diff options
Diffstat (limited to 'gcc/fortran/interface.c')
-rw-r--r-- | gcc/fortran/interface.c | 3448 |
1 files changed, 3448 insertions, 0 deletions
diff --git a/gcc/fortran/interface.c b/gcc/fortran/interface.c new file mode 100644 index 000000000..cc7eef75d --- /dev/null +++ b/gcc/fortran/interface.c @@ -0,0 +1,3448 @@ +/* Deal with interfaces. + Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, + 2010 + Free Software Foundation, Inc. + Contributed by Andy Vaught + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* Deal with interfaces. An explicit interface is represented as a + singly linked list of formal argument structures attached to the + relevant symbols. For an implicit interface, the arguments don't + point to symbols. Explicit interfaces point to namespaces that + contain the symbols within that interface. + + Implicit interfaces are linked together in a singly linked list + along the next_if member of symbol nodes. Since a particular + symbol can only have a single explicit interface, the symbol cannot + be part of multiple lists and a single next-member suffices. + + This is not the case for general classes, though. An operator + definition is independent of just about all other uses and has it's + own head pointer. + + Nameless interfaces: + Nameless interfaces create symbols with explicit interfaces within + the current namespace. They are otherwise unlinked. + + Generic interfaces: + The generic name points to a linked list of symbols. Each symbol + has an explicit interface. Each explicit interface has its own + namespace containing the arguments. Module procedures are symbols in + which the interface is added later when the module procedure is parsed. + + User operators: + User-defined operators are stored in a their own set of symtrees + separate from regular symbols. The symtrees point to gfc_user_op + structures which in turn head up a list of relevant interfaces. + + Extended intrinsics and assignment: + The head of these interface lists are stored in the containing namespace. + + Implicit interfaces: + An implicit interface is represented as a singly linked list of + formal argument list structures that don't point to any symbol + nodes -- they just contain types. + + + When a subprogram is defined, the program unit's name points to an + interface as usual, but the link to the namespace is NULL and the + formal argument list points to symbols within the same namespace as + the program unit name. */ + +#include "config.h" +#include "system.h" +#include "gfortran.h" +#include "match.h" + +/* The current_interface structure holds information about the + interface currently being parsed. This structure is saved and + restored during recursive interfaces. */ + +gfc_interface_info current_interface; + + +/* Free a singly linked list of gfc_interface structures. */ + +void +gfc_free_interface (gfc_interface *intr) +{ + gfc_interface *next; + + for (; intr; intr = next) + { + next = intr->next; + gfc_free (intr); + } +} + + +/* Change the operators unary plus and minus into binary plus and + minus respectively, leaving the rest unchanged. */ + +static gfc_intrinsic_op +fold_unary_intrinsic (gfc_intrinsic_op op) +{ + switch (op) + { + case INTRINSIC_UPLUS: + op = INTRINSIC_PLUS; + break; + case INTRINSIC_UMINUS: + op = INTRINSIC_MINUS; + break; + default: + break; + } + + return op; +} + + +/* Match a generic specification. Depending on which type of + interface is found, the 'name' or 'op' pointers may be set. + This subroutine doesn't return MATCH_NO. */ + +match +gfc_match_generic_spec (interface_type *type, + char *name, + gfc_intrinsic_op *op) +{ + char buffer[GFC_MAX_SYMBOL_LEN + 1]; + match m; + gfc_intrinsic_op i; + + if (gfc_match (" assignment ( = )") == MATCH_YES) + { + *type = INTERFACE_INTRINSIC_OP; + *op = INTRINSIC_ASSIGN; + return MATCH_YES; + } + + if (gfc_match (" operator ( %o )", &i) == MATCH_YES) + { /* Operator i/f */ + *type = INTERFACE_INTRINSIC_OP; + *op = fold_unary_intrinsic (i); + return MATCH_YES; + } + + *op = INTRINSIC_NONE; + if (gfc_match (" operator ( ") == MATCH_YES) + { + m = gfc_match_defined_op_name (buffer, 1); + if (m == MATCH_NO) + goto syntax; + if (m != MATCH_YES) + return MATCH_ERROR; + + m = gfc_match_char (')'); + if (m == MATCH_NO) + goto syntax; + if (m != MATCH_YES) + return MATCH_ERROR; + + strcpy (name, buffer); + *type = INTERFACE_USER_OP; + return MATCH_YES; + } + + if (gfc_match_name (buffer) == MATCH_YES) + { + strcpy (name, buffer); + *type = INTERFACE_GENERIC; + return MATCH_YES; + } + + *type = INTERFACE_NAMELESS; + return MATCH_YES; + +syntax: + gfc_error ("Syntax error in generic specification at %C"); + return MATCH_ERROR; +} + + +/* Match one of the five F95 forms of an interface statement. The + matcher for the abstract interface follows. */ + +match +gfc_match_interface (void) +{ + char name[GFC_MAX_SYMBOL_LEN + 1]; + interface_type type; + gfc_symbol *sym; + gfc_intrinsic_op op; + match m; + + m = gfc_match_space (); + + if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) + return MATCH_ERROR; + + /* If we're not looking at the end of the statement now, or if this + is not a nameless interface but we did not see a space, punt. */ + if (gfc_match_eos () != MATCH_YES + || (type != INTERFACE_NAMELESS && m != MATCH_YES)) + { + gfc_error ("Syntax error: Trailing garbage in INTERFACE statement " + "at %C"); + return MATCH_ERROR; + } + + current_interface.type = type; + + switch (type) + { + case INTERFACE_GENERIC: + if (gfc_get_symbol (name, NULL, &sym)) + return MATCH_ERROR; + + if (!sym->attr.generic + && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE) + return MATCH_ERROR; + + if (sym->attr.dummy) + { + gfc_error ("Dummy procedure '%s' at %C cannot have a " + "generic interface", sym->name); + return MATCH_ERROR; + } + + current_interface.sym = gfc_new_block = sym; + break; + + case INTERFACE_USER_OP: + current_interface.uop = gfc_get_uop (name); + break; + + case INTERFACE_INTRINSIC_OP: + current_interface.op = op; + break; + + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + break; + } + + return MATCH_YES; +} + + + +/* Match a F2003 abstract interface. */ + +match +gfc_match_abstract_interface (void) +{ + match m; + + if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C") + == FAILURE) + return MATCH_ERROR; + + m = gfc_match_eos (); + + if (m != MATCH_YES) + { + gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C"); + return MATCH_ERROR; + } + + current_interface.type = INTERFACE_ABSTRACT; + + return m; +} + + +/* Match the different sort of generic-specs that can be present after + the END INTERFACE itself. */ + +match +gfc_match_end_interface (void) +{ + char name[GFC_MAX_SYMBOL_LEN + 1]; + interface_type type; + gfc_intrinsic_op op; + match m; + + m = gfc_match_space (); + + if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) + return MATCH_ERROR; + + /* If we're not looking at the end of the statement now, or if this + is not a nameless interface but we did not see a space, punt. */ + if (gfc_match_eos () != MATCH_YES + || (type != INTERFACE_NAMELESS && m != MATCH_YES)) + { + gfc_error ("Syntax error: Trailing garbage in END INTERFACE " + "statement at %C"); + return MATCH_ERROR; + } + + m = MATCH_YES; + + switch (current_interface.type) + { + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + if (type != INTERFACE_NAMELESS) + { + gfc_error ("Expected a nameless interface at %C"); + m = MATCH_ERROR; + } + + break; + + case INTERFACE_INTRINSIC_OP: + if (type != current_interface.type || op != current_interface.op) + { + + if (current_interface.op == INTRINSIC_ASSIGN) + { + m = MATCH_ERROR; + gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C"); + } + else + { + const char *s1, *s2; + s1 = gfc_op2string (current_interface.op); + s2 = gfc_op2string (op); + + /* The following if-statements are used to enforce C1202 + from F2003. */ + if ((strcmp(s1, "==") == 0 && strcmp(s2, ".eq.") == 0) + || (strcmp(s1, ".eq.") == 0 && strcmp(s2, "==") == 0)) + break; + if ((strcmp(s1, "/=") == 0 && strcmp(s2, ".ne.") == 0) + || (strcmp(s1, ".ne.") == 0 && strcmp(s2, "/=") == 0)) + break; + if ((strcmp(s1, "<=") == 0 && strcmp(s2, ".le.") == 0) + || (strcmp(s1, ".le.") == 0 && strcmp(s2, "<=") == 0)) + break; + if ((strcmp(s1, "<") == 0 && strcmp(s2, ".lt.") == 0) + || (strcmp(s1, ".lt.") == 0 && strcmp(s2, "<") == 0)) + break; + if ((strcmp(s1, ">=") == 0 && strcmp(s2, ".ge.") == 0) + || (strcmp(s1, ".ge.") == 0 && strcmp(s2, ">=") == 0)) + break; + if ((strcmp(s1, ">") == 0 && strcmp(s2, ".gt.") == 0) + || (strcmp(s1, ".gt.") == 0 && strcmp(s2, ">") == 0)) + break; + + m = MATCH_ERROR; + gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C, " + "but got %s", s1, s2); + } + + } + + break; + + case INTERFACE_USER_OP: + /* Comparing the symbol node names is OK because only use-associated + symbols can be renamed. */ + if (type != current_interface.type + || strcmp (current_interface.uop->name, name) != 0) + { + gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C", + current_interface.uop->name); + m = MATCH_ERROR; + } + + break; + + case INTERFACE_GENERIC: + if (type != current_interface.type + || strcmp (current_interface.sym->name, name) != 0) + { + gfc_error ("Expecting 'END INTERFACE %s' at %C", + current_interface.sym->name); + m = MATCH_ERROR; + } + + break; + } + + return m; +} + + +/* Compare two derived types using the criteria in 4.4.2 of the standard, + recursing through gfc_compare_types for the components. */ + +int +gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2) +{ + gfc_component *dt1, *dt2; + + if (derived1 == derived2) + return 1; + + /* Special case for comparing derived types across namespaces. If the + true names and module names are the same and the module name is + nonnull, then they are equal. */ + if (derived1 != NULL && derived2 != NULL + && strcmp (derived1->name, derived2->name) == 0 + && derived1->module != NULL && derived2->module != NULL + && strcmp (derived1->module, derived2->module) == 0) + return 1; + + /* Compare type via the rules of the standard. Both types must have + the SEQUENCE attribute to be equal. */ + + if (strcmp (derived1->name, derived2->name)) + return 0; + + if (derived1->component_access == ACCESS_PRIVATE + || derived2->component_access == ACCESS_PRIVATE) + return 0; + + if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0) + return 0; + + dt1 = derived1->components; + dt2 = derived2->components; + + /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a + simple test can speed things up. Otherwise, lots of things have to + match. */ + for (;;) + { + if (strcmp (dt1->name, dt2->name) != 0) + return 0; + + if (dt1->attr.access != dt2->attr.access) + return 0; + + if (dt1->attr.pointer != dt2->attr.pointer) + return 0; + + if (dt1->attr.dimension != dt2->attr.dimension) + return 0; + + if (dt1->attr.allocatable != dt2->attr.allocatable) + return 0; + + if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0) + return 0; + + /* Make sure that link lists do not put this function into an + endless recursive loop! */ + if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) + && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) + && gfc_compare_types (&dt1->ts, &dt2->ts) == 0) + return 0; + + else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) + && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)) + return 0; + + else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) + && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)) + return 0; + + dt1 = dt1->next; + dt2 = dt2->next; + + if (dt1 == NULL && dt2 == NULL) + break; + if (dt1 == NULL || dt2 == NULL) + return 0; + } + + return 1; +} + + +/* Compare two typespecs, recursively if necessary. */ + +int +gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2) +{ + /* See if one of the typespecs is a BT_VOID, which is what is being used + to allow the funcs like c_f_pointer to accept any pointer type. + TODO: Possibly should narrow this to just the one typespec coming in + that is for the formal arg, but oh well. */ + if (ts1->type == BT_VOID || ts2->type == BT_VOID) + return 1; + + if (ts1->type != ts2->type + && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS) + || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS))) + return 0; + if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS) + return (ts1->kind == ts2->kind); + + /* Compare derived types. */ + if (gfc_type_compatible (ts1, ts2)) + return 1; + + return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived); +} + + +/* Given two symbols that are formal arguments, compare their ranks + and types. Returns nonzero if they have the same rank and type, + zero otherwise. */ + +static int +compare_type_rank (gfc_symbol *s1, gfc_symbol *s2) +{ + int r1, r2; + + r1 = (s1->as != NULL) ? s1->as->rank : 0; + r2 = (s2->as != NULL) ? s2->as->rank : 0; + + if (r1 != r2) + return 0; /* Ranks differ. */ + + return gfc_compare_types (&s1->ts, &s2->ts); +} + + +/* Given two symbols that are formal arguments, compare their types + and rank and their formal interfaces if they are both dummy + procedures. Returns nonzero if the same, zero if different. */ + +static int +compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2) +{ + if (s1 == NULL || s2 == NULL) + return s1 == s2 ? 1 : 0; + + if (s1 == s2) + return 1; + + if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE) + return compare_type_rank (s1, s2); + + if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE) + return 0; + + /* At this point, both symbols are procedures. It can happen that + external procedures are compared, where one is identified by usage + to be a function or subroutine but the other is not. Check TKR + nonetheless for these cases. */ + if (s1->attr.function == 0 && s1->attr.subroutine == 0) + return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0; + + if (s2->attr.function == 0 && s2->attr.subroutine == 0) + return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0; + + /* Now the type of procedure has been identified. */ + if (s1->attr.function != s2->attr.function + || s1->attr.subroutine != s2->attr.subroutine) + return 0; + + if (s1->attr.function && compare_type_rank (s1, s2) == 0) + return 0; + + /* Originally, gfortran recursed here to check the interfaces of passed + procedures. This is explicitly not required by the standard. */ + return 1; +} + + +/* Given a formal argument list and a keyword name, search the list + for that keyword. Returns the correct symbol node if found, NULL + if not found. */ + +static gfc_symbol * +find_keyword_arg (const char *name, gfc_formal_arglist *f) +{ + for (; f; f = f->next) + if (strcmp (f->sym->name, name) == 0) + return f->sym; + + return NULL; +} + + +/******** Interface checking subroutines **********/ + + +/* Given an operator interface and the operator, make sure that all + interfaces for that operator are legal. */ + +bool +gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op, + locus opwhere) +{ + gfc_formal_arglist *formal; + sym_intent i1, i2; + bt t1, t2; + int args, r1, r2, k1, k2; + + gcc_assert (sym); + + args = 0; + t1 = t2 = BT_UNKNOWN; + i1 = i2 = INTENT_UNKNOWN; + r1 = r2 = -1; + k1 = k2 = -1; + + for (formal = sym->formal; formal; formal = formal->next) + { + gfc_symbol *fsym = formal->sym; + if (fsym == NULL) + { + gfc_error ("Alternate return cannot appear in operator " + "interface at %L", &sym->declared_at); + return false; + } + if (args == 0) + { + t1 = fsym->ts.type; + i1 = fsym->attr.intent; + r1 = (fsym->as != NULL) ? fsym->as->rank : 0; + k1 = fsym->ts.kind; + } + if (args == 1) + { + t2 = fsym->ts.type; + i2 = fsym->attr.intent; + r2 = (fsym->as != NULL) ? fsym->as->rank : 0; + k2 = fsym->ts.kind; + } + args++; + } + + /* Only +, - and .not. can be unary operators. + .not. cannot be a binary operator. */ + if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS + && op != INTRINSIC_MINUS + && op != INTRINSIC_NOT) + || (args == 2 && op == INTRINSIC_NOT)) + { + gfc_error ("Operator interface at %L has the wrong number of arguments", + &sym->declared_at); + return false; + } + + /* Check that intrinsics are mapped to functions, except + INTRINSIC_ASSIGN which should map to a subroutine. */ + if (op == INTRINSIC_ASSIGN) + { + if (!sym->attr.subroutine) + { + gfc_error ("Assignment operator interface at %L must be " + "a SUBROUTINE", &sym->declared_at); + return false; + } + if (args != 2) + { + gfc_error ("Assignment operator interface at %L must have " + "two arguments", &sym->declared_at); + return false; + } + + /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments): + - First argument an array with different rank than second, + - First argument is a scalar and second an array, + - Types and kinds do not conform, or + - First argument is of derived type. */ + if (sym->formal->sym->ts.type != BT_DERIVED + && sym->formal->sym->ts.type != BT_CLASS + && (r2 == 0 || r1 == r2) + && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type + || (gfc_numeric_ts (&sym->formal->sym->ts) + && gfc_numeric_ts (&sym->formal->next->sym->ts)))) + { + gfc_error ("Assignment operator interface at %L must not redefine " + "an INTRINSIC type assignment", &sym->declared_at); + return false; + } + } + else + { + if (!sym->attr.function) + { + gfc_error ("Intrinsic operator interface at %L must be a FUNCTION", + &sym->declared_at); + return false; + } + } + + /* Check intents on operator interfaces. */ + if (op == INTRINSIC_ASSIGN) + { + if (i1 != INTENT_OUT && i1 != INTENT_INOUT) + { + gfc_error ("First argument of defined assignment at %L must be " + "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at); + return false; + } + + if (i2 != INTENT_IN) + { + gfc_error ("Second argument of defined assignment at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + } + else + { + if (i1 != INTENT_IN) + { + gfc_error ("First argument of operator interface at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + + if (args == 2 && i2 != INTENT_IN) + { + gfc_error ("Second argument of operator interface at %L must be " + "INTENT(IN)", &sym->declared_at); + return false; + } + } + + /* From now on, all we have to do is check that the operator definition + doesn't conflict with an intrinsic operator. The rules for this + game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards, + as well as 12.3.2.1.1 of Fortran 2003: + + "If the operator is an intrinsic-operator (R310), the number of + function arguments shall be consistent with the intrinsic uses of + that operator, and the types, kind type parameters, or ranks of the + dummy arguments shall differ from those required for the intrinsic + operation (7.1.2)." */ + +#define IS_NUMERIC_TYPE(t) \ + ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX) + + /* Unary ops are easy, do them first. */ + if (op == INTRINSIC_NOT) + { + if (t1 == BT_LOGICAL) + goto bad_repl; + else + return true; + } + + if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS)) + { + if (IS_NUMERIC_TYPE (t1)) + goto bad_repl; + else + return true; + } + + /* Character intrinsic operators have same character kind, thus + operator definitions with operands of different character kinds + are always safe. */ + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2) + return true; + + /* Intrinsic operators always perform on arguments of same rank, + so different ranks is also always safe. (rank == 0) is an exception + to that, because all intrinsic operators are elemental. */ + if (r1 != r2 && r1 != 0 && r2 != 0) + return true; + + switch (op) + { + case INTRINSIC_EQ: + case INTRINSIC_EQ_OS: + case INTRINSIC_NE: + case INTRINSIC_NE_OS: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + /* Fall through. */ + + case INTRINSIC_PLUS: + case INTRINSIC_MINUS: + case INTRINSIC_TIMES: + case INTRINSIC_DIVIDE: + case INTRINSIC_POWER: + if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2)) + goto bad_repl; + break; + + case INTRINSIC_GT: + case INTRINSIC_GT_OS: + case INTRINSIC_GE: + case INTRINSIC_GE_OS: + case INTRINSIC_LT: + case INTRINSIC_LT_OS: + case INTRINSIC_LE: + case INTRINSIC_LE_OS: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + if ((t1 == BT_INTEGER || t1 == BT_REAL) + && (t2 == BT_INTEGER || t2 == BT_REAL)) + goto bad_repl; + break; + + case INTRINSIC_CONCAT: + if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) + goto bad_repl; + break; + + case INTRINSIC_AND: + case INTRINSIC_OR: + case INTRINSIC_EQV: + case INTRINSIC_NEQV: + if (t1 == BT_LOGICAL && t2 == BT_LOGICAL) + goto bad_repl; + break; + + default: + break; + } + + return true; + +#undef IS_NUMERIC_TYPE + +bad_repl: + gfc_error ("Operator interface at %L conflicts with intrinsic interface", + &opwhere); + return false; +} + + +/* Given a pair of formal argument lists, we see if the two lists can + be distinguished by counting the number of nonoptional arguments of + a given type/rank in f1 and seeing if there are less then that + number of those arguments in f2 (including optional arguments). + Since this test is asymmetric, it has to be called twice to make it + symmetric. Returns nonzero if the argument lists are incompatible + by this test. This subroutine implements rule 1 of section + 14.1.2.3 in the Fortran 95 standard. */ + +static int +count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2) +{ + int rc, ac1, ac2, i, j, k, n1; + gfc_formal_arglist *f; + + typedef struct + { + int flag; + gfc_symbol *sym; + } + arginfo; + + arginfo *arg; + + n1 = 0; + + for (f = f1; f; f = f->next) + n1++; + + /* Build an array of integers that gives the same integer to + arguments of the