From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/ada/g-pehage.ads | 240 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 240 insertions(+) create mode 100644 gcc/ada/g-pehage.ads (limited to 'gcc/ada/g-pehage.ads') diff --git a/gcc/ada/g-pehage.ads b/gcc/ada/g-pehage.ads new file mode 100644 index 000000000..8e72088e3 --- /dev/null +++ b/gcc/ada/g-pehage.ads @@ -0,0 +1,240 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT COMPILER COMPONENTS -- +-- -- +-- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S -- +-- -- +-- S p e c -- +-- -- +-- Copyright (C) 2002-2010, AdaCore -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- +-- for more details. You should have received a copy of the GNU General -- +-- Public License distributed with GNAT; see file COPYING. If not, write -- +-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, -- +-- Boston, MA 02110-1301, USA. -- +-- -- +-- As a special exception, if other files instantiate generics from this -- +-- unit, or you link this unit with other files to produce an executable, -- +-- this unit does not by itself cause the resulting executable to be -- +-- covered by the GNU General Public License. This exception does not -- +-- however invalidate any other reasons why the executable file might be -- +-- covered by the GNU Public License. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- This package provides a generator of static minimal perfect hash functions. +-- To understand what a perfect hash function is, we define several notions. +-- These definitions are inspired from the following paper: + +-- Zbigniew J. Czech, George Havas, and Bohdan S. Majewski ``An Optimal +-- Algorithm for Generating Minimal Perfect Hash Functions'', Information +-- Processing Letters, 43(1992) pp.257-264, Oct.1992 + +-- Let W be a set of m words. A hash function h is a function that maps the +-- set of words W into some given interval I of integers [0, k-1], where k is +-- an integer, usually k >= m. h (w) where w is a word in W computes an +-- address or an integer from I for the storage or the retrieval of that +-- item. The storage area used to store items is known as a hash table. Words +-- for which the same address is computed are called synonyms. Due to the +-- existence of synonyms a situation called collision may arise in which two +-- items w1 and w2 have the same address. Several schemes for resolving +-- collisions are known. A perfect hash function is an injection from the word +-- set W to the integer interval I with k >= m. If k = m, then h is a minimal +-- perfect hash function. A hash function is order preserving if it puts +-- entries into the hash table in a prespecified order. + +-- A minimal perfect hash function is defined by two properties: + +-- Since no collisions occur each item can be retrieved from the table in +-- *one* probe. This represents the "perfect" property. + +-- The hash table size corresponds to the exact size of W and *no larger*. +-- This represents the "minimal" property. + +-- The functions generated by this package require the words to be known in +-- advance (they are "static" hash functions). The hash functions are also +-- order preserving. If w2 is inserted after w1 in the generator, then h (w1) +-- < h (w2). These hashing functions are convenient for use with realtime +-- applications. + +package GNAT.Perfect_Hash_Generators is + + Default_K_To_V : constant Float := 2.05; + -- Default ratio for the algorithm. When K is the number of keys, V = + -- (K_To_V) * K is the size of the main table of the hash function. To + -- converge, the algorithm requires K_To_V to be strictly greater than 2.0. + + Default_Pkg_Name : constant String := "Perfect_Hash"; + -- Default package name in which the hash function is defined + + Default_Position : constant String := ""; + -- The generator allows selection of the character positions used in the + -- hash function. By default, all positions are selected. + + Default_Tries : constant Positive := 20; + -- This algorithm may not succeed to find a possible mapping on the first + -- try and may have to iterate a number of times. This constant bounds the + -- number of tries. + + type Optimization is (Memory_Space, CPU_Time); + -- Optimize either the memory space or the execution time. Note: in + -- practice, the optimization mode has little effect on speed. The tables + -- are somewhat smaller with Memory_Space. + + Verbose : Boolean := False; + -- Output the status of the algorithm. For instance, the tables, the random + -- graph (edges, vertices) and selected char positions are output between + -- two iterations. + + procedure Initialize + (Seed : Natural; + K_To_V : Float := Default_K_To_V; + Optim : Optimization := Memory_Space; + Tries : Positive := Default_Tries); + -- Initialize the generator and its internal structures. Set the ratio of + -- vertices over keys in the random graphs. This value has to be greater + -- than 2.0 in order for the algorithm to succeed. The word set is not + -- modified (in particular when it is already set). For instance, it is + -- possible to run several times the generator with different settings on + -- the same words. + -- + -- A classical way of doing is to Insert