summaryrefslogtreecommitdiff
path: root/libjava/gnu/gcj/io/shs.cc
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/gnu/gcj/io/shs.cc')
-rw-r--r--libjava/gnu/gcj/io/shs.cc284
1 files changed, 284 insertions, 0 deletions
diff --git a/libjava/gnu/gcj/io/shs.cc b/libjava/gnu/gcj/io/shs.cc
new file mode 100644
index 000000000..ca82661df
--- /dev/null
+++ b/libjava/gnu/gcj/io/shs.cc
@@ -0,0 +1,284 @@
+
+/* --------------------------------- SHS.CC ------------------------------- */
+
+/*
+ * NIST proposed Secure Hash Standard.
+ *
+ * Written 2 September 1992, Peter C. Gutmann.
+ * This implementation placed in the public domain.
+ *
+ * Comments to pgut1@cs.aukuni.ac.nz
+ */
+
+// Force C++ compiler to use Java-style EH, so we don't have to link with
+// libstdc++.
+#pragma GCC java_exceptions
+
+#include <string.h>
+#include "shs.h"
+
+/* The SHS f()-functions */
+
+#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
+#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
+#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
+#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
+
+/* The SHS Mysterious Constants */
+
+#define K1 0x5A827999L /* Rounds 0-19 */
+#define K2 0x6ED9EBA1L /* Rounds 20-39 */
+#define K3 0x8F1BBCDCL /* Rounds 40-59 */
+#define K4 0xCA62C1D6L /* Rounds 60-79 */
+
+/* SHS initial values */
+
+#define h0init 0x67452301L
+#define h1init 0xEFCDAB89L
+#define h2init 0x98BADCFEL
+#define h3init 0x10325476L
+#define h4init 0xC3D2E1F0L
+
+/* 32-bit rotate - kludged with shifts */
+
+#define S(n,X) ((X << n) | (X >> (32 - n)))
+
+/* The initial expanding function */
+
+#define expand(count) W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
+
+/* The four SHS sub-rounds */
+
+#define subRound1(count) \
+ { \
+ temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
+ E = D; \
+ D = C; \
+ C = S (30, B); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound2(count) \
+ { \
+ temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
+ E = D; \
+ D = C; \
+ C = S (30, B); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound3(count) \
+ { \
+ temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
+ E = D; \
+ D = C; \
+ C = S (30, B); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound4(count) \
+ { \
+ temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
+ E = D; \
+ D = C; \
+ C = S (30, B); \
+ B = A; \
+ A = temp; \
+ }
+
+/* The two buffers of 5 32-bit words */
+
+uint32_t h0, h1, h2, h3, h4;
+uint32_t A, B, C, D, E;
+
+local void byteReverse OF((uint32_t *buffer, int byteCount));
+void shsTransform OF((SHS_INFO *shsInfo));
+
+/* Initialize the SHS values */
+
+void shsInit (SHS_INFO *shsInfo)
+{
+ /* Set the h-vars to their initial values */
+ shsInfo->digest [0] = h0init;
+ shsInfo->digest [1] = h1init;
+ shsInfo->digest [2] = h2init;
+ shsInfo->digest [3] = h3init;
+ shsInfo->digest [4] = h4init;
+
+ /* Initialise bit count */
+ shsInfo->countLo = shsInfo->countHi = 0L;
+}
+
+/*
+ * Perform the SHS transformation. Note that this code, like MD5, seems to
+ * break some optimizing compilers - it may be necessary to split it into
+ * sections, eg based on the four subrounds
+ */
+
+void shsTransform (SHS_INFO *shsInfo)
+{
+ uint32_t W [80], temp;
+ int i;
+
+ /* Step A. Copy the data buffer into the local work buffer */
+ for (i = 0; i < 16; i++)
+ W [i] = shsInfo->data [i];
+
+ /* Step B. Expand the 16 words into 64 temporary data words */
+ expand (16); expand (17); expand (18); expand (19); expand (20);
+ expand (21); expand (22); expand (23); expand (24); expand (25);
+ expand (26); expand (27); expand (28); expand (29); expand (30);
+ expand (31); expand (32); expand (33); expand (34); expand (35);
+ expand (36); expand (37); expand (38); expand (39); expand (40);
+ expand (41); expand (42); expand (43); expand (44); expand (45);
+ expand (46); expand (47); expand (48); expand (49); expand (50);
+ expand (51); expand (52); expand (53); expand (54); expand (55);
+ expand (56); expand (57); expand (58); expand (59); expand (60);
+ expand (61); expand (62); expand (63); expand (64); expand (65);
+ expand (66); expand (67); expand (68); expand (69); expand (70);
+ expand (71); expand (72); expand (73); expand (74); expand (75);
+ expand (76); expand (77); expand (78); expand (79);
+
+ /* Step C. Set up first buffer */
+ A = shsInfo->digest [0];
+ B = shsInfo->digest [1];
+ C = shsInfo->digest [2];
+ D = shsInfo->digest [3];
+ E = shsInfo->digest [4];