same type/rank. */ + arg = XCNEWVEC (arginfo, n1); + + f = f1; + for (i = 0; i < n1; i++, f = f->next) + { + arg[i].flag = -1; + arg[i].sym = f->sym; + } + + k = 0; + + for (i = 0; i < n1; i++) + { + if (arg[i].flag != -1) + continue; + + if (arg[i].sym && arg[i].sym->attr.optional) + continue; /* Skip optional arguments. */ + + arg[i].flag = k; + + /* Find other nonoptional arguments of the same type/rank. */ + for (j = i + 1; j < n1; j++) + if ((arg[j].sym == NULL || !arg[j].sym->attr.optional) + && (compare_type_rank_if (arg[i].sym, arg[j].sym) + || compare_type_rank_if (arg[j].sym, arg[i].sym))) + arg[j].flag = k; + + k++; + } + + /* Now loop over each distinct type found in f1. */ + k = 0; + rc = 0; + + for (i = 0; i < n1; i++) + { + if (arg[i].flag != k) + continue; + + ac1 = 1; + for (j = i + 1; j < n1; j++) + if (arg[j].flag == k) + ac1++; + + /* Count the number of arguments in f2 with that type, including + those that are optional. */ + ac2 = 0; + + for (f = f2; f; f = f->next) + if (compare_type_rank_if (arg[i].sym, f->sym) + || compare_type_rank_if (f->sym, arg[i].sym)) + ac2++; + + if (ac1 > ac2) + { + rc = 1; + break; + } + + k++; + } + + gfc_free (arg); + + return rc; +} + + +/* Perform the correspondence test in rule 2 of section 14.1.2.3. + Returns zero if no argument is found that satisfies rule 2, nonzero + otherwise. + + This test is also not symmetric in f1 and f2 and must be called + twice. This test finds problems caused by sorting the actual + argument list with keywords. For example: + + INTERFACE FOO + SUBROUTINE F1(A, B) + INTEGER :: A ; REAL :: B + END SUBROUTINE F1 + + SUBROUTINE F2(B, A) + INTEGER :: A ; REAL :: B + END SUBROUTINE F1 + END INTERFACE FOO + + At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */ + +static int +generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2) +{ + gfc_formal_arglist *f2_save, *g; + gfc_symbol *sym; + + f2_save = f2; + + while (f1) + { + if (f1->sym->attr.optional) + goto next; + + if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym) + || compare_type_rank (f2->sym, f1->sym))) + goto next; + + /* Now search for a disambiguating keyword argument starting at + the current non-match. */ + for (g = f1; g; g = g->next) + { + if (g->sym->attr.optional) + continue; + + sym = find_keyword_arg (g->sym->name, f2_save); + if (sym == NULL || !compare_type_rank (g->sym, sym)) + return 1; + } + + next: + f1 = f1->next; + if (f2 != NULL) + f2 = f2->next; + } + + return 0; +} + + +/* 'Compare' two formal interfaces associated with a pair of symbols. + We return nonzero if there exists an actual argument list that + would be ambiguous between the two interfaces, zero otherwise. + 'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are + required to match, which is not the case for ambiguity checks.*/ + +int +gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2, + int generic_flag, int intent_flag, + char *errmsg, int err_len) +{ + gfc_formal_arglist *f1, *f2; + + gcc_assert (name2 != NULL); + + if (s1->attr.function && (s2->attr.subroutine + || (!s2->attr.function && s2->ts.type == BT_UNKNOWN + && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN))) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' is not a function", name2); + return 0; + } + + if (s1->attr.subroutine && s2->attr.function) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' is not a subroutine", name2); + return 0; + } + + /* If the arguments are functions, check type and kind + (only for dummy procedures and procedure pointer assignments). */ + if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function) + { + if (s1->ts.type == BT_UNKNOWN) + return 1; + if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind)) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "Type/kind mismatch in return value " + "of '%s'", name2); + return 0; + } + } + + if (s1->attr.if_source == IFSRC_UNKNOWN + || s2->attr.if_source == IFSRC_UNKNOWN) + return 1; + + f1 = s1->formal; + f2 = s2->formal; + + if (f1 == NULL && f2 == NULL) + return 1; /* Special case: No arguments. */ + + if (generic_flag) + { + if (count_types_test (f1, f2) || count_types_test (f2, f1)) + return 0; + if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1)) + return 0; + } + else + /* Perform the abbreviated correspondence test for operators (the + arguments cannot be optional and are always ordered correctly). + This is also done when comparing interfaces for dummy procedures and in + procedure pointer assignments. */ + + for (;;) + { + /* Check existence. */ + if (f1 == NULL && f2 == NULL) + break; + if (f1 == NULL || f2 == NULL) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "'%s' has the wrong number of " + "arguments", name2); + return 0; + } + + /* Check type and rank. */ + if (!compare_type_rank (f2->sym, f1->sym)) + { + if (errmsg != NULL) + snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'", + f1->sym->name); + return 0; + } + + /* Check INTENT. */ + if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent)) + { + snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'", + f1->sym->name); + return 0; + } + + /* Check OPTIONAL. */ + if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional)) + { + snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'", + f1->sym->name); + return 0; + } + + f1 = f1->next; + f2 = f2->next; + } + + return 1; +} + + +/* Given a pointer to an interface pointer, remove duplicate + interfaces and make sure that all symbols are either functions + or subroutines, and all of the same kind. Returns nonzero if + something goes wrong. */ + +static int +check_interface0 (gfc_interface *p, const char *interface_name) +{ + gfc_interface *psave, *q, *qlast; + + psave = p; + for (; p; p = p->next) + { + /* Make sure all symbols in the interface have been defined as + functions or subroutines. */ + if ((!p->sym->attr.function && !p->sym->attr.subroutine) + || !p->sym->attr.if_source) + { + if (p->sym->attr.external) + gfc_error ("Procedure '%s' in %s at %L has no explicit interface", + p->sym->name, interface_name, &p->sym->declared_at); + else + gfc_error ("Procedure '%s' in %s at %L is neither function nor " + "subroutine", p->sym->name, interface_name, + &p->sym->declared_at); + return 1; + } + + /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */ + if ((psave->sym->attr.function && !p->sym->attr.function) + || (psave->sym->attr.subroutine && !p->sym->attr.subroutine)) + { + gfc_error ("In %s at %L procedures must be either all SUBROUTINEs" + " or all FUNCTIONs", interface_name, &p->sym->declared_at); + return 1; + } + + if (p->sym->attr.proc == PROC_INTERNAL + && gfc_notify_std (GFC_STD_GNU, "Extension: Internal procedure '%s' " + "in %s at %L", p->sym->name, interface_name, + &p->sym->declared_at) == FAILURE) + return 1; + } + p = psave; + + /* Remove duplicate interfaces in this interface list. */ + for (; p; p = p->next) + { + qlast = p; + + for (q = p->next; q;) + { + if (p->sym != q->sym) + { + qlast = q; + q = q->next; + } + else + { + /* Duplicate interface. */ + qlast->next = q->next; + gfc_free (q); + q = qlast->next; + } + } + } + + return 0; +} + + +/* Check lists of interfaces to make sure that no two interfaces are + ambiguous. Duplicate interfaces (from the same symbol) are OK here. */ + +static int +check_interface1 (gfc_interface *p, gfc_interface *q0, + int generic_flag, const char *interface_name, + bool referenced) +{ + gfc_interface *q; + for (; p; p = p->next) + for (q = q0; q; q = q->next) + { + if (p->sym == q->sym) + continue; /* Duplicates OK here. */ + + if (p->sym->name == q->sym->name && p->sym->module == q->sym->module) + continue; + + if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag, + 0, NULL, 0)) + { + if (referenced) + gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L", + p->sym->name, q->sym->name, interface_name, + &p->where); + else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc) + gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L", + p->sym->name, q->sym->name, interface_name, + &p->where); + else + gfc_warning ("Although not referenced, '%s' has ambiguous " + "interfaces at %L", interface_name, &p->where); + return 1; + } + } + return 0; +} + + +/* Check the generic and operator interfaces of symbols to make sure + that none of the interfaces conflict. The check has to be done + after all of the symbols are actually loaded. */ + +static void +check_sym_interfaces (gfc_symbol *sym) +{ + char interface_name[100]; + gfc_interface *p; + + if (sym->ns != gfc_current_ns) + return; + + if (sym->generic != NULL) + { + sprintf (interface_name, "generic interface '%s'", sym->name); + if (check_interface0 (sym->generic, interface_name)) + return; + + for (p = sym->generic; p; p = p->next) + { + if (p->sym->attr.mod_proc + && (p->sym->attr.if_source != IFSRC_DECL + || p->sym->attr.procedure)) + { + gfc_error ("'%s' at %L is not a module procedure", + p->sym->name, &p->where); + return; + } + } + + /* Originally, this test was applied to host interfaces too; + this is incorrect since host associated symbols, from any + source, cannot be ambiguous with local symbols. */ + check_interface1 (sym->generic, sym->generic, 1, interface_name, + sym->attr.referenced || !sym->attr.use_assoc); + } +} + + +static void +check_uop_interfaces (gfc_user_op *uop) +{ + char interface_name[100]; + gfc_user_op *uop2; + gfc_namespace *ns; + + sprintf (interface_name, "operator interface '%s'", uop->name); + if (check_interface0 (uop->op, interface_name)) + return; + + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + uop2 = gfc_find_uop (uop->name, ns); + if (uop2 == NULL) + continue; + + check_interface1 (uop->op, uop2->op, 0, + interface_name, true); + } +} + +/* Given an intrinsic op, return an equivalent op if one exists, + or INTRINSIC_NONE otherwise. */ + +gfc_intrinsic_op +gfc_equivalent_op (gfc_intrinsic_op op) +{ + switch(op) + { + case INTRINSIC_EQ: + return INTRINSIC_EQ_OS; + + case INTRINSIC_EQ_OS: + return INTRINSIC_EQ; + + case INTRINSIC_NE: + return INTRINSIC_NE_OS; + + case INTRINSIC_NE_OS: + return INTRINSIC_NE; + + case INTRINSIC_GT: + return INTRINSIC_GT_OS; + + case INTRINSIC_GT_OS: + return INTRINSIC_GT; + + case INTRINSIC_GE: + return INTRINSIC_GE_OS; + + case INTRINSIC_GE_OS: + return INTRINSIC_GE; + + case INTRINSIC_LT: + return INTRINSIC_LT_OS; + + case INTRINSIC_LT_OS: + return INTRINSIC_LT; + + case INTRINSIC_LE: + return INTRINSIC_LE_OS; + + case INTRINSIC_LE_OS: + return INTRINSIC_LE; + + default: + return INTRINSIC_NONE; + } +} + +/* For the namespace, check generic, user operator and intrinsic + operator interfaces for consistency and to remove duplicate + interfaces. We traverse the whole namespace, counting on the fact + that most symbols will not have generic or operator interfaces. */ + +void +gfc_check_interfaces (gfc_namespace *ns) +{ + gfc_namespace *old_ns, *ns2; + char interface_name[100]; + int i; + + old_ns = gfc_current_ns; + gfc_current_ns = ns; + + gfc_traverse_ns (ns, check_sym_interfaces); + + gfc_traverse_user_op (ns, check_uop_interfaces); + + for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) + { + if (i == INTRINSIC_USER) + continue; + + if (i == INTRINSIC_ASSIGN) + strcpy (interface_name, "intrinsic assignment operator"); + else + sprintf (interface_name, "intrinsic '%s' operator", + gfc_op2string ((gfc_intrinsic_op) i)); + + if (check_interface0 (ns->op[i], interface_name)) + continue; + + if (ns->op[i]) + gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i, + ns->op[i]->where); + + for (ns2 = ns; ns2; ns2 = ns2->parent) + { + gfc_intrinsic_op other_op; + + if (check_interface1 (ns->op[i], ns2->op[i], 0, + interface_name, true)) + goto done; + + /* i should be gfc_intrinsic_op, but has to be int with this cast + here for stupid C++ compatibility rules. */ + other_op = gfc_equivalent_op ((gfc_intrinsic_op) i); + if (other_op != INTRINSIC_NONE + && check_interface1 (ns->op[i], ns2->op[other_op], + 0, interface_name, true)) + goto done; + } + } + +done: + gfc_current_ns = old_ns; +} + + +static int +symbol_rank (gfc_symbol *sym) +{ + return (sym->as == NULL) ? 