diff options
Diffstat (limited to 'gcc/ira-int.h')
-rw-r--r-- | gcc/ira-int.h | 1390 |
1 files changed, 1390 insertions, 0 deletions
diff --git a/gcc/ira-int.h b/gcc/ira-int.h new file mode 100644 index 000000000..a58f0ca0c --- /dev/null +++ b/gcc/ira-int.h @@ -0,0 +1,1390 @@ +/* Integrated Register Allocator (IRA) intercommunication header file. + Copyright (C) 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Vladimir Makarov <vmakarov@redhat.com>. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "cfgloop.h" +#include "ira.h" +#include "alloc-pool.h" + +/* To provide consistency in naming, all IRA external variables, + functions, common typedefs start with prefix ira_. */ + +#ifdef ENABLE_CHECKING +#define ENABLE_IRA_CHECKING +#endif + +#ifdef ENABLE_IRA_CHECKING +#define ira_assert(c) gcc_assert (c) +#else +/* Always define and include C, so that warnings for empty body in an + ‘if’ statement and unused variable do not occur. */ +#define ira_assert(c) ((void)(0 && (c))) +#endif + +/* Compute register frequency from edge frequency FREQ. It is + analogous to REG_FREQ_FROM_BB. When optimizing for size, or + profile driven feedback is available and the function is never + executed, frequency is always equivalent. Otherwise rescale the + edge frequency. */ +#define REG_FREQ_FROM_EDGE_FREQ(freq) \ + (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \ + ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \ + ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1) + +/* All natural loops. */ +extern struct loops ira_loops; + +/* A modified value of flag `-fira-verbose' used internally. */ +extern int internal_flag_ira_verbose; + +/* Dump file of the allocator if it is not NULL. */ +extern FILE *ira_dump_file; + +/* Typedefs for pointers to allocno live range, allocno, and copy of + allocnos. */ +typedef struct live_range *live_range_t; +typedef struct ira_allocno *ira_allocno_t; +typedef struct ira_allocno_copy *ira_copy_t; +typedef struct ira_object *ira_object_t; + +/* Definition of vector of allocnos and copies. */ +DEF_VEC_P(ira_allocno_t); +DEF_VEC_ALLOC_P(ira_allocno_t, heap); +DEF_VEC_P(ira_object_t); +DEF_VEC_ALLOC_P(ira_object_t, heap); +DEF_VEC_P(ira_copy_t); +DEF_VEC_ALLOC_P(ira_copy_t, heap); + +/* Typedef for pointer to the subsequent structure. */ +typedef struct ira_loop_tree_node *ira_loop_tree_node_t; + +/* In general case, IRA is a regional allocator. The regions are + nested and form a tree. Currently regions are natural loops. The + following structure describes loop tree node (representing basic + block or loop). We need such tree because the loop tree from + cfgloop.h is not convenient for the optimization: basic blocks are + not a part of the tree from cfgloop.h. We also use the nodes for + storing additional information about basic blocks/loops for the + register allocation purposes. */ +struct ira_loop_tree_node +{ + /* The node represents basic block if children == NULL. */ + basic_block bb; /* NULL for loop. */ + struct loop *loop; /* NULL for BB. */ + /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent. + SUBLOOP_NEXT is always NULL for BBs. */ + ira_loop_tree_node_t subloop_next, next; + /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside + the node. They are NULL for BBs. */ + ira_loop_tree_node_t subloops, children; + /* The node immediately containing given node. */ + ira_loop_tree_node_t parent; + + /* Loop level in range [0, ira_loop_tree_height). */ + int level; + + /* All the following members are defined only for nodes representing + loops. */ + + /* True if the loop was marked for removal from the register + allocation. */ + bool to_remove_p; + + /* Allocnos in the loop corresponding to their regnos. If it is + NULL the loop does not form a separate register allocation region + (e.g. because it has abnormal enter/exit edges and we can not put + code for register shuffling on the edges if a different + allocation is used for a pseudo-register on different sides of + the edges). Caps are not in the map (remember we can have more + one cap with the same regno in a region). */ + ira_allocno_t *regno_allocno_map; + + /* True if there is an entry to given loop not from its parent (or + grandparent) basic block. For example, it is possible for two + adjacent loops inside another loop. */ + bool entered_from_non_parent_p; + + /* Maximal register pressure inside loop for given register class + (defined only for the cover classes). */ + int reg_pressure[N_REG_CLASSES]; + + /* Numbers of allocnos referred or living in the loop node (except + for its subloops). */ + bitmap all_allocnos; + + /* Numbers of allocnos living at the loop borders. */ + bitmap border_allocnos; + + /* Regnos of pseudos modified in the loop node (including its + subloops). */ + bitmap modified_regnos; + + /* Numbers of copies referred in the corresponding loop. */ + bitmap local_copies; +}; + +/* The root of the loop tree corresponding to the all function. */ +extern ira_loop_tree_node_t ira_loop_tree_root; + +/* Height of the loop tree. */ +extern int ira_loop_tree_height; + +/* All nodes representing basic blocks are referred through the + following array. We can not use basic block member `aux' for this + because it is used for insertion of insns on edges. */ +extern ira_loop_tree_node_t ira_bb_nodes; + +/* Two access macros to the nodes representing basic blocks. */ +#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) +#define IRA_BB_NODE_BY_INDEX(index) __extension__ \ +(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \ + if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\ + { \ + fprintf (stderr, \ + "\n%s: %d: error in %s: it is not a block node\n", \ + __FILE__, __LINE__, __FUNCTION__); \ + gcc_unreachable (); \ + } \ + _node; })) +#else +#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index]) +#endif + +#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index) + +/* All nodes representing loops are referred through the following + array. */ +extern ira_loop_tree_node_t ira_loop_nodes; + +/* Two access macros to the nodes representing loops. */ +#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) +#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \ +(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\ + if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\ + { \ + fprintf (stderr, \ + "\n%s: %d: error in %s: it is not a loop node\n", \ + __FILE__, __LINE__, __FUNCTION__); \ + gcc_unreachable (); \ + } \ + _node; })) +#else +#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index]) +#endif + +#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num) + + +/* The structure describes program points where a given allocno lives. + To save memory we store allocno conflicts only for the same cover + class allocnos which is enough to assign hard registers. To find + conflicts for other allocnos (e.g. to assign stack memory slot) we + use the live ranges. If the live ranges of two allocnos are + intersected, the allocnos are in conflict. */ +struct live_range +{ + /* Object whose live range is described by given structure. */ + ira_object_t object; + /* Program point range. */ + int start, finish; + /* Next structure describing program points where the allocno + lives. */ + live_range_t next; + /* Pointer to structures with the same start/finish. */ + live_range_t start_next, finish_next; +}; + +/* Program points are enumerated by numbers from range + 0..IRA_MAX_POINT-1. There are approximately two times more program + points than insns. Program points are places in the program where + liveness info can be changed. In most general case (there are more + complicated cases too) some program points correspond to places + where input operand dies and other ones correspond to places where + output operands are born. */ +extern int ira_max_point; + +/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno + live ranges with given start/finish point. */ +extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges; + +/* A structure representing conflict information for an allocno + (or one of its subwords). */ +struct ira_object +{ + /* The allocno associated with this record. */ + ira_allocno_t allocno; + /* Vector of accumulated conflicting conflict_redords with NULL end + marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector + otherwise. Only ira_objects belonging to allocnos with the + same cover class are in the vector or in the bit vector. */ + void *conflicts_array; + /* Pointer to structures describing at what program point the + object lives. We always maintain the list in such way that *the + ranges in the list are not intersected and ordered by decreasing + their program points*. */ + live_range_t live_ranges; + /* The subword within ALLOCNO which is represented by this object. + Zero means the lowest-order subword (or the entire allocno in case + it is not being tracked in subwords). */ + int subword; + /* Allocated size of the conflicts array. */ + unsigned int conflicts_array_size; + /* A unique number for every instance of this structure, which is used + to represent it in conflict bit vectors. */ + int id; + /* Before building conflicts, MIN and MAX are initialized to + correspondingly minimal and maximal points of the accumulated + live ranges. Afterwards, they hold the minimal and maximal ids + of other ira_objects that this one can conflict with. */ + int min, max; + /* Initial and accumulated hard registers conflicting with this + object and as a consequences can not be assigned to the allocno. + All non-allocatable hard regs and hard regs of cover classes + different from given allocno one are included in the sets. */ + HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs; + /* Number of accumulated conflicts in the vector of conflicting + objects. */ + int num_accumulated_conflicts; + /* TRUE if conflicts are represented by a vector of pointers to + ira_object structures. Otherwise, we use a bit vector indexed + by conflict ID numbers. */ + unsigned int conflict_vec_p : 1; +}; + +/* A structure representing an allocno (allocation entity). Allocno + represents a pseudo-register in an allocation region. If + pseudo-register does not live in a region but it lives in the + nested regions, it is represented in the region by special allocno + called *cap*. There may be more one cap representing the same + pseudo-register in region. It means that the corresponding + pseudo-register lives in more one non-intersected subregion. */ +struct ira_allocno +{ + /* The allocno order number starting with 0. Each allocno has an + unique number and the number is never changed for the + allocno. */ + int num; + /* Regno for allocno or cap. */ + int regno; + /* Mode of the allocno which is the mode of the corresponding + pseudo-register. */ + enum machine_mode mode; + /* Hard register assigned to given allocno. Negative value means + that memory was allocated to the allocno. During the reload, + spilled allocno has value equal to the corresponding stack slot + number (0, ...) - 2. Value -1 is used for allocnos spilled by the + reload (at this point pseudo-register has only one allocno) which + did not get stack slot yet. */ + int hard_regno; + /* Final rtx representation of the allocno. */ + rtx reg; + /* Allocnos with the same regno are linked by the following member. + Allocnos corresponding to inner loops are first in the list (it + corresponds to depth-first traverse of the loops). */ + ira_allocno_t next_regno_allocno; + /* There may be different allocnos with the same regno in different + regions. Allocnos are bound to the corresponding loop tree node. + Pseudo-register may have only one regular allocno with given loop + tree node but more than one cap (see comments above). */ + ira_loop_tree_node_t loop_tree_node; + /* Accumulated usage references of the allocno. Here and below, + word 'accumulated' means info for given region and all nested + subregions. In this case, 'accumulated' means sum of references + of the corresponding pseudo-register in this region and in all + nested subregions recursively. */ + int nrefs; + /* Accumulated frequency of usage of the allocno. */ + int freq; + /* Register class which should be used for allocation for given + allocno. NO_REGS means that we should use memory. */ + enum reg_class cover_class; + /* Minimal accumulated and updated costs of usage register of the + cover class for the allocno. */ + int cover_class_cost, updated_cover_class_cost; + /* Minimal accumulated, and updated costs of memory for the allocno. + At the allocation start, the original and updated costs are + equal. The updated cost may be changed after finishing + allocation in a region and starting allocation in a subregion. + The change