2; i += 2, j++) + { + op0 = gen_reg_rtx (second_imode); + emit_insn (gen_interleave_second_low (op0, ops[i], + ops[i + 1])); + + /* Cast the SECOND_IMODE vector to the THIRD_IMODE + vector. */ + ops[j] = gen_reg_rtx (third_imode); + emit_move_insn (ops[j], gen_lowpart (third_imode, op0)); + } + second_imode = V2DImode; + gen_interleave_second_low = gen_vec_interleave_lowv2di; + /* FALLTHRU */ + + case V2DImode: + op0 = gen_reg_rtx (second_imode); + emit_insn (gen_interleave_second_low (op0, ops[0], + ops[1])); + + /* Cast the SECOND_IMODE vector back to a vector on original + mode. */ + emit_insn (gen_rtx_SET (VOIDmode, target, + gen_lowpart (mode, op0))); + break; + + default: + gcc_unreachable (); + } +} + +/* A subroutine of ix86_expand_vector_init. Handle the most general case: + all values variable, and none identical. */ + +static void +ix86_expand_vector_init_general (bool mmx_ok, enum machine_mode mode, + rtx target, rtx vals) +{ + rtx ops[32], op0, op1; + enum machine_mode half_mode = VOIDmode; + int n, i; + + switch (mode) + { + case V2SFmode: + case V2SImode: + if (!mmx_ok && !TARGET_SSE) + break; + /* FALLTHRU */ + + case V8SFmode: + case V8SImode: + case V4DFmode: + case V4DImode: + case V4SFmode: + case V4SImode: + case V2DFmode: + case V2DImode: + n = GET_MODE_NUNITS (mode); + for (i = 0; i < n; i++) + ops[i] = XVECEXP (vals, 0, i); + ix86_expand_vector_init_concat (mode, target, ops, n); + return; + + case V32QImode: + half_mode = V16QImode; + goto half; + + case V16HImode: + half_mode = V8HImode; + goto half; + +half: + n = GET_MODE_NUNITS (mode); + for (i = 0; i < n; i++) + ops[i] = XVECEXP (vals, 0, i); + op0 = gen_reg_rtx (half_mode); + op1 = gen_reg_rtx (half_mode); + ix86_expand_vector_init_interleave (half_mode, op0, ops, + n >> 2); + ix86_expand_vector_init_interleave (half_mode, op1, + &ops [n >> 1], n >> 2); + emit_insn (gen_rtx_SET (VOIDmode, target, + gen_rtx_VEC_CONCAT (mode, op0, op1))); + return; + + case V16QImode: + if (!TARGET_SSE4_1) + break; + /* FALLTHRU */ + + case V8HImode: + if (!TARGET_SSE2) + break; + + /* Don't use ix86_expand_vector_init_interleave if we can't + move from GPR to SSE register directly. */ + if (!TARGET_INTER_UNIT_MOVES) + break; + + n = GET_MODE_NUNITS (mode); + for (i = 0; i < n; i++) + ops[i] = XVECEXP (vals, 0, i); + ix86_expand_vector_init_interleave (mode, target, ops, n >> 1); + return; + + case V4HImode: + case V8QImode: + break; + + default: + gcc_unreachable (); + } + + { + int i, j, n_elts, n_words, n_elt_per_word; + enum machine_mode inner_mode; + rtx words[4], shift; + + inner_mode = GET_MODE_INNER (mode); + n_elts = GET_MODE_NUNITS (mode); + n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD; + n_elt_per_word = n_elts / n_words; + shift = GEN_INT (GET_MODE_BITSIZE (inner_mode)); + + for (i = 0; i < n_words; ++i) + { + rtx word = NULL_RTX; + + for (j = 0; j < n_elt_per_word; ++j) + { + rtx elt = XVECEXP (vals, 0, (i+1)*n_elt_per_word - j - 1); + elt = convert_modes (word_mode, inner_mode, elt, true); + + if (j == 0) + word = elt; + else + { + word = expand_simple_binop (word_mode, ASHIFT, word, shift, + word, 1, OPTAB_LIB_WIDEN); + word = expand_simple_binop (word_mode, IOR, word, elt, + word, 1, OPTAB_LIB_WIDEN); + } + } + + words[i] = word; + } + + if (n_words == 1) + emit_move_insn (target, gen_lowpart (mode, words[0])); + else if (n_words == 2) + { + rtx tmp = gen_reg_rtx (mode); + emit_clobber (tmp); + emit_move_insn (gen_lowpart (word_mode, tmp), words[0]); + emit_move_insn (gen_highpart (word_mode, tmp), words[1]); + emit_move_insn (target, tmp); + } + else if (n_words == 4) + { + rtx tmp = gen_reg_rtx (V4SImode); + gcc_assert (word_mode == SImode); + vals = gen_rtx_PARALLEL (V4SImode, gen_rtvec_v (4, words)); + ix86_expand_vector_init_general (false, V4SImode, tmp, vals); + emit_move_insn (target, gen_lowpart (mode, tmp)); + } + else + gcc_unreachable (); + } +} + +/* Initialize vector TARGET via VALS. Suppress the use of MMX + instructions unless MMX_OK is true. */ + +void +ix86_expand_vector_init (bool mmx_ok, rtx target, rtx vals) +{ + enum machine_mode mode = GET_MODE (target); + enum machine_mode inner_mode = GET_MODE_INNER (mode); + int n_elts = GET_MODE_NUNITS (mode); + int n_var = 0, one_var = -1; + bool all_same = true, all_const_zero = true; + int i; + rtx x; + + for (i = 0; i < n_elts; ++i) + { + x = XVECEXP (vals, 0, i); + if (!(CONST_INT_P (x) + || GET_CODE (x) == CONST_DOUBLE + || GET_CODE (x) == CONST_FIXED)) + n_var++, one_var = i; + else if (x != CONST0_RTX (inner_mode)) + all_const_zero = false; + if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) + all_same = false; + } + + /* Constants are best loaded from the constant pool. */ + if (n_var == 0) + { + emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); + return; + } + + /* If all values are identical, broadcast the value. */ + if (all_same + && ix86_expand_vector_init_duplicate (mmx_ok, mode, target, + XVECEXP (vals, 0, 0))) + return; + + /* Values where only one field is non-constant are best loaded from + the pool and overwritten via move later. */ + if (n_var == 1) + { + if (all_const_zero + && ix86_expand_vector_init_one_nonzero (mmx_ok, mode, target, + XVECEXP (vals, 0, one_var), + one_var)) + return; + + if (ix86_expand_vector_init_one_var (mmx_ok, mode, target, vals, one_var)) + return; + } + + ix86_expand_vector_init_general (mmx_ok, mode, target, vals); +} + +void +ix86_expand_vector_set (bool mmx_ok, rtx target, rtx val, int elt) +{ + enum machine_mode mode = GET_MODE (target); + enum machine_mode inner_mode = GET_MODE_INNER (mode); + enum machine_mode half_mode; + bool use_vec_merge = false; + rtx tmp; + static rtx (*gen_extract[6][2]) (rtx, rtx) + = { + { gen_vec_extract_lo_v32qi, gen_vec_extract_hi_v32qi }, + { gen_vec_extract_lo_v16hi, gen_vec_extract_hi_v16hi }, + { gen_vec_extract_lo_v8si, gen_vec_extract_hi_v8si }, + { gen_vec_extract_lo_v4di, gen_vec_extract_hi_v4di }, + { gen_vec_extract_lo_v8sf, gen_vec_extract_hi_v8sf }, + { gen_vec_extract_lo_v4df, gen_vec_extract_hi_v4df } + }; + static rtx (*gen_insert[6][2]) (rtx, rtx, rtx) + = { + { gen_vec_set_lo_v32qi, gen_vec_set_hi_v32qi }, + { gen_vec_set_lo_v16hi, gen_vec_set_hi_v16hi }, + { gen_vec_set_lo_v8si, gen_vec_set_hi_v8si }, + { gen_vec_set_lo_v4di, gen_vec_set_hi_v4di }, + { gen_vec_set_lo_v8sf, gen_vec_set_hi_v8sf }, + { gen_vec_set_lo_v4df, gen_vec_set_hi_v4df } + }; + int i, j, n; + + switch (mode) + { + case V2SFmode: + case V2SImode: + if (mmx_ok) + { + tmp = gen_reg_rtx (GET_MODE_INNER (mode)); + ix86_expand_vector_extract (true, tmp, target, 1 - elt); + if (elt == 0) + tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); + else + tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + return; + } + break; + + case V2DImode: + use_vec_merge = TARGET_SSE4_1 && TARGET_64BIT; + if (use_vec_merge) + break; + + tmp = gen_reg_rtx (GET_MODE_INNER (mode)); + ix86_expand_vector_extract (false, tmp, target, 1 - elt); + if (elt == 0) + tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); + else + tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + return; + + case V2DFmode: + { + rtx op0, op1; + + /* For the two element vectors, we implement a VEC_CONCAT with + the extraction of the other element. */ + + tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (1 - elt))); + tmp = gen_rtx_VEC_SELECT (inner_mode, target, tmp); + + if (elt == 0) + op0 = val, op1 = tmp; + else + op0 = tmp, op1 = val; + + tmp = gen_rtx_VEC_CONCAT (mode, op0, op1); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + } + return; + + case V4SFmode: + use_vec_merge = TARGET_SSE4_1; + if (use_vec_merge) + break; + + switch (elt) + { + case 0: + use_vec_merge = true; + break; + + case 1: + /* tmp = target = A B C D */ + tmp = copy_to_reg (target); + /* target = A A B B */ + emit_insn (gen_vec_interleave_lowv4sf (target, target, target)); + /* target = X A B B */ + ix86_expand_vector_set (false, target, val, 0); + /* target = A X C D */ + emit_insn (gen_sse_shufps_v4sf (target, target, tmp, + const1_rtx, const0_rtx, + GEN_INT (2+4), GEN_INT (3+4))); + return; + + case 2: + /* tmp = target = A B C D */ + tmp = copy_to_reg (target); + /* tmp = X B C D */ + ix86_expand_vector_set (false, tmp, val, 0); + /* target = A B X D */ + emit_insn (gen_sse_shufps_v4sf (target, target, tmp, + const0_rtx, const1_rtx, + GEN_INT (0+4), GEN_INT (3+4))); + return; + + case 3: + /* tmp = target = A B C D */ + tmp = copy_to_reg (target); + /* tmp = X B C D */ + ix86_expand_vector_set (false, tmp, val, 0); + /* target = A B X D */ + emit_insn (gen_sse_shufps_v4sf (target, target, tmp, + const0_rtx, const1_rtx, + GEN_INT (2+4), GEN_INT (0+4))); + return; + + default: + gcc_unreachable (); + } + break; + + case V4SImode: + use_vec_merge = TARGET_SSE4_1; + if (use_vec_merge) + break; + + /* Element 0 handled by vec_merge below. */ + if (elt == 0) + { + use_vec_merge = true; + break; + } + + if (TARGET_SSE2) + { + /* With SSE2, use integer shuffles to swap element 0 and ELT, + store into element 0, then shuffle them back. */ + + rtx order[4]; + + order[0] = GEN_INT (elt); + order[1] = const1_rtx; + order[2] = const2_rtx; + order[3] = GEN_INT (3); + order[elt] = const0_rtx; + + emit_insn (gen_sse2_pshufd_1 (target, target, order[0], + order[1], order[2], order[3])); + + ix86_expand_vector_set (false, target, val, 0); + + emit_insn (gen_sse2_pshufd_1 (target, target, order[0], + order[1], order[2], order[3])); + } + else + { + /* For SSE1, we have to reuse the V4SF code. */ + ix86_expand_vector_set (false, gen_lowpart (V4SFmode, target), + gen_lowpart (SFmode, val), elt); + } + return; + + case V8HImode: + use_vec_merge = TARGET_SSE2; + break; + case V4HImode: + use_vec_merge = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); + break; + + case V16QImode: + use_vec_merge = TARGET_SSE4_1; + break; + + case V8QImode: + break; + + case V32QImode: + half_mode = V16QImode; + j = 0; + n = 16; + goto half; + + case V16HImode: + half_mode = V8HImode; + j = 1; + n = 8; + goto half; + + case V8SImode: + half_mode = V4SImode; + j = 2; + n = 4; + goto half; + + case V4DImode: + half_mode = V2DImode; + j = 3; + n = 2; + goto half; + + case V8SFmode: + half_mode = V4SFmode; + j = 4; + n = 4; + goto half; + + case V4DFmode: + half_mode = V2DFmode; + j = 5; + n = 2; + goto half; + +half: + /* Compute offset. */ + i = elt / n; + elt %= n; + + gcc_assert (i <= 1); + + /* Extract the half. */ + tmp = gen_reg_rtx (half_mode); + emit_insn (gen_extract[j][i] (tmp, target)); + + /* Put val in tmp at elt. */ + ix86_expand_vector_set (false, tmp, val, elt); + + /* Put it back. */ + emit_insn (gen_insert[j][i] (target, target, tmp)); + return; + + default: + break; + } + + if (use_vec_merge) + { + tmp = gen_rtx_VEC_DUPLICATE (mode, val); + tmp = gen_rtx_VEC_MERGE (mode, tmp, target, GEN_INT (1 << elt)); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + } + else + { + rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); + + emit_move_insn (mem, target); + + tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); + emit_move_insn (tmp, val); + + emit_move_insn (target, mem); + } +} + +void +ix86_expand_vector_extract (bool mmx_ok, rtx target, rtx vec, int elt) +{ + enum machine_mode mode = GET_MODE (vec); + enum machine_mode inner_mode = GET_MODE_INNER (mode); + bool use_vec_extr = false; + rtx tmp; + + switch (mode) + { + case V2SImode: + case V2SFmode: + if (!mmx_ok) + break; + /* FALLTHRU */ + + case V2DFmode: + case V2DImode: + use_vec_extr = true; + break; + + case V4SFmode: + use_vec_extr = TARGET_SSE4_1; + if (use_vec_extr) + break; + + switch (elt) + { + case 0: + tmp = vec; + break; + + case 1: + case 3: + tmp = gen_reg_rtx (mode); + emit_insn (gen_sse_shufps_v4sf (tmp, vec, vec, + GEN_INT (elt), GEN_INT (elt), + GEN_INT (elt+4), GEN_INT (elt+4))); + break; + + case 2: + tmp = gen_reg_rtx (mode); + emit_insn (gen_vec_interleave_highv4sf (tmp, vec, vec)); + break; + + default: + gcc_unreachable (); + } + vec = tmp; + use_vec_extr = true; + elt = 0; + break; + + case V4SImode: + use_vec_extr = TARGET_SSE4_1; + if (use_vec_extr) + break; + + if (TARGET_SSE2) + { + switch (elt) + { + case 0: + tmp = vec; + break; + + case 1: + case 3: + tmp = gen_reg_rtx (mode); + emit_insn (gen_sse2_pshufd_1 (tmp, vec, + GEN_INT (elt), GEN_INT (elt), + GEN_INT (elt), GEN_INT (elt))); + break; + + case 2: + tmp = gen_reg_rtx (mode); + emit_insn (gen_vec_interleave_highv4si (tmp, vec, vec)); + break; + + default: + gcc_unreachable (); + } + vec = tmp; + use_vec_extr = true; + elt = 0; + } + else + { + /* For SSE1, we have to reuse the V4SF code. */ + ix86_expand_vector_extract (false, gen_lowpart (SFmode, target), + gen_lowpart (V4SFmode, vec), elt); + return; + } + break; + + case V8HImode: + use_vec_extr = TARGET_SSE2; + break; + case V4HImode: + use_vec_extr = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); + break; + + case V16QImode: + use_vec_extr = TARGET_SSE4_1; + break; + + case V8QImode: + /* ??? Could extract the appropriate HImode element and shift. */ + default: + break; + } + + if (use_vec_extr) + { + tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (elt))); + tmp = gen_rtx_VEC_SELECT (inner_mode, vec, tmp); + + /* Let the rtl optimizers know about the zero extension performed. */ + if (inner_mode == QImode || inner_mode == HImode) + { + tmp = gen_rtx_ZERO_EXTEND (SImode, tmp); + target = gen_lowpart (SImode, target); + } + + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + } + else + { + rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); + + emit_move_insn (mem, vec); + + tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); + emit_move_insn (target, tmp); + } +} + +/* Expand