+
+ /* Step D. Serious mangling, divided into four sub-rounds */
+ subRound1 (0); subRound1 (1); subRound1 (2); subRound1 (3);
+ subRound1 (4); subRound1 (5); subRound1 (6); subRound1 (7);
+ subRound1 (8); subRound1 (9); subRound1 (10); subRound1 (11);
+ subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
+ subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
+
+ subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
+ subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
+ subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
+ subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
+ subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
+
+ subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
+ subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
+ subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
+ subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
+ subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
+
+ subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
+ subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
+ subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
+ subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
+ subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
+
+ /* Step E. Build message digest */
+ shsInfo->digest [0] += A;
+ shsInfo->digest [1] += B;
+ shsInfo->digest [2] += C;
+ shsInfo->digest [3] += D;
+ shsInfo->digest [4] += E;
+}
+
+local void byteReverse (uint32_t *buffer, int byteCount)
+{
+ uint32_t value;
+ int count;
+
+ /*
+ * Find out what the byte order is on this machine.
+ * Big endian is for machines that place the most significant byte
+ * first (eg. Sun SPARC). Little endian is for machines that place
+ * the least significant byte first (eg. VAX).
+ *
+ * We figure out the byte order by stuffing a 2 byte string into a
+ * short and examining the left byte. '@' = 0x40 and 'P' = 0x50
+ * If the left byte is the 'high' byte, then it is 'big endian'.
+ * If the left byte is the 'low' byte, then the machine is 'little
+ * endian'.
+ *
+ * -- Shawn A. Clifford (sac@eng.ufl.edu)
+ */
+
+ /*
+ * Several bugs fixed -- Pat Myrto (pat@rwing.uucp)
+ */
+
+ if ((*(unsigned short *) ("@P") >> 8) == '@')
+ return;
+
+ byteCount /= sizeof (uint32_t);
+ for (count = 0; count < byteCount; count++) {
+ value = (buffer [count] << 16) | (buffer [count] >> 16);
+ buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
+ }
+}
+
+/*
+ * Update SHS for a block of data. This code assumes that the buffer size is
+ * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
+ * efficient since it does away with the need to handle partial blocks
+ * between calls to shsUpdate()
+ */
+
+void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
+{
+ /* Update bitcount */
+ if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
+ shsInfo->countHi++; /* Carry from low to high bitCount */
+ shsInfo->countLo += ((uint32_t) count << 3);
+ shsInfo->countHi += ((uint32_t) count >> 29);
+
+ /* Process data in SHS_BLOCKSIZE chunks */
+ while (count >= SHS_BLOCKSIZE) {
+ memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
+ byteReverse (shsInfo->data, SHS_BLOCKSIZE);
+ shsTransform (shsInfo);
+ buffer += SHS_BLOCKSIZE;
+ count -= SHS_BLOCKSIZE;
+ }
+
+ /*
+ * Handle any remaining bytes of data.
+ * This should only happen once on the final lot of data
+ */
+ memcpy (shsInfo->data, buffer, count);
+}
+
+void shsFinal (SHS_INFO *shsInfo)
+{
+ int count;
+ uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
+
+ /* Compute number of bytes mod 64 */
+ count = (int) ((shsInfo->countLo >> 3) & 0x3F);
+
+ /*
+ * Set the first char of padding to 0x80.
+ * This is safe since there is always at least one byte free
+ */
+ ((uint8_t *) shsInfo->data) [count++] = 0x80;
+
+ /* Pad out to 56 mod 64 */
+ if (count > 56) {
+ /* Two lots of padding: Pad the first block to 64 bytes */
+ memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
+ byteReverse (shsInfo->data, SHS_BLOCKSIZE);
+ shsTransform (shsInfo);
+
+ /* Now fill the next block with 56 bytes */
+ memset (shsInfo->data, 0, 56);
+ } else
+ /* Pad block to 56 bytes */
+ memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
+ byteReverse (shsInfo->data, SHS_BLOCKSIZE);
+
+ /* Append length in bits and transform */
+ shsInfo->data [14] = highBitcount;
+ shsInfo->data [15] = lowBitcount;
+
+ shsTransform (shsInfo);
+ byteReverse (shsInfo->data, SHS_DIGESTSIZE);
+}