reflects the cost of spill/restore code on the + subregion border if we assign memory to the pseudo in the + subregion. */ + int memory_cost, updated_memory_cost; + /* Accumulated number of points where the allocno lives and there is + excess pressure for its class. Excess pressure for a register + class at some point means that there are more allocnos of given + register class living at the point than number of hard-registers + of the class available for the allocation. */ + int excess_pressure_points_num; + /* Copies to other non-conflicting allocnos. The copies can + represent move insn or potential move insn usually because of two + operand insn constraints. */ + ira_copy_t allocno_copies; + /* It is a allocno (cap) representing given allocno on upper loop tree + level. */ + ira_allocno_t cap; + /* It is a link to allocno (cap) on lower loop level represented by + given cap. Null if given allocno is not a cap. */ + ira_allocno_t cap_member; + /* Coalesced allocnos form a cyclic list. One allocno given by + FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The + list is chained by NEXT_COALESCED_ALLOCNO. */ + ira_allocno_t first_coalesced_allocno; + ira_allocno_t next_coalesced_allocno; + /* The number of objects tracked in the following array. */ + int num_objects; + /* An array of structures describing conflict information and live + ranges for each object associated with the allocno. There may be + more than one such object in cases where the allocno represents a + multi-word register. */ + ira_object_t objects[2]; + /* Accumulated frequency of calls which given allocno + intersects. */ + int call_freq; + /* Accumulated number of the intersected calls. */ + int calls_crossed_num; + /* TRUE if the allocno assigned to memory was a destination of + removed move (see ira-emit.c) at loop exit because the value of + the corresponding pseudo-register is not changed inside the + loop. */ + unsigned int mem_optimized_dest_p : 1; + /* TRUE if the corresponding pseudo-register has disjoint live + ranges and the other allocnos of the pseudo-register except this + one changed REG. */ + unsigned int somewhere_renamed_p : 1; + /* TRUE if allocno with the same REGNO in a subregion has been + renamed, in other words, got a new pseudo-register. */ + unsigned int child_renamed_p : 1; + /* During the reload, value TRUE means that we should not reassign a + hard register to the allocno got memory earlier. It is set up + when we removed memory-memory move insn before each iteration of + the reload. */ + unsigned int dont_reassign_p : 1; +#ifdef STACK_REGS + /* Set to TRUE if allocno can't be assigned to the stack hard + register correspondingly in this region and area including the + region and all its subregions recursively. */ + unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1; +#endif + /* TRUE value means that there is no sense to spill the allocno + during coloring because the spill will result in additional + reloads in reload pass. */ + unsigned int bad_spill_p : 1; + /* TRUE value means that the allocno was not removed yet from the + conflicting graph during colouring. */ + unsigned int in_graph_p : 1; + /* TRUE if a hard register or memory has been assigned to the + allocno. */ + unsigned int assigned_p : 1; + /* TRUE if it is put on the stack to make other allocnos + colorable. */ + unsigned int may_be_spilled_p : 1; + /* TRUE if the allocno was removed from the splay tree used to + choose allocn for spilling (see ira-color.c::. */ + unsigned int splay_removed_p : 1; + /* Non NULL if we remove restoring value from given allocno to + MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the + allocno value is not changed inside the loop. */ + ira_allocno_t mem_optimized_dest; + /* Array of usage costs (accumulated and the one updated during + coloring) for each hard register of the allocno cover class. The + member value can be NULL if all costs are the same and equal to + COVER_CLASS_COST. For example, the costs of two different hard + registers can be different if one hard register is callee-saved + and another one is callee-used and the allocno lives through + calls. Another example can be case when for some insn the + corresponding pseudo-register value should be put in specific + register class (e.g. AREG for x86) which is a strict subset of + the allocno cover class (GENERAL_REGS for x86). We have updated + costs to reflect the situation when the usage cost of a hard + register is decreased because the allocno is connected to another + allocno by a copy and the another allocno has been assigned to + the hard register. */ + int *hard_reg_costs, *updated_hard_reg_costs; + /* Array of decreasing costs (accumulated and the one updated during + coloring) for allocnos conflicting with given allocno for hard + regno of the allocno cover class. The member value can be NULL + if all costs are the same. These costs are used to reflect + preferences of other allocnos not assigned yet during assigning + to given allocno. */ + int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs; + /* Size (in hard registers) of the same cover class allocnos with + TRUE in_graph_p value and conflicting with given allocno during + each point of graph coloring. */ + int left_conflicts_size; + /* Number of hard registers of the allocno cover class really + available for the allocno allocation. */ + int available_regs_num; + /* Allocnos in a bucket (used in coloring) chained by the following + two members. */ + ira_allocno_t next_bucket_allocno; + ira_allocno_t prev_bucket_allocno; + /* Used for temporary purposes. */ + int temp; +}; + +/* All members of the allocno structures should be accessed only + through the following macros. */ +#define ALLOCNO_NUM(A) ((A)->num) +#define ALLOCNO_REGNO(A) ((A)->regno) +#define ALLOCNO_REG(A) ((A)->reg) +#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno) +#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node) +#define ALLOCNO_CAP(A) ((A)->cap) +#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member) +#define ALLOCNO_NREFS(A) ((A)->nrefs) +#define ALLOCNO_FREQ(A) ((A)->freq) +#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno) +#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq) +#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num) +#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest) +#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p) +#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p) +#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p) +#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p) +#ifdef