From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/ada/s-taprop-solaris.adb | 1990 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1990 insertions(+) create mode 100644 gcc/ada/s-taprop-solaris.adb (limited to 'gcc/ada/s-taprop-solaris.adb') diff --git a/gcc/ada/s-taprop-solaris.adb b/gcc/ada/s-taprop-solaris.adb new file mode 100644 index 000000000..a48622d03 --- /dev/null +++ b/gcc/ada/s-taprop-solaris.adb @@ -0,0 +1,1990 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- +-- -- +-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 1992-2010, Free Software Foundation, Inc. -- +-- -- +-- GNARL is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- . -- +-- -- +-- GNARL was developed by the GNARL team at Florida State University. -- +-- Extensive contributions were provided by Ada Core Technologies, Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- This is a Solaris (native) version of this package + +-- This package contains all the GNULL primitives that interface directly with +-- the underlying OS. + +pragma Polling (Off); +-- Turn off polling, we do not want ATC polling to take place during tasking +-- operations. It causes infinite loops and other problems. + +with Ada.Unchecked_Deallocation; + +with Interfaces.C; + +with System.Multiprocessors; +with System.Tasking.Debug; +with System.Interrupt_Management; +with System.OS_Primitives; +with System.Task_Info; + +pragma Warnings (Off); +with System.OS_Lib; +pragma Warnings (On); + +with System.Soft_Links; +-- We use System.Soft_Links instead of System.Tasking.Initialization +-- because the later is a higher level package that we shouldn't depend on. +-- For example when using the restricted run time, it is replaced by +-- System.Tasking.Restricted.Stages. + +package body System.Task_Primitives.Operations is + + package SSL renames System.Soft_Links; + + use System.Tasking.Debug; + use System.Tasking; + use Interfaces.C; + use System.OS_Interface; + use System.Parameters; + use System.OS_Primitives; + + ---------------- + -- Local Data -- + ---------------- + + -- The following are logically constants, but need to be initialized + -- at run time. + + Environment_Task_Id : Task_Id; + -- A variable to hold Task_Id for the environment task. + -- If we use this variable to get the Task_Id, we need the following + -- ATCB_Key only for non-Ada threads. + + Unblocked_Signal_Mask : aliased sigset_t; + -- The set of signals that should unblocked in all tasks + + ATCB_Key : aliased thread_key_t; + -- Key used to find the Ada Task_Id associated with a thread, + -- at least for C threads unknown to the Ada run-time system. + + Single_RTS_Lock : aliased RTS_Lock; + -- This is a lock to allow only one thread of control in the RTS at + -- a time; it is used to execute in mutual exclusion from all other tasks. + -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List + + Next_Serial_Number : Task_Serial_Number := 100; + -- We start at 100, to reserve some special values for + -- using in error checking. + -- The following are internal configuration constants needed. + + Abort_Handler_Installed : Boolean := False; + -- True if a handler for the abort signal is installed + + ---------------------- + -- Priority Support -- + ---------------------- + + Priority_Ceiling_Emulation : constant Boolean := True; + -- controls whether we emulate priority ceiling locking + + -- To get a scheduling close to annex D requirements, we use the real-time + -- class provided for LWPs and map each task/thread to a specific and + -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread). + + -- The real time class can only be set when the process has root + -- privileges, so in the other cases, we use the normal thread scheduling + -- and priority handling. + + Using_Real_Time_Class : Boolean := False; + -- indicates whether the real time class is being used (i.e. the process + -- has root privileges). + + Prio_Param : aliased struct_pcparms; + -- Hold priority info (Real_Time) initialized during the package + -- elaboration. + + ----------------------------------- + -- External Configuration Values -- + ----------------------------------- + + Time_Slice_Val : Integer; + pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); + + Locking_Policy : Character; + pragma Import (C, Locking_Policy, "__gl_locking_policy"); + + Dispatching_Policy : Character; + pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); + + Foreign_Task_Elaborated : aliased Boolean := True; + -- Used to identified fake tasks (i.e., non-Ada Threads) + + ----------------------- + -- Local Subprograms -- + ----------------------- + + function sysconf (name : System.OS_Interface.int) return processorid_t; + pragma Import (C, sysconf, "sysconf"); + + SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14; + + function Num_Procs + (name : System.OS_Interface.int := SC_NPROCESSORS_CONF) + return processorid_t renames sysconf; + + procedure Abort_Handler + (Sig : Signal; + Code : not null access siginfo_t; + Context : not null access ucontext_t); + -- Target-dependent binding of inter-thread Abort signal to + -- the raising of the Abort_Signal exception. + -- See also comments in 7staprop.adb + + ------------ + -- Checks -- + ------------ + + function Check_Initialize_Lock + (L : Lock_Ptr; + Level : Lock_Level) return Boolean; + pragma Inline (Check_Initialize_Lock); + + function Check_Lock (L : Lock_Ptr) return Boolean; + pragma Inline (Check_Lock); + + function Record_Lock (L : Lock_Ptr) return Boolean; + pragma Inline (Record_Lock); + + function Check_Sleep (Reason : Task_States) return Boolean; + pragma Inline (Check_Sleep); + + function Record_Wakeup + (L : Lock_Ptr; + Reason : Task_States) return Boolean; + pragma Inline (Record_Wakeup); + + function Check_Wakeup + (T : Task_Id; + Reason : Task_States) return Boolean; + pragma Inline (Check_Wakeup); + + function Check_Unlock (L : Lock_Ptr) return Boolean; + pragma Inline (Check_Unlock); + + function Check_Finalize_Lock (L : Lock_Ptr) return Boolean; + pragma Inline (Check_Finalize_Lock); + + -------------------- + -- Local Packages -- + -------------------- + + package Specific is + + procedure Initialize (Environment_Task : Task_Id); + pragma Inline (Initialize); + -- Initialize various data needed by this package + + function Is_Valid_Task return Boolean; + pragma Inline (Is_Valid_Task); + -- Does executing thread have a TCB? + + procedure Set (Self_Id : Task_Id); + pragma Inline (Set); + -- Set the self id for the current task + + function Self return Task_Id; + pragma Inline (Self); + -- Return a pointer to the Ada Task Control Block of the calling task + + end Specific; + + package body Specific is separate; + -- The body of this package is target specific + + --------------------------------- + -- Support for foreign threads -- + --------------------------------- + + function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id; + -- Allocate and Initialize a new ATCB for the current Thread + + function Register_Foreign_Thread + (Thread : Thread_Id) return Task_Id is separate; + + ------------ + -- Checks -- + ------------ + + Check_Count : Integer := 0; + Lock_Count : Integer := 0; + Unlock_Count : Integer := 0; + + ------------------- + -- Abort_Handler -- + ------------------- + + procedure Abort_Handler + (Sig : Signal; + Code : not null access siginfo_t; + Context : not null access ucontext_t) + is + pragma Unreferenced (Sig); + pragma Unreferenced (Code); + pragma Unreferenced (Context); + + Self_ID : constant Task_Id := Self; + Old_Set : aliased sigset_t; + + Result : Interfaces.C.int; + pragma Warnings (Off, Result); + + begin + -- It's not safe to raise an exception when using GCC ZCX mechanism. + -- Note that we still need to install a signal handler, since in some + -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we + -- need to send the Abort signal to a task. + + if ZCX_By_Default and then GCC_ZCX_Support then + return; + end if; + + if Self_ID.Deferral_Level = 0 + and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level + and then not Self_ID.Aborting + then + Self_ID.Aborting := True; + + -- Make sure signals used for RTS internal purpose are unmasked + + Result := + thr_sigsetmask + (SIG_UNBLOCK, + Unblocked_Signal_Mask'Unchecked_Access, + Old_Set'Unchecked_Access); + pragma Assert (Result = 0); + + raise Standard'Abort_Signal; + end if; + end Abort_Handler; + + ----------------- + -- Stack_Guard -- + ----------------- + + -- The underlying thread system sets a guard page at the + -- bottom of a thread stack, so nothing is needed. + + procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is + pragma Unreferenced (T); + pragma Unreferenced (On); + begin + null; + end Stack_Guard; + + ------------------- + -- Get_Thread_Id -- + ------------------- + + function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is + begin + return T.Common.LL.Thread; + end Get_Thread_Id; + + ---------------- + -- Initialize -- + ---------------- + + procedure Initialize (Environment_Task : ST.Task_Id) is + act : aliased struct_sigaction; + old_act : aliased struct_sigaction; + Tmp_Set : aliased sigset_t; + Result : Interfaces.C.int; + + procedure Configure_Processors; + -- Processors configuration + -- The user can specify a processor which the program should run + -- on to emulate a single-processor system. This can be easily + -- done by setting environment variable GNAT_PROCESSOR to one of + -- the following : + -- + -- -2 : use the default configuration (run the program on all + -- available processors) - this is the same as having + -- GNAT_PROCESSOR unset + -- -1 : let the RTS choose one processor and run the program on + -- that processor + -- 0 .. Last_Proc : run the program on the specified processor + -- + -- Last_Proc is equal to the value of the system variable + -- _SC_NPROCESSORS_CONF, minus one. + + procedure Configure_Processors is + Proc_Acc : constant System.OS_Lib.String_Access := + System.OS_Lib.Getenv ("GNAT_PROCESSOR"); + Proc : aliased processorid_t; -- User processor # + Last_Proc : processorid_t; -- Last processor # + + begin + if Proc_Acc.all'Length /= 0 then + + -- Environment variable is defined + + Last_Proc := Num_Procs - 1; + + if Last_Proc /= -1 then + Proc := processorid_t'Value (Proc_Acc.all); + + if Proc <= -2 or else Proc > Last_Proc then + + -- Use the default configuration + + null; + + elsif Proc = -1 then + + -- Choose a processor + + Result := 0; + while Proc < Last_Proc loop + Proc := Proc + 1; + Result := p_online (Proc, PR_STATUS); + exit when Result = PR_ONLINE; + end loop; + + pragma Assert (Result = PR_ONLINE); + Result := processor_bind (P_PID, P_MYID, Proc, null); + pragma Assert (Result = 0); + + else + -- Use user processor + + Result := processor_bind (P_PID, P_MYID, Proc, null); + pragma Assert (Result = 0); + end if; + end if; + end if; + + exception + when Constraint_Error => + + -- Illegal environment variable GNAT_PROCESSOR - ignored + + null; + end Configure_Processors; + + function State + (Int : System.Interrupt_Management.Interrupt_ID) return Character; + pragma Import (C, State, "__gnat_get_interrupt_state"); + -- Get interrupt state. Defined in a-init.c + -- The input argument is the interrupt number, + -- and the result is one of the following: + + Default : constant Character := 's'; + -- 'n' this interrupt not set by any Interrupt_State pragma + -- 'u' Interrupt_State pragma set state to User + -- 'r' Interrupt_State pragma set state to Runtime + -- 's' Interrupt_State pragma set state to System (use "default" + -- system handler) + + -- Start of processing for Initialize + + begin + Environment_Task_Id := Environment_Task; + + Interrupt_Management.Initialize; + + -- Prepare the set of signals that should unblocked in all tasks + + Result := sigemptyset (Unblocked_Signal_Mask'Access); + pragma Assert (Result = 0); + + for J in Interrupt_Management.Interrupt_ID loop + if System.Interrupt_Management.Keep_Unmasked (J) then + Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); + pragma Assert (Result = 0); + end if; + end loop; + + if Dispatching_Policy = 'F' then + declare + Result : Interfaces.C.long; + Class_Info : aliased struct_pcinfo; + Secs, Nsecs : Interfaces.C.long; + + begin + -- If a pragma Time_Slice is specified, takes the value in account + + if Time_Slice_Val > 0 then + + -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs + + Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000); + Nsecs := + Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000); + + -- Otherwise, default to no time slicing (i.e run until blocked) + + else + Secs := RT_TQINF; + Nsecs := RT_TQINF; + end if; + + -- Get the real time class id + + Class_Info.pc_clname (1) := 'R'; + Class_Info.pc_clname (2) := 'T'; + Class_Info.pc_clname (3) := ASCII.NUL; + + Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID, + Class_Info'Address); + + -- Request the real time class + + Prio_Param.pc_cid := Class_Info.pc_cid; + Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri); + Prio_Param.rt_tqsecs := Secs; + Prio_Param.rt_tqnsecs := Nsecs; + + Result := + priocntl + (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address); + + Using_Real_Time_Class := Result /= -1; + end; + end if; + + Specific.Initialize (Environment_Task); + + -- The following is done in Enter_Task, but this is too late for the + -- Environment Task, since we need to call Self in Check_Locks when + -- the run time is compiled with assertions on. + + Specific.Set (Environment_Task); + + -- Initialize the lock used to synchronize chain of all ATCBs + + Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); + + -- Make environment task known here because it doesn't go through + -- Activate_Tasks, which does it for all other tasks. + + Known_Tasks (Known_Tasks'First) := Environment_Task; + Environment_Task.Known_Tasks_Index := Known_Tasks'First; + + Enter_Task (Environment_Task); + + Configure_Processors; + + if State + (System.Interrupt_Management.Abort_Task_Interrupt) /= Default + then + -- Set sa_flags to SA_NODEFER so that during the handler execution + -- we do not change the Signal_Mask to be masked for the Abort_Signal + -- This is a temporary fix to the problem that the Signal_Mask is + -- not restored after the exception (longjmp) from the handler. + -- The right fix should be made in sigsetjmp so that we save + -- the Signal_Set and restore it after a longjmp. + -- In that case, this field should be changed back to 0. ??? + + act.sa_flags := 16; + + act.sa_handler := Abort_Handler'Address; + Result := sigemptyset (Tmp_Set'Access); + pragma Assert (Result = 0); + act.sa_mask := Tmp_Set; + + Result := + sigaction + (Signal (System.Interrupt_Management.Abort_Task_Interrupt), + act'Unchecked_Access, + old_act'Unchecked_Access); + pragma Assert (Result = 0); + Abort_Handler_Installed := True; + end if; + end Initialize; + + --------------------- + -- Initialize_Lock -- + --------------------- + + -- Note: mutexes and cond_variables needed per-task basis are initialized + -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such + -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any + -- status change of RTS. Therefore raising Storage_Error in the following + -- routines should be able to be handled safely. + + procedure Initialize_Lock + (Prio : System.Any_Priority; + L : not null access Lock) + is + Result : Interfaces.C.int; + + begin + pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level)); + + if Priority_Ceiling_Emulation then + L.Ceiling := Prio; + end if; + + Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address); + pragma Assert (Result = 0 or else Result = ENOMEM); + + if Result = ENOMEM then + raise Storage_Error with "Failed to allocate a lock"; + end if; + end Initialize_Lock; + + procedure Initialize_Lock + (L : not null access RTS_Lock; + Level : Lock_Level) + is + Result : Interfaces.C.int; + + begin + pragma Assert + (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level)); + Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address); + pragma Assert (Result = 0 or else Result = ENOMEM); + + if Result = ENOMEM then + raise Storage_Error with "Failed to allocate a lock"; + end if; + end Initialize_Lock; + + ------------------- + -- Finalize_Lock -- + ------------------- + + procedure Finalize_Lock (L : not null access Lock) is + Result : Interfaces.C.int; + begin + pragma Assert (Check_Finalize_Lock (Lock_Ptr (L))); + Result := mutex_destroy (L.L'Access); + pragma Assert (Result = 0); + end Finalize_Lock; + + procedure Finalize_Lock (L : not null access RTS_Lock) is + Result : Interfaces.C.int; + begin + pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); + Result := mutex_destroy (L.L'Access); + pragma Assert (Result = 0); + end Finalize_Lock; + + ---------------- + -- Write_Lock -- + ---------------- + + procedure Write_Lock + (L : not null access Lock; + Ceiling_Violation : out Boolean) + is + Result : Interfaces.C.int; + + begin + pragma Assert (Check_Lock (Lock_Ptr (L))); + + if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then + declare + Self_Id : constant Task_Id := Self; + Saved_Priority : System.Any_Priority; + + begin + if Self_Id.Common.LL.Active_Priority > L.Ceiling then + Ceiling_Violation := True; + return; + end if; + + Saved_Priority := Self_Id.Common.LL.Active_Priority; + + if Self_Id.Common.LL.Active_Priority < L.Ceiling