diff options
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2015.a')
-rw-r--r-- | gcc/testsuite/ada/acats/tests/cxg/cxg2015.a | 686 |
1 files changed, 686 insertions, 0 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a new file mode 100644 index 000000000..50fda5e1f --- /dev/null +++ b/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a @@ -0,0 +1,686 @@ +-- CXG2015.A +-- +-- Grant of Unlimited Rights +-- +-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687, +-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained +-- unlimited rights in the software and documentation contained herein. +-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making +-- this public release, the Government intends to confer upon all +-- recipients unlimited rights equal to those held by the Government. +-- These rights include rights to use, duplicate, release or disclose the +-- released technical data and computer software in whole or in part, in +-- any manner and for any purpose whatsoever, and to have or permit others +-- to do so. +-- +-- DISCLAIMER +-- +-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR +-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED +-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE +-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE +-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A +-- PARTICULAR PURPOSE OF SAID MATERIAL. +--* +-- +-- OBJECTIVE: +-- Check that the ARCSIN and ARCCOS functions return +-- results that are within the error bound allowed. +-- +-- TEST DESCRIPTION: +-- This test consists of a generic package that is +-- instantiated to check both Float and a long float type. +-- The test for each floating point type is divided into +-- several parts: +-- Special value checks where the result is a known constant. +-- Checks in a specific range where a Taylor series can be +-- used to compute an accurate result for comparison. +-- Exception checks. +-- The Taylor series tests are a direct translation of the +-- FORTRAN code found in the reference. +-- +-- SPECIAL REQUIREMENTS +-- The Strict Mode for the numerical accuracy must be +-- selected. The method by which this mode is selected +-- is implementation dependent. +-- +-- APPLICABILITY CRITERIA: +-- This test applies only to implementations supporting the +-- Numerics Annex. +-- This test only applies to the Strict Mode for numerical +-- accuracy. +-- +-- +-- CHANGE HISTORY: +-- 18 Mar 96 SAIC Initial release for 2.1 +-- 24 Apr 96 SAIC Fixed error bounds. +-- 17 Aug 96 SAIC Added reference information and improved +-- checking for machines with more than 23 +-- digits of precision. +-- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi +-- 22 Dec 99 RLB Added model range checking to "exact" results, +-- in order to avoid too strictly requiring a specific +-- result, and too weakly checking results. +-- +-- CHANGE NOTE: +-- According to Ken Dritz, author of the Numerics Annex of the RM, +-- one should never specify the cycle 2.0*Pi for the trigonometric +-- functions. In particular, if the machine number for the first +-- argument is not an exact multiple of the machine number for the +-- explicit cycle, then the specified exact results cannot be +-- reasonably expected. The affected checks in this test have been +-- marked as comments, with the additional notation "pwb-math". +-- Phil Brashear +--! + +-- +-- References: +-- +-- Software Manual for the Elementary Functions +-- William J. Cody, Jr. and William Waite +-- Prentice-Hall, 1980 +-- +-- CRC Standard Mathematical Tables +-- 23rd Edition +-- +-- Implementation and Testing of Function Software +-- W. J. Cody +-- Problems and Methodologies in Mathematical Software Production +-- editors P. C. Messina and A. Murli +-- Lecture Notes in Computer Science Volume 142 +-- Springer Verlag, 1982 +-- +-- CELEFUNT: A Portable Test Package for Complex Elementary Functions +-- ACM Collected Algorithms number 714 + +with System; +with Report; +with Ada.Numerics.Generic_Elementary_Functions; +procedure CXG2015 is + Verbose : constant Boolean := False; + Max_Samples : constant := 1000; + + + -- CRC Standard Mathematical Tables; 23rd Edition; pg 738 + Sqrt2 : constant := + 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695; + Sqrt3 : constant := + 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039; + + Pi : constant := Ada.Numerics.Pi; + + -- relative error bound from G.2.4(7);6.0 + Minimum_Error : constant := 4.0; + + generic + type Real is digits <>; + Half_PI_Low : in Real; -- The machine number closest to, but not greater + -- than PI/2.0. + Half_PI_High : in Real;-- The machine number closest to, but not less + -- than PI/2.0. + PI_Low : in Real; -- The machine number closest to, but not greater + -- than PI. + PI_High : in Real; -- The machine number closest to, but not less + -- than PI. + package Generic_Check is + procedure Do_Test; + end Generic_Check; + + package body Generic_Check is + package Elementary_Functions is new + Ada.Numerics.Generic_Elementary_Functions (Real); + + function Arcsin (X : Real) return Real renames + Elementary_Functions.Arcsin; + function Arcsin (X, Cycle : Real) return Real renames + Elementary_Functions.Arcsin; + function Arccos (X : Real) return Real renames + Elementary_Functions.ArcCos; + function Arccos (X, Cycle : Real) return Real renames + Elementary_Functions.ArcCos; + + -- needed for support + function Log (X, Base : Real) return Real renames + Elementary_Functions.Log; + + -- flag used to terminate some tests early + Accuracy_Error_Reported : Boolean := False; + + -- The following value is a lower bound on the accuracy + -- required. It is normally 0.0 so that the lower bound + -- is computed from Model_Epsilon. However, for tests + -- where the expected result is only known to a certain + -- amount of precision this bound takes on a non-zero + -- value to account for that level of precision. + Error_Low_Bound : Real := 0.0; + + + procedure Check (Actual, Expected : Real; + Test_Name : String; + MRE : Real) is + Max_Error : Real; + Rel_Error : Real; + Abs_Error : Real; + begin + -- In the case where the expected result is very small or 0 + -- we compute the maximum error as a multiple of Model_Epsilon instead + -- of Model_Epsilon and Expected. + Rel_Error := MRE * abs Expected * Real'Model_Epsilon; + Abs_Error := MRE * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + + -- take into account the low bound on the error + if Max_Error < Error_Low_Bound then + Max_Error := Error_Low_Bound; + end if; + + if abs (Actual - Expected) > Max_Error then + Accuracy_Error_Reported := True; + Report.Failed (Test_Name & + " actual: " & Real'Image (Actual) & + " expected: " & Real'Image (Expected) & + " difference: " & Real'Image (Actual - Expected) & + " max err:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result"); + else + Report.Comment (Test_Name & " passed"); + end if; + end if; + end Check; + + + procedure Special_Value_Test is + -- In the following tests the expected result is accurate + -- to the machine precision so the minimum guaranteed error + -- bound can be used. + + type Data_Point is + record + Degrees, + Radians, + Argument, + Error_Bound : Real; + end record; + + type Test_Data_Type is array (Positive range <>) of Data_Point; + + -- the values in the following tables only involve static + -- expressions so no loss of precision occurs. However, + -- rounding can be an issue with expressions involving Pi + -- and square roots. The error bound specified in the + -- table takes the sqrt error into account but not the + -- error due to Pi. The Pi error is added in in the + -- radians test below. + + Arcsin_Test_Data : constant Test_Data_Type := ( + -- degrees radians sine error_bound test # + --( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test. + ( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2 + ( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3 + --( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test. + --(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test. + (-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6 + (-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7 + ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8 + (-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9 + + Arccos_Test_Data : constant Test_Data_Type := ( + -- degrees radians cosine error_bound test # + --( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test. + ( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2 + ( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3 + --( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test. + (120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5 + (150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6 + --(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test. + ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8 + (135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9 + + Cycle_Error, + Radian_Error : Real; + begin + for I in Arcsin_Test_Data'Range loop + + -- note exact result requirements A.5.1(38);6.0 and + -- G.2.4(12);6.0 + if Arcsin_Test_Data (I).Error_Bound = 0.0 then + Cycle_Error := 0.0; + Radian_Error := 0.0; + else + Cycle_Error := Arcsin_Test_Data (I).Error_Bound; + -- allow for rounding error in the specification of Pi + Radian_Error := Cycle_Error + 1.0; + end if; + + Check (Arcsin (Arcsin_Test_Data (I).Argument), + Arcsin_Test_Data (I).Radians, + "test" & Integer'Image (I) & + " arcsin(" & + Real'Image (Arcsin_Test_Data (I).Argument) & + ")", + Radian_Error); +--pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi), +--pwb-math Arcsin_Test_Data (I).Radians, +--pwb-math "test" & Integer'Image (I) & +--pwb-math " arcsin(" & +--pwb-math Real'Image (Arcsin_Test_Data (I).Argument) & +--pwb-math ", 2pi)", +--pwb-math Cycle_Error); + Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0), + Arcsin_Test_Data (I).Degrees, + "test" & Integer'Image (I) & + " arcsin(" & + Real'Image (Arcsin_Test_Data (I).Argument) & + ", 360)", + Cycle_Error); + end loop; + + + for I in Arccos_Test_Data'Range loop + + -- note exact result requirements A.5.1(39);6.0 and + -- G.2.4(12);6.0 + if Arccos_Test_Data (I).Error_Bound = 0.0 then + Cycle_Error := 0.0; + Radian_Error := 0.0; + else + Cycle_Error := Arccos_Test_Data (I).Error_Bound; + -- allow for rounding error in the specification of Pi + Radian_Error := Cycle_Error + 1.0; + end if; + + Check (Arccos (Arccos_Test_Data (I).Argument), + Arccos_Test_Data (I).Radians, + "test" & Integer'Image (I) & + " arccos(" & + Real'Image (Arccos_Test_Data (I).Argument) & + ")", + Radian_Error); +--pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi), +--pwb-math Arccos_Test_Data (I).Radians, +--pwb-math "test" & Integer'Image (I) & +--pwb-math " arccos(" & +--pwb-math Real'Image (Arccos_Test_Data (I).Argument) & +--pwb-math ", 2pi)", +--pwb-math Cycle_Error); + Check (Arccos (Arccos_Test_Data (I).Argument, 360.0), + Arccos_Test_Data (I).Degrees, + "test" & Integer'Image (I) & + " arccos(" & + Real'Image (Arccos_Test_Data (I).Argument) & + ", 360)", + Cycle_Error); + end loop; + + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in special value test"); + when others => + Report.Failed ("exception in special value test"); + end Special_Value_Test; + + + procedure Check_Exact (Actual, Expected_Low, Expected_High : Real; + Test_Name : String) is + -- If the expected result is not a model number, then Expected_Low is + -- the first machine number less than the (exact) expected + -- result, and Expected_High is the first machine number greater than + -- the (exact) expected result. If the expected result is a model + -- number, Expected_Low = Expected_High = the result. + Model_Expected_Low : Real := Expected_Low; + Model_Expected_High : Real := Expected_High; + begin + -- Calculate the first model number nearest to, but below (or equal) + -- to the expected result: + while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop + -- Try the next machine number lower: + Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0); + end loop; + -- Calculate the first model number nearest to, but above (or equal) + -- to the expected result: + while Real'Model (Model_Expected_High) /= Model_Expected_High loop + -- Try the next machine number higher: + Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0); + end loop; + + if Actual < Model_Expected_Low or Actual > Model_Expected_High then + Accuracy_Error_Reported := True; + if Actual < Model_Expected_Low then + Report.Failed (Test_Name & + " actual: " & Real'Image (Actual) & + " expected low: " & Real'Image (Model_Expected_Low) & + " expected high: " & Real'Image (Model_Expected_High) & + " difference: " & Real'Image (Actual - Expected_Low)); + else + Report.Failed (Test_Name & + " actual: " & Real'Image (Actual) & + " expected low: " & Real'Image (Model_Expected_Low) & + " expected high: " & Real'Image (Model_Expected_High) & + " difference: " & Real'Image (Expected_High - Actual)); + end if; + elsif Verbose then + Report.Comment (Test_Name & " passed"); + end if; + end Check_Exact; + + + procedure Exact_Result_Test is + begin + -- A.5.1(38) + Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)"); + Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)"); + + -- A.5.1(39) + Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)"); + Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)"); + + -- G.2.4(11-13) + Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)"); + Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)"); + + Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)"); + Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)"); + + Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)"); + Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)"); + + Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)"); + Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)"); + + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in Exact_Result Test"); + when others => + Report.Failed ("Exception in Exact_Result Test"); + end Exact_Result_Test; + + + procedure Arcsin_Taylor_Series_Test is + -- the following range is chosen so that the Taylor series + -- used will produce a result accurate to machine precision. + -- + -- The following formula is used for the Taylor series: + -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) + + -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] } + -- where xsq = x * x + -- + A : constant := -0.125; + B : constant := 0.125; + X : Real; + Y, Y_Sq : Real; + Actual, Sum, Xm : Real; + -- terms in Taylor series + K : constant Integer := Integer ( + Log ( + Real (Real'Machine_Radix) ** Real'Machine_Mantissa, + 10.0)) + 1; + begin + Accuracy_Error_Reported := False; -- reset + for I in 1..Max_Samples loop + -- make sure there is no error in x-1, x, and x+1 + X := (B - A) * Real (I) / Real (Max_Samples) + A; + + Y := X; + Y_Sq := Y * Y; + Sum := 0.0; + Xm := Real (K + K + 1); + for M in 1 .. K loop + Sum := Y_Sq * (Sum + 1.0/Xm); + Xm := Xm - 2.0; + Sum := Sum * (Xm /(Xm + 1.0)); + end loop; + Sum := Sum * Y; + Actual := Y + Sum; + Sum := (Y - Actual) + Sum; + if not Real'Machine_Rounds then + Actual := Actual + (Sum + Sum); + end if; + + Check (Actual, Arcsin (X), + "Taylor Series test" & Integer'Image (I) & ": arcsin(" & + Real'Image (X) & ") ", + Minimum_Error); + + if Accuracy_Error_Reported then + -- only report the first error in this test in order to keep + -- lots of failures from producing a huge error log + return; + end if; + + end loop; + + exception + when Constraint_Error => + Report.Failed + ("Constraint_Error raised in Arcsin_Taylor_Series_Test" & + " for X=" & Real'Image (X)); + when others => + Report.Failed ("exception in Arcsin_Taylor_Series_Test" & + " for X=" & Real'Image (X)); + end Arcsin_Taylor_Series_Test; + + + + procedure Arccos_Taylor_Series_Test is + -- the following range is chosen so that the Taylor series + -- used will produce a result accurate to machine precision. + -- + -- The following formula is used for the Taylor series: + -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) + + -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] } + -- arccos(x) = pi/2 - TS(x) + A : constant := -0.125; + B : constant := 0.125; + C1, C2 : Real; + X : Real; + Y, Y_Sq : Real; + Actual, Sum, Xm, S : Real; + -- terms in Taylor series + K : constant Integer := Integer ( + Log ( + Real (Real'Machine_Radix) ** Real'Machine_Mantissa, + 10.0)) + 1; + begin + if Real'Digits > 23 then + -- constants in this section only accurate to 23 digits + Error_Low_Bound := 0.00000_00000_00000_00000_001; + Report.Comment ("arctan accuracy checked to 23 digits"); + end if; + + -- C1 + C2 equals Pi/2 accurate to 23 digits + if Real'Machine_Radix = 10 then + C1 := 1.57; + C2 := 7.9632679489661923132E-4; + else + C1 := 201.0 / 128.0; + C2 := 4.8382679489661923132E-4; + end if; + + Accuracy_Error_Reported := False; -- reset + for I in 1..Max_Samples loop + -- make sure there is no error in x-1, x, and x+1 + X := (B - A) * Real (I) / Real (Max_Samples) + A; + + Y := X; + Y_Sq := Y * Y; + Sum := 0.0; + Xm := Real (K + K + 1); + for M in 1 .. K loop + Sum := Y_Sq * (Sum + 1.0/Xm); + Xm := Xm - 2.0; + Sum := Sum * (Xm /(Xm + 1.0)); + end loop; + Sum := Sum * Y; + + -- at this point we have arcsin(x). + -- We compute arccos(x) = pi/2 - arcsin(x). + -- The following code segment is translated directly from + -- the CELEFUNT FORTRAN implementation + + S := C1 + C2; + Sum := ((C1 - S) + C2) - Sum; + Actual := S + Sum; + Sum := ((S - Actual) + Sum) - Y; + S := Actual; + Actual := S + Sum; + Sum := (S - Actual) + Sum; + + if not Real'Machine_Rounds then + Actual := Actual + (Sum + Sum); + end if; + + Check (Actual, Arccos (X), + "Taylor Series test" & Integer'Image (I) & ": arccos(" & + Real'Image (X) & ") ", + Minimum_Error); + + -- only report the first error in this test in order to keep + -- lots of failures from producing a huge error log + exit when Accuracy_Error_Reported; + end loop; + Error_Low_Bound := 0.0; -- reset + exception + when Constraint_Error => + Report.Failed + ("Constraint_Error raised in Arccos_Taylor_Series_Test" & + " for X=" & Real'Image (X)); + when others => + Report.Failed ("exception in Arccos_Taylor_Series_Test" & + " for X=" & Real'Image (X)); + end Arccos_Taylor_Series_Test; + + + + procedure Identity_Test is + -- test the identity arcsin(-x) = -arcsin(x) + -- range chosen to be most of the valid range of the argument. + A : constant := -0.999; + B : constant := 0.999; + X : Real; + begin + Accuracy_Error_Reported := False; -- reset + for I in 1..Max_Samples loop + -- make sure there is no error in x-1, x, and x+1 + X := (B - A) * Real (I) / Real (Max_Samples) + A; + + Check (Arcsin(-X), -Arcsin (X), + "Identity test" & Integer'Image (I) & ": arcsin(" & + Real'Image (X) & ") ", + 8.0); -- 2 arcsin evaluations => twice the error bound + + if Accuracy_Error_Reported then + -- only report the first error in this test in order to keep + -- lots of failures from producing a huge error log + return; + end if; + end loop; + end Identity_Test; + + + procedure Exception_Test is + X1, X2 : Real := 0.0; + begin + begin + X1 := Arcsin (1.1); + Report.Failed ("no exception for Arcsin (1.1)"); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error instead of " & + "Argument_Error for Arcsin (1.1)"); + when Ada.Numerics.Argument_Error => + null; -- expected result + when others => + Report.Failed ("wrong exception for Arcsin(1.1)"); + end; + + begin + X2 := Arccos (-1.1); + Report.Failed ("no exception for Arccos (-1.1)"); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error instead of " & + "Argument_Error for Arccos (-1.1)"); + when Ada.Numerics.Argument_Error => + null; -- expected result + when others => + Report.Failed ("wrong exception for Arccos(-1.1)"); + end; + + + -- optimizer thwarting + if Report.Ident_Bool (False) then + Report.Comment (Real'Image (X1 + X2)); + end if; + end Exception_Test; + + + procedure Do_Test is + begin + Special_Value_Test; + Exact_Result_Test; + Arcsin_Taylor_Series_Test; + Arccos_Taylor_Series_Test; + Identity_Test; + Exception_Test; + end Do_Test; + end Generic_Check; + + ----------------------------------------------------------------------- + ----------------------------------------------------------------------- + -- These expressions must be truly static, which is why we have to do them + -- outside of the generic, and we use the named numbers. Note that we know + -- that PI is not a machine number (it is irrational), and it should be + -- represented to more digits than supported by the target machine. + Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0); + Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0); + Float_PI_Low : constant := Float'Adjacent(PI, 0.0); + Float_PI_High : constant := Float'Adjacent(PI, 10.0); + package Float_Check is new Generic_Check (Float, + Half_PI_Low => Float_Half_PI_Low, + Half_PI_High => Float_Half_PI_High, + PI_Low => Float_PI_Low, + PI_High => Float_PI_High); + + -- check the floating point type with the most digits + type A_Long_Float is digits System.Max_Digits; + A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0); + A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0); + A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0); + A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0); + package A_Long_Float_Check is new Generic_Check (A_Long_Float, + Half_PI_Low => A_Long_Float_Half_PI_Low, + Half_PI_High => A_Long_Float_Half_PI_High, + PI_Low => A_Long_Float_PI_Low, + PI_High => A_Long_Float_PI_High); + + ----------------------------------------------------------------------- + ----------------------------------------------------------------------- + + +begin + Report.Test ("CXG2015", + "Check the accuracy of the ARCSIN and ARCCOS functions"); + + if Verbose then + Report.Comment ("checking Standard.Float"); + end if; + + Float_Check.Do_Test; + + if Verbose then + Report.Comment ("checking a digits" & + Integer'Image (System.Max_Digits) & + " floating point type"); + end if; + + A_Long_Float_Check.Do_Test; + + + Report.Result; +end CXG2015; |