STACK_REGS +#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p) +#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p) +#endif +#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p) +#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p) +#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p) +#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p) +#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p) +#define ALLOCNO_MODE(A) ((A)->mode) +#define ALLOCNO_COPIES(A) ((A)->allocno_copies) +#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs) +#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs) +#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \ + ((A)->conflict_hard_reg_costs) +#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \ + ((A)->updated_conflict_hard_reg_costs) +#define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size) +#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class) +#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost) +#define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost) +#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost) +#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost) +#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num) +#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num) +#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno) +#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno) +#define ALLOCNO_TEMP(A) ((A)->temp) +#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno) +#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno) +#define ALLOCNO_OBJECT(A,N) ((A)->objects[N]) +#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects) + +#define OBJECT_ALLOCNO(C) ((C)->allocno) +#define OBJECT_SUBWORD(C) ((C)->subword) +#define OBJECT_CONFLICT_ARRAY(C) ((C)->conflicts_array) +#define OBJECT_CONFLICT_VEC(C) ((ira_object_t *)(C)->conflicts_array) +#define OBJECT_CONFLICT_BITVEC(C) ((IRA_INT_TYPE *)(C)->conflicts_array) +#define OBJECT_CONFLICT_ARRAY_SIZE(C) ((C)->conflicts_array_size) +#define OBJECT_CONFLICT_VEC_P(C) ((C)->conflict_vec_p) +#define OBJECT_NUM_CONFLICTS(C) ((C)->num_accumulated_conflicts) +#define OBJECT_CONFLICT_HARD_REGS(C) ((C)->conflict_hard_regs) +#define OBJECT_TOTAL_CONFLICT_HARD_REGS(C) ((C)->total_conflict_hard_regs) +#define OBJECT_MIN(C) ((C)->min) +#define OBJECT_MAX(C) ((C)->max) +#define OBJECT_CONFLICT_ID(C) ((C)->id) +#define OBJECT_LIVE_RANGES(A) ((A)->live_ranges) + +/* Map regno -> allocnos with given regno (see comments for + allocno member `next_regno_allocno'). */ +extern ira_allocno_t *ira_regno_allocno_map; + +/* Array of references to all allocnos. The order number of the + allocno corresponds to the index in the array. Removed allocnos + have NULL element value. */ +extern ira_allocno_t *ira_allocnos; + +/* The size of the previous array. */ +extern int ira_allocnos_num; + +/* Map a conflict id to its corresponding ira_object structure. */ +extern ira_object_t *ira_object_id_map; + +/* The size of the previous array. */ +extern int ira_objects_num; + +/* The following structure represents a copy of two allocnos. The + copies represent move insns or potential move insns usually because + of two operand insn constraints. To remove register shuffle, we + also create copies between allocno which is output of an insn and + allocno becoming dead in the insn. */ +struct ira_allocno_copy +{ + /* The unique order number of the copy node starting with 0. */ + int num; + /* Allocnos connected by the copy. The first allocno should have + smaller order number than the second one. */ + ira_allocno_t first, second; + /* Execution frequency of the copy. */ + int freq; + bool constraint_p; + /* It is a move insn which is an origin of the copy. The member + value for the copy representing two operand insn constraints or + for the copy created to remove register shuffle is NULL. In last + case the copy frequency is smaller than the corresponding insn + execution frequency. */ + rtx insn; + /* All copies with the same allocno as FIRST are linked by the two + following members. */ + ira_copy_t prev_first_allocno_copy, next_first_allocno_copy; + /* All copies with the same allocno as SECOND are linked by the two + following members. */ + ira_copy_t prev_second_allocno_copy, next_second_allocno_copy; + /* Region from which given copy is originated. */ + ira_loop_tree_node_t loop_tree_node; +}; + +/* Array of references to all copies. The order number of the copy + corresponds to the index in the array. Removed copies have NULL + element value. */ +extern ira_copy_t *ira_copies; + +/* Size of the previous array. */ +extern int ira_copies_num; + +/* The following structure describes a stack slot used for spilled + pseudo-registers. */ +struct ira_spilled_reg_stack_slot +{ + /* pseudo-registers assigned to the stack slot. */ + bitmap_head spilled_regs; + /* RTL representation of the stack slot. */ + rtx mem; + /* Size of the stack slot. */ + unsigned int width; +}; + +/* The number of elements in the following array. */ +extern int ira_spilled_reg_stack_slots_num; + +/* The following array contains info about spilled pseudo-registers + stack slots used in current function so far. */ +extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots; + +/* Correspondingly overall cost of the allocation, cost of the + allocnos assigned to hard-registers, cost of the allocnos assigned + to memory, cost of loads, stores and register move insns generated + for pseudo-register live range splitting (see ira-emit.c). */ +extern int ira_overall_cost; +extern int ira_reg_cost, ira_mem_cost; +extern int ira_load_cost, ira_store_cost, ira_shuffle_cost; +extern int ira_move_loops_num, ira_additional_jumps_num; + +/* This page contains a bitset implementation called 'min/max sets' used to + record conflicts in IRA. + They are named min/maxs set since we keep track of a minimum and a maximum + bit number for each set representing the bounds of valid elements. Otherwise, + the implementation resembles sbitmaps in that we store an array of integers + whose bits directly represent the members of the set. */ + +/* The