then + Set_Priority (Self_Id, L.Ceiling); + end if; + + Result := mutex_lock (L.L'Access); + pragma Assert (Result = 0); + Ceiling_Violation := False; + + L.Saved_Priority := Saved_Priority; + end; + + else + Result := mutex_lock (L.L'Access); + pragma Assert (Result = 0); + Ceiling_Violation := False; + end if; + + pragma Assert (Record_Lock (Lock_Ptr (L))); + end Write_Lock; + + procedure Write_Lock + (L : not null access RTS_Lock; + Global_Lock : Boolean := False) + is + Result : Interfaces.C.int; + begin + if not Single_Lock or else Global_Lock then + pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); + Result := mutex_lock (L.L'Access); + pragma Assert (Result = 0); + pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); + end if; + end Write_Lock; + + procedure Write_Lock (T : Task_Id) is + Result : Interfaces.C.int; + begin + if not Single_Lock then + pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access))); + Result := mutex_lock (T.Common.LL.L.L'Access); + pragma Assert (Result = 0); + pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access))); + end if; + end Write_Lock; + + --------------- + -- Read_Lock -- + --------------- + + procedure Read_Lock + (L : not null access Lock; + Ceiling_Violation : out Boolean) is + begin + Write_Lock (L, Ceiling_Violation); + end Read_Lock; + + ------------ + -- Unlock -- + ------------ + + procedure Unlock (L : not null access Lock) is + Result : Interfaces.C.int; + + begin + pragma Assert (Check_Unlock (Lock_Ptr (L))); + + if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then + declare + Self_Id : constant Task_Id := Self; + + begin + Result := mutex_unlock (L.L'Access); + pragma Assert (Result = 0); + + if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then + Set_Priority (Self_Id, L.Saved_Priority); + end if; + end; + else + Result := mutex_unlock (L.L'Access); + pragma Assert (Result = 0); + end if; + end Unlock; + + procedure Unlock + (L : not null access RTS_Lock; + Global_Lock : Boolean := False) + is + Result : Interfaces.C.int; + begin + if not Single_Lock or else Global_Lock then + pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L)))); + Result := mutex_unlock (L.L'Access); + pragma Assert (Result = 0); + end if; + end Unlock; + + procedure Unlock (T : Task_Id) is + Result : Interfaces.C.int; + begin + if not Single_Lock then + pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access))); + Result := mutex_unlock (T.Common.LL.L.L'Access); + pragma Assert (Result = 0); + end if; + end Unlock; + + ----------------- + -- Set_Ceiling -- + ----------------- + + -- Dynamic priority ceilings are not supported by the underlying system + + procedure Set_Ceiling + (L : not null access Lock; + Prio : System.Any_Priority) + is + pragma Unreferenced (L, Prio); + begin + null; + end Set_Ceiling; + + -- For the time delay implementation, we need to make sure we + -- achieve following criteria: + + -- 1) We have to delay at least for the amount requested. + -- 2) We have to give up CPU even though the actual delay does not + -- result in blocking. + -- 3) Except for restricted run-time systems that do not support + -- ATC or task abort, the delay must be interrupted by the + -- abort_task operation. + -- 4) The implementation has to be efficient so that the delay overhead + -- is relatively cheap. + -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D + -- requirement we still want to provide the effect in all cases. + -- The reason is that users may want to use short delays to implement + -- their own scheduling effect in the absence of language provided + -- scheduling policies. + + --------------------- + -- Monotonic_Clock -- + --------------------- + + function Monotonic_Clock return Duration is + TS : aliased timespec; + Result : Interfaces.C.int; + begin + Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access); + pragma Assert (Result = 0); + return To_Duration (TS); + end Monotonic_Clock; + + ------------------- + -- RT_Resolution -- + ------------------- + + function RT_Resolution return Duration is + begin + return 10#1.0#E-6; + end RT_Resolution; + + ----------- + -- Yield -- + ----------- + + procedure Yield (Do_Yield : Boolean := True) is + begin + if Do_Yield then + System.OS_Interface.thr_yield; + end if; + end Yield; + + ----------- + -- Self --- + ----------- + + function Self