a vector reduction on V4SFmode for SSE1. FN is the binary + pattern to reduce; DEST is the destination; IN is the input vector. */ + +void +ix86_expand_reduc_v4sf (rtx (*fn) (rtx, rtx, rtx), rtx dest, rtx in) +{ + rtx tmp1, tmp2, tmp3; + + tmp1 = gen_reg_rtx (V4SFmode); + tmp2 = gen_reg_rtx (V4SFmode); + tmp3 = gen_reg_rtx (V4SFmode); + + emit_insn (gen_sse_movhlps (tmp1, in, in)); + emit_insn (fn (tmp2, tmp1, in)); + + emit_insn (gen_sse_shufps_v4sf (tmp3, tmp2, tmp2, + const1_rtx, const1_rtx, + GEN_INT (1+4), GEN_INT (1+4))); + emit_insn (fn (dest, tmp2, tmp3)); +} + +/* Target hook for scalar_mode_supported_p. */ +static bool +ix86_scalar_mode_supported_p (enum machine_mode mode) +{ + if (DECIMAL_FLOAT_MODE_P (mode)) + return default_decimal_float_supported_p (); + else if (mode == TFmode) + return true; + else + return default_scalar_mode_supported_p (mode); +} + +/* Implements target hook vector_mode_supported_p. */ +static bool +ix86_vector_mode_supported_p (enum machine_mode mode) +{ + if (TARGET_SSE && VALID_SSE_REG_MODE (mode)) + return true; + if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) + return true; + if (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) + return true; + if (TARGET_MMX && VALID_MMX_REG_MODE (mode)) + return true; + if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode)) + return true; + return false; +} + +/* Target hook for c_mode_for_suffix. */ +static enum machine_mode +ix86_c_mode_for_suffix (char suffix) +{ + if (suffix == 'q') + return TFmode; + if (suffix == 'w') + return XFmode; + + return VOIDmode; +} + +/* Worker function for TARGET_MD_ASM_CLOBBERS. + + We do this in the new i386 backend to maintain source compatibility + with the old cc0-based compiler. */ + +static tree +ix86_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED, + tree inputs ATTRIBUTE_UNUSED, + tree clobbers) +{ + clobbers = tree_cons (NULL_TREE, build_string (5, "flags"), + clobbers); + clobbers = tree_cons (NULL_TREE, build_string (4, "fpsr"), + clobbers); + return clobbers; +} + +/* Implements target vector targetm.asm.encode_section_info. This + is not used by netware. */ + +static void ATTRIBUTE_UNUSED +ix86_encode_section_info (tree decl, rtx rtl, int first) +{ + default_encode_section_info (decl, rtl, first); + + if (TREE_CODE (decl) == VAR_DECL + && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) + && ix86_in_large_data_p (decl)) + SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR; +} + +/* Worker function for REVERSE_CONDITION. */ + +enum rtx_code +ix86_reverse_condition (enum rtx_code code, enum machine_mode mode) +{ + return (mode != CCFPmode && mode != CCFPUmode + ? reverse_condition (code) + : reverse_condition_maybe_unordered (code)); +} + +/* Output code to perform an x87 FP register move, from OPERANDS[1] + to OPERANDS[0]. */ + +const char * +output_387_reg_move (rtx insn, rtx *operands) +{ + if (REG_P (operands[0])) + { + if (REG_P (operands[1]) + && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) + { + if (REGNO (operands[0]) == FIRST_STACK_REG) + return output_387_ffreep (operands, 0); + return "fstp\t%y0"; + } + if (STACK_TOP_P (operands[0])) + return "fld%Z1\t%y1"; + return "fst\t%y0"; + } + else if (MEM_P (operands[0])) + { + gcc_assert (REG_P (operands[1])); + if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) + return "fstp%Z0\t%y0"; + else + { + /* There is no non-popping store to memory for XFmode. + So if we need one, follow the store with a load. */ + if (GET_MODE (operands[0]) == XFmode) + return "fstp%Z0\t%y0\n\tfld%Z0\t%y0"; + else + return "fst%Z0\t%y0"; + } + } + else + gcc_unreachable(); +} + +/* Output code to perform a conditional jump to LABEL, if C2 flag in + FP status register is set. */ + +void +ix86_emit_fp_unordered_jump (rtx label) +{ + rtx reg = gen_reg_rtx (HImode); + rtx temp; + + emit_insn (gen_x86_fnstsw_1 (reg)); + + if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ())) + { + emit_insn (gen_x86_sahf_1 (reg)); + + temp = gen_rtx_REG (CCmode, FLAGS_REG); + temp = gen_rtx_UNORDERED (VOIDmode, temp, const0_rtx); + } + else + { + emit_insn (gen_testqi_ext_ccno_0 (reg, GEN_INT (0x04))); + + temp = gen_rtx_REG (CCNOmode, FLAGS_REG); + temp = gen_rtx_NE (VOIDmode, temp, const0_rtx); + } + + temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, + gen_rtx_LABEL_REF (VOIDmode, label), + pc_rtx); + temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); + + emit_jump_insn (temp); + predict_jump (REG_BR_PROB_BASE * 10 / 100); +} + +/* Output code to perform a log1p XFmode calculation. */ + +void ix86_emit_i387_log1p (rtx op0, rtx op1) +{ + rtx label1 = gen_label_rtx (); + rtx label2 = gen_label_rtx (); + + rtx tmp = gen_reg_rtx (XFmode); + rtx tmp2 = gen_reg_rtx (XFmode); + rtx test; + + emit_insn (gen_absxf2 (tmp, op1)); + test = gen_rtx_GE (VOIDmode, tmp, + CONST_DOUBLE_FROM_REAL_VALUE ( + REAL_VALUE_ATOF ("0.29289321881345247561810596348408353", XFmode), + XFmode)); + emit_jump_insn (gen_cbranchxf4 (test, XEXP (test, 0), XEXP (test, 1), label1)); + + emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ + emit_insn (gen_fyl2xp1xf3_i387 (op0, op1, tmp2)); + emit_jump (label2); + + emit_label (label1); + emit_move_insn (tmp, CONST1_RTX (XFmode)); + emit_insn (gen_addxf3 (tmp, op1, tmp)); + emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ + emit_insn (gen_fyl2xxf3_i387 (op0, tmp, tmp2)); + + emit_label (label2); +} + +/* Output code to perform a Newton-Rhapson approximation of a single precision + floating point divide [http://en.wikipedia.org/wiki/N-th_root_algorithm]. */ + +void ix86_emit_swdivsf (rtx res, rtx a, rtx b, enum machine_mode mode) +{ + rtx x0, x1, e0, e1, two; + + x0 = gen_reg_rtx (mode); + e0 = gen_reg_rtx (mode); + e1 = gen_reg_rtx (mode); + x1 = gen_reg_rtx (mode); + + two = CONST_DOUBLE_FROM_REAL_VALUE (dconst2, SFmode); + + if (VECTOR_MODE_P (mode)) + two = ix86_build_const_vector (mode, true, two); + + two = force_reg (mode, two); + + /* a / b = a * rcp(b) * (2.0 - b * rcp(b)) */ + + /* x0 = rcp(b) estimate */ + emit_insn (gen_rtx_SET (VOIDmode, x0, + gen_rtx_UNSPEC (mode, gen_rtvec (1, b), + UNSPEC_RCP))); + /* e0 = x0 * a */ + emit_insn (gen_rtx_SET (VOIDmode, e0, + gen_rtx_MULT (mode, x0, a))); + /* e1 = x0 * b */ + emit_insn (gen_rtx_SET (VOIDmode, e1, + gen_rtx_MULT (mode, x0, b))); + /* x1 = 2. - e1 */ + emit_insn (gen_rtx_SET (VOIDmode, x1, + gen_rtx_MINUS (mode, two, e1))); + /* res = e0 * x1 */ + emit_insn (gen_rtx_SET (VOIDmode, res, + gen_rtx_MULT (mode, e0, x1))); +} + +/* Output code to perform a Newton-Rhapson approximation of a + single precision floating point [reciprocal] square root. */ + +void ix86_emit_swsqrtsf (rtx res, rtx a, enum machine_mode mode, + bool recip) +{ + rtx x0, e0, e1, e2, e3, mthree, mhalf; + REAL_VALUE_TYPE r; + + x0 = gen_reg_rtx (mode); + e0 = gen_reg_rtx (mode); + e1 = gen_reg_rtx (mode); + e2 = gen_reg_rtx (mode); + e3 = gen_reg_rtx (mode); + + real_from_integer (&r, VOIDmode, -3, -1, 0); + mthree = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); + + real_arithmetic (&r, NEGATE_EXPR, &dconsthalf, NULL); + mhalf = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); + + if (VECTOR_MODE_P (mode)) + { + mthree = ix86_build_const_vector (mode, true, mthree); + mhalf = ix86_build_const_vector (mode, true, mhalf); + } + + /* sqrt(a) = -0.5 * a * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) + rsqrt(a) = -0.5 * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) */ + + /* x0 = rsqrt(a) estimate */ + emit_insn (gen_rtx_SET (VOIDmode, x0, + gen_rtx_UNSPEC (mode, gen_rtvec (1, a), + UNSPEC_RSQRT))); + + /* If (a == 0.0) Filter out infinity to prevent NaN for sqrt(0.0). */ + if (!recip) + { + rtx zero, mask; + + zero = gen_reg_rtx (mode); + mask = gen_reg_rtx (mode); + + zero = force_reg (mode, CONST0_RTX(mode)); + emit_insn (gen_rtx_SET (VOIDmode, mask, + gen_rtx_NE (mode, zero, a))); + + emit_insn (gen_rtx_SET (VOIDmode, x0, + gen_rtx_AND (mode, x0, mask))); + } + + /* e0 = x0 * a */ + emit_insn (gen_rtx_SET (VOIDmode, e0, + gen_rtx_MULT (mode, x0, a))); + /* e1 = e0 * x0 */ + emit_insn (gen_rtx_SET (VOIDmode, e1, + gen_rtx_MULT (mode, e0, x0))); + + /* e2 = e1 - 3. */ + mthree = force_reg (mode, mthree); + emit_insn (gen_rtx_SET (VOIDmode, e2, + gen_rtx_PLUS (mode, e1, mthree))); + + mhalf = force_reg (mode, mhalf); + if (recip) + /* e3 = -.5 * x0 */ + emit_insn (gen_rtx_SET (VOIDmode, e3, + gen_rtx_MULT (mode, x0, mhalf))); + else + /* e3 = -.5 * e0 */ + emit_insn (gen_rtx_SET (VOIDmode, e3, + gen_rtx_MULT (mode, e0, mhalf))); + /* ret = e2 * e3 */ + emit_insn (gen_rtx_SET (VOIDmode, res, + gen_rtx_MULT (mode, e2, e3))); +} + +/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ + +static void ATTRIBUTE_UNUSED +i386_solaris_elf_named_section (const char *name, unsigned int flags, + tree decl) +{ + /* With Binutils 2.15, the "@unwind" marker must be specified on + every occurrence of the ".eh_frame" section, not just the first + one. */ + if (TARGET_64BIT + && strcmp (name, ".eh_frame") == 0) + { + fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name, + flags & SECTION_WRITE ? "aw" : "a"); + return; + } + default_elf_asm_named_section (name, flags, decl); +} + +/* Return the mangling of TYPE if it is an extended fundamental type. */ + +static const char * +ix86_mangle_type (const_tree type) +{ + type = TYPE_MAIN_VARIANT (type); + + if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE + && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) + return NULL; + + switch (TYPE_MODE (type)) + { + case TFmode: + /* __float128 is "g". */ + return "g"; + case XFmode: + /* "long double" or __float80 is "e". */ + return "e"; + default: + return NULL; + } +} + +/* For 32-bit code we can save PIC register setup by using + __stack_chk_fail_local hidden function instead of calling + __stack_chk_fail directly. 64-bit code doesn't need to setup any PIC + register, so it is better to call __stack_chk_fail directly. */ + +static tree +ix86_stack_protect_fail (void) +{ + return TARGET_64BIT + ? default_external_stack_protect_fail () + : default_hidden_stack_protect_fail (); +} + +/* Select a format to encode pointers in exception handling data. CODE + is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is + true if the symbol may be affected by dynamic relocations. + + ??? All x86 object file formats are capable of representing this. + After all, the relocation needed is the same as for the call insn. + Whether or not a particular assembler allows us to enter such, I + guess we'll have to see. */ +int +asm_preferred_eh_data_format (int code, int global) +{ + if (flag_pic) + { + int type = DW_EH_PE_sdata8; + if (!TARGET_64BIT + || ix86_cmodel == CM_SMALL_PIC + || (ix86_cmodel == CM_MEDIUM_PIC && (global || code))) + type = DW_EH_PE_sdata4; + return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; + } + if (ix86_cmodel == CM_SMALL + || (ix86_cmodel == CM_MEDIUM && code)) + return DW_EH_PE_udata4; + return DW_EH_PE_absptr; +} + +/* Expand copysign from SIGN to the positive value ABS_VALUE + storing in RESULT. If MASK is non-null, it shall be a mask to mask out + the sign-bit. */ +static void +ix86_sse_copysign_to_positive (rtx result, rtx abs_value, rtx sign, rtx mask) +{ + enum machine_mode mode = GET_MODE (sign); + rtx sgn = gen_reg_rtx (mode); + if (mask == NULL_RTX) + { + enum machine_mode vmode; + + if (mode == SFmode) + vmode = V4SFmode; + else if (mode == DFmode) + vmode = V2DFmode; + else + vmode = mode; + + mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), false); + if (!VECTOR_MODE_P (mode)) + { + /* We need to generate a scalar mode mask in this case. */ + rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); + tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); + mask = gen_reg_rtx (mode); + emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); + } + } + else + mask = gen_rtx_NOT (mode, mask); + emit_insn (gen_rtx_SET (VOIDmode, sgn, + gen_rtx_AND (mode, mask, sign))); + emit_insn (gen_rtx_SET (VOIDmode, result, + gen_rtx_IOR (mode, abs_value, sgn))); +} + +/* Expand fabs (OP0) and return a new rtx that holds the result. The + mask for masking out the sign-bit is stored in *SMASK, if that is + non-null. */ +static rtx +ix86_expand_sse_fabs (rtx op0, rtx *smask) +{ + enum machine_mode vmode, mode = GET_MODE (op0); + rtx xa, mask; + + xa = gen_reg_rtx (mode); + if (mode == SFmode) + vmode = V4SFmode; + else if (mode == DFmode) + vmode = V2DFmode; + else + vmode = mode; + mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), true); + if (!VECTOR_MODE_P (mode)) + { + /* We need to generate a scalar mode mask in this case. */ + rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); + tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); + mask = gen_reg_rtx (mode); + emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); + } + emit_insn (gen_rtx_SET (VOIDmode, xa, + gen_rtx_AND (mode, op0, mask))); + + if (smask) + *smask = mask; + + return xa; +} + +/* Expands a comparison of OP0 with OP1 using comparison code CODE, + swapping the operands if SWAP_OPERANDS is true. The expanded + code is a forward jump to a newly created label in case the + comparison is true. The generated label rtx is returned. */ +static rtx +ix86_expand_sse_compare_and_jump (enum rtx_code code, rtx op0, rtx op1, + bool swap_operands) +{ + rtx label, tmp; + + if (swap_operands) + { + tmp = op0; + op0 = op1; + op1 = tmp; + } + + label = gen_label_rtx (); + tmp = gen_rtx_REG (CCFPUmode, FLAGS_REG); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_COMPARE (CCFPUmode, op0, op1))); + tmp = gen_rtx_fmt_ee (code, VOIDmode, tmp, const0_rtx); + tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, + gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); + tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); + JUMP_LABEL (tmp) = label; + + return label; +} + +/* Expand a mask generating SSE comparison instruction comparing OP0 with OP1 + using comparison code CODE. Operands are swapped for the comparison if + SWAP_OPERANDS is true. Returns a rtx for the generated mask. */ +static rtx +ix86_expand_sse_compare_mask (enum rtx_code code, rtx op0, rtx op1, + bool swap_operands) +{ + enum machine_mode mode = GET_MODE (op0); + rtx mask = gen_reg_rtx (mode); + + if (swap_operands) + { + rtx tmp = op0; + op0 = op1; + op1 = tmp; + } + + if (mode == DFmode) + emit_insn (gen_sse2_maskcmpdf3 (mask, op0, op1, + gen_rtx_fmt_ee (code, mode, op0, op1))); + else + emit_insn (gen_sse_maskcmpsf3 (mask, op0, op1, + gen_rtx_fmt_ee (code, mode, op0, op1))); + + return mask; +} + +/* Generate and return a rtx of mode MODE for 2**n where n is the number + of bits of the mantissa of MODE, which must be one of DFmode or SFmode. */ +static rtx +ix86_gen_TWO52 (enum machine_mode mode) +{ + REAL_VALUE_TYPE TWO52r; + rtx TWO52; + + real_ldexp (&TWO52r, &dconst1, mode == DFmode ? 