type used as elements in the array, and the number of bits in + this type. */ + +#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT +#define IRA_INT_TYPE HOST_WIDE_INT + +/* Set, clear or test bit number I in R, a bit vector of elements with + minimal index and maximal index equal correspondingly to MIN and + MAX. */ +#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) + +#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ + (({ int _min = (MIN), _max = (MAX), _i = (I); \ + if (_i < _min || _i > _max) \ + { \ + fprintf (stderr, \ + "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ + __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ + gcc_unreachable (); \ + } \ + ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ + |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) + + +#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ + (({ int _min = (MIN), _max = (MAX), _i = (I); \ + if (_i < _min || _i > _max) \ + { \ + fprintf (stderr, \ + "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ + __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ + gcc_unreachable (); \ + } \ + ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ + &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) + +#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ + (({ int _min = (MIN), _max = (MAX), _i = (I); \ + if (_i < _min || _i > _max) \ + { \ + fprintf (stderr, \ + "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ + __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ + gcc_unreachable (); \ + } \ + ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ + & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) + +#else + +#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \ + ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ + |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) + +#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \ + ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ + &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) + +#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \ + ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ + & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) + +#endif + +/* The iterator for min/max sets. */ +typedef struct { + + /* Array containing the bit vector. */ + IRA_INT_TYPE *vec; + + /* The number of the current element in the vector. */ + unsigned int word_num; + + /* The number of bits in the bit vector. */ + unsigned int nel; + + /* The current bit index of the bit vector. */ + unsigned int bit_num; + + /* Index corresponding to the 1st bit of the bit vector. */ + int start_val; + + /* The word of the bit vector currently visited. */ + unsigned IRA_INT_TYPE word; +} minmax_set_iterator; + +/* Initialize the iterator I for bit vector VEC containing minimal and + maximal values MIN and MAX. */ +static inline void +minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min, + int max) +{ + i->vec = vec; + i->word_num = 0; + i->nel = max < min ? 0 : max - min + 1; + i->start_val = min; + i->bit_num = 0; + i->word = i->nel == 0 ? 0 : vec[0]; +} + +/* Return TRUE if we have more allocnos to visit, in which case *N is + set to the number of the element to be visited. Otherwise, return + FALSE. */ +static inline bool +minmax_set_iter_cond (minmax_set_iterator *i, int *n) +{ + /* Skip words that are zeros. */ + for (; i->word == 0; i->word = i->vec[i->word_num]) + { + i->word_num++; + i->bit_num = i->word_num * IRA_INT_BITS; + + /* If we have reached the end, break. */ + if (i->bit_num >= i->nel) + return false; + } + + /* Skip bits that are zero. */ + for (; (i->word & 1) == 0; i->word >>= 1) + i->bit_num++; + + *n = (int) i->bit_num + i->start_val; + + return true; +} + +/* Advance to the next element in the set. */ +static inline void +minmax_set_iter_next (minmax_set_iterator *i) +{ + i->word >>= 1; + i->bit_num++; +} + +/* Loop over all elements of a min/max set given by bit vector VEC and + their minimal and maximal values MIN and MAX. In each iteration, N + is set to the number of next allocno. ITER is an instance of + minmax_set_iterator used to iterate over the set. */ +#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \ + for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \ + minmax_set_iter_cond (&(ITER), &(N)); \ + minmax_set_iter_next (&(ITER))) + +struct target_ira_int { + /* Initialized once. It is a maximal possible size of the allocated + struct costs. */ + int x_max_struct_costs_size; + + /* Allocated and initialized once, and used to initialize cost values + for each insn. */ + struct costs *x_init_cost; + + /* Allocated once, and used for temporary purposes. */ + struct costs *x_temp_costs; + + /* Allocated once, and used for the cost calculation. */ + struct costs *x_op_costs[MAX_RECOG_OPERANDS]; + struct costs *x_this_op_costs[MAX_RECOG_OPERANDS]; + + /* Classes used for cost calculation. They may be different on + different iterations of the cost calculations or in different + optimization modes. */ + enum reg_class *x_cost_classes; + + /* Hard registers that can not be used for the register allocator for + all functions of the current compilation unit. */ + HARD_REG_SET x_no_unit_alloc_regs; + + /* Map: hard regs X modes -> set of hard registers for storing value + of given mode starting with given hard register. */ + HARD_REG_SET (x_ira_reg_mode_hard_regset + [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]); + + /* Array based on TARGET_REGISTER_MOVE_COST. Don't use + ira_register_move_cost directly. Use function of + ira_get_may_move_cost instead. */ + move_table *x_ira_register_move_cost[MAX_MACHINE_MODE]; + + /* Similar to may_move_in_cost but it is calculated in IRA instead of + regclass. Another difference we take only available hard registers + into account to figure out that one register class is a subset of + the another one. Don't use it directly. Use function of + ira_get_may_move_cost instead. */ + move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE]; + + /* Similar to may_move_out_cost but it is calculated in IRA instead of + regclass. Another difference we take only available hard registers + into account to figure out that one register class is a subset of + the another one. Don't use it directly. Use function of + ira_get_may_move_cost instead. */ + move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE]; + + /* Register