diff options
Diffstat (limited to 'gcc/graphite-clast-to-gimple.c')
-rw-r--r-- | gcc/graphite-clast-to-gimple.c | 1577 |
1 files changed, 1577 insertions, 0 deletions
diff --git a/gcc/graphite-clast-to-gimple.c b/gcc/graphite-clast-to-gimple.c new file mode 100644 index 000000000..41356dc81 --- /dev/null +++ b/gcc/graphite-clast-to-gimple.c @@ -0,0 +1,1577 @@ +/* Translation of CLAST (CLooG AST) to Gimple. + Copyright (C) 2009, 2010 Free Software Foundation, Inc. + Contributed by Sebastian Pop <sebastian.pop@amd.com>. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "diagnostic-core.h" +#include "tree-flow.h" +#include "tree-dump.h" +#include "cfgloop.h" +#include "tree-chrec.h" +#include "tree-data-ref.h" +#include "tree-scalar-evolution.h" +#include "sese.h" + +#ifdef HAVE_cloog +#include "cloog/cloog.h" +#include "ppl_c.h" +#include "graphite-cloog-util.h" +#include "graphite-ppl.h" +#include "graphite-poly.h" +#include "graphite-clast-to-gimple.h" +#include "graphite-dependences.h" +#include "graphite-cloog-compat.h" + +/* This flag is set when an error occurred during the translation of + CLAST to Gimple. */ +static bool gloog_error; + +/* Verifies properties that GRAPHITE should maintain during translation. */ + +static inline void +graphite_verify (void) +{ +#ifdef ENABLE_CHECKING + verify_loop_structure (); + verify_dominators (CDI_DOMINATORS); + verify_loop_closed_ssa (true); +#endif +} + +/* Stores the INDEX in a vector for a given clast NAME. */ + +typedef struct clast_name_index { + int index; + const char *name; +} *clast_name_index_p; + +/* Returns a pointer to a new element of type clast_name_index_p built + from NAME and INDEX. */ + +static inline clast_name_index_p +new_clast_name_index (const char *name, int index) +{ + clast_name_index_p res = XNEW (struct clast_name_index); + + res->name = name; + res->index = index; + return res; +} + +/* For a given clast NAME, returns -1 if it does not correspond to any + parameter, or otherwise, returns the index in the PARAMS or + SCATTERING_DIMENSIONS vector. */ + +static inline int +clast_name_to_index (clast_name_p name, htab_t index_table) +{ + struct clast_name_index tmp; + PTR *slot; + +#ifdef CLOOG_ORG + gcc_assert (name->type == clast_expr_name); + tmp.name = ((const struct clast_name*) name)->name; +#else + tmp.name = name; +#endif + + slot = htab_find_slot (index_table, &tmp, NO_INSERT); + + if (slot && *slot) + return ((struct clast_name_index *) *slot)->index; + + return -1; +} + +/* Records in INDEX_TABLE the INDEX for NAME. */ + +static inline void +save_clast_name_index (htab_t index_table, const char *name, int index) +{ + struct clast_name_index tmp; + PTR *slot; + + tmp.name = name; + slot = htab_find_slot (index_table, &tmp, INSERT); + + if (slot) + { + if (*slot) + free (*slot); + + *slot = new_clast_name_index (name, index); + } +} + +/* Computes a hash function for database element ELT. */ + +static inline hashval_t +clast_name_index_elt_info (const void *elt) +{ + return htab_hash_pointer (((const struct clast_name_index *) elt)->name); +} + +/* Compares database elements E1 and E2. */ + +static inline int +eq_clast_name_indexes (const void *e1, const void *e2) +{ + const struct clast_name_index *elt1 = (const struct clast_name_index *) e1; + const struct clast_name_index *elt2 = (const struct clast_name_index *) e2; + + return (elt1->name == elt2->name); +} + +/* For a given scattering dimension, return the new induction variable + associated to it. */ + +static inline tree +newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth) +{ + return VEC_index (tree, newivs, depth); +} + + + +/* Returns the tree variable from the name NAME that was given in + Cloog representation. */ + +static tree +clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + int index; + VEC (tree, heap) *params = SESE_PARAMS (region); + + if (params && params_index) + { + index = clast_name_to_index (name, params_index); + + if (index >= 0) + return VEC_index (tree, params, index); + } + + gcc_assert (newivs && newivs_index); + index = clast_name_to_index (name, newivs_index); + gcc_assert (index >= 0); + + return newivs_to_depth_to_newiv (newivs, index); +} + +/* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */ + +static tree +max_signed_precision_type (tree type1, tree type2) +{ + int p1 = TYPE_PRECISION (type1); + int p2 = TYPE_PRECISION (type2); + int precision; + tree type; + enum machine_mode mode; + + if (p1 > p2) + precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1; + else + precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2; + + if (precision > BITS_PER_WORD) + { + gloog_error = true; + return integer_type_node; + } + + mode = smallest_mode_for_size (precision, MODE_INT); + precision = GET_MODE_PRECISION (mode); + type = build_nonstandard_integer_type (precision, false); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; +} + +/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */ + +static tree +max_precision_type (tree type1, tree type2) +{ + if (POINTER_TYPE_P (type1)) + return type1; + + if (POINTER_TYPE_P (type2)) + return type2; + + if (!TYPE_UNSIGNED (type1) + || !TYPE_UNSIGNED (type2)) + return max_signed_precision_type (type1, type2); + + return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; +} + +static tree +clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *, + htab_t, htab_t); + +/* Converts a Cloog reduction expression R with reduction operation OP + to a GCC expression tree of type TYPE. */ + +static tree +clast_to_gcc_expression_red (tree type, enum tree_code op, + struct clast_reduction *r, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + int i; + tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs, + newivs_index, params_index); + tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; + + for (i = 1; i < r->n; i++) + { + tree t = clast_to_gcc_expression (operand_type, r->elts[i], region, + newivs, newivs_index, params_index); + res = fold_build2 (op, type, res, t); + } + + return res; +} + +/* Converts a Cloog AST expression E back to a GCC expression tree of + type TYPE. */ + +static tree +clast_to_gcc_expression (tree type, struct clast_expr *e, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + switch (e->type) + { + case clast_expr_term: + { + struct clast_term *t = (struct clast_term *) e; + + if (t->var) + { + if (mpz_cmp_si (t->val, 1) == 0) + { + tree name = clast_name_to_gcc (t->var, region, newivs, + newivs_index, params_index); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = fold_convert (sizetype, name); + + name = fold_convert (type, name); + return name; + } + + else if (mpz_cmp_si (t->val, -1) == 0) + { + tree name = clast_name_to_gcc (t->var, region, newivs, + newivs_index, params_index); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = fold_convert (sizetype, name); + + name = fold_convert (type, name); + + return fold_build1 (NEGATE_EXPR, type, name); + } + else + { + tree name = clast_name_to_gcc (t->var, region, newivs, + newivs_index, params_index); + tree cst = gmp_cst_to_tree (type, t->val); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = fold_convert (sizetype, name); + + name = fold_convert (type, name); + + if (!POINTER_TYPE_P (type)) + return fold_build2 (MULT_EXPR, type, cst, name); + + gloog_error = true; + return cst; + } + } + else + return gmp_cst_to_tree (type, t->val); + } + + case clast_expr_red: + { + struct clast_reduction *r = (struct clast_reduction *) e; + + switch (r->type) + { + case clast_red_sum: + return clast_to_gcc_expression_red + (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, + r, region, newivs, newivs_index, params_index); + + case clast_red_min: + return clast_to_gcc_expression_red (type, MIN_EXPR, r, region, + newivs, newivs_index, + params_index); + + case clast_red_max: + return clast_to_gcc_expression_red (type, MAX_EXPR, r, region, + newivs, newivs_index, + params_index); + + default: + gcc_unreachable (); + } + break; + } + + case clast_expr_bin: + { + struct clast_binary *b = (struct clast_binary *) e; + struct clast_expr *lhs = (struct clast_expr *) b->LHS; + tree tl = clast_to_gcc_expression (type, lhs, region, newivs, + newivs_index, params_index); + tree tr = gmp_cst_to_tree (type, b->RHS); + + switch (b->type) + { + case clast_bin_fdiv: + return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); + + case clast_bin_cdiv: + return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); + + case clast_bin_div: + return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); + + case clast_bin_mod: + return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); + + default: + gcc_unreachable (); + } + } + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* Return the precision needed to represent the value VAL. */ + +static int +precision_for_value (mpz_t val) +{ + mpz_t x, y, two; + int precision; + + mpz_init (x); + mpz_init (y); + mpz_init (two); + mpz_set_si (x, 2); + mpz_set (y, val); + mpz_set_si (two, 2); + precision = 1; + + if (mpz_sgn (y) < 0) + mpz_neg (y, y); + + while (mpz_cmp (y, x) >= 0) + { + mpz_mul (x, x, two); + precision++; + } + + mpz_clear (x); + mpz_clear (y); + mpz_clear (two); + + return precision; +} + +/* Return the precision needed to represent the values between LOW and + UP. */ + +static int +precision_for_interval (mpz_t low, mpz_t up) +{ + mpz_t diff; + int precision; + + gcc_assert (mpz_cmp (low, up) <= 0); + + mpz_init (diff); + mpz_sub (diff, up, low); + precision = precision_for_value (diff); + mpz_clear (diff); + + return precision; +} + +/* Return a type that could represent the integer value VAL. */ + +static tree +gcc_type_for_interval (mpz_t low, mpz_t up) +{ + bool unsigned_p = true; + int precision, prec_up, prec_int; + tree type; + enum machine_mode mode; + + gcc_assert (mpz_cmp (low, up) <= 0); + + prec_up = precision_for_value (up); + prec_int = precision_for_interval (low, up); + precision = MAX (prec_up, prec_int); + + if (precision > BITS_PER_WORD) + { + gloog_error = true; + return integer_type_node; + } + + if (mpz_sgn (low) <= 0) + unsigned_p = false; + + else if (precision < BITS_PER_WORD) + { + unsigned_p = false; + precision++; + } + + mode = smallest_mode_for_size (precision, MODE_INT); + precision = GET_MODE_PRECISION (mode); + type = build_nonstandard_integer_type (precision, unsigned_p); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; +} + +/* Return a type that could represent the integer value VAL, or + otherwise return NULL_TREE. */ + +static tree +gcc_type_for_value (mpz_t val) +{ + return gcc_type_for_interval (val, val); +} + +/* Return the type for the clast_term T used in STMT. */ + +static tree +gcc_type_for_clast_term (struct clast_term *t, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + gcc_assert (t->expr.type == clast_expr_term); + + if (!t->var) + return gcc_type_for_value (t->val); + + return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs, + newivs_index, params_index)); +} + +static tree +gcc_type_for_clast_expr (struct clast_expr *, sese, + VEC (tree, heap) *, htab_t, htab_t); + +/* Return the type for the clast_reduction R used in STMT. */ + +static tree +gcc_type_for_clast_red (struct clast_reduction *r, sese region, + VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + int i; + tree type = NULL_TREE; + + if (r->n == 1) + return gcc_type_for_clast_expr (r->elts[0], region, newivs, + newivs_index, params_index); + + switch (r->type) + { + case clast_red_sum: + case clast_red_min: + case clast_red_max: + type = gcc_type_for_clast_expr (r->elts[0], region, newivs, + newivs_index, params_index); + for (i = 1; i < r->n; i++) + type = max_precision_type (type, gcc_type_for_clast_expr + (r->elts[i], region, newivs, + newivs_index, params_index)); + + return type; + + default: + break; + } + + gcc_unreachable (); + return NULL_TREE; +} + +/* Return the type for the clast_binary B used in STMT. */ + +static tree +gcc_type_for_clast_bin (struct clast_binary *b, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region, + newivs, newivs_index, params_index); + tree r = gcc_type_for_value (b->RHS); + return max_signed_precision_type (l, r); +} + +/* Returns the type for the CLAST expression E when used in statement + STMT. */ + +static tree +gcc_type_for_clast_expr (struct clast_expr *e, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + switch (e->type) + { + case clast_expr_term: + return gcc_type_for_clast_term ((struct clast_term *) e, region, + newivs, newivs_index, params_index); + + case clast_expr_red: + return gcc_type_for_clast_red ((struct clast_reduction *) e, region, + newivs, newivs_index, params_index); + + case clast_expr_bin: + return gcc_type_for_clast_bin ((struct clast_binary *) e, region, + newivs, newivs_index, params_index); + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* Returns the type for the equation CLEQ. */ + +static tree +gcc_type_for_clast_eq (struct clast_equation *cleq, + sese region, VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs, + newivs_index, params_index); + tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs, + newivs_index, params_index); + return max_precision_type (l, r); +} + +/* Translates a clast equation CLEQ to a tree. */ + +static tree +graphite_translate_clast_equation (sese region, + struct clast_equation *cleq, + VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + enum tree_code comp; + tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index, + params_index); + tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs, + newivs_index, params_index); + tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs, + newivs_index, params_index); + + if (cleq->sign == 0) + comp = EQ_EXPR; + + else if (cleq->sign > 0) + comp = GE_EXPR; + + else + comp = LE_EXPR; + + return fold_build2 (comp, boolean_type_node, lhs, rhs); +} + +/* Creates the test for the condition in STMT. */ + +static tree +graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt, + VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + tree cond = NULL; + int i; + + for (i = 0; i < stmt->n; i++) + { + tree eq = graphite_translate_clast_equation (region, &stmt->eq[i], + newivs, newivs_index, + params_index); + + if (cond) + cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); + else + cond = eq; + } + + return cond; +} + +/* Creates a new if region corresponding to Cloog's guard. */ + +static edge +graphite_create_new_guard (sese region, edge entry_edge, + struct clast_guard *stmt, + VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs, + newivs_index, params_index); + edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + return exit_edge; +} + +/* Compute the lower bound LOW and upper bound UP for the induction + variable at LEVEL for the statement PBB, based on the transformed + scattering of PBB: T|I|G|Cst, with T the scattering transform, I + the iteration domain, and G the context parameters. */ + +static void +compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up) +{ + ppl_Pointset_Powerset_C_Polyhedron_t ps; + ppl_Linear_Expression_t le; + + combine_context_id_scat (&ps, pbb, false); + + /* Prepare the linear expression corresponding to the level that we + want to maximize/minimize. */ + { + ppl_dimension_type dim = pbb_nb_scattering_transform (pbb) + + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb); + + ppl_new_Linear_Expression_with_dimension (&le, dim); + ppl_set_coef (le, 2 * level + 1, 1); + } + + ppl_max_for_le_pointset (ps, le, up); + ppl_min_for_le_pointset (ps, le, low); + ppl_delete_Linear_Expression (le); + ppl_delete_Pointset_Powerset_C_Polyhedron (ps); +} + +/* Compute the type for the induction variable at LEVEL for the + statement PBB, based on the transformed schedule of PBB. */ + +static tree +compute_type_for_level (poly_bb_p pbb, int level) +{ + mpz_t low, up; + tree type; + + mpz_init (low); + mpz_init (up); + + compute_bounds_for_level (pbb, level, low, up); + type = gcc_type_for_interval (low, up); + + mpz_clear (low); + mpz_clear (up); + return type; +} + +/* Walks a CLAST and returns the first statement in the body of a + loop. */ + +static struct clast_user_stmt * +clast_get_body_of_loop (struct clast_stmt *stmt) +{ + if (!stmt + || CLAST_STMT_IS_A (stmt, stmt_user)) + return (struct clast_user_stmt *) stmt; + + if (CLAST_STMT_IS_A (stmt, stmt_for)) + return clast_get_body_of_loop (((struct clast_for *) stmt)->body); + + if (CLAST_STMT_IS_A (stmt, stmt_guard)) + return clast_get_body_of_loop (((struct clast_guard *) stmt)->then); + + if (CLAST_STMT_IS_A (stmt, stmt_block)) + return clast_get_body_of_loop (((struct clast_block *) stmt)->body); + + gcc_unreachable (); +} + +/* Returns the type for the induction variable for the loop translated + from STMT_FOR. */ + +static tree +gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level, + tree lb_type, tree ub_type) +{ + struct clast_stmt *stmt = (struct clast_stmt *) stmt_for; + struct clast_user_stmt *body = clast_get_body_of_loop (stmt); + CloogStatement *cs = body->statement; + poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); + + return max_signed_precision_type (lb_type, max_precision_type + (ub_type, compute_type_for_level + (pbb, level - 1))); +} + +/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an + induction variable for the new LOOP. New LOOP is attached to CFG + starting at ENTRY_EDGE. LOOP is inserted into the loop tree and + becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds + CLooG's scattering name to the induction variable created for the + loop of STMT. The new induction variable is inserted in the NEWIVS + vector. */ + +static struct loop * +graphite_create_new_loop (sese region, edge entry_edge, + struct clast_for *stmt, + loop_p outer, VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t params_index, int level) +{ + tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs, + newivs_index, params_index); + tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs, + newivs_index, params_index); + tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type); + tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs, + newivs_index, params_index); + tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs, + newivs_index, params_index); + tree stride = gmp_cst_to_tree (type, stmt->stride); + tree ivvar = create_tmp_var (type, "graphite_IV"); + tree iv, iv_after_increment; + loop_p loop = create_empty_loop_on_edge + (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, + outer ? outer : entry_edge->src->loop_father); + + add_referenced_var (ivvar); + + save_clast_name_index (newivs_index, stmt->iterator, + VEC_length (tree, *newivs)); + VEC_safe_push (tree, heap, *newivs, iv); + return loop; +} + +/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the + induction variables of the loops around GBB in SESE. */ + +static void +build_iv_mapping (VEC (tree, heap) *iv_map, sese region, + VEC (tree, heap) *newivs, htab_t newivs_index, + struct clast_user_stmt *user_stmt, + htab_t params_index) +{ + struct clast_stmt *t; + int depth = 0; + CloogStatement *cs = user_stmt->statement; + poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + + for (t = user_stmt->substitutions; t; t = t->next, depth++) + { + struct clast_expr *expr = (struct clast_expr *) + ((struct clast_assignment *)t)->RHS; + tree type = gcc_type_for_clast_expr (expr, region, newivs, + newivs_index, params_index); + tree new_name = clast_to_gcc_expression (type, expr, region, newivs, + newivs_index, params_index); + loop_p old_loop = gbb_loop_at_index (gbb, region, depth); + + VEC_replace (tree, iv_map, old_loop->num, new_name); + } +} + +/* Construct bb_pbb_def with BB and PBB. */ + +static bb_pbb_def * +new_bb_pbb_def (basic_block bb, poly_bb_p pbb) +{ + bb_pbb_def *bb_pbb_p; + + bb_pbb_p = XNEW (bb_pbb_def); + bb_pbb_p->bb = bb; + bb_pbb_p->pbb = pbb; + + return bb_pbb_p; +} + +/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */ + +static void +mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping) +{ + bb_pbb_def tmp; + PTR *x; + + tmp.bb = bb; + x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT); + + if (x && !