0 : sym->as->rank; +} + + +/* Given a symbol of a formal argument list and an expression, if the + formal argument is allocatable, check that the actual argument is + allocatable. Returns nonzero if compatible, zero if not compatible. */ + +static int +compare_allocatable (gfc_symbol *formal, gfc_expr *actual) +{ + symbol_attribute attr; + + if (formal->attr.allocatable + || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable)) + { + attr = gfc_expr_attr (actual); + if (!attr.allocatable) + return 0; + } + + return 1; +} + + +/* Given a symbol of a formal argument list and an expression, if the + formal argument is a pointer, see if the actual argument is a + pointer. Returns nonzero if compatible, zero if not compatible. */ + +static int +compare_pointer (gfc_symbol *formal, gfc_expr *actual) +{ + symbol_attribute attr; + + if (formal->attr.pointer) + { + attr = gfc_expr_attr (actual); + + /* Fortran 2008 allows non-pointer actual arguments. */ + if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN) + return 2; + + if (!attr.pointer) + return 0; + } + + return 1; +} + + +/* Emit clear error messages for rank mismatch. */ + +static void +argument_rank_mismatch (const char *name, locus *where, + int rank1, int rank2) +{ + if (rank1 == 0) + { + gfc_error ("Rank mismatch in argument '%s' at %L " + "(scalar and rank-%d)", name, where, rank2); + } + else if (rank2 == 0) + { + gfc_error ("Rank mismatch in argument '%s' at %L " + "(rank-%d and scalar)", name, where, rank1); + } + else + { + gfc_error ("Rank mismatch in argument '%s' at %L " + "(rank-%d and rank-%d)", name, where, rank1, rank2); + } +} + + +/* Given a symbol of a formal argument list and an expression, see if + the two are compatible as arguments. Returns nonzero if + compatible, zero if not compatible. */ + +static int +compare_parameter (gfc_symbol *formal, gfc_expr *actual, + int ranks_must_agree, int is_elemental, locus *where) +{ + gfc_ref *ref; + bool rank_check, is_pointer; + + /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding + procs c_f_pointer or c_f_procpointer, and we need to accept most + pointers the user could give us. This should allow that. */ + if (formal->ts.type == BT_VOID) + return 1; + + if (formal->ts.type == BT_DERIVED + && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c + && actual->ts.type == BT_DERIVED + && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c) + return 1; + + if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED) + /* Make sure the vtab symbol is present when + the module variables are generated. */ + gfc_find_derived_vtab (actual->ts.u.derived); + + if (actual->ts.type == BT_PROCEDURE) + { + char err[200]; + gfc_symbol *act_sym = actual->symtree->n.sym; + + if (formal->attr.flavor != FL_PROCEDURE) + { + if (where) + gfc_error ("Invalid procedure argument at %L", &actual->where); + return 0; + } + + if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err, + sizeof(err))) + { + if (where) + gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s", + formal->name, &actual->where, err); + return 0; + } + + if (formal->attr.function && !act_sym->attr.function) + { + gfc_add_function (&act_sym->attr, act_sym->name, + &act_sym->declared_at); + if (act_sym->ts.type == BT_UNKNOWN + && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE) + return 0; + } + else if (formal->attr.subroutine && !act_sym->attr.subroutine) + gfc_add_subroutine (&act_sym->attr, act_sym->name, + &act_sym->declared_at); + + return 1; + } + + /* F2008, C1241. */ + if (formal->attr.pointer && formal->attr.contiguous + && !gfc_is_simply_contiguous (actual, true)) + { + if (where) + gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L " + "must be simply contigous", formal->name, &actual->where); + return 0; + } + + if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN) + && actual->ts.type != BT_HOLLERITH + && !gfc_compare_types (&formal->ts, &actual->ts)) + { + if (where) + gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s", + formal->name, &actual->where, gfc_typename (&actual->ts), + gfc_typename (&formal->ts)); + return 0; + } + + /* F2008, 12.5.2.5. */ + if (formal->ts.type == BT_CLASS + && (CLASS_DATA (formal)->attr.class_pointer + || CLASS_DATA (formal)->attr.allocatable)) + { + if (actual->ts.type != BT_CLASS) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be polymorphic", + formal->name, &actual->where); + return 0; + } + if (!gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived, + CLASS_DATA (formal)->ts.u.derived)) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must have the same " + "declared type", formal->name, &actual->where); + return 0; + } + } + + if (formal->attr.codimension) + { + gfc_ref *last = NULL; + + if (actual->expr_type != EXPR_VARIABLE + || (actual->ref == NULL + && !actual->symtree->n.sym->attr.codimension)) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be a coarray", + formal->name, &actual->where); + return 0; + } + + for (ref = actual->ref; ref; ref = ref->next) + { + if (ref->type == REF_ARRAY && ref->u.ar.codimen != 0) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be a coarray " + "and not coindexed", formal->name, &ref->u.ar.where); + return 0; + } + if (ref->type == REF_ARRAY && ref->u.ar.as->corank + && ref->u.ar.type != AR_FULL && ref->u.ar.dimen != 0) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be a coarray " + "and thus shall not have an array designator", + formal->name, &ref->u.ar.where); + return 0; + } + if (ref->type == REF_COMPONENT) + last = ref; + } + + if (last && !last->u.c.component->attr.codimension) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be a coarray", + formal->name, &actual->where); + return 0; + } + + /* F2008, 12.5.2.6. */ + if (formal->attr.allocatable && + ((last && last->u.c.component->as->corank != formal->as->corank) + || (!last + && actual->symtree->n.sym->as->corank != formal->as->corank))) + { + if (where) + gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)", + formal->name, &actual->where, formal->as->corank, + last ? last->u.c.component->as->corank + : actual->symtree->n.sym->as->corank); + return 0; + } + + /* F2008, 12.5.2.8. */ + if (formal->attr.dimension + && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE) + && !gfc_is_simply_contiguous (actual, true)) + { + if (where) + gfc_error ("Actual argument to '%s' at %L must be simply " + "contiguous", formal->name, &actual->where); + return 0; + } + } + + /* F2008, C1239/C1240. */ + if (actual->expr_type == EXPR_VARIABLE + && (actual->symtree->n.sym->attr.asynchronous + || actual->symtree->n.sym->attr.volatile_) + && (formal->attr.asynchronous || formal->attr.volatile_) + && actual->rank && !gfc_is_simply_contiguous (actual, true) + && ((formal->as->type != AS_ASSUMED_SHAPE && !formal->attr.pointer) + || formal->attr.contiguous)) + { + if (where) + gfc_error ("Dummy argument '%s' has to be a pointer or assumed-shape " + "array without CONTIGUOUS attribute - as actual argument at" + " %L is not simply contiguous and both are ASYNCHRONOUS " + "or VOLATILE", formal->name, &actual->where); + return 0; + } + + if (symbol_rank (formal) == actual->rank) + return 1; + + rank_check = where != NULL && !is_elemental && formal->as + && (formal->as->type == AS_ASSUMED_SHAPE + || formal->as->type == AS_DEFERRED) + && actual->expr_type != EXPR_NULL; + + /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */ + if (rank_check || ranks_must_agree + || (formal->attr.pointer && actual->expr_type != EXPR_NULL) + || (actual->rank != 0 && !(is_elemental || formal->attr.dimension)) + || (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE + && actual->expr_type != EXPR_NULL) + || (actual->rank == 0 && formal->attr.dimension + && gfc_is_coindexed (actual))) + { + if (where) + argument_rank_mismatch (formal->name, &actual->where, + symbol_rank (formal), actual->rank); + return 0; + } + else if (actual->rank != 0 && (is_elemental || formal->attr.dimension)) + return 1; + + /* At this point, we are considering a scalar passed to an array. This + is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4), + - if the actual argument is (a substring of) an element of a + non-assumed-shape/non-pointer/non-polymorphic array; or + - (F2003) if the actual argument is of type character of default/c_char + kind. */ + + is_pointer = actual->expr_type == EXPR_VARIABLE + ? actual->symtree->n.sym->attr.pointer : false; + + for (ref = actual->ref; ref; ref = ref->next) + { + if (ref->type == REF_COMPONENT) + is_pointer = ref->u.c.component->attr.pointer; + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT + && ref->u.ar.dimen > 0 + && (!ref->next + || (ref->next->type == REF_SUBSTRING && !ref->next->next))) + break; + } + + if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL) + { + if (where) + gfc_error ("Polymorphic scalar passed to array dummy argument '%s' " + "at %L", formal->name, &actual->where); + return 0; + } + + if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER + && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Element of assumed-shaped or pointer " + "array passed to array dummy argument '%s' at %L", + formal->name, &actual->where); + return 0; + } + + if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL + && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) + { + if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0) + { + if (where) + gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind " + "CHARACTER actual argument with array