all the words and then to invoke + -- Initialize and Compute. If Compute fails to find a perfect hash + -- function, invoke Initialize another time with other configuration + -- parameters (probably with a greater K_To_V ratio). Once successful, + -- invoke Produce and Finalize. + + procedure Finalize; + -- Deallocate the internal structures and the words table + + procedure Insert (Value : String); + -- Insert a new word into the table. ASCII.NUL characters are not allowed. + + Too_Many_Tries : exception; + -- Raised after Tries unsuccessful runs + + procedure Compute (Position : String := Default_Position); + -- Compute the hash function. Position allows to define selection of + -- character positions used in the word hash function. Positions can be + -- separated by commas and ranges like x-y may be used. Character '$' + -- represents the final character of a word. With an empty position, the + -- generator automatically produces positions to reduce the memory usage. + -- Raise Too_Many_Tries if the algorithm does not succeed within Tries + -- attempts (see Initialize). + + procedure Produce + (Pkg_Name : String := Default_Pkg_Name; + Use_Stdout : Boolean := False); + -- Generate the hash function package Pkg_Name. This package includes the + -- minimal perfect Hash function. The output is normally placed in the + -- current directory, in files X.ads and X.adb, where X is the standard + -- GNAT file name for a package named Pkg_Name. If Use_Stdout is True, the + -- output goes to standard output, and no files are written. + + ---------------------------------------------------------------- + + -- The routines and structures defined below allow producing the hash + -- function using a different way from the procedure above. The procedure + -- Define returns the lengths of an internal table and its item type size. + -- The function Value returns the value of each item in the table. + + -- The hash function has the following form: + + -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m + + -- G is a function based on a graph table [0,n-1] -> [0,m-1]. m is the + -- number of keys. n is an internally computed value and it can be obtained + -- as the length of vector G. + + -- F1 and F2 are two functions based on two function tables T1 and T2. + -- Their definition depends on the chosen optimization mode. + + -- Only some character positions are used in the words because they are + -- significant. They are listed in a character position table (P in the + -- pseudo-code below). For instance, in {"jan", "feb", "mar", "apr", "jun", + -- "jul", "aug", "sep", "oct", "nov", "dec"}, only positions 2 and 3 are + -- significant (the first character can be ignored). In this example, P = + -- {2, 3} + + -- When Optimization is CPU_Time, the first dimension of T1 and T2 + -- corresponds to the character position in the word and the second to the + -- character set. As all the character set is not used, we define a used + -- character table which associates a distinct index to each used character + -- (unused characters are mapped to zero). In this case, the second + -- dimension of T1 and T2 is reduced to the used character set (C in the + -- pseudo-code below). Therefore, the hash function has the following: + + -- function Hash (S : String) return Natural is + -- F : constant Natural := S'First - 1; + -- L : constant Natural := S'Length; + -- F1, F2 : Natural := 0; + -- J : ; + + -- begin + -- for K in P'Range loop + -- exit when L < P (K); + -- J := C (S (P (K) + F)); + -- F1 := (F1 + Natural (T1 (K, J))) mod ; + -- F2 := (F2 + Natural (T2 (K, J))) mod ; + -- end loop; + + -- return (Natural (G (F1)) + Natural (G (F2))) mod ; + -- end Hash; + + -- When Optimization is Memory_Space, the first dimension of T1 and T2 + -- corresponds to the character position in the word and the second + -- dimension is ignored. T1 and T2 are no longer matrices but vectors. + -- Therefore, the used character table is not available. The hash function + -- has the following form: + + -- function Hash (S : String) return Natural is + -- F : constant Natural := S'First - 1; + -- L : constant Natural := S'Length; + -- F1, F2 : Natural := 0; + -- J : ; + + -- begin + -- for K in P'Range loop + -- exit when L < P (K); + -- J := Character'Pos (S (P (K) + F)); + -- F1 := (F1 + Natural (T1 (K) * J)) mod ; + -- F2 := (F2 + Natural (T2 (K) * J)) mod ; + -- end loop; + + -- return (Natural (G (F1)) + Natural (G (F2))) mod ; + -- end Hash; + + type Table_Name is + (Character_Position, + Used_Character_Set, + Function_Table_1, + Function_Table_2, + Graph_Table); + + procedure Define + (Name : Table_Name; + Item_Size : out Natural; + Length_1 : out Natural; + Length_2 : out Natural); + -- Return the definition of the table Name. This includes the length of + -- dimensions 1 and 2 and the size of an unsigned integer item. When + -- Length_2 is zero, the table has only one dimension. All the ranges + -- start from zero. + + function Value + (Name : Table_Name; + J : Natural; + K : Natural := 0) return Natural; + -- Return the value of the component (I, J) of the table Name. When the + -- table has only one dimension, J is ignored. + +end GNAT.Perfect_Hash_Generators; -- cgit v1.2.3