class subset relation: TRUE if the first class is a subset + of the second one considering only hard registers available for the + allocation. */ + int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES]; + + /* Array of the number of hard registers of given class which are + available for allocation. The order is defined by the the hard + register numbers. */ + short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; + + /* Index (in ira_class_hard_regs; for given register class and hard + register (in general case a hard register can belong to several + register classes;. The index is negative for hard registers + unavailable for the allocation. */ + short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; + + /* Array whose values are hard regset of hard registers available for + the allocation of given register class whose HARD_REGNO_MODE_OK + values for given mode are zero. */ + HARD_REG_SET x_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES]; + + /* The value is number of elements in the subsequent array. */ + int x_ira_important_classes_num; + + /* The array containing non-empty classes (including non-empty cover + classes; which are subclasses of cover classes. Such classes is + important for calculation of the hard register usage costs. */ + enum reg_class x_ira_important_classes[N_REG_CLASSES]; + + /* The biggest important class inside of intersection of the two + classes (that is calculated taking only hard registers available + for allocation into account;. If the both classes contain no hard + registers available for allocation, the value is calculated with + taking all hard-registers including fixed ones into account. */ + enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES]; + + /* True if the two classes (that is calculated taking only hard + registers available for allocation into account; are + intersected. */ + bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES]; + + /* Classes with end marker LIM_REG_CLASSES which are intersected with + given class (the first index;. That includes given class itself. + This is calculated taking only hard registers available for + allocation into account. */ + enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES]; + + /* The biggest important class inside of union of the two classes + (that is calculated taking only hard registers available for + allocation into account;. If the both classes contain no hard + registers available for allocation, the value is calculated with + taking all hard-registers including fixed ones into account. In + other words, the value is the corresponding reg_class_subunion + value. */ + enum reg_class x_ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES]; + + /* For each reg class, table listing all the classes contained in it + (excluding the class itself. Non-allocatable registers are + excluded from the consideration;. */ + enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; + + /* Array whose values are hard regset of hard registers for which + move of the hard register in given mode into itself is + prohibited. */ + HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES]; + + /* Flag of that the above array has been initialized. */ + bool x_ira_prohibited_mode_move_regs_initialized_p; +}; + +extern struct target_ira_int default_target_ira_int; +#if SWITCHABLE_TARGET +extern struct target_ira_int *this_target_ira_int; +#else +#define this_target_ira_int (&default_target_ira_int) +#endif + +#define ira_reg_mode_hard_regset \ + (this_target_ira_int->x_ira_reg_mode_hard_regset) +#define ira_register_move_cost \ + (this_target_ira_int->x_ira_register_move_cost) +#define ira_may_move_in_cost \ + (this_target_ira_int->x_ira_may_move_in_cost) +#define ira_may_move_out_cost \ + (this_target_ira_int->x_ira_may_move_out_cost) +#define ira_class_subset_p \ + (this_target_ira_int->x_ira_class_subset_p) +#define ira_non_ordered_class_hard_regs \ + (this_target_ira_int->x_ira_non_ordered_class_hard_regs) +#define ira_class_hard_reg_index \ + (this_target_ira_int->x_ira_class_hard_reg_index) +#define prohibited_class_mode_regs \ + (this_target_ira_int->x_prohibited_class_mode_regs) +#define ira_important_classes_num \ + (this_target_ira_int->x_ira_important_classes_num) +#define ira_important_classes \ + (this_target_ira_int->x_ira_important_classes) +#define ira_reg_class_intersect \ + (this_target_ira_int->x_ira_reg_class_intersect) +#define ira_reg_classes_intersect_p \ + (this_target_ira_int->x_ira_reg_classes_intersect_p) +#define ira_reg_class_super_classes \ + (this_target_ira_int->x_ira_reg_class_super_classes) +#define ira_reg_class_union \ + (this_target_ira_int->x_ira_reg_class_union) +#define ira_prohibited_mode_move_regs \ + (this_target_ira_int->x_ira_prohibited_mode_move_regs) + +/* ira.c: */ + +extern void *ira_allocate (size_t); +extern void *ira_reallocate (void *, size_t); +extern void ira_free (void *addr); +extern bitmap ira_allocate_bitmap (void); +extern void ira_free_bitmap (bitmap); +extern void ira_print_disposition (FILE *); +extern void ira_debug_disposition (void); +extern void ira_debug_class_cover (void); +extern void ira_init_register_move_cost (enum machine_mode); + +/* The length of the two following arrays. */ +extern int ira_reg_equiv_len; + +/* The element value is TRUE if the corresponding regno value is + invariant. */ +extern bool *ira_reg_equiv_invariant_p; + +/* The element value is equiv constant of given pseudo-register or + NULL_RTX. */ +extern rtx *ira_reg_equiv_const; + +/* ira-build.c */ + +/* The current loop tree node and its regno allocno map. */ +extern ira_loop_tree_node_t ira_curr_loop_tree_node; +extern ira_allocno_t *ira_curr_regno_allocno_map; + +extern void ira_debug_copy (ira_copy_t); +extern void ira_debug_copies (void); +extern void ira_debug_allocno_copies (ira_allocno_t); + +extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t, + void (*) (ira_loop_tree_node_t), + void (*) (ira_loop_tree_node_t)); +extern ira_allocno_t ira_parent_allocno (ira_allocno_t); +extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t); +extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t); +extern void ira_create_allocno_objects (ira_allocno_t); +extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class); +extern bool ira_conflict_vector_profitable_p (ira_object_t, int); +extern void ira_allocate_conflict_vec (ira_object_t, int); +extern void ira_allocate_object_conflicts (ira_object_t, int); +extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *); +extern void ira_print_expanded_allocno (ira_allocno_t); +extern void ira_add_live_range_to_object (ira_object_t, int, int); +extern live_range_t ira_create_live_range (ira_object_t, int, int, + live_range_t); +extern live_range_t ira_copy_live_range_list (live_range_t); +extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t); +extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t); +extern void ira_finish_live_range (live_range_t); +extern void ira_finish_live_range_list (live_range_t); +extern void ira_free_allocno_updated_costs (ira_allocno_t); +extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t, + int, bool, rtx, ira_loop_tree_node_t); +extern void ira_add_allocno_copy_to_list (ira_copy_t); +extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t); +extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, + bool, rtx, ira_loop_tree_node_t); + +extern int *ira_allocate_cost_vector (enum reg_class); +extern void ira_free_cost_vector (int *, enum reg_class); + +extern void ira_flattening (int, int); +extern bool ira_build (bool); +extern void ira_destroy (void); + +/* ira-costs.c */ +extern void ira_init_costs_once (void); +extern void ira_init_costs (void); +extern void ira_finish_costs_once (void); +extern void ira_costs (void); +extern void ira_tune_allocno_costs_and_cover_classes (void); + +/* ira-lives.c */ + +extern void ira_rebuild_start_finish_chains (void); +extern void ira_print_live_range_list (FILE *, live_range_t); +extern void ira_debug_live_range_list (live_range_t); +extern void ira_debug_allocno_live_ranges (ira_allocno_t); +extern void ira_debug_live_ranges (void); +extern void ira_create_allocno_live_ranges (void); +extern void ira_compress_allocno_live_ranges (void); +extern void ira_finish_allocno_live_ranges (void); + +/* ira-conflicts.c */ +extern void ira_debug_conflicts (bool); +extern void ira_build_conflicts (void); + +/* ira-color.c */ +extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool); +extern void ira_reassign_conflict_allocnos (int); +extern void ira_initiate_assign (void); +extern void ira_finish_assign (void); +extern void ira_color (void); + +/* ira-emit.c */ +extern void ira_emit (bool); + + + +/* Return cost of moving value of MODE from register of class FROM to + register of class TO. */ +static inline int +ira_get_register_move_cost (enum machine_mode mode, + enum reg_class from, enum reg_class to) +{ + if (ira_register_move_cost[mode] == NULL) + ira_init_register_move_cost (mode); + return ira_register_move_cost[mode][from][to]; +} + +/* Return cost of moving value of MODE from register of class FROM to + register of class TO. Return zero if IN_P is true and FROM is + subset of TO or if IN_P is false and FROM is superset of TO. */ +static inline int +ira_get_may_move_cost (enum machine_mode mode, + enum reg_class from, enum reg_class to, + bool in_p) +{ + if (ira_register_move_cost[mode] == NULL) + ira_init_register_move_cost (mode); + return (in_p + ? ira_may_move_in_cost[mode][from][to] + : ira_may_move_out_cost[mode][from][to]); +} + + + +/* The iterator for all allocnos. */ +typedef struct { + /* The number of the current element in IRA_ALLOCNOS. */ + int n; +} ira_allocno_iterator; + +/* Initialize the iterator I. */ +static inline void +ira_allocno_iter_init (ira_allocno_iterator *i) +{ + i->n = 0; +} + +/* Return TRUE if we have more allocnos to visit, in which case *A is + set to the allocno to be visited. Otherwise, return FALSE. */ +static inline bool +ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a) +{ + int n; + + for (n = i->n; n < ira_allocnos_num; n++) + if (ira_allocnos[n] != NULL) + { + *a = ira_allocnos[n]; + i->n = n + 1; + return true; + } + return false; +} + +/* Loop over all allocnos. In each iteration, A is set to the next + allocno. ITER is an instance of ira_allocno_iterator used to iterate + the allocnos. */ +#define FOR_EACH_ALLOCNO(A, ITER) \ + for (ira_allocno_iter_init (&(ITER)); \ + ira_allocno_iter_cond (&(ITER), &(A));) + +/* The iterator for all objects. */ +typedef struct { + /* The number of the current element in ira_object_id_map. */ + int n; +} ira_object_iterator; + +/* Initialize the iterator I. */ +static inline void +ira_object_iter_init (ira_object_iterator *i) +{ + i->n = 0; +} + +/* Return TRUE if we have more objects to visit, in which case *OBJ is + set to the object to be visited. Otherwise, return FALSE. */ +static inline bool +ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj) +{ + int n; + + for (n = i->n; n < ira_objects_num; n++) + if (ira_object_id_map[n] != NULL) + { + *obj = ira_object_id_map[n]; + i->n = n + 1; + return true; + } + return false; +} + +/* Loop over all objects. In each iteration, OBJ is set to the next + object. ITER is an instance of ira_object_iterator used to iterate + the objects. */ +#define FOR_EACH_OBJECT(OBJ, ITER) \ + for (ira_object_iter_init (&(ITER)); \ + ira_object_iter_cond (&(ITER), &(OBJ));) + +/* The iterator for objects associated with an allocno. */ +typedef struct { + /* The number of the element the allocno's object array. */ + int n; +} ira_allocno_object_iterator; + +/* Initialize the iterator I. */ +static inline void +ira_allocno_object_iter_init (ira_allocno_object_iterator *i) +{ + i->n = 0; +} + +/* Return TRUE if we have more objects to visit in allocno A, in which + case *O is set to the object to be visited. Otherwise, return + FALSE. */ +static inline bool +ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a, + ira_object_t *o) +{ + int n = i->n++; + if (n < ALLOCNO_NUM_OBJECTS (a)) + { + *o = ALLOCNO_OBJECT (a, n); + return true; + } + return false; +} + +/* Loop over all objects associated with allocno A. In each + iteration, O is set to the next object. ITER is an instance of + ira_allocno_object_iterator used to iterate the conflicts. */ +#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \ + for (ira_allocno_object_iter_init (&(ITER)); \ + ira_allocno_object_iter_cond (&(ITER), (A), &(O));) + + +/* The iterator for copies. */ +typedef struct { + /* The number of the current element in IRA_COPIES. */ + int n; +} ira_copy_iterator; + +/* Initialize the iterator I. */ +static