dummy argument " + "'%s' at %L", formal->name, &actual->where); + return 0; + } + + if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0) + { + gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with " + "array dummy argument '%s' at %L", + formal->name, &actual->where); + return 0; + } + else if ((gfc_option.allow_std & GFC_STD_F2003) == 0) + return 0; + else + return 1; + } + + if (ref == NULL && actual->expr_type != EXPR_NULL) + { + if (where) + argument_rank_mismatch (formal->name, &actual->where, + symbol_rank (formal), actual->rank); + return 0; + } + + return 1; +} + + +/* Returns the storage size of a symbol (formal argument) or + zero if it cannot be determined. */ + +static unsigned long +get_sym_storage_size (gfc_symbol *sym) +{ + int i; + unsigned long strlen, elements; + + if (sym->ts.type == BT_CHARACTER) + { + if (sym->ts.u.cl && sym->ts.u.cl->length + && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT) + strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer); + else + return 0; + } + else + strlen = 1; + + if (symbol_rank (sym) == 0) + return strlen; + + elements = 1; + if (sym->as->type != AS_EXPLICIT) + return 0; + for (i = 0; i < sym->as->rank; i++) + { + if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT + || sym->as->lower[i]->expr_type != EXPR_CONSTANT) + return 0; + + elements *= mpz_get_si (sym->as->upper[i]->value.integer) + - mpz_get_si (sym->as->lower[i]->value.integer) + 1L; + } + + return strlen*elements; +} + + +/* Returns the storage size of an expression (actual argument) or + zero if it cannot be determined. For an array element, it returns + the remaining size as the element sequence consists of all storage + units of the actual argument up to the end of the array. */ + +static unsigned long +get_expr_storage_size (gfc_expr *e) +{ + int i; + long int strlen, elements; + long int substrlen = 0; + bool is_str_storage = false; + gfc_ref *ref; + + if (e == NULL) + return 0; + + if (e->ts.type == BT_CHARACTER) + { + if (e->ts.u.cl && e->ts.u.cl->length + && e->ts.u.cl->length->expr_type == EXPR_CONSTANT) + strlen = mpz_get_si (e->ts.u.cl->length->value.integer); + else if (e->expr_type == EXPR_CONSTANT + && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL)) + strlen = e->value.character.length; + else + return 0; + } + else + strlen = 1; /* Length per element. */ + + if (e->rank == 0 && !e->ref) + return strlen; + + elements = 1; + if (!e->ref) + { + if (!e->shape) + return 0; + for (i = 0; i < e->rank; i++) + elements *= mpz_get_si (e->shape[i]); + return elements*strlen; + } + + for (ref = e->ref; ref; ref = ref->next) + { + if (ref->type == REF_SUBSTRING && ref->u.ss.start + && ref->u.ss.start->expr_type == EXPR_CONSTANT) + { + if (is_str_storage) + { + /* The string length is the substring length. + Set now to full string length. */ + if (!ref->u.ss.length || !ref->u.ss.length->length + || ref->u.ss.length->length->expr_type != EXPR_CONSTANT) + return 0; + + strlen = mpz_get_ui (ref->u.ss.length->length->value.integer); + } + substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1; + continue; + } + + if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION + && ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride + && ref->u.ar.as->upper) + for (i = 0; i < ref->u.ar.dimen; i++) + { + long int start, end, stride; + stride = 1; + + if (ref->u.ar.stride[i]) + { + if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT) + stride = mpz_get_si (ref->u.ar.stride[i]->value.integer); + else + return 0; + } + + if (ref->u.ar.start[i]) + { + if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT) + start = mpz_get_si (ref->u.ar.start[i]->value.integer); + else + return 0; + } + else if (ref->u.ar.as->lower[i] + && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT) + start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer); + else + return 0; + + if (ref->u.ar.end[i]) + { + if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT) + end = mpz_get_si (ref->u.ar.end[i]->value.integer); + else + return 0; + } + else if (ref->u.ar.as->upper[i] + && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT) + end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer); + else + return 0; + + elements *= (end - start)/stride + 1L; + } + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL + && ref->u.ar.as->lower && ref->u.ar.as->upper) + for (i = 0; i < ref->u.ar.as->rank; i++) + { + if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i] + && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT + && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT) + elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + + 1L; + else + return 0; + } + else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT + && e->expr_type == EXPR_VARIABLE) + { + if (ref->u.ar.as->type == AS_ASSUMED_SHAPE + || e->symtree->n.sym->attr.pointer) + { + elements = 1; + continue; + } + + /* Determine the number of remaining elements in the element + sequence for array element designators. */ + is_str_storage = true; + for (i = ref->u.ar.dimen - 1; i >= 0; i--) + { + if (ref->u.ar.start[i] == NULL + || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT + || ref->u.ar.as->upper[i] == NULL + || ref->u.ar.as->lower[i] == NULL + || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT + || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT) + return 0; + + elements + = elements + * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + + 1L) + - (mpz_get_si (ref->u.ar.start[i]->value.integer) + - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)); + } + } + } + + if (substrlen) + return (is_str_storage) ? substrlen + (elements-1)*strlen + : elements*strlen; + else + return elements*strlen; +} + + +/* Given an expression, check whether it is an array section + which has a vector subscript. If it has, one is returned, + otherwise zero. */ + +int +gfc_has_vector_subscript (gfc_expr *e) +{ + int i; + gfc_ref *ref; + + if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE) + return 0; + + for (ref = e->ref; ref; ref = ref->next) + if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) + for (i = 0; i < ref->u.ar.dimen; i++) + if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) + return 1; + + return 0; +} + + +/* Given formal and actual argument lists, see if they are compatible. + If they are compatible, the actual argument list is sorted to + correspond with the formal list, and elements for missing optional + arguments are inserted. If WHERE pointer is nonnull, then we issue + errors when things don't match instead of just returning the status + code. */ + +static int +compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal, + int ranks_must_agree, int is_elemental, locus *where) +{ + gfc_actual_arglist **new_arg, *a, *actual, temp; + gfc_formal_arglist *f; + int i, n, na; + unsigned long actual_size, formal_size; + + actual = *ap; + + if (actual == NULL && formal == NULL) + return 1; + + n = 0; + for (f = formal; f; f = f->next) + n++; + + new_arg = XALLOCAVEC (gfc_actual_arglist *, n); + + for (i = 0; i < n; i++) + new_arg[i] = NULL; + + na = 0; + f = formal; + i = 0; + + for (a = actual; a; a = a->next, f = f->next) + { + /* Look for keywords but ignore g77 extensions like %VAL. */ + if (a->name != NULL && a->name[0] != '%') + { + i = 0; + for (f = formal; f; f = f->next, i++) + { + if (f->sym == NULL) + continue; + if (strcmp (f->sym->name, a->name) == 0) + break; + } + + if (f == NULL) + { + if (where) + gfc_error ("Keyword argument '%s' at %L is not in " + "the procedure", a->name, &a->expr->where); + return 0; + } + + if (new_arg[i] != NULL) + { + if (where) + gfc_error ("Keyword argument '%s' at %L is already associated " + "with another actual argument", a->name, + &a->expr->where); + return 0; + } + } + + if (f == NULL) + { + if (where) + gfc_error ("More actual than formal arguments in procedure " + "call at %L", where); + + return 0; + } + + if (f->sym == NULL && a->expr == NULL) + goto match; + + if (f->sym == NULL) + { + if (where) + gfc_error ("Missing alternate return spec in subroutine call " + "at %L", where); + return 0; + } + + if (a->expr == NULL) + { + if (where) + gfc_error ("Unexpected alternate return spec in subroutine " + "call at %L", where); + return 0; + } + + if (a->expr->expr_type == EXPR_NULL && !f->sym->attr.pointer + && (f->sym->attr.allocatable || !f->sym->attr.optional + || (gfc_option.allow_std & GFC_STD_F2008) == 0)) + { + if (where && (f->sym->attr.allocatable || !f->sym->attr.optional)) + gfc_error ("Unexpected NULL() intrinsic at %L to dummy '%s'", + where, f->sym->name); + else if (where) + gfc_error ("Fortran 2008: Null pointer at %L to non-pointer " + "dummy '%s'", where, f->sym->name); + + return 0; + } + + if (!compare_parameter (f->sym, a->expr, ranks_must_agree, + is_elemental, where)) + return 0; + + /* Special case for character arguments. For allocatable, pointer + and assumed-shape dummies, the string length needs to match + exactly. */ + if (a->expr->ts.type == BT_CHARACTER + && a->expr->ts.u.cl && a->expr->ts.u.cl->length + && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT + && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length + && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT + && (f->sym->attr.pointer || f->sym->attr.allocatable + || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) + && (mpz_cmp (a->expr->ts.u.cl->length->value.integer, + f->sym->ts.u.cl->length->value.integer) != 0)) + { + if (where && (f->sym->attr.pointer || f->sym->attr.allocatable)) + gfc_warning ("Character length mismatch (%ld/%ld) between actual " + "argument and pointer or allocatable dummy argument " + "'%s' at %L", + mpz_get_si (a->expr->ts.u.cl->length->value.integer), + mpz_get_si (f->sym->ts.u.cl->length->value.integer), + f->sym->name, &a->expr->where); + else if (where) + gfc_warning ("Character length mismatch (%ld/%ld) between actual " + "argument and assumed-shape dummy argument '%s' " + "at %L", + mpz_get_si (a->expr->ts.u.cl->length->value.integer), + mpz_get_si (f->sym->ts.u.cl->length->value.integer), + f->sym->name, &a->expr->where); + return 0; + } + + if ((f->sym->attr.pointer || f->sym->attr.allocatable) + && f->sym->ts.deferred != a->expr->ts.deferred + && a->expr->ts.type == BT_CHARACTER) + { + if (where) + gfc_error ("Actual argument argument at %L to allocatable or " + "pointer dummy argument '%s' must have a deferred " + "length type parameter if and only if the dummy has one", + &a->expr->where, f->sym->name); + return 0; + } + + actual_size = get_expr_storage_size (a->expr); + formal_size = get_sym_storage_size (f->sym); + if (actual_size != 0 && actual_size < formal_size + && a->expr->ts.type != BT_PROCEDURE + && f->sym->attr.flavor != FL_PROCEDURE) + { + if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where) + gfc_warning ("Character length of actual argument shorter " + "than of dummy argument '%s' (%lu/%lu) at %L", + f->sym->name, actual_size, formal_size, + &a->expr->where); + else if (where) + gfc_warning ("Actual argument contains too few " + "elements for dummy argument '%s' (%lu/%lu) at %L", + f->sym->name, actual_size, formal_size, + &a->expr->where); + return 0; + } + + /* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument + is provided for a procedure pointer formal argument. */ + if (f->sym->attr.proc_pointer + && !