*x) + *x = new_bb_pbb_def (bb, pbb); +} + +/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */ + +static poly_bb_p +find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb) +{ + bb_pbb_def tmp; + PTR *slot; + + tmp.bb = bb; + slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT); + + if (slot && *slot) + return ((bb_pbb_def *) *slot)->pbb; + + return NULL; +} + +/* Check data dependency in LOOP at scattering level LEVEL. + BB_PBB_MAPPING is a basic_block and it's related poly_bb_p + mapping. */ + +static bool +dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level) +{ + unsigned i,j; + basic_block *bbs = get_loop_body_in_dom_order (loop); + + for (i = 0; i < loop->num_nodes; i++) + { + poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]); + + if (pbb1 == NULL) + continue; + + for (j = 0; j < loop->num_nodes; j++) + { + poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]); + + if (pbb2 == NULL) + continue; + + if (dependency_between_pbbs_p (pbb1, pbb2, level)) + { + free (bbs); + return true; + } + } + } + + free (bbs); + + return false; +} + +/* Translates a clast user statement STMT to gimple. + + - REGION is the sese region we used to generate the scop. + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. + - PARAMS_INDEX connects the cloog parameters with the gimple parameters in + the sese region. */ +static edge +translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e, + VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t bb_pbb_mapping, + htab_t params_index) +{ + int i, nb_loops; + basic_block new_bb; + poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement); + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + VEC (tree, heap) *iv_map; + + if (GBB_BB (gbb) == ENTRY_BLOCK_PTR) + return next_e; + + nb_loops = number_of_loops (); + iv_map = VEC_alloc (tree, heap, nb_loops); + for (i = 0; i < nb_loops; i++) + VEC_quick_push (tree, iv_map, NULL_TREE); + + build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index); + next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region, + next_e, iv_map); + VEC_free (tree, heap, iv_map); + + new_bb = next_e->src; + mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping); + update_ssa (TODO_update_ssa); + + return next_e; +} + +/* Creates a new if region protecting the loop to be executed, if the execution + count is zero (lb > ub). */ + +static edge +graphite_create_new_loop_guard (sese region, edge entry_edge, + struct clast_for *stmt, + VEC (tree, heap) *newivs, + htab_t newivs_index, htab_t params_index) +{ + tree cond_expr; + edge exit_edge; + tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs, + newivs_index, params_index); + tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs, + newivs_index, params_index); + tree type = max_precision_type (lb_type, ub_type); + tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs, + newivs_index, params_index); + tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs, + newivs_index, params_index); + /* When ub is simply a constant or a parameter, use lb <= ub. */ + if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME) + cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub); + else + { + tree one = (POINTER_TYPE_P (type) + ? size_one_node + : fold_convert (type, integer_one_node)); + /* Adding +1 and using LT_EXPR helps with loop latches that have a + loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes + 2^k-1 due to integer overflow, and the condition lb <= ub is true, + even if we do not want this. However lb < ub + 1 is false, as + expected. */ + tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR + : PLUS_EXPR, type, ub, one); + + cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one); + } + + exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + + return exit_edge; +} + +static edge +translate_clast (sese, loop_p, struct clast_stmt *, edge, + VEC (tree, heap) **, htab_t, htab_t, int, htab_t); + +/* Create the loop for a clast for statement. + + - REGION is the sese region we used to generate the scop. + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. + - PARAMS_INDEX connects the cloog parameters with the gimple parameters in + the sese region. */ +static edge +translate_clast_for_loop (sese region, loop_p context_loop, + struct clast_for *stmt, edge next_e, + VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t bb_pbb_mapping, + int level, htab_t params_index) +{ + struct loop *loop = graphite_create_new_loop (region, next_e, stmt, + context_loop, newivs, + newivs_index, params_index, + level); + edge last_e = single_exit (loop); + edge to_body = single_succ_edge (loop->header); + basic_block after = to_body->dest; + + /* Create a basic block for loop close phi nodes. */ + last_e = single_succ_edge (split_edge (last_e)); + + /* Translate the body of the loop. */ + next_e = translate_clast (region, loop, stmt->body, to_body, + newivs, newivs_index, bb_pbb_mapping, level + 1, + params_index); + redirect_edge_succ_nodup (next_e, after); + set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); + + if (flag_loop_parallelize_all + && !dependency_in_loop_p (loop, bb_pbb_mapping, + get_scattering_level (level))) + loop->can_be_parallel = true; + + return last_e; +} + +/* Translates a clast for statement STMT to gimple. First a guard is created + protecting the loop, if it is executed zero times. In this guard we create + the real loop structure. + + - REGION is the sese region we used to generate the scop. + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. + - PARAMS_INDEX connects the cloog parameters with the gimple parameters in + the sese region. */ +static edge +translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt, + edge next_e, VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t bb_pbb_mapping, int level, + htab_t params_index) +{ + edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs, + newivs_index, params_index); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + + translate_clast_for_loop (region, context_loop, stmt, true_e, newivs, + newivs_index, bb_pbb_mapping, level, + params_index); + return last_e; +} + +/* Translates a clast guard statement STMT to gimple. + + - REGION is the sese region we used to generate the scop. + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. + - PARAMS_INDEX connects the cloog parameters with the gimple parameters in + the sese region. */ +static edge +translate_clast_guard (sese region, loop_p context_loop, + struct clast_guard *stmt, edge next_e, + VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t bb_pbb_mapping, int level, + htab_t params_index) +{ + edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs, + newivs_index, params_index); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + + translate_clast (region, context_loop, stmt->then, true_e, + newivs, newivs_index, bb_pbb_mapping, + level, params_index); + return last_e; +} + +/* Translates a CLAST statement STMT to GCC representation in the + context of a SESE. + + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ +static edge +translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt, + edge next_e, VEC (tree, heap) **newivs, + htab_t newivs_index, htab_t bb_pbb_mapping, int level, + htab_t params_index) +{ + if (!stmt) + return next_e; + + if (CLAST_STMT_IS_A (stmt, stmt_root)) + ; /* Do nothing. */ + + else if (CLAST_STMT_IS_A (stmt, stmt_user)) + next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt, + next_e, newivs, newivs_index, + bb_pbb_mapping, params_index); + + else if (CLAST_STMT_IS_A (stmt, stmt_for)) + next_e = translate_clast_for (region, context_loop, + (struct clast_for *) stmt, next_e, + newivs, newivs_index, + bb_pbb_mapping, level, params_index); + + else if (CLAST_STMT_IS_A (stmt, stmt_guard)) + next_e = translate_clast_guard (region, context_loop, + (struct clast_guard *) stmt, next_e, + newivs, newivs_index, + bb_pbb_mapping, level, params_index); + + else if (CLAST_STMT_IS_A (stmt, stmt_block)) + next_e = translate_clast (region, context_loop, + ((struct clast_block *) stmt)->body, + next_e, newivs, newivs_index, + bb_pbb_mapping, level, params_index); + else + gcc_unreachable(); + + recompute_all_dominators (); + graphite_verify (); + + return translate_clast (region, context_loop, stmt->next, next_e, + newivs, newivs_index, + bb_pbb_mapping, level, params_index); +} + +/* Free the SCATTERING domain list. */ + +static void +free_scattering (CloogScatteringList *scattering) +{ + while (scattering) + { + CloogScattering *dom = cloog_scattering (scattering); + CloogScatteringList *next = cloog_next_scattering (scattering); + + cloog_scattering_free (dom); + free (scattering); + scattering = next; + } +} + +/* Initialize Cloog's parameter names from the names used in GIMPLE. + Initialize Cloog's iterator names, using 'graphite_iterator_%d' + from 0 to scop_nb_loops (scop). */ + +static void +initialize_cloog_names (scop_p scop, CloogProgram *prog) +{ + sese region = SCOP_REGION (scop); + int i; + int nb_iterators = scop_max_loop_depth (scop); + int nb_scattering = cloog_program_nb_scattdims (prog); + int nb_parameters = VEC_length (tree, SESE_PARAMS (region)); + char **iterators = XNEWVEC (char *, nb_iterators * 2); + char **scattering = XNEWVEC (char *, nb_scattering); + char **parameters= XNEWVEC (char *, nb_parameters); + + cloog_program_set_names (prog, cloog_names_malloc ()); + + for (i = 0; i < nb_parameters; i++) + { + tree param = VEC_index (tree, SESE_PARAMS(region), i); + const char *name = get_name (param); + int len; + + if (!name) + name = "T"; + + len = strlen (name); + len += 17; + parameters[i] = XNEWVEC (char, len + 1); + snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param)); + } + + cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters); + cloog_names_set_parameters (cloog_program_names (prog), parameters); + + for (i = 0; i < nb_iterators; i++) + { + int len = 4 + 16; + iterators[i] = XNEWVEC (char, len); + snprintf (iterators[i], len, "git_%d", i); + } + + cloog_names_set_nb_iterators (cloog_program_names (prog), + nb_iterators); + cloog_names_set_iterators (cloog_program_names (prog), + iterators); + + for (i = 0; i < nb_scattering; i++) + { + int len = 5 + 16; + scattering[i] = XNEWVEC (char, len); + snprintf (scattering[i], len, "scat_%d", i); + } + + cloog_names_set_nb_scattering (cloog_program_names (prog), + nb_scattering); + cloog_names_set_scattering (cloog_program_names (prog), + scattering); +} + +/* Initialize a CLooG input file. */ + +static FILE * +init_cloog_input_file (int scop_number) +{ + FILE *graphite_out_file; + int len = strlen (dump_base_name); + char *dumpname = XNEWVEC (char, len + 25); + char *s_scop_number = XNEWVEC (char, 15); + + memcpy (dumpname, dump_base_name, len + 1); + strip_off_ending (dumpname, len); + sprintf (s_scop_number, ".