52 : 23); + TWO52 = const_double_from_real_value (TWO52r, mode); + TWO52 = force_reg (mode, TWO52); + + return TWO52; +} + +/* Expand SSE sequence for computing lround from OP1 storing + into OP0. */ +void +ix86_expand_lround (rtx op0, rtx op1) +{ + /* C code for the stuff we're doing below: + tmp = op1 + copysign (nextafter (0.5, 0.0), op1) + return (long)tmp; + */ + enum machine_mode mode = GET_MODE (op1); + const struct real_format *fmt; + REAL_VALUE_TYPE pred_half, half_minus_pred_half; + rtx adj; + + /* load nextafter (0.5, 0.0) */ + fmt = REAL_MODE_FORMAT (mode); + real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); + REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); + + /* adj = copysign (0.5, op1) */ + adj = force_reg (mode, const_double_from_real_value (pred_half, mode)); + ix86_sse_copysign_to_positive (adj, adj, force_reg (mode, op1), NULL_RTX); + + /* adj = op1 + adj */ + adj = expand_simple_binop (mode, PLUS, adj, op1, NULL_RTX, 0, OPTAB_DIRECT); + + /* op0 = (imode)adj */ + expand_fix (op0, adj, 0); +} + +/* Expand SSE2 sequence for computing lround from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_lfloorceil (rtx op0, rtx op1, bool do_floor) +{ + /* C code for the stuff we're doing below (for do_floor): + xi = (long)op1; + xi -= (double)xi > op1 ? 1 : 0; + return xi; + */ + enum machine_mode fmode = GET_MODE (op1); + enum machine_mode imode = GET_MODE (op0); + rtx ireg, freg, label, tmp; + + /* reg = (long)op1 */ + ireg = gen_reg_rtx (imode); + expand_fix (ireg, op1, 0); + + /* freg = (double)reg */ + freg = gen_reg_rtx (fmode); + expand_float (freg, ireg, 0); + + /* ireg = (freg > op1) ? ireg - 1 : ireg */ + label = ix86_expand_sse_compare_and_jump (UNLE, + freg, op1, !do_floor); + tmp = expand_simple_binop (imode, do_floor ? MINUS : PLUS, + ireg, const1_rtx, NULL_RTX, 0, OPTAB_DIRECT); + emit_move_insn (ireg, tmp); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (op0, ireg); +} + +/* Expand rint (IEEE round to nearest) rounding OPERAND1 and storing the + result in OPERAND0. */ +void +ix86_expand_rint (rtx operand0, rtx operand1) +{ + /* C code for the stuff we're doing below: + xa = fabs (operand1); + if (!isless (xa, 2**52)) + return operand1; + xa = xa + 2**52 - 2**52; + return copysign (xa, operand1); + */ + enum machine_mode mode = GET_MODE (operand0); + rtx res, xa, label, TWO52, mask; + + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &mask); + + /* if (!isless (xa, TWO52)) goto label; */ + TWO52 = ix86_gen_TWO52 (mode); + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); + xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); + + ix86_sse_copysign_to_positive (res, xa, res, mask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_floorceildf_32 (rtx operand0, rtx operand1, bool do_floor) +{ + /* C code for the stuff we expand below. + double xa = fabs (x), x2; + if (!isless (xa, TWO52)) + return x; + xa = xa + TWO52 - TWO52; + x2 = copysign (xa, x); + Compensate. Floor: + if (x2 > x) + x2 -= 1; + Compensate. Ceil: + if (x2 < x) + x2 -= -1; + return x2; + */ + enum machine_mode mode = GET_MODE (operand0); + rtx xa, TWO52, tmp, label, one, res, mask; + + TWO52 = ix86_gen_TWO52 (mode); + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &mask); + + /* if (!isless (xa, TWO52)) goto label; */ + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* xa = xa + TWO52 - TWO52; */ + xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); + xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); + + /* xa = copysign (xa, operand1) */ + ix86_sse_copysign_to_positive (xa, xa, res, mask); + + /* generate 1.0 or -1.0 */ + one = force_reg (mode, + const_double_from_real_value (do_floor + ? dconst1 : dconstm1, mode)); + + /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ + tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_AND (mode, one, tmp))); + /* We always need to subtract here to preserve signed zero. */ + tmp = expand_simple_binop (mode, MINUS, + xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); + emit_move_insn (res, tmp); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_floorceil (rtx operand0, rtx operand1, bool do_floor) +{ + /* C code for the stuff we expand below. + double xa = fabs (x), x2; + if (!isless (xa, TWO52)) + return x; + x2 = (double)(long)x; + Compensate. Floor: + if (x2 > x) + x2 -= 1; + Compensate. Ceil: + if (x2 < x) + x2 += 1; + if (HONOR_SIGNED_ZEROS (mode)) + return copysign (x2, x); + return x2; + */ + enum machine_mode mode = GET_MODE (operand0); + rtx xa, xi, TWO52, tmp, label, one, res, mask; + + TWO52 = ix86_gen_TWO52 (mode); + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &mask); + + /* if (!isless (xa, TWO52)) goto label; */ + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* xa = (double)(long)x */ + xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); + expand_fix (xi, res, 0); + expand_float (xa, xi, 0); + + /* generate 1.0 */ + one = force_reg (mode, const_double_from_real_value (dconst1, mode)); + + /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ + tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_AND (mode, one, tmp))); + tmp = expand_simple_binop (mode, do_floor ? MINUS : PLUS, + xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); + emit_move_insn (res, tmp); + + if (HONOR_SIGNED_ZEROS (mode)) + ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE sequence for computing round from OPERAND1 storing + into OPERAND0. Sequence that works without relying on DImode truncation + via cvttsd2siq that is only available on 64bit targets. */ +void +ix86_expand_rounddf_32 (rtx operand0, rtx operand1) +{ + /* C code for the stuff we expand below. + double xa = fabs (x), xa2, x2; + if (!isless (xa, TWO52)) + return x; + Using the absolute value and copying back sign makes + -0.0 -> -0.0 correct. + xa2 = xa + TWO52 - TWO52; + Compensate. + dxa = xa2 - xa; + if (dxa <= -0.5) + xa2 += 1; + else if (dxa > 0.5) + xa2 -= 1; + x2 = copysign (xa2, x); + return x2; + */ + enum machine_mode mode = GET_MODE (operand0); + rtx xa, xa2, dxa, TWO52, tmp, label, half, mhalf, one, res, mask; + + TWO52 = ix86_gen_TWO52 (mode); + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &mask); + + /* if (!isless (xa, TWO52)) goto label; */ + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* xa2 = xa + TWO52 - TWO52; */ + xa2 = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); + xa2 = expand_simple_binop (mode, MINUS, xa2, TWO52, xa2, 0, OPTAB_DIRECT); + + /* dxa = xa2 - xa; */ + dxa = expand_simple_binop (mode, MINUS, xa2, xa, NULL_RTX, 0, OPTAB_DIRECT); + + /* generate 0.5, 1.0 and -0.5 */ + half = force_reg (mode, const_double_from_real_value (dconsthalf, mode)); + one = expand_simple_binop (mode, PLUS, half, half, NULL_RTX, 0, OPTAB_DIRECT); + mhalf = expand_simple_binop (mode, MINUS, half, one, NULL_RTX, + 0, OPTAB_DIRECT); + + /* Compensate. */ + tmp = gen_reg_rtx (mode); + /* xa2 = xa2 - (dxa > 0.5 ? 1 : 0) */ + tmp = ix86_expand_sse_compare_mask (UNGT, dxa, half, false); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_AND (mode, one, tmp))); + xa2 = expand_simple_binop (mode, MINUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); + /* xa2 = xa2 + (dxa <= -0.5 ? 1 : 0) */ + tmp = ix86_expand_sse_compare_mask (UNGE, mhalf, dxa, false); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_AND (mode, one, tmp))); + xa2 = expand_simple_binop (mode, PLUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); + + /* res = copysign (xa2, operand1) */ + ix86_sse_copysign_to_positive (res, xa2, force_reg (mode, operand1), mask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE sequence for computing trunc from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_trunc (rtx operand0, rtx operand1) +{ + /* C code for SSE variant we expand below. + double xa = fabs (x), x2; + if (!isless (xa, TWO52)) + return x; + x2 = (double)(long)x; + if (HONOR_SIGNED_ZEROS (mode)) + return copysign (x2, x); + return x2; + */ + enum machine_mode mode = GET_MODE (operand0); + rtx xa, xi, TWO52, label, res, mask; + + TWO52 = ix86_gen_TWO52 (mode); + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &mask); + + /* if (!isless (xa, TWO52)) goto label; */ + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* x = (double)(long)x */ + xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); + expand_fix (xi, res, 0); + expand_float (res, xi, 0); + + if (HONOR_SIGNED_ZEROS (mode)) + ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE sequence for computing trunc from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_truncdf_32 (rtx operand0, rtx operand1) +{ + enum machine_mode mode = GET_MODE (operand0); + rtx xa, mask, TWO52, label, one, res, smask, tmp; + + /* C code for SSE variant we expand below. + double xa = fabs (x), x2; + if (!isless (xa, TWO52)) + return x; + xa2 = xa + TWO52 - TWO52; + Compensate: + if (xa2 > xa) + xa2 -= 1.0; + x2 = copysign (xa2, x); + return x2; + */ + + TWO52 = ix86_gen_TWO52 (mode); + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + /* xa = abs (operand1) */ + xa = ix86_expand_sse_fabs (res, &smask); + + /* if (!isless (xa, TWO52)) goto label; */ + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* res = xa + TWO52 - TWO52; */ + tmp = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); + tmp = expand_simple_binop (mode, MINUS, tmp, TWO52, tmp, 0, OPTAB_DIRECT); + emit_move_insn (res, tmp); + + /* generate 1.0 */ + one = force_reg (mode, const_double_from_real_value (dconst1, mode)); + + /* Compensate: res = xa2 - (res > xa ? 1 : 0) */ + mask = ix86_expand_sse_compare_mask (UNGT, res, xa, false); + emit_insn (gen_rtx_SET (VOIDmode, mask, + gen_rtx_AND (mode, mask, one))); + tmp = expand_simple_binop (mode, MINUS, + res, mask, NULL_RTX, 0, OPTAB_DIRECT); + emit_move_insn (res, tmp); + + /* res = copysign (res, operand1) */ + ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), smask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + +/* Expand SSE sequence for computing round from OPERAND1 storing + into OPERAND0. */ +void +ix86_expand_round (rtx operand0, rtx operand1) +{ + /* C code for the stuff we're doing below: + double xa = fabs (x); + if (!isless (xa, TWO52)) + return x; + xa = (double)(long)(xa + nextafter (0.5, 0.0)); + return copysign (xa, x); + */ + enum machine_mode mode = GET_MODE (operand0); + rtx res, TWO52, xa, label, xi, half, mask; + const struct real_format *fmt; + REAL_VALUE_TYPE pred_half, half_minus_pred_half; + + /* Temporary for holding the result, initialized to the input + operand to ease control flow. */ + res = gen_reg_rtx (mode); + emit_move_insn (res, operand1); + + TWO52 = ix86_gen_TWO52 (mode); + xa = ix86_expand_sse_fabs (res, &mask); + label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); + + /* load nextafter (0.5, 0.0) */ + fmt = REAL_MODE_FORMAT (mode); + real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); + REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); + + /* xa = xa + 0.5 */ + half = force_reg (mode, const_double_from_real_value (pred_half, mode)); + xa = expand_simple_binop (mode, PLUS, xa, half, NULL_RTX, 0, OPTAB_DIRECT); + + /* xa = (double)(int64_t)xa */ + xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); + expand_fix (xi, xa, 0); + expand_float (xa, xi, 0); + + /* res = copysign (xa, operand1) */ + ix86_sse_copysign_to_positive (res, xa, force_reg (mode, operand1), mask); + + emit_label (label); + LABEL_NUSES (label) = 1; + + emit_move_insn (operand0, res); +} + + +/* Table of valid machine attributes. */ +static const struct attribute_spec ix86_attribute_table[] = +{ + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ + /* Stdcall attribute says callee is responsible for popping arguments + if they are not variable. */ + { "stdcall", 0, 0, false, true, true, ix86_handle_cconv_attribute }, + /* Fastcall attribute says callee is responsible for popping arguments + if they are not variable. */ + { "fastcall", 0, 0, false, true, true, ix86_handle_cconv_attribute }, + /* Thiscall attribute says callee is responsible for popping arguments + if they are not variable. */ + { "thiscall", 0, 0, false, true, true, ix86_handle_cconv_attribute }, + /* Cdecl attribute says the callee is a normal C declaration */ + { "cdecl", 0, 0, false, true, true, ix86_handle_cconv_attribute }, + /* Regparm attribute specifies how many integer arguments are to be + passed in registers. */ + { "regparm", 1, 1, false, true, true, ix86_handle_cconv_attribute }, + /* Sseregparm attribute says we are using x86_64 calling conventions + for FP arguments. */ + { "sseregparm", 0, 0, false, true, true, ix86_handle_cconv_attribute }, + /* force_align_arg_pointer says this function realigns the stack at entry. */ + { (const char *)&ix86_force_align_arg_pointer_string, 0, 0, + false, true, true, ix86_handle_cconv_attribute }, +#if TARGET_DLLIMPORT_DECL_ATTRIBUTES + { "dllimport", 0, 0, false, false, false, handle_dll_attribute }, + { "dllexport", 0, 0, false, false, false, handle_dll_attribute }, + { "shared", 0, 0, true, false, false, ix86_handle_shared_attribute }, +#endif + { "ms_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, + { "gcc_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, +#ifdef SUBTARGET_ATTRIBUTE_TABLE + SUBTARGET_ATTRIBUTE_TABLE, +#endif + /* ms_abi and sysv_abi calling convention function attributes. */ + { "ms_abi", 0, 0, false, true, true, ix86_handle_abi_attribute }, + { "sysv_abi", 0, 0, false, true, true, ix86_handle_abi_attribute }, + { "ms_hook_prologue", 0, 0, true, false, false, ix86_handle_fndecl_attribute }, + { "callee_pop_aggregate_return", 1, 1, false, true, true, + ix86_handle_callee_pop_aggregate_return }, + /* End element. */ + { NULL, 0, 0, false, false, false, NULL } +}; + +/* Implement targetm.vectorize.builtin_vectorization_cost. */ +static int +ix86_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, + tree vectype ATTRIBUTE_UNUSED, + int misalign ATTRIBUTE_UNUSED) +{ + switch (type_of_cost) + { + case scalar_stmt: + return ix86_cost->scalar_stmt_cost; + + case scalar_load: + return ix86_cost->scalar_load_cost; + + case scalar_store: + return ix86_cost->scalar_store_cost; + + case vector_stmt: + return ix86_cost->vec_stmt_cost; + + case vector_load: + return ix86_cost->vec_align_load_cost; + + case vector_store: + return ix86_cost->vec_store_cost; + + case vec_to_scalar: + return ix86_cost->vec_to_scalar_cost; + + case scalar_to_vec: + return ix86_cost->scalar_to_vec_cost; + + case unaligned_load: + case unaligned_store: + return ix86_cost->vec_unalign_load_cost; + + case cond_branch_taken: + return ix86_cost->cond_taken_branch_cost; + + case cond_branch_not_taken: + return ix86_cost->cond_not_taken_branch_cost; + + case vec_perm: + case vec_promote_demote: + return ix86_cost->vec_stmt_cost; + + default: + gcc_unreachable (); + } +} + + +/* Implement targetm.vectorize.builtin_vec_perm. */ + +static tree +ix86_vectorize_builtin_vec_perm (tree vec_type, tree *mask_type) +{ + tree itype = TREE_TYPE (vec_type); + bool u = TYPE_UNSIGNED (itype); + enum machine_mode vmode = TYPE_MODE (vec_type); + enum ix86_builtins fcode; + bool ok = TARGET_SSE2; + + switch (vmode) + { + case V4DFmode: + ok = TARGET_AVX; + fcode = IX86_BUILTIN_VEC_PERM_V4DF; + goto get_di; + case V2DFmode: + fcode = IX86_BUILTIN_VEC_PERM_V2DF; + get_di: + itype = ix86_get_builtin_type (IX86_BT_DI); + break; + + case V8SFmode: + ok = TARGET_AVX; + fcode = IX86_BUILTIN_VEC_PERM_V8SF; + goto get_si; + case V4SFmode: + ok = TARGET_SSE; + fcode = IX86_BUILTIN_VEC_PERM_V4SF; + get_si: + itype = ix86_get_builtin_type (IX86_BT_SI); + break; + + case V2DImode: + fcode = u ? IX86_BUILTIN_VEC_PERM_V2DI_U : IX86_BUILTIN_VEC_PERM_V2DI; + break; + case V4SImode: + fcode = u ? IX86_BUILTIN_VEC_PERM_V4SI_U : IX86_BUILTIN_VEC_PERM_V4SI; + break; + case V8HImode: + fcode = u ? IX86_BUILTIN_VEC_PERM_V8HI_U : IX86_BUILTIN_VEC_PERM_V8HI; + break; + case V16QImode: + fcode = u ? IX86_BUILTIN_VEC_PERM_V16QI_U : IX86_BUILTIN_VEC_PERM_V16QI; + break; + default: + ok = false; + break; + } + + if (!ok) + return NULL_TREE; + + *mask_type = itype; + return ix86_builtins[(int) fcode]; +} + +/* Return a vector mode with twice as many elements as VMODE. */ +/* ??? Consider moving this to a table generated by genmodes.c. */ + +static enum machine_mode +doublesize_vector_mode (enum machine_mode vmode) +{ + switch (vmode) + { + case V2SFmode: return V4SFmode; + case V1DImode: return V2DImode; + case V2SImode: return V4SImode; + case V4HImode: return V8HImode; + case V8QImode: return V16QImode; + + case V2DFmode: return V4DFmode; + case V4SFmode: return V8SFmode; + case V2DImode: return V4DImode; + case V4SImode: return V8SImode; + case V8HImode: return V16HImode; + case V16QImode: return V32QImode; + + case V4DFmode: return V8DFmode; + case V8SFmode: return V16SFmode; + case V4DImode: return V8DImode; + case V8SImode: return V16SImode; + case V16HImode: return V32HImode; + case V32QImode: return V64QImode; + + default: + gcc_unreachable (); + } +} + +/* Construct (set target (vec_select op0 (parallel perm))) and + return true if that's a valid instruction in the active ISA. */ + +static bool +expand_vselect (rtx target, rtx op0, const unsigned char *perm, unsigned nelt) +{ + rtx rperm[MAX_VECT_LEN], x; + unsigned i; + + for (i = 0; i < nelt; ++i) + rperm[i] = GEN_INT (perm[i]); + + x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm)); + x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x); + x = gen_rtx_SET (VOIDmode, target, x); + + x = emit_insn (x); + if (recog_memoized (x) < 0) + { + remove_insn (x); + return false; + } + return true; +} + +/* Similar, but generate a vec_concat from op0 and op1 as well. */ + +static bool +expand_vselect_vconcat (rtx target, rtx op0, rtx op1, + const unsigned char *perm, unsigned nelt) +{ + enum machine_mode v2mode; + rtx x; + + v2mode = doublesize_vector_mode (GET_MODE (op0)); + x = gen_rtx_VEC_CONCAT (v2mode, op0, op1); + return expand_vselect (target, x, perm, nelt); +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D + in terms of blendp[sd] / pblendw / pblendvb. */ + +static bool +expand_vec_perm_blend (struct expand_vec_perm_d *d) +{ + enum machine_mode vmode = d->vmode; + unsigned i, mask, nelt = d->nelt; + rtx target, op0, op1, x; + + if (!TARGET_SSE4_1 || d->op0 == d->op1) + return false; + if (!(GET_MODE_SIZE (vmode) == 16 || vmode == V4DFmode || vmode == V8SFmode)) + return false; + + /* This is a blend, not a permute. Elements must stay in their + respective lanes. */ + for (i = 0; i < nelt; ++i) + { + unsigned e = d->perm[i]; + if (!(e == i || e == i + nelt)) + return false; + } + + if (d->testing_p) + return true; + + /* ??? Without SSE4.1, we could implement this with and/andn/or. This + decision should be extracted elsewhere, so that we only try that + sequence once all budget==3 options have been tried. */ + + /* For bytes, see if bytes move in pairs so we can use pblendw with + an immediate argument, rather than pblendvb with a vector argument. */ + if (vmode == V16QImode) + { + bool pblendw_ok = true; + for (i = 0; i < 16 && pblendw_ok; i += 2) + pblendw_ok = (d->perm[i] + 1 == d->perm[i + 1]); + + if (!pblendw_ok) + { + rtx rperm[16], vperm; + + for (i = 0; i < nelt; ++i) + rperm[i] = (d->perm[i] < nelt ? const0_rtx : constm1_rtx); + + vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm)); + vperm = force_reg (V16QImode, vperm); + + emit_insn (gen_sse4_1_pblendvb (d->target, d->op0, d->op1, vperm)); + return true; + } + } + + target = d->target; + op0 = d->op0; + op1 = d->op1; + mask = 0; + + switch (vmode) + { + case V4DFmode: + case V8SFmode: + case V2DFmode: + case V4SFmode: + case V8HImode: + for (i = 0; i < nelt; ++i) + mask |= (d->perm[i] >= nelt) << i; + break; + + case V2DImode: + for (i = 0; i < 2; ++i) + mask |= (d->perm[i] >= 2 ? 15 : 0) << (i * 4); + goto do_subreg; + + case V4SImode: + for (i = 0; i < 4; ++i) + mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2); + goto do_subreg; + + case V16QImode: + for (i = 0; i < 8; ++i) + mask |= (d->perm[i * 2] >= 16) << i; + + do_subreg: + vmode = V8HImode; + target = gen_lowpart (vmode, target); + op0 = gen_lowpart (vmode, op0); + op1 = gen_lowpart (vmode, op1); + break; + + default: + gcc_unreachable (); + } + + /* This matches five different patterns with the different modes. */ + x = gen_rtx_VEC_MERGE (vmode, op1, op0, GEN_INT (mask)); + x = gen_rtx_SET (VOIDmode, target, x); + emit_insn (x); + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D + in terms of the variable form of vpermilps. + + Note that we will have already failed the immediate input vpermilps, + which requires that the high and low part shuffle be identical; the + variable form doesn't require that. */ + +static bool +expand_vec_perm_vpermil (struct expand_vec_perm_d *d) +{ + rtx rperm[8], vperm; + unsigned i; + + if (!TARGET_AVX || d->vmode != V8SFmode || d->op0 != d->op1) + return false; + + /* We can only permute within the 128-bit lane. */ + for (i = 0; i < 8; ++i) + { + unsigned e = d->perm[i]; + if (i < 4 ? e >= 4 : e < 4) + return false; + } + + if (d->testing_p) + return true; + + for (i = 0; i < 8; ++i) + { + unsigned e = d->perm[i]; + + /* Within each 128-bit lane, the elements of op0 are numbered + from 0 and the elements of op1 are numbered from 4. */ + if (e >= 8 + 4) + e -= 8; + else if (e >= 4) + e -= 4; + + rperm[i] = GEN_INT (e); + } + + vperm = gen_rtx_CONST_VECTOR (V8SImode, gen_rtvec_v (8, rperm)); + vperm = force_reg (V8SImode, vperm); + emit_insn (gen_avx_vpermilvarv8sf3 (d->target, d->op0, vperm)); + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D + in terms of pshufb or vpperm. */ + +static bool +expand_vec_perm_pshufb (struct expand_vec_perm_d *d) +{ + unsigned i, nelt, eltsz; + rtx rperm[16], vperm, target, op0, op1; + + if (!(d->op0 == d->op1 ? TARGET_SSSE3 : TARGET_XOP)) + return false; + if (GET_MODE_SIZE (d->vmode) != 16) + return false; + + if (d->testing_p) + return true; + + nelt = d->nelt; + eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); + + for (i = 0; i < nelt; ++i) + { + unsigned j, e = d->perm[i]; + for (j = 0; j < eltsz; ++j) + rperm[i * eltsz + j] = GEN_INT (e * eltsz + j); + } + + vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm)); + vperm = force_reg (V16QImode, vperm); + + target = gen_lowpart (V16QImode, d->target); + op0 = gen_lowpart (V16QImode, d->op0); + if (d->op0 == d->op1) + emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, vperm)); + else + { + op1 = gen_lowpart (V16QImode, d->op1); + emit_insn (gen_xop_pperm (target, op0, op1, vperm)); + } + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to instantiate D + in a single instruction. */ + +static bool +expand_vec_perm_1 (struct expand_vec_perm_d *d) +{ + unsigned i, nelt = d->nelt; + unsigned char perm2[MAX_VECT_LEN]; + + /* Check plain VEC_SELECT first, because AVX has instructions that could + match both SEL and SEL+CONCAT, but the plain SEL will allow a memory + input where SEL+CONCAT may not. */ + if (d->op0 == d->op1) + { + int mask = nelt - 1; + + for (i = 0; i < nelt; i++) + perm2[i] = d->perm[i] & mask; + + if (expand_vselect (d->target, d->op0, perm2, nelt)) + return true; + + /* There are plenty of patterns in sse.md that are written for + SEL+CONCAT and are not replicated for a single op. Perhaps + that should be changed, to avoid the nastiness here. */ + + /* Recognize interleave style patterns, which means incrementing + every other permutation operand. */ + for (i = 0; i < nelt; i += 2) + { + perm2[i] = d->perm[i] & mask; + perm2[i + 1] = (d->perm[i + 1] & mask) + nelt; + } + if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt)) + return true; + + /* Recognize shufps, which means adding {0, 0, nelt, nelt}. */ + if (nelt >= 4) + { + for (i = 0; i < nelt; i += 4) + { + perm2[i + 0] = d->perm[i + 0] & mask; + perm2[i + 1] = d->perm[i + 1] & mask; + perm2[i + 2] = (d->perm[i + 2] & mask) + nelt; + perm2[i + 3] = (d->perm[i + 3] & mask) + nelt; + } + + if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt)) + return true; + } + } + + /* Finally, try the fully general two operand permute. */ + if (expand_vselect_vconcat (d->target, d->op0, d->op1, d->perm, nelt)) + return true; + + /* Recognize interleave style patterns with reversed operands. */ + if (d->op0 != d->op1) + { + for (i = 0; i < nelt; ++i) + { + unsigned e = d->perm[i]; + if (e >= nelt) + e -= nelt; + else + e += nelt; + perm2[i] = e; + } + + if (expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt)) + return true; + } + + /* Try the SSE4.1 blend variable merge instructions. */ + if (expand_vec_perm_blend (d)) + return true; + + /* Try one of the AVX vpermil variable permutations. */ + if (expand_vec_perm_vpermil (d)) + return true; + + /* Try the SSSE3 pshufb or XOP vpperm variable permutation. */ + if (expand_vec_perm_pshufb (d)) + return true; + + return false; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D + in terms of a pair of pshuflw + pshufhw instructions. */ + +static bool +expand_vec_perm_pshuflw_pshufhw (struct expand_vec_perm_d *d) +{ + unsigned char perm2[MAX_VECT_LEN]; + unsigned i; + bool ok; + + if (d->vmode != V8HImode || d->op0 != d->op1) + return false; + + /* The two permutations only operate in 64-bit lanes. */ + for (i = 0; i < 4; ++i) + if (d->perm[i] >= 4) + return false; + for (i = 4; i < 8; ++i) + if (d->perm[i] < 4) + return false; + + if (d->testing_p) + return true; + + /* Emit the pshuflw. */ + memcpy (perm2, d->perm, 4); + for (i = 4; i < 8; ++i) + perm2[i] = i; + ok = expand_vselect (d->target, d->op0, perm2, 8); + gcc_assert (ok); + + /* Emit the pshufhw. */ + memcpy (perm2 + 4, d->perm + 4, 4); + for (i = 0; i < 4; ++i) + perm2[i] = i; + ok = expand_vselect (d->target, d->target, perm2, 8); + gcc_assert (ok); + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify + the permutation using the SSSE3 palignr instruction. This succeeds + when all of the elements in PERM fit within one vector and we merely + need to shift them down so that a single vector permutation has a + chance to succeed. */ + +static bool +expand_vec_perm_palignr (struct expand_vec_perm_d *d) +{ + unsigned