((a->expr->expr_type == EXPR_VARIABLE + && a->expr->symtree->n.sym->attr.proc_pointer) + || (a->expr->expr_type == EXPR_FUNCTION + && a->expr->symtree->n.sym->result->attr.proc_pointer) + || gfc_is_proc_ptr_comp (a->expr, NULL))) + { + if (where) + gfc_error ("Expected a procedure pointer for argument '%s' at %L", + f->sym->name, &a->expr->where); + return 0; + } + + /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is + provided for a procedure formal argument. */ + if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL) + && a->expr->expr_type == EXPR_VARIABLE + && f->sym->attr.flavor == FL_PROCEDURE) + { + if (where) + gfc_error ("Expected a procedure for argument '%s' at %L", + f->sym->name, &a->expr->where); + return 0; + } + + if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure + && a->expr->ts.type == BT_PROCEDURE + && !a->expr->symtree->n.sym->attr.pure) + { + if (where) + gfc_error ("Expected a PURE procedure for argument '%s' at %L", + f->sym->name, &a->expr->where); + return 0; + } + + if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE + && a->expr->expr_type == EXPR_VARIABLE + && a->expr->symtree->n.sym->as + && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE + && (a->expr->ref == NULL + || (a->expr->ref->type == REF_ARRAY + && a->expr->ref->u.ar.type == AR_FULL))) + { + if (where) + gfc_error ("Actual argument for '%s' cannot be an assumed-size" + " array at %L", f->sym->name, where); + return 0; + } + + if (a->expr->expr_type != EXPR_NULL + && compare_pointer (f->sym, a->expr) == 0) + { + if (where) + gfc_error ("Actual argument for '%s' must be a pointer at %L", + f->sym->name, &a->expr->where); + return 0; + } + + if (a->expr->expr_type != EXPR_NULL + && (gfc_option.allow_std & GFC_STD_F2008) == 0 + && compare_pointer (f->sym, a->expr) == 2) + { + if (where) + gfc_error ("Fortran 2008: Non-pointer actual argument at %L to " + "pointer dummy '%s'", &a->expr->where,f->sym->name); + return 0; + } + + + /* Fortran 2008, C1242. */ + if (f->sym->attr.pointer && gfc_is_coindexed (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L to pointer " + "dummy '%s'", + &a->expr->where, f->sym->name); + return 0; + } + + /* Fortran 2008, 12.5.2.5 (no constraint). */ + if (a->expr->expr_type == EXPR_VARIABLE + && f->sym->attr.intent != INTENT_IN + && f->sym->attr.allocatable + && gfc_is_coindexed (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L to allocatable " + "dummy '%s' requires INTENT(IN)", + &a->expr->where, f->sym->name); + return 0; + } + + /* Fortran 2008, C1237. */ + if (a->expr->expr_type == EXPR_VARIABLE + && (f->sym->attr.asynchronous || f->sym->attr.volatile_) + && gfc_is_coindexed (a->expr) + && (a->expr->symtree->n.sym->attr.volatile_ + || a->expr->symtree->n.sym->attr.asynchronous)) + { + if (where) + gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at " + "at %L requires that dummy %s' has neither " + "ASYNCHRONOUS nor VOLATILE", &a->expr->where, + f->sym->name); + return 0; + } + + /* Fortran 2008, 12.5.2.4 (no constraint). */ + if (a->expr->expr_type == EXPR_VARIABLE + && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value + && gfc_is_coindexed (a->expr) + && gfc_has_ultimate_allocatable (a->expr)) + { + if (where) + gfc_error ("Coindexed actual argument at %L with allocatable " + "ultimate component to dummy '%s' requires either VALUE " + "or INTENT(IN)", &a->expr->where, f->sym->name); + return 0; + } + + if (a->expr->expr_type != EXPR_NULL + && compare_allocatable (f->sym, a->expr) == 0) + { + if (where) + gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L", + f->sym->name, &a->expr->where); + return 0; + } + + /* Check intent = OUT/INOUT for definable actual argument. */ + if ((f->sym->attr.intent == INTENT_OUT + || f->sym->attr.intent == INTENT_INOUT)) + { + const char* context = (where + ? _("actual argument to INTENT = OUT/INOUT") + : NULL); + + if (f->sym->attr.pointer + && gfc_check_vardef_context (a->expr, true, context) + == FAILURE) + return 0; + if (gfc_check_vardef_context (a->expr, false, context) + == FAILURE) + return 0; + } + + if ((f->sym->attr.intent == INTENT_OUT + || f->sym->attr.intent == INTENT_INOUT + || f->sym->attr.volatile_ + || f->sym->attr.asynchronous) + && gfc_has_vector_subscript (a->expr)) + { + if (where) + gfc_error ("Array-section actual argument with vector " + "subscripts at %L is incompatible with INTENT(OUT), " + "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute " + "of the dummy argument '%s'", + &a->expr->where, f->sym->name); + return 0; + } + + /* C1232 (R1221) For an actual argument which is an array section or + an assumed-shape array, the dummy argument shall be an assumed- + shape array, if the dummy argument has the VOLATILE attribute. */ + + if (f->sym->attr.volatile_ + && a->expr->symtree->n.sym->as + && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE + && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Assumed-shape actual argument at %L is " + "incompatible with the non-assumed-shape " + "dummy argument '%s' due to VOLATILE attribute", + &a->expr->where,f->sym->name); + return 0; + } + + if (f->sym->attr.volatile_ + && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION + && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) + { + if (where) + gfc_error ("Array-section actual argument at %L is " + "incompatible with the non-assumed-shape " + "dummy argument '%s' due to VOLATILE attribute", + &a->expr->where,f->sym->name); + return 0; + } + + /* C1233 (R1221) For an actual argument which is a pointer array, the + dummy argument shall be an assumed-shape or pointer array, if the + dummy argument has the VOLATILE attribute. */ + + if (f->sym->attr.volatile_ + && a->expr->symtree->n.sym->attr.pointer + && a->expr->symtree->n.sym->as + && !(f->sym->as + && (f->sym->as->type == AS_ASSUMED_SHAPE + || f->sym->attr.pointer))) + { + if (where) + gfc_error ("Pointer-array actual argument at %L requires " + "an assumed-shape or pointer-array dummy " + "argument '%s' due to VOLATILE attribute", + &a->expr->where,f->sym->name); + return 0; + } + + match: + if (a == actual) + na = i; + + new_arg[i++] = a; + } + + /* Make sure missing actual arguments are optional. */ + i = 0; + for (f = formal; f; f = f->next, i++) + { + if (new_arg[i] != NULL) + continue; + if (f->sym == NULL) + { + if (where) + gfc_error ("Missing alternate return spec in subroutine call " + "at %L", where); + return 0; + } + if (!f->sym->attr.optional) + { + if (where) + gfc_error ("Missing actual argument for argument '%s' at %L", + f->sym->name, where); + return 0; + } + } + + /* The argument lists are compatible. We now relink a new actual + argument list with null arguments in the right places. The head + of the list remains the head. */ + for (i = 0; i < n; i++) + if (new_arg[i] == NULL) + new_arg[i] = gfc_get_actual_arglist (); + + if (na != 0) + { + temp = *new_arg[0]; + *new_arg[0] = *actual; + *actual = temp; + + a = new_arg[0]; + new_arg[0] = new_arg[na]; + new_arg[na] = a; + } + + for (i = 0; i < n - 1; i++) + new_arg[i]->next = new_arg[i + 1]; + + new_arg[i]->next = NULL; + + if (*ap == NULL && n > 0) + *ap = new_arg[0]; + + /* Note the types of omitted optional arguments. */ + for (a = *ap, f = formal; a; a = a->next, f = f->next) + if (a->expr == NULL && a->label == NULL) + a->missing_arg_type = f->sym->ts.type; + + return 1; +} + + +typedef struct +{ + gfc_formal_arglist *f; + gfc_actual_arglist *a; +} +argpair; + +/* qsort comparison function for argument pairs, with the following + order: + - p->a->expr == NULL + - p->a->expr->expr_type != EXPR_VARIABLE + - growing p->a->expr->symbol. */ + +static int +pair_cmp (const void *p1, const void *p2) +{ + const gfc_actual_arglist *a1, *a2; + + /* *p1 and *p2 are elements of the to-be-sorted array. */ + a1 = ((const argpair *) p1)->a; + a2 = ((const argpair *) p2)->a; + if (!a1->expr) + { + if (!a2->expr) + return 0; + return -1; + } + if (!a2->expr) + return 1; + if (a1->expr->expr_type != EXPR_VARIABLE) + { + if (a2->expr->expr_type != EXPR_VARIABLE) + return 0; + return -1; + } + if (a2->expr->expr_type != EXPR_VARIABLE) + return 1; + return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym; +} + + +/* Given two expressions from some actual arguments, test whether they + refer to the same expression. The analysis is conservative. + Returning FAILURE will produce no warning. */ + +static gfc_try +compare_actual_expr (gfc_expr *e1, gfc_expr *e2) +{ + const gfc_ref *r1, *r2; + + if (!e1 || !e2 + || e1->expr_type != EXPR_VARIABLE + || e2->expr_type != EXPR_VARIABLE + || e1->symtree->n.sym != e2->symtree->n.sym) + return FAILURE; + + /* TODO: improve comparison, see expr.c:show_ref(). */ + for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next) + { + if (r1->type != r2->type) + return FAILURE; + switch (r1->type) + { + case REF_ARRAY: + if (r1->u.ar.type != r2->u.ar.type) + return FAILURE; + /* TODO: At the moment, consider only full arrays; + we could do better. */ + if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL) + return FAILURE; + break; + + case REF_COMPONENT: + if (r1->u.c.component != r2->u.c.component) + return FAILURE; + break; + + case REF_SUBSTRING: + return FAILURE; + + default: + gfc_internal_error ("compare_actual_expr(): Bad component code"); + } + } + if (!r1 && !r2) + return SUCCESS; + return FAILURE; +} + + +/* Given formal and actual argument lists that correspond to one + another, check that identical actual arguments aren't not + associated with some incompatible INTENTs. */ + +static gfc_try +check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a) +{ + sym_intent f1_intent, f2_intent; + gfc_formal_arglist *f1; + gfc_actual_arglist *a1; + size_t n, i, j; + argpair *p; + gfc_try t = SUCCESS; + + n = 0; + for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next) + { + if (f1 == NULL && a1 == NULL) + break; + if (f1 == NULL || a1 == NULL) + gfc_internal_error ("check_some_aliasing(): List mismatch"); + n++; + } + if (n == 0) + return t; + p = XALLOCAVEC (argpair, n); + + for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next) + { + p[i].f = f1; + p[i].a = a1; + } + + qsort (p, n, sizeof (argpair), pair_cmp); + + for (i = 0; i < n; i++) + { + if (!p[i].a->expr + || p[i].a->expr->expr_type != EXPR_VARIABLE + || p[i].a->expr->ts.type == BT_PROCEDURE) + continue; + f1_intent = p[i].f->sym->attr.intent; + for (j = i + 1; j < n; j++) + { + /* Expected order after the sort. */ + if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE) + gfc_internal_error ("check_some_aliasing(): corrupted data"); + + /* Are the expression the same? */ + if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE) + break; + f2_intent = p[j].f->sym->attr.intent; + if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT) + || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)) + { + gfc_warning ("Same actual argument associated with INTENT(%s) " + "argument '%s' and INTENT(%s) argument '%s' at %L", + gfc_intent_string (f1_intent), p[i].f->sym->name, + gfc_intent_string (f2_intent), p[j].f->sym->name, + &p[i].a->expr->where); + t = FAILURE; + } + } + } + + return t; +} + + +/* Given a symbol of a formal argument list and an expression, + return nonzero if their intents are compatible, zero otherwise. */ + +static int +compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual) +{ + if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer) + return 1; + + if (actual->symtree->n.sym->attr.intent != INTENT_IN) + return 1; + + if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT) + return 0; + + return 1; +} + + +/* Given formal and actual argument lists that correspond to one + another, check that they are compatible in the sense that intents + are not mismatched. */ + +static gfc_try +check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a) +{ + sym_intent f_intent; + + for (;; f = f->next, a = a->next) + { + if (f == NULL && a == NULL) + break; + if (f == NULL || a == NULL) + gfc_internal_error ("check_intents(): List mismatch"); + + if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE) + continue; + + f_intent = f->sym->attr.intent; + + if (!compare_parameter_intent(f->sym, a->expr)) + { + gfc_error ("Procedure argument at %L is INTENT(IN) while interface " + "specifies INTENT(%s)", &a->expr->where, + gfc_intent_string (f_intent)); + return FAILURE; + } + + if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym)) + { + if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT) + { + gfc_error ("Procedure argument at %L is local to a PURE " + "procedure and is passed to an INTENT(%s) argument", + &a->expr->where, gfc_intent_string (f_intent)); + return FAILURE; + } + + if (f->sym->attr.pointer) + { + gfc_error ("Procedure argument at %L is local to a PURE " + "procedure and has the POINTER attribute", + &a->expr->where); + return FAILURE; + } + } + + /* Fortran 2008, C1283. */ + if (gfc_pure (NULL) && gfc_is_coindexed (a->expr)) + { + if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT) + { + gfc_error ("Coindexed actual argument at %L in PURE procedure " + "is passed to an INTENT(%s) argument", + &a->expr->where, gfc_intent_string (f_intent)); + return FAILURE; + } + + if (f->sym->attr.pointer) + { + gfc_error ("Coindexed actual argument at %L in PURE procedure " + "is passed to a POINTER dummy argument", + &a->expr->where); + return FAILURE; + } + } + + /* F2008, Section 12.5.2.4. */ + if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS + && gfc_is_coindexed (a->expr)) + { + gfc_error ("Coindexed polymorphic actual argument at %L is passed " + "polymorphic dummy argument '%s'", + &a->expr->where, f->sym->name); + return FAILURE; + } + } + + return SUCCESS; +} + + +/* Check how a procedure is used against its interface. If all goes + well, the actual argument list will also end up being properly + sorted. */ + +void +gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where) +{ + + /* Warn about calls with an implicit interface. Special case + for calling a ISO_C_BINDING becase c_loc and c_funloc + are pseudo-unknown. Additionally, warn about procedures not + explicitly declared at all if requested. */ + if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c) + { + if (gfc_option.warn_implicit_interface) + gfc_warning ("Procedure '%s' called with an implicit interface at %L", + sym->name, where); + else if (gfc_option.warn_implicit_procedure + && sym->attr.proc == PROC_UNKNOWN) + gfc_warning ("Procedure '%s' called at %L is not explicitly declared", + sym->name, where); + } + + if (sym->attr.if_source == IFSRC_UNKNOWN) + { + gfc_actual_arglist *a; + + if (sym->attr.pointer) + { + gfc_error("The pointer object '%s' at %L must have an explicit " + "function interface or be declared as array", + sym->name, where); + return; + } + + if (sym->attr.allocatable && !sym->attr.external) + { + gfc_error("The allocatable object '%s' at %L must have an explicit " + "function interface or be declared as array", + sym->name, where); + return; + } + + if (sym->attr.allocatable) + { + gfc_error("Allocatable function '%s' at %L must have an explicit " + "function interface", sym->name, where); + return; + } + + for (a = *ap; a; a = a->next) + { + /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ + if (a->name != NULL && a->name[0] != '%') + { + gfc_error("Keyword argument requires explicit interface " + "for procedure '%s' at %L", sym->name, &a->expr->where); + break; + } + } + + return; + } + + if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where)) + return; + + check_intents (sym->formal, *ap); + if (gfc_option.warn_aliasing) + check_some_aliasing (sym->formal, *ap); +} + + +/* Check how a procedure pointer component is used against its interface. + If all goes well, the actual argument list will also end up being properly + sorted. Completely analogous to gfc_procedure_use. */ + +void +gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where) +{ + + /* Warn about calls with an implicit interface. Special case + for calling a ISO_C_BINDING becase c_loc and c_funloc + are pseudo-unknown. */ + if (gfc_option.warn_implicit_interface + && comp->attr.if_source == IFSRC_UNKNOWN + && !comp->attr.is_iso_c) + gfc_warning ("Procedure pointer component '%s' called with an implicit " + "interface at %L", comp->name, where); + + if (comp->attr.if_source == IFSRC_UNKNOWN) + { + gfc_actual_arglist *a; + for (a = *ap; a; a = a->next) + { + /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ + if (a->name != NULL && a->name[0] != '%') + { + gfc_error("Keyword argument requires explicit interface " + "for procedure pointer component '%s' at %L", + comp->name, &a->expr->where); + break; + } + } + + return; + } + + if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where)) + return; + + check_intents (comp->formal, *ap); + if (gfc_option.warn_aliasing) + check_some_aliasing (comp->formal, *ap); +} + + +/* Try if an actual argument list matches the formal list of a symbol, + respecting the symbol's attributes like ELEMENTAL. This is used for + GENERIC resolution. */ + +bool +gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym) +{ + bool r; + + gcc_assert (sym->attr.flavor == FL_PROCEDURE); + + r = !sym->attr.elemental; + if (compare_actual_formal (args, sym->formal, r, !r, NULL)) + { + check_intents (sym->formal, *args); + if (gfc_option.warn_aliasing) + check_some_aliasing (sym->formal, *args); + return true; + } + + return false; +} + + +/* Given an interface pointer and an actual argument list, search for + a formal argument list that matches the actual. If found, returns + a pointer to the symbol of the correct interface. Returns NULL if + not found. */ + +gfc_symbol * +gfc_search_interface (gfc_interface *intr, int sub_flag, + gfc_actual_arglist **ap) +{ + gfc_symbol *elem_sym = NULL; + for (; intr; intr = intr->next) + { + if (sub_flag && intr->sym->attr.function) + continue; + if (!sub_flag && intr->sym->attr.subroutine) + continue; + + if (gfc_arglist_matches_symbol (ap, intr->sym)) + { + /* Satisfy 12.4.4.1 such that an elemental match has lower + weight than a non-elemental match. */ + if (intr->sym->attr.elemental) + { + elem_sym = intr->sym; + continue; + } + return intr->sym; + } + } + + return elem_sym ? elem_sym : NULL; +} + + +/* Do a brute force recursive search for a symbol. */ + +static gfc_symtree * +find_symtree0 (gfc_symtree *root, gfc_symbol *sym) +{ + gfc_symtree * st; + + if (root->n.sym == sym) + return root; + + st = NULL; + if (root->left) + st = find_symtree0 (root->left, sym); + if (root->right && ! st) + st = find_symtree0 (root->right, sym); + return st; +} + + +/* Find a symtree for a symbol. */ + +gfc_symtree * +gfc_find_sym_in_symtree (gfc_symbol *sym) +{ + gfc_symtree *st; + gfc_namespace *ns; + + /* First try to find it by name. */ + gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st); + if (st && st->n.sym == sym) + return st; + + /* If it's been renamed, resort to a brute-force search. */ + /* TODO: avoid having to do this search. If the symbol doesn't exist + in the symtree for the current namespace, it should probably be added. */ + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + st = find_symtree0 (ns->sym_root, sym); + if (st) + return st; + } + gfc_internal_error ("Unable to find symbol %s", sym->name); + /* Not reached. */ +} + + +/* See if the arglist to an operator-call contains a derived-type argument + with a matching type-bound operator. If so, return the matching specific + procedure defined as operator-target as well as the base-object to use + (which is the found derived-type argument with operator). The generic + name, if any, is transmitted to the final expression via 'gname'. */ + +static gfc_typebound_proc* +matching_typebound_op (gfc_expr** tb_base, + gfc_actual_arglist* args, + gfc_intrinsic_op op, const char* uop, + const char ** gname) +{ + gfc_actual_arglist* base; + + for (base = args; base; base = base->next) + if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS) + { + gfc_typebound_proc* tb; + gfc_symbol* derived; + gfc_try result; + + if (base->expr->ts.type == BT_CLASS) + { + if (!gfc_expr_attr (base->expr).class_ok) + continue; + derived = CLASS_DATA (base->expr)->ts.u.derived; + } + else + derived = base->expr->ts.u.derived; + + if (op == INTRINSIC_USER) + { + gfc_symtree* tb_uop; + + gcc_assert (uop); + tb_uop = gfc_find_typebound_user_op (derived, &result, uop, + false, NULL); + + if (tb_uop) + tb = tb_uop->n.tb; + else + tb = NULL; + } + else + tb = gfc_find_typebound_intrinsic_op (derived, &result, op, + false, NULL); + + /* This means we hit a PRIVATE operator which is use-associated and + should thus not be seen. */ + if (result == FAILURE) + tb = NULL; + + /* Look through the super-type hierarchy for a matching specific + binding. */ + for (; tb; tb = tb->overridden) + { + gfc_tbp_generic* g; + + gcc_assert (tb->is_generic); + for (g = tb->u.generic; g; g = g->next) + { + gfc_symbol* target; + gfc_actual_arglist* argcopy; + bool matches; + + gcc_assert (g->specific); + if (g->specific->error) + continue; + + target = g->specific->u.specific->n.sym; + + /* Check if this arglist matches the formal. */ + argcopy = gfc_copy_actual_arglist (args); + matches = gfc_arglist_matches_symbol (&argcopy, target); + gfc_free_actual_arglist (argcopy); + + /* Return if we found a match. */ + if (matches) + { + *tb_base = base->expr; + *gname = g->specific_st->name; + return g->specific; + } + } + } + } + + return NULL; +} + + +/* For the 'actual arglist' of an operator call and a specific typebound + procedure that has been found the target of a type-bound operator, build the + appropriate EXPR_COMPCALL and resolve it. We take this indirection over + type-bound procedures rather than resolving type-bound operators 'directly' + so that we can reuse the existing logic. */ + +static void +build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual, + gfc_expr* base, gfc_typebound_proc* target, + const char *gname) +{ + e->expr_type = EXPR_COMPCALL; + e->value.compcall.tbp = target; + e->value.compcall.name = gname ? gname : "$op"; + e->value.compcall.actual = actual; + e->value.compcall.base_object = base; + e->value.compcall.ignore_pass = 1; + e->value.compcall.assign = 0; +} + + +/* This subroutine is called when an expression is being resolved. + The expression node in question is either a user defined operator + or an intrinsic operator with arguments that aren't compatible + with the operator. This subroutine builds an actual argument list + corresponding to the operands, then searches for a compatible + interface. If one is found, the expression node is replaced with + the appropriate function call. + real_error is an additional output argument that specifies if FAILURE + is because of some real error and not because no match was found. */ + +gfc_try +gfc_extend_expr (gfc_expr *e, bool *real_error) +{ + gfc_actual_arglist *actual; + gfc_symbol *sym; + gfc_namespace *ns; + gfc_user_op *uop; + gfc_intrinsic_op i; + const char *gname; + + sym = NULL; + + actual = gfc_get_actual_arglist (); + actual->expr = e->value.op.op1; + + *real_error = false; + gname = NULL; + + if (e->value.op.op2 != NULL) + { + actual->next = gfc_get_actual_arglist (); + actual->next->expr = e->value.op.op2; + } + + i = fold_unary_intrinsic (e->value.op.op); + + if (i == INTRINSIC_USER) + { + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + uop = gfc_find_uop (e->value.op.uop->name, ns); + if (uop == NULL) + continue; + + sym = gfc_search_interface (uop->op, 0, &actual); + if (sym != NULL) + break; + } + } + else + { + for (ns = gfc_current_ns; ns; ns = ns->parent) + { + /* Due to the distinction between '==' and '.eq.' and friends, one has + to check if either is defined. */ + switch (i) + { +#define CHECK_OS_COMPARISON(comp) \ + case INTRINSIC_##comp: \ + case INTRINSIC_##comp##_OS: \ + sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \ + if (!sym) \ + sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \ + break; + CHECK_OS_COMPARISON(EQ) + CHECK_OS_COMPARISON(NE) + CHECK_OS_COMPARISON(GT) + CHECK_OS_COMPARISON(GE) + CHECK_OS_COMPARISON(LT) + CHECK_OS_COMPARISON(LE) +#undef CHECK_OS_COMPARISON + + default: + sym = gfc_search_interface (ns->op[i], 0, &actual); + } + + if (sym != NULL) + break; + } + } + + /* TODO: Do an ambiguity-check and error if multiple matching interfaces are + found rather than just taking the first one and not checking further. */ + + if (sym == NULL) + { + gfc_typebound_proc* tbo; + gfc_expr* tb_base; + + /* See if we find a matching type-bound operator. */ + if (i == INTRINSIC_USER) + tbo = matching_typebound_op (&tb_base, actual, + i, e->value.op.uop->name, &gname); + else + switch (i) + { +#define CHECK_OS_COMPARISON(comp) \ + case INTRINSIC_##comp: \ + case INTRINSIC_##comp##_OS: \ + tbo = matching_typebound_op (&tb_base, actual, \ + INTRINSIC_##comp, NULL, &gname); \ + if (!tbo) \ + tbo = matching_typebound_op (&tb_base, actual, \ + INTRINSIC_##comp##_OS, NULL, &gname); \ + break; + CHECK_OS_COMPARISON(EQ) + CHECK_OS_COMPARISON(NE) + CHECK_OS_COMPARISON(GT) + CHECK_OS_COMPARISON(GE) + CHECK_OS_COMPARISON(LT) + CHECK_OS_COMPARISON(LE) +#undef CHECK_OS_COMPARISON + + default: + tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname); + break; + } + + /* If there is a matching typebound-operator, replace the expression with + a call to it and succeed. */ + if (tbo) + { + gfc_try result; + + gcc_assert (tb_base); + build_compcall_for_operator (e, actual, tb_base, tbo, gname); + + result = gfc_resolve_expr (e); + if (result == FAILURE) + *real_error = true; + + return result; + } + + /* Don't use gfc_free_actual_arglist(). */ + if (actual->next != NULL) + gfc_free (actual->next); + gfc_free (actual); + + return FAILURE; + } + + /* Change the expression node to a function call. */ + e->expr_type = EXPR_FUNCTION; + e->symtree = gfc_find_sym_in_symtree (sym); + e->value.function.actual = actual; + e->value.function.esym = NULL; + e->value.function.isym = NULL; + e->value.function.name = NULL; + e->user_operator = 1; + + if (gfc_resolve_expr (e) == FAILURE) + { + *real_error = true; + return FAILURE; + } + + return SUCCESS; +} + + +/* Tries to replace an assignment code node with a subroutine call to + the subroutine associated with the assignment operator. Return + SUCCESS if the node was replaced. On FAILURE, no error is + generated. */ + +gfc_try +gfc_extend_assign (gfc_code *c, gfc_namespace *ns) +{ + gfc_actual_arglist *actual; + gfc_expr *lhs, *rhs; + gfc_symbol *sym; + const char *gname; + + gname = NULL; + + lhs = c->expr1; + rhs = c->expr2; + + /* Don't allow an intrinsic assignment to be replaced. */ + if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS + && (rhs->rank == 0 || rhs->rank == lhs->rank) + && (lhs->ts.type == rhs->ts.type + || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts)))) + return FAILURE; + + actual = gfc_get_actual_arglist (); + actual->expr = lhs; + + actual->next = gfc_get_actual_arglist (); + actual->next->expr = rhs; + + sym = NULL; + + for (; ns; ns = ns->parent) + { + sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual); + if (sym != NULL) + break; + } + + /* TODO: Ambiguity-check, see above for gfc_extend_expr. */ + + if (sym == NULL) + { + gfc_typebound_proc* tbo; + gfc_expr* tb_base; + + /* See if we find a matching type-bound assignment. */ + tbo = matching_typebound_op (&tb_base, actual, + INTRINSIC_ASSIGN, NULL, &gname); + + /* If there is one, replace the expression with a call to it and + succeed. */ + if (tbo) + { + gcc_assert (tb_base); + c->expr1 = gfc_get_expr (); + build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname); + c->expr1->value.compcall.assign = 1; + c->expr1->where = c->loc; + c->expr2 = NULL; + c->op = EXEC_COMPCALL; + + /* c is resolved from the caller, so no need to do it here. */ + + return SUCCESS; + } + + gfc_free (actual->next); + gfc_free (actual); + return FAILURE; + } + + /* Replace the assignment with the call. */ + c->op = EXEC_ASSIGN_CALL; + c->symtree = gfc_find_sym_in_symtree (sym); + c->expr1 = NULL; + c->expr2 = NULL; + c->ext.actual = actual; + + return SUCCESS; +} + + +/* Make sure that the interface just parsed is not already present in + the given interface list. Ambiguity isn't checked yet since module + procedures can be present without interfaces. */ + +static gfc_try +check_new_interface (gfc_interface *base, gfc_symbol *new_sym) +{ + gfc_interface *ip; + + for (ip = base; ip; ip = ip->next) + { + if (ip->sym == new_sym) + { + gfc_error ("Entity '%s' at %C is already present in the interface", + new_sym->name); + return FAILURE; + } + } + + return SUCCESS; +} + + +/* Add a symbol to the current interface. */ + +gfc_try +gfc_add_interface (gfc_symbol *new_sym) +{ + gfc_interface **head, *intr; + gfc_namespace *ns; + gfc_symbol *sym; + + switch (current_interface.type) + { + case INTERFACE_NAMELESS: + case INTERFACE_ABSTRACT: + return SUCCESS; + + case INTERFACE_INTRINSIC_OP: + for (ns = current_interface.ns; ns; ns = ns->parent) + switch (current_interface.op) + { + case INTRINSIC_EQ: + case INTRINSIC_EQ_OS: + if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE) + return FAILURE; + break; + + case INTRINSIC_NE: + case INTRINSIC_NE_OS: + if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE) + return FAILURE; + break; + + case INTRINSIC_GT: + case INTRINSIC_GT_OS: + if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE) + return FAILURE; + break; + + case INTRINSIC_GE: + case INTRINSIC_GE_OS: + if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE) + return FAILURE; + break; + + case INTRINSIC_LT: + case INTRINSIC_LT_OS: + if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE) + return FAILURE; + break; + + case INTRINSIC_LE: + case INTRINSIC_LE_OS: + if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE || + check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE) + return FAILURE; + break; + + default: + if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE) + return FAILURE; + } + + head = ¤t_interface.ns->op[current_interface.op]; + break; + + case INTERFACE_GENERIC: + for (ns = current_interface.ns; ns; ns = ns->parent) + { + gfc_find_symbol (current_interface.sym->name, ns, 0, &sym); + if (sym == NULL) + continue; + + if (check_new_interface (sym->generic, new_sym) == FAILURE) + return FAILURE; + } + + head = ¤t_interface.sym->generic; + break; + + case INTERFACE_USER_OP: + if (check_new_interface (current_interface.uop->op, new_sym) + == FAILURE) + return FAILURE; + + head = ¤t_interface.uop->op; + break; + + default: + gfc_internal_error ("gfc_add_interface(): Bad interface type"); + } + + intr = gfc_get_interface (); + intr->sym = new_sym; + intr->where = gfc_current_locus; + + intr->next = *head; + *head = intr; + + return SUCCESS; +} + + +gfc_interface * +gfc_current_interface_head (void) +{ + switch (current_interface.type) + { + case INTERFACE_INTRINSIC_OP: + return current_interface.ns->op[current_interface.op]; + break; + + case INTERFACE_GENERIC: + return current_interface.sym->generic; + break; + + case INTERFACE_USER_OP: + return current_interface.uop->op; + break; + + default: + gcc_unreachable (); + } +} + + +void +gfc_set_current_interface_head (gfc_interface *i) +{ + switch (current_interface.type) + { + case INTERFACE_INTRINSIC_OP: + current_interface.ns->op[current_interface.op] = i; + break; + + case INTERFACE_GENERIC: + current_interface.sym->generic = i; + break; + + case INTERFACE_USER_OP: + current_interface.uop->op = i; + break; + + default: + gcc_unreachable (); + } +} + + +/* Gets rid of a formal argument list. We do not free symbols. + Symbols are freed when a namespace is freed. */ + +void +gfc_free_formal_arglist (gfc_formal_arglist *p) +{ + gfc_formal_arglist *q; + + for (; p; p = q) + { + q = p->next; + gfc_free (p); + } +} |