%d", scop_number); + strcat (dumpname, s_scop_number); + strcat (dumpname, ".cloog"); + graphite_out_file = fopen (dumpname, "w+b"); + + if (graphite_out_file == 0) + fatal_error ("can%'t open %s for writing: %m", dumpname); + + free (dumpname); + + return graphite_out_file; +} + +/* Build cloog program for SCoP. */ + +static void +build_cloog_prog (scop_p scop, CloogProgram *prog, + CloogOptions *options) +{ + int i; + int max_nb_loops = scop_max_loop_depth (scop); + poly_bb_p pbb; + CloogLoop *loop_list = NULL; + CloogBlockList *block_list = NULL; + CloogScatteringList *scattering = NULL; + int nbs = 2 * max_nb_loops + 1; + int *scaldims; + + cloog_program_set_context + (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop), + scop_nb_params (scop), cloog_state)); + nbs = unify_scattering_dimensions (scop); + scaldims = (int *) xmalloc (nbs * (sizeof (int))); + cloog_program_set_nb_scattdims (prog, nbs); + initialize_cloog_names (scop, prog); + + FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb) + { + CloogStatement *stmt; + CloogBlock *block; + CloogDomain *dom; + + /* Dead code elimination: when the domain of a PBB is empty, + don't generate code for the PBB. */ + if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb))) + continue; + + /* Build the new statement and its block. */ + stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb)); + dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb), + scop_nb_params (scop), + cloog_state); + block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb)); + cloog_statement_set_usr (stmt, pbb); + + /* Build loop list. */ + { + CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state); + cloog_loop_set_next (new_loop_list, loop_list); + cloog_loop_set_domain (new_loop_list, dom); + cloog_loop_set_block (new_loop_list, block); + loop_list = new_loop_list; + } + + /* Build block list. */ + { + CloogBlockList *new_block_list = cloog_block_list_malloc (); + + cloog_block_list_set_next (new_block_list, block_list); + cloog_block_list_set_block (new_block_list, block); + block_list = new_block_list; + } + + /* Build scattering list. */ + { + /* XXX: Replace with cloog_domain_list_alloc(), when available. */ + CloogScatteringList *new_scattering + = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList)); + ppl_Polyhedron_t scat; + CloogScattering *dom; + + scat = PBB_TRANSFORMED_SCATTERING (pbb); + dom = new_Cloog_Scattering_from_ppl_Polyhedron + (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb), + cloog_state); + + cloog_set_next_scattering (new_scattering, scattering); + cloog_set_scattering (new_scattering, dom); + scattering = new_scattering; + } + } + + cloog_program_set_loop (prog, loop_list); + cloog_program_set_blocklist (prog, block_list); + + for (i = 0; i < nbs; i++) + scaldims[i] = 0 ; + + cloog_program_set_scaldims (prog, scaldims); + + /* Extract scalar dimensions to simplify the code generation problem. */ + cloog_program_extract_scalars (prog, scattering, options); + + /* Dump a .cloog input file, if requested. This feature is only + enabled in the Graphite branch. */ + if (0) + { + static size_t file_scop_number = 0; + FILE *cloog_file = init_cloog_input_file (file_scop_number); + + cloog_program_dump_cloog (cloog_file, prog, scattering); + ++file_scop_number; + } + + /* Apply scattering. */ + cloog_program_scatter (prog, scattering, options); + free_scattering (scattering); + + /* Iterators corresponding to scalar dimensions have to be extracted. */ + cloog_names_scalarize (cloog_program_names (prog), nbs, + cloog_program_scaldims (prog)); + + /* Free blocklist. */ + { + CloogBlockList *next = cloog_program_blocklist (prog); + + while (next) + { + CloogBlockList *toDelete = next; + next = cloog_block_list_next (next); + cloog_block_list_set_next (toDelete, NULL); + cloog_block_list_set_block (toDelete, NULL); + cloog_block_list_free (toDelete); + } + cloog_program_set_blocklist (prog, NULL); + } +} + +/* Return the options that will be used in GLOOG. */ + +static CloogOptions * +set_cloog_options (void) +{ + CloogOptions *options = cloog_options_malloc (cloog_state); + + /* Change cloog output language to C. If we do use FORTRAN instead, cloog + will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if + we pass an incomplete program to cloog. */ + options->language = LANGUAGE_C; + + /* Enable complex equality spreading: removes dummy statements + (assignments) in the generated code which repeats the + substitution equations for statements. This is useless for + GLooG. */ + options->esp = 1; + +#ifdef CLOOG_ORG + /* Silence CLooG to avoid failing tests due to debug output to stderr. */ + options->quiet = 1; +#else + /* Enable C pretty-printing mode: normalizes the substitution + equations for statements. */ + options->cpp = 1; +#endif + + /* Allow cloog to build strides with a stride width different to one. + This example has stride = 4: + + for (i = 0; i < 20; i += 4) + A */ + options->strides = 1; + + /* Disable optimizations and make cloog generate source code closer to the + input. This is useful for debugging, but later we want the optimized + code. + + XXX: We can not disable optimizations, as loop blocking is not working + without them. */ + if (0) + { + options->f = -1; + options->l = INT_MAX; + } + + return options; +} + +/* Prints STMT to STDERR. */ + +void +print_clast_stmt (FILE *file, struct clast_stmt *stmt) +{ + CloogOptions *options = set_cloog_options (); + + clast_pprint (file, stmt, 0, options); + cloog_options_free (options); +} + +/* Prints STMT to STDERR. */ + +DEBUG_FUNCTION void +debug_clast_stmt (struct clast_stmt *stmt) +{ + print_clast_stmt (stderr, stmt); +} + +/* Translate SCOP to a CLooG program and clast. These two + representations should be freed together: a clast cannot be used + without a program. */ + +cloog_prog_clast +scop_to_clast (scop_p scop) +{ + CloogOptions *options = set_cloog_options (); + cloog_prog_clast pc; + + /* Connect new cloog prog generation to graphite. */ + pc.prog = cloog_program_malloc (); + build_cloog_prog (scop, pc.prog, options); + pc.prog = cloog_program_generate (pc.prog, options); + pc.stmt = cloog_clast_create (pc.prog, options); + + cloog_options_free (options); + return pc; +} + +/* Prints to FILE the code generated by CLooG for SCOP. */ + +void +print_generated_program (FILE *file, scop_p scop) +{ + CloogOptions *options = set_cloog_options (); + + cloog_prog_clast pc = scop_to_clast (scop); + + fprintf (file, " (prog: \n"); + cloog_program_print (file, pc.prog); + fprintf (file, " )\n"); + + fprintf (file, " (clast: \n"); + clast_pprint (file, pc.stmt, 0, options); + fprintf (file, " )\n"); + + cloog_options_free (options); + cloog_clast_free (pc.stmt); + cloog_program_free (pc.prog); +} + +/* Prints to STDERR the code generated by CLooG for SCOP. */ + +DEBUG_FUNCTION void +debug_generated_program (scop_p scop) +{ + print_generated_program (stderr, scop); +} + +/* Add CLooG names to parameter index. The index is used to translate + back from CLooG names to GCC trees. */ + +static void +create_params_index (htab_t index_table, CloogProgram *prog) { + CloogNames* names = cloog_program_names (prog); + int nb_parameters = cloog_names_nb_parameters (names); + char **parameters = cloog_names_parameters (names); + int i; + + for (i = 0; i < nb_parameters; i++) + save_clast_name_index (index_table, parameters[i], i); +} + +/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for + the given SCOP. Return true if code generation succeeded. + BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. +*/ + +bool +gloog (scop_p scop, htab_t bb_pbb_mapping) +{ + VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10); + loop_p context_loop; + sese region = SCOP_REGION (scop); + ifsese if_region = NULL; + htab_t newivs_index, params_index; + cloog_prog_clast pc; + + timevar_push (TV_GRAPHITE_CODE_GEN); + gloog_error = false; + + pc = scop_to_clast (scop); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nCLAST generated by CLooG: \n"); + print_clast_stmt (dump_file, pc.stmt); + fprintf (dump_file, "\n"); + } + + recompute_all_dominators (); + graphite_verify (); + + if_region = move_sese_in_condition (region); + sese_insert_phis_for_liveouts (region, + if_region->region->exit->src, + if_region->false_region->exit, + if_region->true_region->exit); + recompute_all_dominators (); + graphite_verify (); + + context_loop = SESE_ENTRY (region)->src->loop_father; + newivs_index = htab_create (10, clast_name_index_elt_info, + eq_clast_name_indexes, free); + params_index = htab_create (10, clast_name_index_elt_info, + eq_clast_name_indexes, free); + + create_params_index (params_index, pc.prog); + + translate_clast (region, context_loop, pc.stmt, + if_region->true_region->entry, + &newivs, newivs_index, + bb_pbb_mapping, 1, params_index); + graphite_verify (); + scev_reset (); + recompute_all_dominators (); + graphite_verify (); + + if (gloog_error) + set_ifsese_condition (if_region, integer_zero_node); + + free (if_region->true_region); + free (if_region->region); + free (if_region); + + htab_delete (newivs_index); + htab_delete (params_index); + VEC_free (tree, heap, newivs); + cloog_clast_free (pc.stmt); + cloog_program_free (pc.prog); + timevar_pop (TV_GRAPHITE_CODE_GEN); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + loop_p loop; + loop_iterator li; + int num_no_dependency = 0; + + FOR_EACH_LOOP (li, loop, 0) + if (loop->can_be_parallel) + num_no_dependency++; + + fprintf (dump_file, "\n%d loops carried no dependency.\n", + num_no_dependency); + } + + return !gloog_error; +} +#endif |