i, nelt = d->nelt; + unsigned min, max; + bool in_order, ok; + rtx shift; + + /* Even with AVX, palignr only operates on 128-bit vectors. */ + if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) + return false; + + min = nelt, max = 0; + for (i = 0; i < nelt; ++i) + { + unsigned e = d->perm[i]; + if (e < min) + min = e; + if (e > max) + max = e; + } + if (min == 0 || max - min >= nelt) + return false; + + /* Given that we have SSSE3, we know we'll be able to implement the + single operand permutation after the palignr with pshufb. */ + if (d->testing_p) + return true; + + shift = GEN_INT (min * GET_MODE_BITSIZE (GET_MODE_INNER (d->vmode))); + emit_insn (gen_ssse3_palignrti (gen_lowpart (TImode, d->target), + gen_lowpart (TImode, d->op1), + gen_lowpart (TImode, d->op0), shift)); + + d->op0 = d->op1 = d->target; + + in_order = true; + for (i = 0; i < nelt; ++i) + { + unsigned e = d->perm[i] - min; + if (e != i) + in_order = false; + d->perm[i] = e; + } + + /* Test for the degenerate case where the alignment by itself + produces the desired permutation. */ + if (in_order) + return true; + + ok = expand_vec_perm_1 (d); + gcc_assert (ok); + + return ok; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify + a two vector permutation into a single vector permutation by using + an interleave operation to merge the vectors. */ + +static bool +expand_vec_perm_interleave2 (struct expand_vec_perm_d *d) +{ + struct expand_vec_perm_d dremap, dfinal; + unsigned i, nelt = d->nelt, nelt2 = nelt / 2; + unsigned contents, h1, h2, h3, h4; + unsigned char remap[2 * MAX_VECT_LEN]; + rtx seq; + bool ok; + + if (d->op0 == d->op1) + return false; + + /* The 256-bit unpck[lh]p[sd] instructions only operate within the 128-bit + lanes. We can use similar techniques with the vperm2f128 instruction, + but it requires slightly different logic. */ + if (GET_MODE_SIZE (d->vmode) != 16) + return false; + + /* Examine from whence the elements come. */ + contents = 0; + for (i = 0; i < nelt; ++i) + contents |= 1u << d->perm[i]; + + /* Split the two input vectors into 4 halves. */ + h1 = (1u << nelt2) - 1; + h2 = h1 << nelt2; + h3 = h2 << nelt2; + h4 = h3 << nelt2; + + memset (remap, 0xff, sizeof (remap)); + dremap = *d; + + /* If the elements from the low halves use interleave low, and similarly + for interleave high. If the elements are from mis-matched halves, we + can use shufps for V4SF/V4SI or do a DImode shuffle. */ + if ((contents & (h1 | h3)) == contents) + { + for (i = 0; i < nelt2; ++i) + { + remap[i] = i * 2; + remap[i + nelt] = i * 2 + 1; + dremap.perm[i * 2] = i; + dremap.perm[i * 2 + 1] = i + nelt; + } + } + else if ((contents & (h2 | h4)) == contents) + { + for (i = 0; i < nelt2; ++i) + { + remap[i + nelt2] = i * 2; + remap[i + nelt + nelt2] = i * 2 + 1; + dremap.perm[i * 2] = i + nelt2; + dremap.perm[i * 2 + 1] = i + nelt + nelt2; + } + } + else if ((contents & (h1 | h4)) == contents) + { + for (i = 0; i < nelt2; ++i) + { + remap[i] = i; + remap[i + nelt + nelt2] = i + nelt2; + dremap.perm[i] = i; + dremap.perm[i + nelt2] = i + nelt + nelt2; + } + if (nelt != 4) + { + dremap.vmode = V2DImode; + dremap.nelt = 2; + dremap.perm[0] = 0; + dremap.perm[1] = 3; + } + } + else if ((contents & (h2 | h3)) == contents) + { + for (i = 0; i < nelt2; ++i) + { + remap[i + nelt2] = i; + remap[i + nelt] = i + nelt2; + dremap.perm[i] = i + nelt2; + dremap.perm[i + nelt2] = i + nelt; + } + if (nelt != 4) + { + dremap.vmode = V2DImode; + dremap.nelt = 2; + dremap.perm[0] = 1; + dremap.perm[1] = 2; + } + } + else + return false; + + /* Use the remapping array set up above to move the elements from their + swizzled locations into their final destinations. */ + dfinal = *d; + for (i = 0; i < nelt; ++i) + { + unsigned e = remap[d->perm[i]]; + gcc_assert (e < nelt); + dfinal.perm[i] = e; + } + dfinal.op0 = gen_reg_rtx (dfinal.vmode); + dfinal.op1 = dfinal.op0; + dremap.target = dfinal.op0; + + /* Test if the final remap can be done with a single insn. For V4SFmode or + V4SImode this *will* succeed. For V8HImode or V16QImode it may not. */ + start_sequence (); + ok = expand_vec_perm_1 (&dfinal); + seq = get_insns (); + end_sequence (); + + if (!ok) + return false; + + if (dremap.vmode != dfinal.vmode) + { + dremap.target = gen_lowpart (dremap.vmode, dremap.target); + dremap.op0 = gen_lowpart (dremap.vmode, dremap.op0); + dremap.op1 = gen_lowpart (dremap.vmode, dremap.op1); + } + + ok = expand_vec_perm_1 (&dremap); + gcc_assert (ok); + + emit_insn (seq); + return true; +} + +/* A subroutine of expand_vec_perm_even_odd_1. Implement the double-word + permutation with two pshufb insns and an ior. We should have already + failed all two instruction sequences. */ + +static bool +expand_vec_perm_pshufb2 (struct expand_vec_perm_d *d) +{ + rtx rperm[2][16], vperm, l, h, op, m128; + unsigned int i, nelt, eltsz; + + if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) + return false; + gcc_assert (d->op0 != d->op1); + + nelt = d->nelt; + eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); + + /* Generate two permutation masks. If the required element is within + the given vector it is shuffled into the proper lane. If the required + element is in the other vector, force a zero into the lane by setting + bit 7 in the permutation mask. */ + m128 = GEN_INT (-128); + for (i = 0; i < nelt; ++i) + { + unsigned j, e = d->perm[i]; + unsigned which = (e >= nelt); + if (e >= nelt) + e -= nelt; + + for (j = 0; j < eltsz; ++j) + { + rperm[which][i*eltsz + j] = GEN_INT (e*eltsz + j); + rperm[1-which][i*eltsz + j] = m128; + } + } + + vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[0])); + vperm = force_reg (V16QImode, vperm); + + l = gen_reg_rtx (V16QImode); + op = gen_lowpart (V16QImode, d->op0); + emit_insn (gen_ssse3_pshufbv16qi3 (l, op, vperm)); + + vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[1])); + vperm = force_reg (V16QImode, vperm); + + h = gen_reg_rtx (V16QImode); + op = gen_lowpart (V16QImode, d->op1); + emit_insn (gen_ssse3_pshufbv16qi3 (h, op, vperm)); + + op = gen_lowpart (V16QImode, d->target); + emit_insn (gen_iorv16qi3 (op, l, h)); + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Implement extract-even + and extract-odd permutations. */ + +static bool +expand_vec_perm_even_odd_1 (struct expand_vec_perm_d *d, unsigned odd) +{ + rtx t1, t2, t3; + + switch (d->vmode) + { + case V4DFmode: + t1 = gen_reg_rtx (V4DFmode); + t2 = gen_reg_rtx (V4DFmode); + + /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */ + emit_insn (gen_avx_vperm2f128v4df3 (t1, d->op0, d->op1, GEN_INT (0x20))); + emit_insn (gen_avx_vperm2f128v4df3 (t2, d->op0, d->op1, GEN_INT (0x31))); + + /* Now an unpck[lh]pd will produce the result required. */ + if (odd) + t3 = gen_avx_unpckhpd256 (d->target, t1, t2); + else + t3 = gen_avx_unpcklpd256 (d->target, t1, t2); + emit_insn (t3); + break; + + case V8SFmode: + { + int mask = odd ? 0xdd : 0x88; + + t1 = gen_reg_rtx (V8SFmode); + t2 = gen_reg_rtx (V8SFmode); + t3 = gen_reg_rtx (V8SFmode); + + /* Shuffle within the 128-bit lanes to produce: + { 0 2 8 a 4 6 c e } | { 1 3 9 b 5 7 d f }. */ + emit_insn (gen_avx_shufps256 (t1, d->op0, d->op1, + GEN_INT (mask))); + + /* Shuffle the lanes around to produce: + { 4 6 c e 0 2 8 a } and { 5 7 d f 1 3 9 b }. */ + emit_insn (gen_avx_vperm2f128v8sf3 (t2, t1, t1, + GEN_INT (0x3))); + + /* Shuffle within the 128-bit lanes to produce: + { 0 2 4 6 4 6 0 2 } | { 1 3 5 7 5 7 1 3 }. */ + emit_insn (gen_avx_shufps256 (t3, t1, t2, GEN_INT (0x44))); + + /* Shuffle within the 128-bit lanes to produce: + { 8 a c e c e 8 a } | { 9 b d f d f 9 b }. */ + emit_insn (gen_avx_shufps256 (t2, t1, t2, GEN_INT (0xee))); + + /* Shuffle the lanes around to produce: + { 0 2 4 6 8 a c e } | { 1 3 5 7 9 b d f }. */ + emit_insn (gen_avx_vperm2f128v8sf3 (d->target, t3, t2, + GEN_INT (0x20))); + } + break; + + case V2DFmode: + case V4SFmode: + case V2DImode: + case V4SImode: + /* These are always directly implementable by expand_vec_perm_1. */ + gcc_unreachable (); + + case V8HImode: + if (TARGET_SSSE3) + return expand_vec_perm_pshufb2 (d); + else + { + /* We need 2*log2(N)-1 operations to achieve odd/even + with interleave. */ + t1 = gen_reg_rtx (V8HImode); + t2 = gen_reg_rtx (V8HImode); + emit_insn (gen_vec_interleave_highv8hi (t1, d->op0, d->op1)); + emit_insn (gen_vec_interleave_lowv8hi (d->target, d->op0, d->op1)); + emit_insn (gen_vec_interleave_highv8hi (t2, d->target, t1)); + emit_insn (gen_vec_interleave_lowv8hi (d->target, d->target, t1)); + if (odd) + t3 = gen_vec_interleave_highv8hi (d->target, d->target, t2); + else + t3 = gen_vec_interleave_lowv8hi (d->target, d->target, t2); + emit_insn (t3); + } + break; + + case V16QImode: + if (TARGET_SSSE3) + return expand_vec_perm_pshufb2 (d); + else + { + t1 = gen_reg_rtx (V16QImode); + t2 = gen_reg_rtx (V16QImode); + t3 = gen_reg_rtx (V16QImode); + emit_insn (gen_vec_interleave_highv16qi (t1, d->op0, d->op1)); + emit_insn (gen_vec_interleave_lowv16qi (d->target, d->op0, d->op1)); + emit_insn (gen_vec_interleave_highv16qi (t2, d->target, t1)); + emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t1)); + emit_insn (gen_vec_interleave_highv16qi (t3, d->target, t2)); + emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t2)); + if (odd) + t3 = gen_vec_interleave_highv16qi (d->target, d->target, t3); + else + t3 = gen_vec_interleave_lowv16qi (d->target, d->target, t3); + emit_insn (t3); + } + break; + + default: + gcc_unreachable (); + } + + return true; +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match + extract-even and extract-odd permutations. */ + +static bool +expand_vec_perm_even_odd (struct expand_vec_perm_d *d) +{ + unsigned i, odd, nelt = d->nelt; + + odd = d->perm[0]; + if (odd != 0 && odd != 1) + return false; + + for (i = 1; i < nelt; ++i) + if (d->perm[i] != 2 * i + odd) + return false; + + return expand_vec_perm_even_odd_1 (d, odd); +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Implement broadcast + permutations. We assume that expand_vec_perm_1 has already failed. */ + +static bool +expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d) +{ + unsigned elt = d->perm[0], nelt2 = d->nelt / 2; + enum machine_mode vmode = d->vmode; + unsigned char perm2[4]; + rtx op0 = d->op0; + bool ok; + + switch (vmode) + { + case V4DFmode: + case V8SFmode: + /* These are special-cased in sse.md so that we can optionally + use the vbroadcast instruction. They expand to two insns + if the input happens to be in a register. */ + gcc_unreachable (); + + case V2DFmode: + case V2DImode: + case V4SFmode: + case V4SImode: + /* These are always implementable using standard shuffle patterns. */ + gcc_unreachable (); + + case V8HImode: + case V16QImode: + /* These can be implemented via interleave. We save one insn by + stopping once we have promoted to V4SImode and then use pshufd. */ + do + { + optab otab = vec_interleave_low_optab; + + if (elt >= nelt2) + { + otab = vec_interleave_high_optab; + elt -= nelt2; + } + nelt2 /= 2; + + op0 = expand_binop (vmode, otab, op0, op0, NULL, 0, OPTAB_DIRECT); + vmode = get_mode_wider_vector (vmode); + op0 = gen_lowpart (vmode, op0); + } + while (vmode != V4SImode); + + memset (perm2, elt, 4); + ok = expand_vselect (gen_lowpart (V4SImode, d->target), op0, perm2, 4); + gcc_assert (ok); + return true; + + default: + gcc_unreachable (); + } +} + +/* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match + broadcast permutations. */ + +static bool +expand_vec_perm_broadcast (struct expand_vec_perm_d *d) +{ + unsigned i, elt, nelt = d->nelt; + + if (d->op0 != d->op1) + return false; + + elt = d->perm[0]; + for (i = 1; i < nelt; ++i) + if (d->perm[i] != elt) + return false; + + return expand_vec_perm_broadcast_1 (d); +} + +/* The guts of ix86_expand_vec_perm_builtin, also used by the ok hook. + With all of the interface bits taken care of, perform the expansion + in D and return true on success. */ + +static bool +ix86_expand_vec_perm_builtin_1 (struct expand_vec_perm_d *d) +{ + /* Try a single instruction expansion. */ + if (expand_vec_perm_1 (d)) + return true; + + /* Try sequences of two instructions. */ + + if (expand_vec_perm_pshuflw_pshufhw (d)) + return true; + + if (expand_vec_perm_palignr (d)) + return true; + + if (expand_vec_perm_interleave2 (d)) + return true; + + if (expand_vec_perm_broadcast (d)) + return true; + + /* Try sequences of three instructions. */ + + if (expand_vec_perm_pshufb2 (d)) + return true; + + /* ??? Look for narrow permutations whose element orderings would + allow the promotion to a wider mode. */ + + /* ??? Look for sequences of interleave or a wider permute that place + the data into the correct lanes for a half-vector shuffle like + pshuf[lh]w or vpermilps. */ + + /* ??? Look for sequences of interleave that produce the desired results. + The combinatorics of punpck[lh] get pretty ugly... */ + + if (expand_vec_perm_even_odd (d)) + return true; + + return false; +} + +/* Extract the values from the vector CST into the permutation array in D. + Return 0 on error, 1 if all values from the permutation come from the + first vector, 2 if all values from the second vector, and 3 otherwise. */ + +static int +extract_vec_perm_cst (struct expand_vec_perm_d *d, tree cst) +{ + tree list = TREE_VECTOR_CST_ELTS (cst); + unsigned i, nelt = d->nelt; + int ret = 0; + + for (i = 0; i < nelt; ++i, list = TREE_CHAIN (list)) + { + unsigned HOST_WIDE_INT e; + + if (!host_integerp (TREE_VALUE (list), 1)) + return 0; + e = tree_low_cst (TREE_VALUE (list), 1); + if (e >= 2 * nelt) + return 0; + + ret |= (e < nelt ? 