inline void +ira_copy_iter_init (ira_copy_iterator *i) +{ + i->n = 0; +} + +/* Return TRUE if we have more copies to visit, in which case *CP is + set to the copy to be visited. Otherwise, return FALSE. */ +static inline bool +ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp) +{ + int n; + + for (n = i->n; n < ira_copies_num; n++) + if (ira_copies[n] != NULL) + { + *cp = ira_copies[n]; + i->n = n + 1; + return true; + } + return false; +} + +/* Loop over all copies. In each iteration, C is set to the next + copy. ITER is an instance of ira_copy_iterator used to iterate + the copies. */ +#define FOR_EACH_COPY(C, ITER) \ + for (ira_copy_iter_init (&(ITER)); \ + ira_copy_iter_cond (&(ITER), &(C));) + +/* The iterator for object conflicts. */ +typedef struct { + + /* TRUE if the conflicts are represented by vector of allocnos. */ + bool conflict_vec_p; + + /* The conflict vector or conflict bit vector. */ + void *vec; + + /* The number of the current element in the vector (of type + ira_object_t or IRA_INT_TYPE). */ + unsigned int word_num; + + /* The bit vector size. It is defined only if + OBJECT_CONFLICT_VEC_P is FALSE. */ + unsigned int size; + + /* The current bit index of bit vector. It is defined only if + OBJECT_CONFLICT_VEC_P is FALSE. */ + unsigned int bit_num; + + /* The object id corresponding to the 1st bit of the bit vector. It + is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ + int base_conflict_id; + + /* The word of bit vector currently visited. It is defined only if + OBJECT_CONFLICT_VEC_P is FALSE. */ + unsigned IRA_INT_TYPE word; +} ira_object_conflict_iterator; + +/* Initialize the iterator I with ALLOCNO conflicts. */ +static inline void +ira_object_conflict_iter_init (ira_object_conflict_iterator *i, + ira_object_t obj) +{ + i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj); + i->vec = OBJECT_CONFLICT_ARRAY (obj); + i->word_num = 0; + if (i->conflict_vec_p) + i->size = i->bit_num = i->base_conflict_id = i->word = 0; + else + { + if (OBJECT_MIN (obj) > OBJECT_MAX (obj)) + i->size = 0; + else + i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + + IRA_INT_BITS) + / IRA_INT_BITS) * sizeof (IRA_INT_TYPE); + i->bit_num = 0; + i->base_conflict_id = OBJECT_MIN (obj); + i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]); + } +} + +/* Return TRUE if we have more conflicting allocnos to visit, in which + case *A is set to the allocno to be visited. Otherwise, return + FALSE. */ +static inline bool +ira_object_conflict_iter_cond (ira_object_conflict_iterator *i, + ira_object_t *pobj) +{ + ira_object_t obj; + + if (i->conflict_vec_p) + { + obj = ((ira_object_t *) i->vec)[i->word_num]; + if (obj == NULL) + return false; + } + else + { + /* Skip words that are zeros. */ + for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num]) + { + i->word_num++; + + /* If we have reached the end, break. */ + if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size) + return false; + + i->bit_num = i->word_num * IRA_INT_BITS; + } + + /* Skip bits that are zero. */ + for (; (i->word & 1) == 0; i->word >>= 1) + i->bit_num++; + + obj = ira_object_id_map[i->bit_num + i->base_conflict_id]; + } + + *pobj = obj; + return true; +} + +/* Advance to the next conflicting allocno. */ +static inline void +ira_object_conflict_iter_next (ira_object_conflict_iterator *i) +{ + if (i->conflict_vec_p) + i->word_num++; + else + { + i->word >>= 1; + i->bit_num++; + } +} + +/* Loop over all objects conflicting with OBJ. In each iteration, + CONF is set to the next conflicting object. ITER is an instance + of ira_object_conflict_iterator used to iterate the conflicts. */ +#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \ + for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \ + ira_object_conflict_iter_cond (&(ITER), &(CONF)); \ + ira_object_conflict_iter_next (&(ITER))) + + + +/* The function returns TRUE if hard registers starting with + HARD_REGNO and containing value of MODE are not in set + HARD_REGSET. */ +static inline bool +ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode, + HARD_REG_SET hard_regset) +{ + int i; + + ira_assert (hard_regno >= 0); + for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--) + if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) + return false; + return true; +} + + + +/* To save memory we use a lazy approach for allocation and + initialization of the cost vectors. We do this only when it is + really necessary. */ + +/* Allocate cost vector *VEC for hard registers of COVER_CLASS and + initialize the elements by VAL if it is necessary */ +static inline void +ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val) +{ + int i, *reg_costs; + int len; + + if (*vec != NULL) + return; + *vec = reg_costs = ira_allocate_cost_vector (cover_class); + len = ira_class_hard_regs_num[cover_class]; + for (i = 0; i < len; i++) + reg_costs[i] = val; +} + +/* Allocate cost vector *VEC for hard registers of COVER_CLASS and + copy values of vector SRC into the vector if it is necessary */ +static inline void +ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src) +{ + int len; + + if (*vec != NULL || src == NULL) + return; + *vec = ira_allocate_cost_vector (cover_class); + len = ira_class_hard_regs_num[cover_class]; + memcpy (*vec, src, sizeof (int) * len); +} + +/* Allocate cost vector *VEC for hard registers of COVER_CLASS and + add values of vector SRC into the vector if it is necessary */ +static inline void +ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class, + int *src) +{ + int i, len; + + if (src == NULL) + return; + len = ira_class_hard_regs_num[cover_class]; + if (*vec == NULL) + { + *vec = ira_allocate_cost_vector (cover_class); + memset (*vec, 0, sizeof (int) * len); + } + for (i = 0; i < len; i++) + (*vec)[i] += src[i]; +} + +/* Allocate cost vector *VEC for hard registers of COVER_CLASS and + copy values of vector SRC into the vector or initialize it by VAL + (if SRC is null). */ +static inline void +ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class, + int val, int *src) +{ + int i, *reg_costs; + int len; + + if (*vec != NULL) + return; + *vec = reg_costs = ira_allocate_cost_vector (cover_class); + len = ira_class_hard_regs_num[cover_class]; + if (src != NULL) + memcpy (reg_costs, src, sizeof (int) * len); + else + { + for (i = 0; i < len; i++) + reg_costs[i] = val; + } +} |