summaryrefslogtreecommitdiff
path: root/libquadmath/math/log10q.c
diff options
context:
space:
mode:
Diffstat (limited to 'libquadmath/math/log10q.c')
-rw-r--r--libquadmath/math/log10q.c256
1 files changed, 256 insertions, 0 deletions
diff --git a/libquadmath/math/log10q.c b/libquadmath/math/log10q.c
new file mode 100644
index 000000000..50caf18b7
--- /dev/null
+++ b/libquadmath/math/log10q.c
@@ -0,0 +1,256 @@
+/* log10l.c
+ *
+ * Common logarithm, 128-bit long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, log10l();
+ *
+ * y = log10l( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base 10 logarithm of x.
+ *
+ * The argument is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the logarithm
+ * of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/x+1),
+ *
+ * log(x) = z + z^3 P(z)/Q(z).
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
+ * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
+ *
+ * In the tests over the interval exp(+-10000), the logarithms
+ * of the random arguments were uniformly distributed over
+ * [-10000, +10000].
+ *
+ */
+
+/*
+ Cephes Math Library Release 2.2: January, 1991
+ Copyright 1984, 1991 by Stephen L. Moshier
+ Adapted for glibc November, 2001
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+ */
+
+#include "quadmath-imp.h"
+
+/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 5.3e-37,
+ * relative peak error spread = 2.3e-14
+ */
+static const __float128 P[13] =
+{
+ 1.313572404063446165910279910527789794488E4Q,
+ 7.771154681358524243729929227226708890930E4Q,
+ 2.014652742082537582487669938141683759923E5Q,
+ 3.007007295140399532324943111654767187848E5Q,
+ 2.854829159639697837788887080758954924001E5Q,
+ 1.797628303815655343403735250238293741397E5Q,
+ 7.594356839258970405033155585486712125861E4Q,
+ 2.128857716871515081352991964243375186031E4Q,
+ 3.824952356185897735160588078446136783779E3Q,
+ 4.114517881637811823002128927449878962058E2Q,
+ 2.321125933898420063925789532045674660756E1Q,
+ 4.998469661968096229986658302195402690910E-1Q,
+ 1.538612243596254322971797716843006400388E-6Q
+};
+static const __float128 Q[12] =
+{
+ 3.940717212190338497730839731583397586124E4Q,
+ 2.626900195321832660448791748036714883242E5Q,
+ 7.777690340007566932935753241556479363645E5Q,
+ 1.347518538384329112529391120390701166528E6Q,
+ 1.514882452993549494932585972882995548426E6Q,
+ 1.158019977462989115839826904108208787040E6Q,
+ 6.132189329546557743179177159925690841200E5Q,
+ 2.248234257620569139969141618556349415120E5Q,
+ 5.605842085972455027590989944010492125825E4Q,
+ 9.147150349299596453976674231612674085381E3Q,
+ 9.104928120962988414618126155557301584078E2Q,
+ 4.839208193348159620282142911143429644326E1Q
+/* 1.000000000000000000000000000000000000000E0Q, */
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 1.1e-35,
+ * relative peak error spread 1.1e-9
+ */
+static const __float128 R[6] =
+{
+ 1.418134209872192732479751274970992665513E5Q,
+ -8.977257995689735303686582344659576526998E4Q,
+ 2.048819892795278657810231591630928516206E4Q,
+ -2.024301798136027039250415126250455056397E3Q,
+ 8.057002716646055371965756206836056074715E1Q,
+ -8.828896441624934385266096344596648080902E-1Q
+};
+static const __float128 S[6] =
+{
+ 1.701761051846631278975701529965589676574E6Q,
+ -1.332535117259762928288745111081235577029E6Q,
+ 4.001557694070773974936904547424676279307E5Q,
+ -5.748542087379434595104154610899551484314E4Q,
+ 3.998526750980007367835804959888064681098E3Q,
+ -1.186359407982897997337150403816839480438E2Q
+/* 1.000000000000000000000000000000000000000E0Q, */
+};
+
+static const __float128
+/* log10(2) */
+L102A = 0.3125Q,
+L102B = -1.14700043360188047862611052755069732318101185E-2Q,
+/* log10(e) */
+L10EA = 0.5Q,
+L10EB = -6.570551809674817234887108108339491770560299E-2Q,
+/* sqrt(2)/2 */
+SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
+
+
+
+/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
+
+static __float128
+neval (__float128 x, const __float128 *p, int n)
+{
+ __float128 y;
+
+ p += n;
+ y = *p--;
+ do
+ {
+ y = y * x + *p--;
+ }
+ while (--n > 0);
+ return y;
+}
+
+
+/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
+
+static __float128
+deval (__float128 x, const __float128 *p, int n)
+{
+ __float128 y;
+
+ p += n;
+ y = x + *p--;
+ do
+ {
+ y = y * x + *p--;
+ }
+ while (--n > 0);
+ return y;
+}
+
+
+
+__float128
+log10q (__float128 x)
+{
+ __float128 z;
+ __float128 y;
+ int e;
+ int64_t hx, lx;
+
+/* Test for domain */
+ GET_FLT128_WORDS64 (hx, lx, x);
+ if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
+ return (-1.0Q / (x - x));
+ if (hx < 0)
+ return (x - x) / (x - x);
+ if (hx >= 0x7fff000000000000LL)
+ return (x + x);
+
+/* separate mantissa from exponent */
+
+/* Note, frexp is used so that denormal numbers
+ * will be handled properly.
+ */
+ x = frexpq (x, &e);
+
+
+/* logarithm using log(x) = z + z**3 P(z)/Q(z),
+ * where z = 2(x-1)/x+1)
+ */
+ if ((e > 2) || (e < -2))
+ {
+ if (x < SQRTH)
+ { /* 2( 2x-1 )/( 2x+1 ) */
+ e -= 1;
+ z = x - 0.5Q;
+ y = 0.5Q * z + 0.5Q;
+ }
+ else
+ { /* 2 (x-1)/(x+1) */
+ z = x - 0.5Q;
+ z -= 0.5Q;
+ y = 0.5Q * x + 0.5Q;
+ }
+ x = z / y;
+ z = x * x;
+ y = x * (z * neval (z, R, 5) / deval (z, S, 5));
+ goto done;
+ }
+
+
+/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+
+ if (x < SQRTH)
+ {
+ e -= 1;
+ x = 2.0 * x - 1.0Q; /* 2x - 1 */
+ }
+ else
+ {
+ x = x - 1.0Q;
+ }
+ z = x * x;
+ y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
+ y = y - 0.5 * z;
+
+done:
+
+ /* Multiply log of fraction by log10(e)
+ * and base 2 exponent by log10(2).
+ */
+ z = y * L10EB;
+ z += x * L10EB;
+ z += e * L102B;
+ z += y * L10EA;
+ z += x * L10EA;
+ z += e * L102A;
+ return (z);
+}