1 : 2); + d->perm[i] = e; + } + gcc_assert (list == NULL); + + /* For all elements from second vector, fold the elements to first. */ + if (ret == 2) + for (i = 0; i < nelt; ++i) + d->perm[i] -= nelt; + + return ret; +} + +static rtx +ix86_expand_vec_perm_builtin (tree exp) +{ + struct expand_vec_perm_d d; + tree arg0, arg1, arg2; + + arg0 = CALL_EXPR_ARG (exp, 0); + arg1 = CALL_EXPR_ARG (exp, 1); + arg2 = CALL_EXPR_ARG (exp, 2); + + d.vmode = TYPE_MODE (TREE_TYPE (arg0)); + d.nelt = GET_MODE_NUNITS (d.vmode); + d.testing_p = false; + gcc_assert (VECTOR_MODE_P (d.vmode)); + + if (TREE_CODE (arg2) != VECTOR_CST) + { + error_at (EXPR_LOCATION (exp), + "vector permutation requires vector constant"); + goto exit_error; + } + + switch (extract_vec_perm_cst (&d, arg2)) + { + default: + gcc_unreachable(); + + case 0: + error_at (EXPR_LOCATION (exp), "invalid vector permutation constant"); + goto exit_error; + + case 3: + if (!operand_equal_p (arg0, arg1, 0)) + { + d.op0 = expand_expr (arg0, NULL_RTX, d.vmode, EXPAND_NORMAL); + d.op0 = force_reg (d.vmode, d.op0); + d.op1 = expand_expr (arg1, NULL_RTX, d.vmode, EXPAND_NORMAL); + d.op1 = force_reg (d.vmode, d.op1); + break; + } + + /* The elements of PERM do not suggest that only the first operand + is used, but both operands are identical. Allow easier matching + of the permutation by folding the permutation into the single + input vector. */ + { + unsigned i, nelt = d.nelt; + for (i = 0; i < nelt; ++i) + if (d.perm[i] >= nelt) + d.perm[i] -= nelt; + } + /* FALLTHRU */ + + case 1: + d.op0 = expand_expr (arg0, NULL_RTX, d.vmode, EXPAND_NORMAL); + d.op0 = force_reg (d.vmode, d.op0); + d.op1 = d.op0; + break; + + case 2: + d.op0 = expand_expr (arg1, NULL_RTX, d.vmode, EXPAND_NORMAL); + d.op0 = force_reg (d.vmode, d.op0); + d.op1 = d.op0; + break; + } + + d.target = gen_reg_rtx (d.vmode); + if (ix86_expand_vec_perm_builtin_1 (&d)) + return d.target; + + /* For compiler generated permutations, we should never got here, because + the compiler should also be checking the ok hook. But since this is a + builtin the user has access too, so don't abort. */ + switch (d.nelt) + { + case 2: + sorry ("vector permutation (%d %d)", d.perm[0], d.perm[1]); + break; + case 4: + sorry ("vector permutation (%d %d %d %d)", + d.perm[0], d.perm[1], d.perm[2], d.perm[3]); + break; + case 8: + sorry ("vector permutation (%d %d %d %d %d %d %d %d)", + d.perm[0], d.perm[1], d.perm[2], d.perm[3], + d.perm[4], d.perm[5], d.perm[6], d.perm[7]); + break; + case 16: + sorry ("vector permutation " + "(%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d)", + d.perm[0], d.perm[1], d.perm[2], d.perm[3], + d.perm[4], d.perm[5], d.perm[6], d.perm[7], + d.perm[8], d.perm[9], d.perm[10], d.perm[11], + d.perm[12], d.perm[13], d.perm[14], d.perm[15]); + break; + default: + gcc_unreachable (); + } + exit_error: + return CONST0_RTX (d.vmode); +} + +/* Implement targetm.vectorize.builtin_vec_perm_ok. */ + +static bool +ix86_vectorize_builtin_vec_perm_ok (tree vec_type, tree mask) +{ + struct expand_vec_perm_d d; + int vec_mask; + bool ret, one_vec; + + d.vmode = TYPE_MODE (vec_type); + d.nelt = GET_MODE_NUNITS (d.vmode); + d.testing_p = true; + + /* Given sufficient ISA support we can just return true here + for selected vector modes. */ + if (GET_MODE_SIZE (d.vmode) == 16) + { + /* All implementable with a single vpperm insn. */ + if (TARGET_XOP) + return true; + /* All implementable with 2 pshufb + 1 ior. */ + if (TARGET_SSSE3) + return true; + /* All implementable with shufpd or unpck[lh]pd. */ + if (d.nelt == 2) + return true; + } + + vec_mask = extract_vec_perm_cst (&d, mask); + + /* This hook is cannot be called in response to something that the + user does (unlike the builtin expander) so we shouldn't ever see + an error generated from the extract. */ + gcc_assert (vec_mask > 0 && vec_mask <= 3); + one_vec = (vec_mask != 3); + + /* Implementable with shufps or pshufd. */ + if (one_vec && (d.vmode == V4SFmode || d.vmode == V4SImode)) + return true; + + /* Otherwise we have to go through the motions and see if we can + figure out how to generate the requested permutation. */ + d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1); + d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2); + if (!one_vec) + d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3); + + start_sequence (); + ret = ix86_expand_vec_perm_builtin_1 (&d); + end_sequence (); + + return ret; +} + +void +ix86_expand_vec_extract_even_odd (rtx targ, rtx op0, rtx op1, unsigned odd) +{ + struct expand_vec_perm_d d; + unsigned i, nelt; + + d.target = targ; + d.op0 = op0; + d.op1 = op1; + d.vmode = GET_MODE (targ); + d.nelt = nelt = GET_MODE_NUNITS (d.vmode); + d.testing_p = false; + + for (i = 0; i < nelt; ++i) + d.perm[i] = i * 2 + odd; + + /* We'll either be able to implement the permutation directly... */ + if (expand_vec_perm_1 (&d)) + return; + + /* ... or we use the special-case patterns. */ + expand_vec_perm_even_odd_1 (&d, odd); +} + +/* This function returns the calling abi specific va_list type node. + It returns the FNDECL specific va_list type. */ + +static tree +ix86_fn_abi_va_list (tree fndecl) +{ + if (!TARGET_64BIT) + return va_list_type_node; + gcc_assert (fndecl != NULL_TREE); + + if (ix86_function_abi ((const_tree) fndecl) == MS_ABI) + return ms_va_list_type_node; + else + return sysv_va_list_type_node; +} + +/* Returns the canonical va_list type specified by TYPE. If there + is no valid TYPE provided, it return NULL_TREE. */ + +static tree +ix86_canonical_va_list_type (tree type) +{ + tree wtype, htype; + + /* Resolve references and pointers to va_list type. */ + if (TREE_CODE (type) == MEM_REF) + type = TREE_TYPE (type); + else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type))) + type = TREE_TYPE (type); + else if (POINTER_TYPE_P (type) && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) + type = TREE_TYPE (type); + + if (TARGET_64BIT && va_list_type_node != NULL_TREE) + { + wtype = va_list_type_node; + gcc_assert (wtype != NULL_TREE); + htype = type; + if (TREE_CODE (wtype) == ARRAY_TYPE) + { + /* If va_list is an array type, the argument may have decayed + to a pointer type, e.g. by being passed to another function. + In that case, unwrap both types so that we can compare the + underlying records. */ + if (TREE_CODE (htype) == ARRAY_TYPE + || POINTER_TYPE_P (htype)) + { + wtype = TREE_TYPE (wtype); + htype = TREE_TYPE (htype); + } + } + if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) + return va_list_type_node; + wtype = sysv_va_list_type_node; + gcc_assert (wtype != NULL_TREE); + htype = type; + if (TREE_CODE (wtype) == ARRAY_TYPE) + { + /* If va_list is an array type, the argument may have decayed + to a pointer type, e.g. by being passed to another function. + In that case, unwrap both types so that we can compare the + underlying records. */ + if (TREE_CODE (htype) == ARRAY_TYPE + || POINTER_TYPE_P (htype)) + { + wtype = TREE_TYPE (wtype); + htype = TREE_TYPE (htype); + } + } + if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) + return sysv_va_list_type_node; + wtype = ms_va_list_type_node; + gcc_assert (wtype != NULL_TREE); + htype = type; + if (TREE_CODE (wtype) == ARRAY_TYPE) + { + /* If va_list is an array type, the argument may have decayed + to a pointer type, e.g. by being passed to another function. + In that case, unwrap both types so that we can compare the + underlying records. */ + if (TREE_CODE (htype) == ARRAY_TYPE + || POINTER_TYPE_P (htype)) + { + wtype = TREE_TYPE (wtype); + htype = TREE_TYPE (htype); + } + } + if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) + return ms_va_list_type_node; + return NULL_TREE; + } + return std_canonical_va_list_type (type); +} + +/* Iterate through the target-specific builtin types for va_list. + IDX denotes the iterator, *PTREE is set to the result type of + the va_list builtin, and *PNAME to its internal type. + Returns zero if there is no element for this index, otherwise + IDX should be increased upon the next call. + Note, do not iterate a base builtin's name like __builtin_va_list. + Used from c_common_nodes_and_builtins. */ + +static int +ix86_enum_va_list (int idx, const char **pname, tree *ptree) +{ + if (TARGET_64BIT) + { + switch (idx) + { + default: + break; + + case 0: + *ptree = ms_va_list_type_node; + *pname = "__builtin_ms_va_list"; + return 1; + + case 1: + *ptree = sysv_va_list_type_node; + *pname = "__builtin_sysv_va_list"; + return 1; + } + } + + return 0; +} + +#undef TARGET_SCHED_DISPATCH +#define TARGET_SCHED_DISPATCH has_dispatch +#undef TARGET_SCHED_DISPATCH_DO +#define TARGET_SCHED_DISPATCH_DO do_dispatch + +/* The size of the dispatch window is the total number of bytes of + object code allowed in a window. */ +#define DISPATCH_WINDOW_SIZE 16 + +/* Number of dispatch windows considered for scheduling. */ +#define MAX_DISPATCH_WINDOWS 3 + +/* Maximum number of instructions in a window. */ +#define MAX_INSN 4 + +/* Maximum number of immediate operands in a window. */ +#define MAX_IMM 4 + +/* Maximum number of immediate bits allowed in a window. */ +#define MAX_IMM_SIZE 128 + +/* Maximum number of 32 bit immediates allowed in a window. */ +#define MAX_IMM_32 4 + +/* Maximum number of 64 bit immediates allowed in a window. */ +#define MAX_IMM_64 2 + +/* Maximum total of loads or prefetches allowed in a window. */ +#define MAX_LOAD 2 + +/* Maximum total of stores allowed in a window. */ +#define MAX_STORE 1 + +#undef BIG +#define BIG 100 + + +/* Dispatch groups. Istructions that affect the mix in a dispatch window. */ +enum dispatch_group { + disp_no_group = 0, + disp_load, + disp_store, + disp_load_store, + disp_prefetch, + disp_imm, + disp_imm_32, + disp_imm_64, + disp_branch, + disp_cmp, + disp_jcc, + disp_last +}; + +/* Number of allowable groups in a dispatch window. It is an array + indexed by dispatch_group enum. 100 is used as a big number, + because the number of these kind of operations does not have any + effect in dispatch window, but we need them for other reasons in + the table. */ +static unsigned int num_allowable_groups[disp_last] = { + 0, 2, 1, 1, 2, 4, 4, 2, 1, BIG, BIG +}; + +char group_name[disp_last + 1][16] = { + "disp_no_group", "disp_load", "disp_store", "disp_load_store", + "disp_prefetch", "disp_imm", "disp_imm_32", "disp_imm_64", + "disp_branch", "disp_cmp", "disp_jcc", "disp_last" +}; + +/* Instruction path. */ +enum insn_path { + no_path = 0, + path_single, /* Single micro op. */ + path_double, /* Double micro op. */ + path_multi, /* Instructions with more than 2 micro op.. */ + last_path +}; + +/* sched_insn_info defines a window to the instructions scheduled in + the basic block. It contains a pointer to the insn_info table and + the instruction scheduled. + + Windows are allocated for each basic block and are linked + together. */ +typedef struct sched_insn_info_s { + rtx insn; + enum dispatch_group group; + enum insn_path path; + int byte_len; + int imm_bytes; +} sched_insn_info; + +/* Linked list of dispatch windows. This is a two way list of + dispatch windows of a basic block. It contains information about + the number of uops in the window and the total number of + instructions and of bytes in the object code for this dispatch + window. */ +typedef struct dispatch_windows_s { + int num_insn; /* Number of insn in the window. */ + int num_uops; /* Number of uops in the window. */ + int window_size; /* Number of bytes in the window. */ + int window_num; /* Window number between 0 or 1. */ + int num_imm; /* Number of immediates in an insn. */ + int num_imm_32; /* Number of 32 bit immediates in an insn. */ + int num_imm_64; /* Number of 64 bit immediates in an insn. */ + int imm_size; /* Total immediates in the window. */ + int num_loads; /* Total memory loads in the window. */ + int num_stores; /* Total memory stores in the window. */ + int violation; /* Violation exists in window. */ + sched_insn_info *window; /* Pointer to the window. */ + struct dispatch_windows_s *next; + struct dispatch_windows_s *prev; +} dispatch_windows; + +/* Immediate valuse used in an insn. */ +typedef struct imm_info_s + { + int imm; + int imm32; + int imm64; + } imm_info; + +static dispatch_windows *dispatch_window_list; +static dispatch_windows *dispatch_window_list1; + +/* Get dispatch group of insn. */ + +static enum dispatch_group +get_mem_group (rtx insn) +{ + enum attr_memory memory; + + if (INSN_CODE (insn) < 0) + return disp_no_group; + memory = get_attr_memory (insn); + if (memory == MEMORY_STORE) + return disp_store; + + if (memory == MEMORY_LOAD) + return disp_load; + + if (memory == MEMORY_BOTH) + return disp_load_store; + + return disp_no_group; +} + +/* Return true if insn is a compare instruction. */ + +static bool +is_cmp (rtx insn) +{ + enum attr_type type; + + type = get_attr_type (insn); + return (type == TYPE_TEST + || type == TYPE_ICMP + || type == TYPE_FCMP + || GET_CODE (PATTERN (insn)) == COMPARE); +} + +/* Return true if a dispatch violation encountered. */ + +static bool +dispatch_violation (void) +{ + if (dispatch_window_list->next) + return dispatch_window_list->next->violation; + return dispatch_window_list->violation; +} + +/* Return true if insn is a branch instruction. */ + +static bool +is_branch (rtx insn) +{ + return (CALL_P (insn) || JUMP_P (insn)); +} + +/* Return true if insn is a prefetch instruction. */ + +static bool +is_prefetch (rtx insn) +{ + return NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == PREFETCH; +} + +/* This function initializes a dispatch window and the list container holding a + pointer to the window. */ + +static void +init_window (int window_num) +{ + int i; + dispatch_windows *new_list; + + if (window_num == 0) + new_list = dispatch_window_list; + else + new_list = dispatch_window_list1; + + new_list->num_insn = 0; + new_list->num_uops = 0; + new_list->window_size = 0; + new_list->next = NULL; + new_list->prev = NULL; + new_list->window_num = window_num; + new_list->num_imm = 0; + new_list->num_imm_32 = 0; + new_list->num_imm_64 = 0; + new_list->imm_size = 0; + new_list->num_loads = 0; + new_list->num_stores = 0; + new_list->violation = false; + + for (i = 0; i < MAX_INSN; i++) + { + new_list->window[i].insn = NULL; + new_list->window[i].group = disp_no_group; + new_list->window[i].path = no_path; + new_list->window[i].byte_len = 0; + new_list->window[i].imm_bytes = 0; + } + return; +} + +/* This function allocates and initializes a dispatch window and the + list container holding a pointer to the window. */ + +static dispatch_windows * +allocate_window (void) +{ + dispatch_windows *new_list = XNEW (struct dispatch_windows_s); + new_list->window = XNEWVEC (struct sched_insn_info_s, MAX_INSN + 1); + + return new_list; +} + +/* This routine initializes the dispatch scheduling information. It + initiates building dispatch scheduler tables and constructs the + first dispatch window. */ + +static void +init_dispatch_sched (void) +{ + /* Allocate a dispatch list and a window. */ + dispatch_window_list = allocate_window (); + dispatch_window_list1 = allocate_window (); + init_window (0); + init_window (1); +} + +/* This function returns true if a branch is detected. End of a basic block + does not have to be a branch, but here we assume only branches end a + window. */ + +static bool +is_end_basic_block (enum dispatch_group group) +{ + return group == disp_branch; +} + +/* This function is called when the end of a window processing is reached. */ + +static void +process_end_window (void) +{ + gcc_assert (dispatch_window_list->num_insn <= MAX_INSN); + if (dispatch_window_list->next) + { + gcc_assert (dispatch_window_list1->num_insn <= MAX_INSN); + gcc_assert (dispatch_window_list->window_size + + dispatch_window_list1->window_size <= 48); + init_window (1); + } + init_window (0); +} + +/* Allocates a new dispatch window and adds it to WINDOW_LIST. + WINDOW_NUM is either 0 or 1. A maximum of two windows are generated + for 48 bytes of instructions. Note that these windows are not dispatch + windows that their sizes are DISPATCH_WINDOW_SIZE. */ + +static dispatch_windows * +allocate_next_window (int window_num) +{ + if (window_num == 0) + { + if (dispatch_window_list->next) + init_window (1); + init_window (0); + return dispatch_window_list; + } + + dispatch_window_list->next = dispatch_window_list1; + dispatch_window_list1->prev = dispatch_window_list; + + return dispatch_window_list1; +} + +/* Increment the number of immediate operands of an instruction. */ + +static int +find_constant_1 (rtx *in_rtx, imm_info *imm_values) +{ + if (*in_rtx == 0) + return 0; + + switch ( GET_CODE (*in_rtx)) + { + case CONST: + case SYMBOL_REF: + case CONST_INT: + (imm_values->imm)++; + if (x86_64_immediate_operand (*in_rtx, SImode)) + (imm_values->imm32)++; + else + (imm_values->imm64)++; + break; + + case CONST_DOUBLE: + (imm_values->imm)++; + (imm_values->imm64)++; + break; + + case CODE_LABEL: + if (LABEL_KIND (*in_rtx) == LABEL_NORMAL) + { + (imm_values->imm)++; + (imm_values->imm32)++; + } + break; + + default: + break; + } + + return 0; +} + +/* Compute number of immediate operands of an instruction. */ + +static void +find_constant (rtx in_rtx, imm_info *imm_values) +{ + for_each_rtx (INSN_P (in_rtx) ? &PATTERN (in_rtx) : &in_rtx, + (rtx_function) find_constant_1, (void *) imm_values); +} + +/* Return total size of immediate operands of an instruction along with number + of corresponding immediate-operands. It initializes its parameters to zero + befor calling FIND_CONSTANT. + INSN is the input instruction. IMM is the total of immediates. + IMM32 is the number of 32 bit immediates. IMM64 is the number of 64 + bit immediates. */ + +static int +get_num_immediates (rtx insn, int *imm, int *imm32, int *imm64) +{ + imm_info imm_values = {0, 0, 0}; + + find_constant (insn, &imm_values); + *imm = imm_values.imm; + *imm32 = imm_values.imm32; + *imm64 = imm_values.imm64; + return imm_values.imm32 * 4 + imm_values.imm64 * 8; +} + +/* This function indicates if an operand of an instruction is an + immediate. */ + +static bool +has_immediate (rtx insn) +{ + int num_imm_operand; + int num_imm32_operand; + int num_imm64_operand; + + if (insn) + return get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, + &num_imm64_operand); + return false; +} + +/* Return single or double path for instructions. */ + +static enum insn_path +get_insn_path (rtx insn) +{ + enum attr_amdfam10_decode path = get_attr_amdfam10_decode (insn); + + if ((int)path == 0) + return path_single; + + if ((int)path == 1) + return path_double; + + return path_multi; +} + +/* Return insn dispatch group. */ + +static enum dispatch_group +get_insn_group (rtx insn) +{ + enum dispatch_group group = get_mem_group (insn); + if (group) + return group; + + if (is_branch (insn)) + return disp_branch; + + if (is_cmp (insn)) + return disp_cmp; + + if (has_immediate (insn)) + return disp_imm; + + if (is_prefetch (insn)) + return disp_prefetch; + + return disp_no_group; +} + +/* Count number of GROUP restricted instructions in a dispatch + window WINDOW_LIST. */ + +static int +count_num_restricted (rtx insn, dispatch_windows *window_list) +{ + enum dispatch_group group = get_insn_group (insn); + int imm_size; + int num_imm_operand; + int num_imm32_operand; + int num_imm64_operand; + + if (group == disp_no_group) + return 0; + + if (group == disp_imm) + { + imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, + &num_imm64_operand); + if (window_list->imm_size + imm_size > MAX_IMM_SIZE + || num_imm_operand + window_list->num_imm > MAX_IMM + || (num_imm32_operand > 0 + && (window_list->num_imm_32 + num_imm32_operand > MAX_IMM_32 + || window_list->num_imm_64 * 2 + num_imm32_operand > MAX_IMM_32)) + || (num_imm64_operand > 0 + && (window_list->num_imm_64 + num_imm64_operand > MAX_IMM_64 + || window_list->num_imm_32 + num_imm64_operand * 2 > MAX_IMM_32)) + || (window_list->imm_size + imm_size == MAX_IMM_SIZE + && num_imm64_operand > 0 + && ((window_list->num_imm_64 > 0 + && window_list->num_insn >= 2) + || window_list->num_insn >= 3))) + return BIG; + + return 1; + } + + if ((group == disp_load_store + && (window_list->num_loads >= MAX_LOAD + || window_list->num_stores >= MAX_STORE)) + || ((group == disp_load + || group == disp_prefetch) + && window_list->num_loads >= MAX_LOAD) + || (group == disp_store + && window_list->num_stores >= MAX_STORE)) + return BIG; + + return 1; +} + +/* This function returns true if insn satisfies dispatch rules on the + last window scheduled. */ + +static bool +fits_dispatch_window (rtx insn) +{ + dispatch_windows *window_list = dispatch_window_list; + dispatch_windows *window_list_next = dispatch_window_list->next; + unsigned int num_restrict; + enum dispatch_group group = get_insn_group (insn); + enum insn_path path = get_insn_path (insn); + int sum; + + /* Make disp_cmp and disp_jcc get scheduled at the latest. These + instructions should be given the lowest priority in the + scheduling process in Haifa scheduler to make sure they will be + scheduled in the same dispatch window as the refrence to them. */ + if (group == disp_jcc || group == disp_cmp) + return false; + + /* Check nonrestricted. */ + if (group == disp_no_group || group == disp_branch) + return true; + + /* Get last dispatch window. */ + if (window_list_next) + window_list = window_list_next; + + if (window_list->window_num == 1) + { + sum = window_list->prev->window_size + window_list->window_size; + + if (sum == 32 + || (min_insn_size (insn) + sum) >= 48) + /* Window 1 is full. Go for next window. */ + return true; + } + + num_restrict = count_num_restricted (insn, window_list); + + if (num_restrict > num_allowable_groups[group]) + return false; + + /* See if it fits in the first window. */ + if (window_list->window_num == 0) + { + /* The first widow should have only single and double path + uops. */ + if (path == path_double + && (window_list->num_uops + 2) > MAX_INSN) + return false; + else if (path != path_single) + return false; + } + return true; +} + +/* Add an instruction INSN with NUM_UOPS micro-operations to the + dispatch window WINDOW_LIST. */ + +static void +add_insn_window (rtx insn, dispatch_windows *window_list, int num_uops) +{ + int byte_len = min_insn_size (insn); + int num_insn = window_list->num_insn; + int imm_size; + sched_insn_info *window = window_list->window; + enum dispatch_group group = get_insn_group (insn); + enum insn_path path = get_insn_path (insn); + int num_imm_operand; + int num_imm32_operand; + int num_imm64_operand; + + if (!window_list->violation && group != disp_cmp + && !fits_dispatch_window (insn)) + window_list->violation = true; + + imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, + &num_imm64_operand); + + /* Initialize window with new instruction. */ + window[num_insn].insn = insn; + window[num_insn].byte_len = byte_len; + window[num_insn].group = group; + window[num_insn].path = path; + window[num_insn].imm_bytes = imm_size; + + window_list->window_size += byte_len; + window_list->num_insn = num_insn + 1; + window_list->num_uops = window_list->num_uops + num_uops; + window_list->imm_size += imm_size; + window_list->num_imm += num_imm_operand; + window_list->num_imm_32 += num_imm32_operand; + window_list->num_imm_64 += num_imm64_operand; + + if (group == disp_store) + window_list->num_stores += 1; + else if (group == disp_load + || group == disp_prefetch) + window_list->num_loads += 1; + else if (group == disp_load_store) + { + window_list->num_stores += 1; + window_list->num_loads += 1; + } +} + +/* Adds a scheduled instruction, INSN, to the current dispatch window. + If the total bytes of instructions or the number of instructions in + the window exceed allowable, it allocates a new window. */ + +static void +add_to_dispatch_window (rtx insn) +{ + int byte_len; + dispatch_windows *window_list; + dispatch_windows *next_list; + dispatch_windows *window0_list; + enum insn_path path; + enum dispatch_group insn_group; + bool insn_fits; + int num_insn; + int num_uops; + int window_num; + int insn_num_uops; + int sum; + + if (INSN_CODE (insn) < 0) + return; + + byte_len = min_insn_size (insn); + window_list = dispatch_window_list; + next_list = window_list->next; + path = get_insn_path (insn); + insn_group = get_insn_group (insn); + + /* Get the last dispatch window. */ + if (next_list) + window_list = dispatch_window_list->next; + + if (path == path_single) + insn_num_uops = 1; + else if (path == path_double) + insn_num_uops = 2; + else + insn_num_uops = (int) path; + + /* If current window is full, get a new window. + Window number zero is full, if MAX_INSN uops are scheduled in it. + Window number one is full, if window zero's bytes plus window + one's bytes is 32, or if the bytes of the new instruction added + to the total makes it greater than 48, or it has already MAX_INSN + instructions in it. */ + num_insn = window_list->num_insn; + num_uops = window_list->num_uops; + window_num = window_list->window_num; + insn_fits = fits_dispatch_window (insn); + + if (num_insn >= MAX_INSN + || num_uops + insn_num_uops > MAX_INSN + || !(insn_fits)) + { + window_num = ~window_num & 1; + window_list = allocate_next_window (window_num); + } + + if (window_num == 0) + { + add_insn_window (insn, window_list, insn_num_uops); + if (window_list->num_insn >= MAX_INSN + && insn_group == disp_branch) + { + process_end_window (); + return; + } + } + else if (window_num == 1) + { + window0_list = window_list->prev; + sum = window0_list->window_size + window_list->window_size; + if (sum == 32 + || (byte_len + sum) >= 48) + { + process_end_window (); + window_list = dispatch_window_list; + } + + add_insn_window (insn, window_list, insn_num_uops); + } + else + gcc_unreachable (); + + if (is_end_basic_block (insn_group)) + { + /* End of basic block is reached do end-basic-block process. */ + process_end_window (); + return; + } +} + +/* Print the dispatch window, WINDOW_NUM, to FILE. */ + +DEBUG_FUNCTION static void +debug_dispatch_window_file (FILE *file, int window_num) +{ + dispatch_windows *list; + int i; + + if (window_num == 0) + list = dispatch_window_list; + else + list = dispatch_window_list1; + + fprintf (file, "Window #%d:\n", list->window_num); + fprintf (file, " num_insn = %d, num_uops = %d, window_size = %d\n", + list->num_insn, list->num_uops, list->window_size); + fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n", + list->num_imm, list->num_imm_32, list->num_imm_64, list->imm_size); + + fprintf (file, " num_loads = %d, num_stores = %d\n", list->num_loads, + list->num_stores); + fprintf (file, " insn info:\n"); + + for (i = 0; i < MAX_INSN; i++) + { + if (!list->window[i].insn) + break; + fprintf (file, " group[%d] = %s, insn[%d] = %p, path[%d] = %d byte_len[%d] = %d, imm_bytes[%d] = %d\n", + i, group_name[list->window[i].group], + i, (void *)list->window[i].insn, + i, list->window[i].path, + i, list->window[i].byte_len, + i, list->window[i].imm_bytes); + } +} + +/* Print to stdout a dispatch window. */ + +DEBUG_FUNCTION void +debug_dispatch_window (int window_num) +{ + debug_dispatch_window_file (stdout, window_num); +} + +/* Print INSN dispatch information to FILE. */ + +DEBUG_FUNCTION static void +debug_insn_dispatch_info_file (FILE *file, rtx insn) +{ + int byte_len; + enum insn_path path; + enum dispatch_group group; + int imm_size; + int num_imm_operand; + int num_imm32_operand; + int num_imm64_operand; + + if (INSN_CODE (insn) < 0) + return; + + byte_len = min_insn_size (insn); + path = get_insn_path (insn); + group = get_insn_group (insn); + imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, + &num_imm64_operand); + + fprintf (file, " insn info:\n"); + fprintf (file, " group = %s, path = %d, byte_len = %d\n", + group_name[group], path, byte_len); + fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n", + num_imm_operand, num_imm32_operand, num_imm64_operand, imm_size); +} + +/* Print to STDERR the status of the ready list with respect to + dispatch windows. */ + +DEBUG_FUNCTION void +debug_ready_dispatch (void) +{ + int i; + int no_ready = number_in_ready (); + + fprintf (stdout, "Number of ready: %d\n", no_ready); + + for (i = 0; i < no_ready; i++) + debug_insn_dispatch_info_file (stdout, get_ready_element (i)); +} + +/* This routine is the driver of the dispatch scheduler. */ + +static void +do_dispatch (rtx insn, int mode) +{ + if (mode == DISPATCH_INIT) + init_dispatch_sched (); + else if (mode == ADD_TO_DISPATCH_WINDOW) + add_to_dispatch_window (insn); +} + +/* Return TRUE if Dispatch Scheduling is supported. */ + +static bool +has_dispatch (rtx insn, int action) +{ + if (ix86_tune == PROCESSOR_BDVER1 && flag_dispatch_scheduler) + switch (action) + { + default: + return false; + + case IS_DISPATCH_ON: + return true; + break; + + case IS_CMP: + return is_cmp (insn); + + case DISPATCH_VIOLATION: + return dispatch_violation (); + + case FITS_DISPATCH_WINDOW: + return fits_dispatch_window (insn); + } + + return false; +} + +/* ??? No autovectorization into MMX or 3DNOW until we can reliably + place emms and femms instructions. */ + +static enum machine_mode +ix86_preferred_simd_mode (enum machine_mode mode) +{ + /* Disable double precision vectorizer if needed. */ + if (mode == DFmode && !TARGET_VECTORIZE_DOUBLE) + return word_mode; + + if (!TARGET_AVX && !TARGET_SSE) + return word_mode; + + switch (mode) + { + case SFmode: + return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V8SFmode : V4SFmode; + case DFmode: + return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V4DFmode : V2DFmode; + case DImode: + return V2DImode; + case SImode: + return V4SImode; + case HImode: + return V8HImode; + case QImode: + return V16QImode; + + default:; + } + + return word_mode; +} + +/* If AVX is enabled then try vectorizing with both 256bit and 128bit + vectors. */ + +static unsigned int +ix86_autovectorize_vector_sizes (void) +{ + return (TARGET_AVX && !TARGET_PREFER_AVX128) ? 32 | 16 : 0; +} + +/* Initialize the GCC target structure. */ +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY ix86_return_in_memory + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address + +#undef TARGET_ATTRIBUTE_TABLE +#define TARGET_ATTRIBUTE_TABLE ix86_attribute_table +#if TARGET_DLLIMPORT_DECL_ATTRIBUTES +# undef TARGET_MERGE_DECL_ATTRIBUTES +# define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes +#endif + +#undef TARGET_COMP_TYPE_ATTRIBUTES +#define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes + +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS ix86_init_builtins +#undef TARGET_BUILTIN_DECL +#define TARGET_BUILTIN_DECL ix86_builtin_decl +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN ix86_expand_builtin + +#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION +#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ + ix86_builtin_vectorized_function + +#undef TARGET_VECTORIZE_BUILTIN_CONVERSION +#define TARGET_VECTORIZE_BUILTIN_CONVERSION ix86_vectorize_builtin_conversion + +#undef TARGET_BUILTIN_RECIPROCAL +#define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal + +#undef TARGET_ASM_FUNCTION_EPILOGUE +#define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue + +#undef TARGET_ENCODE_SECTION_INFO +#ifndef SUBTARGET_ENCODE_SECTION_INFO +#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info +#else +#define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO +#endif + +#undef TARGET_ASM_OPEN_PAREN +#define TARGET_ASM_OPEN_PAREN "" +#undef TARGET_ASM_CLOSE_PAREN +#define TARGET_ASM_CLOSE_PAREN "" + +#undef TARGET_ASM_BYTE_OP +#define TARGET_ASM_BYTE_OP ASM_BYTE + +#undef TARGET_ASM_ALIGNED_HI_OP +#define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT +#undef TARGET_ASM_ALIGNED_SI_OP +#define TARGET_ASM_ALIGNED_SI_OP ASM_LONG +#ifdef ASM_QUAD +#undef TARGET_ASM_ALIGNED_DI_OP +#define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD +#endif + +#undef TARGET_PROFILE_BEFORE_PROLOGUE +#define TARGET_PROFILE_BEFORE_PROLOGUE ix86_profile_before_prologue + +#undef TARGET_ASM_UNALIGNED_HI_OP +#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP +#undef TARGET_ASM_UNALIGNED_SI_OP +#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP +#undef TARGET_ASM_UNALIGNED_DI_OP +#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP + +#undef TARGET_PRINT_OPERAND +#define TARGET_PRINT_OPERAND ix86_print_operand +#undef TARGET_PRINT_OPERAND_ADDRESS +#define TARGET_PRINT_OPERAND_ADDRESS ix86_print_operand_address +#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P +#define TARGET_PRINT_OPERAND_PUNCT_VALID_P ix86_print_operand_punct_valid_p +#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA +#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA i386_asm_output_addr_const_extra + +#undef TARGET_SCHED_INIT_GLOBAL +#define TARGET_SCHED_INIT_GLOBAL ix86_sched_init_global +#undef TARGET_SCHED_ADJUST_COST +#define TARGET_SCHED_ADJUST_COST ix86_adjust_cost +#undef TARGET_SCHED_ISSUE_RATE +#define TARGET_SCHED_ISSUE_RATE ix86_issue_rate +#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD +#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ + ia32_multipass_dfa_lookahead + +#undef TARGET_FUNCTION_OK_FOR_SIBCALL +#define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall + +#ifdef HAVE_AS_TLS +#undef TARGET_HAVE_TLS +#define TARGET_HAVE_TLS true +#endif +#undef TARGET_CANNOT_FORCE_CONST_MEM +#define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem +#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P +#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true + +#undef TARGET_DELEGITIMIZE_ADDRESS +#define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address + +#undef TARGET_MS_BITFIELD_LAYOUT_P +#define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p + +#if TARGET_MACHO +#undef TARGET_BINDS_LOCAL_P +#define TARGET_BINDS_LOCAL_P darwin_binds_local_p +#endif +#if TARGET_DLLIMPORT_DECL_ATTRIBUTES +#undef TARGET_BINDS_LOCAL_P +#define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p +#endif + +#undef TARGET_ASM_OUTPUT_MI_THUNK +#define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk +#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK +#define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk + +#undef TARGET_ASM_FILE_START +#define TARGET_ASM_FILE_START x86_file_start + +#undef TARGET_DEFAULT_TARGET_FLAGS +#define TARGET_DEFAULT_TARGET_FLAGS \ + (TARGET_DEFAULT \ + | TARGET_SUBTARGET_DEFAULT \ + | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT) + +#undef TARGET_HANDLE_OPTION +#define TARGET_HANDLE_OPTION ix86_handle_option + +#undef TARGET_OPTION_OVERRIDE +#define TARGET_OPTION_OVERRIDE ix86_option_override +#undef TARGET_OPTION_OPTIMIZATION_TABLE +#define TARGET_OPTION_OPTIMIZATION_TABLE ix86_option_optimization_table +#undef TARGET_OPTION_INIT_STRUCT +#define TARGET_OPTION_INIT_STRUCT ix86_option_init_struct + +#undef TARGET_REGISTER_MOVE_COST +#define TARGET_REGISTER_MOVE_COST ix86_register_move_cost +#undef TARGET_MEMORY_MOVE_COST +#define TARGET_MEMORY_MOVE_COST ix86_memory_move_cost +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS ix86_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST ix86_address_cost + +#undef TARGET_FIXED_CONDITION_CODE_REGS +#define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs +#undef TARGET_CC_MODES_COMPATIBLE +#define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible + +#undef TARGET_MACHINE_DEPENDENT_REORG +#define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg + +#undef TARGET_BUILTIN_SETJMP_FRAME_VALUE +#define TARGET_BUILTIN_SETJMP_FRAME_VALUE ix86_builtin_setjmp_frame_value + +#undef TARGET_BUILD_BUILTIN_VA_LIST +#define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list + +#undef TARGET_ENUM_VA_LIST_P +#define TARGET_ENUM_VA_LIST_P ix86_enum_va_list + +#undef TARGET_FN_ABI_VA_LIST +#define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list + +#undef TARGET_CANONICAL_VA_LIST_TYPE +#define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type + +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start + +#undef TARGET_MD_ASM_CLOBBERS +#define TARGET_MD_ASM_CLOBBERS ix86_md_asm_clobbers + +#undef TARGET_PROMOTE_PROTOTYPES +#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true +#undef TARGET_STRUCT_VALUE_RTX +#define TARGET_STRUCT_VALUE_RTX ix86_struct_value_rtx +#undef TARGET_SETUP_INCOMING_VARARGS +#define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs +#undef TARGET_MUST_PASS_IN_STACK +#define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack +#undef TARGET_FUNCTION_ARG_ADVANCE +#define TARGET_FUNCTION_ARG_ADVANCE ix86_function_arg_advance +#undef TARGET_FUNCTION_ARG +#define TARGET_FUNCTION_ARG ix86_function_arg +#undef TARGET_FUNCTION_ARG_BOUNDARY +#define TARGET_FUNCTION_ARG_BOUNDARY ix86_function_arg_boundary +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference +#undef TARGET_INTERNAL_ARG_POINTER +#define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer +#undef TARGET_UPDATE_STACK_BOUNDARY +#define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary +#undef TARGET_GET_DRAP_RTX +#define TARGET_GET_DRAP_RTX ix86_get_drap_rtx +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true +#undef TARGET_STATIC_CHAIN +#define TARGET_STATIC_CHAIN ix86_static_chain +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT ix86_trampoline_init +#undef TARGET_RETURN_POPS_ARGS +#define TARGET_RETURN_POPS_ARGS ix86_return_pops_args + +#undef TARGET_GIMPLIFY_VA_ARG_EXPR +#define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg + +#undef TARGET_SCALAR_MODE_SUPPORTED_P +#define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p + +#undef TARGET_VECTOR_MODE_SUPPORTED_P +#define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p + +#undef TARGET_C_MODE_FOR_SUFFIX +#define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix + +#ifdef HAVE_AS_TLS +#undef TARGET_ASM_OUTPUT_DWARF_DTPREL +#define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel +#endif + +#ifdef SUBTARGET_INSERT_ATTRIBUTES +#undef TARGET_INSERT_ATTRIBUTES +#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES +#endif + +#undef TARGET_MANGLE_TYPE +#define TARGET_MANGLE_TYPE ix86_mangle_type + +#undef TARGET_STACK_PROTECT_FAIL +#define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail + +#undef TARGET_SUPPORTS_SPLIT_STACK +#define TARGET_SUPPORTS_SPLIT_STACK ix86_supports_split_stack + +#undef TARGET_FUNCTION_VALUE +#define TARGET_FUNCTION_VALUE ix86_function_value + +#undef TARGET_FUNCTION_VALUE_REGNO_P +#define TARGET_FUNCTION_VALUE_REGNO_P ix86_function_value_regno_p + +#undef TARGET_SECONDARY_RELOAD +#define TARGET_SECONDARY_RELOAD ix86_secondary_reload + +#undef TARGET_PREFERRED_RELOAD_CLASS +#define TARGET_PREFERRED_RELOAD_CLASS ix86_preferred_reload_class +#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS +#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS ix86_preferred_output_reload_class +#undef TARGET_CLASS_LIKELY_SPILLED_P +#define TARGET_CLASS_LIKELY_SPILLED_P ix86_class_likely_spilled_p + +#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST +#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ + ix86_builtin_vectorization_cost +#undef TARGET_VECTORIZE_BUILTIN_VEC_PERM +#define TARGET_VECTORIZE_BUILTIN_VEC_PERM \ + ix86_vectorize_builtin_vec_perm +#undef TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK +#define TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK \ + ix86_vectorize_builtin_vec_perm_ok +#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE +#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \ + ix86_preferred_simd_mode +#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES +#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \ + ix86_autovectorize_vector_sizes + +#undef TARGET_SET_CURRENT_FUNCTION +#define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function + +#undef TARGET_OPTION_VALID_ATTRIBUTE_P +#define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p + +#undef TARGET_OPTION_SAVE +#define TARGET_OPTION_SAVE ix86_function_specific_save + +#undef TARGET_OPTION_RESTORE +#define TARGET_OPTION_RESTORE ix86_function_specific_restore + +#undef TARGET_OPTION_PRINT +#define TARGET_OPTION_PRINT ix86_function_specific_print + +#undef TARGET_CAN_INLINE_P +#define TARGET_CAN_INLINE_P ix86_can_inline_p + +#undef TARGET_EXPAND_TO_RTL_HOOK +#define TARGET_EXPAND_TO_RTL_HOOK ix86_maybe_switch_abi + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p + +#undef TARGET_IRA_COVER_CLASSES +#define TARGET_IRA_COVER_CLASSES i386_ira_cover_classes + +#undef TARGET_FRAME_POINTER_REQUIRED +#define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required + +#undef TARGET_CAN_ELIMINATE +#define TARGET_CAN_ELIMINATE ix86_can_eliminate + +#undef TARGET_EXTRA_LIVE_ON_ENTRY +#define TARGET_EXTRA_LIVE_ON_ENTRY ix86_live_on_entry + +#undef TARGET_ASM_CODE_END +#define TARGET_ASM_CODE_END ix86_code_end + +#undef TARGET_CONDITIONAL_REGISTER_USAGE +#define TARGET_CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage + +#if TARGET_MACHO +#undef TARGET_INIT_LIBFUNCS +#define TARGET_INIT_LIBFUNCS darwin_rename_builtins +#endif + +struct gcc_target targetm = TARGET_INITIALIZER; + +#include "gt-i386.h" |