return Task_Id renames Specific.Self; + + ------------------ + -- Set_Priority -- + ------------------ + + procedure Set_Priority + (T : Task_Id; + Prio : System.Any_Priority; + Loss_Of_Inheritance : Boolean := False) + is + pragma Unreferenced (Loss_Of_Inheritance); + + Result : Interfaces.C.int; + pragma Unreferenced (Result); + + Param : aliased struct_pcparms; + + use Task_Info; + + begin + T.Common.Current_Priority := Prio; + + if Priority_Ceiling_Emulation then + T.Common.LL.Active_Priority := Prio; + end if; + + if Using_Real_Time_Class then + Param.pc_cid := Prio_Param.pc_cid; + Param.rt_pri := pri_t (Prio); + Param.rt_tqsecs := Prio_Param.rt_tqsecs; + Param.rt_tqnsecs := Prio_Param.rt_tqnsecs; + + Result := Interfaces.C.int ( + priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS, + Param'Address)); + + else + if T.Common.Task_Info /= null + and then not T.Common.Task_Info.Bound_To_LWP + then + -- The task is not bound to a LWP, so use thr_setprio + + Result := + thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio)); + + else + -- The task is bound to a LWP, use priocntl + -- ??? TBD + + null; + end if; + end if; + end Set_Priority; + + ------------------ + -- Get_Priority -- + ------------------ + + function Get_Priority (T : Task_Id) return System.Any_Priority is + begin + return T.Common.Current_Priority; + end Get_Priority; + + ---------------- + -- Enter_Task -- + ---------------- + + procedure Enter_Task (Self_ID : Task_Id) is + Result : Interfaces.C.int; + Proc : processorid_t; -- User processor # + Last_Proc : processorid_t; -- Last processor # + + use System.Task_Info; + use type System.Multiprocessors.CPU_Range; + + begin + Self_ID.Common.LL.Thread := thr_self; + + Self_ID.Common.LL.LWP := lwp_self; + + -- pragma CPU + + if Self_ID.Common.Base_CPU /= + System.Multiprocessors.Not_A_Specific_CPU + then + -- The CPU numbering in pragma CPU starts at 1 while the subprogram + -- to set the affinity starts at 0, therefore we must subtract 1. + + Result := + processor_bind + (P_LWPID, P_MYID, processorid_t (Self_ID.Common.Base_CPU) - 1, + null); + pragma Assert (Result = 0); + + -- Task_Info + + elsif Self_ID.Common.Task_Info /= null then + if Self_ID.Common.Task_Info.New_LWP + and then Self_ID.Common.Task_Info.CPU /= CPU_UNCHANGED + then + Last_Proc := Num_Procs - 1; + + if Self_ID.Common.Task_Info.CPU = ANY_CPU then + Result := 0; + Proc := 0; + while Proc < Last_Proc loop + Result := p_online (Proc, PR_STATUS); + exit when Result = PR_ONLINE; + Proc := Proc + 1; + end loop; + + Result := processor_bind (P_LWPID, P_MYID, Proc, null); + pragma Assert (Result = 0); + + else + -- Use specified processor + + if Self_ID.Common.Task_Info.CPU < 0 + or else Self_ID.Common.Task_Info.CPU > Last_Proc + then + raise Invalid_CPU_Number; + end if; + + Result := + processor_bind + (P_LWPID, P_MYID, Self_ID.Common.Task_Info.CPU, null); + pragma Assert (Result = 0); + end if; + end if; + end if; + + Specific.Set (Self_ID); + + -- We need the above code even if we do direct fetch of Task_Id in Self + -- for the main task on Sun, x86 Solaris and for gcc 2.7.2. + end Enter_Task; + + -------------- + -- New_ATCB -- + -------------- + + function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is + begin + return new Ada_Task_Control_Block (Entry_Num); + end New_ATCB; + + ------------------- + -- Is_Valid_Task -- + ------------------- + + function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; + + ----------------------------- + -- Register_Foreign_Thread -- + ----------------------------- + + function Register_Foreign_Thread return Task_Id is + begin + if Is_Valid_Task then + return Self; + else + return Register_Foreign_Thread (thr_self); + end if; + end Register_Foreign_Thread; + + -------------------- + -- Initialize_TCB -- + -------------------- + + procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is + Result : Interfaces.C.int := 0; + + begin + -- Give the task a unique serial number + + Self_ID.Serial_Number := Next_Serial_Number; + Next_Serial_Number := Next_Serial_Number + 1; + pragma Assert (Next_Serial_Number /= 0); + + Self_ID.Common.LL.Thread := To_thread_t (-1); + + if not Single_Lock then + Result := + mutex_init + (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address); + Self_ID.Common.LL.L.Level := + Private_Task_Serial_Number (Self_ID.Serial_Number); + pragma Assert (Result = 0 or else Result = ENOMEM); + end if; + + if Result = 0 then + Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0); + pragma Assert (Result = 0 or else Result = ENOMEM); + end if; + + if Result = 0 then + Succeeded := True; + else + if not Single_Lock then + Result := mutex_destroy (Self_ID.Common.LL.L.L'Access); + pragma Assert (Result = 0); + end if; + + Succeeded := False; + end if; + end Initialize_TCB; + + ----------------- + -- Create_Task -- + ----------------- + + procedure Create_Task + (T : Task_Id; + Wrapper : System.Address; + Stack_Size : System.Parameters.Size_Type; + Priority : System.Any_Priority; + Succeeded : out Boolean) + is + pragma Unreferenced (Priority); + + Result : Interfaces.C.int; + Adjusted_Stack_Size : Interfaces.C.size_t; + Opts : Interfaces.C.int := THR_DETACHED; + + Page_Size : constant System.Parameters.Size_Type := 4096; + -- This constant is for reserving extra space at the + -- end of the stack, which can be used by the stack + -- checking as guard page. The idea is that we need + -- to have at least Stack_Size bytes available for + -- actual use. + + use System.Task_Info; + + begin + Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size); + + -- Since the initial signal mask of a thread is inherited from the + -- creator, and the Environment task has all its signals masked, we + -- do not need to manipulate caller's signal mask at this point. + -- All tasks in RTS will have All_Tasks_Mask initially. + + if T.Common.Task_Info /= null then + if T.Common.Task_Info.New_LWP then + Opts := Opts + THR_NEW_LWP; + end if; + + if T.Common.Task_Info.Bound_To_LWP then + Opts := Opts + THR_BOUND; + end if; + + else + Opts := THR_DETACHED + THR_BOUND; + end if; + + Result := + thr_create + (System.Null_Address, + Adjusted_Stack_Size, + Thread_Body_Access (Wrapper), + To_Address (T), + Opts, + T.Common.LL.Thread'Access); + + Succeeded := Result = 0; + pragma Assert + (Result = 0 + or else Result = ENOMEM + or else Result = EAGAIN); + end Create_Task; + + ------------------ + -- Finalize_TCB -- + ------------------ + + procedure Finalize_TCB (T : Task_Id) is + Result : Interfaces.C.int; + Tmp : Task_Id := T; + Is_Self : constant Boolean := T = Self; + + procedure Free is new + Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id); + + begin + T.Common.LL.Thread := To_thread_t (0); + + if not Single_Lock then + Result := mutex_destroy (T.Common.LL.L.L'Access); + pragma Assert (Result = 0); + end if; + + Result := cond_destroy (T.Common.LL.CV'Access); + pragma Assert (Result = 0); + + if T.Known_Tasks_Index /= -1 then + Known_Tasks (T.Known_Tasks_Index) := null; + end if; + + Free (Tmp); + + if Is_Self then + Specific.Set (null); + end if; + end Finalize_TCB; + + --------------- + -- Exit_Task -- + --------------- + + -- This procedure must be called with abort deferred. It can no longer + -- call Self or access the current task's ATCB, since the ATCB has been + -- deallocated. + + procedure Exit_Task is + begin + Specific.Set (null); + end Exit_Task; + + ---------------- + -- Abort_Task -- + ---------------- + + procedure Abort_Task (T : Task_Id) is + Result : Interfaces.C.int; + begin + if Abort_Handler_Installed then + pragma Assert (T /= Self); + Result := + thr_kill + (T.Common.LL.Thread, + Signal (System.Interrupt_Management.Abort_Task_Interrupt)); + pragma Assert (Result = 0); + end if; + end Abort_Task; + + ----------- + -- Sleep -- + ----------- + + procedure Sleep + (Self_ID : Task_Id; + Reason : Task_States) + is + Result : Interfaces.C.int; + + begin + pragma Assert (Check_Sleep (Reason)); + + if Single_Lock then + Result := + cond_wait + (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access); + else + Result := + cond_wait + (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access); + end if; + + pragma Assert + (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason)); + pragma Assert (Result = 0 or else Result = EINTR); + end Sleep; + + -- Note that we are relying heavily here on GNAT representing + -- Calendar.Time, System.Real_Time.Time, Duration, + -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of + -- nanoseconds. + + -- This allows us to always pass the timeout value as a Duration + + -- ??? + -- We are taking liberties here with the semantics of the delays. That is, + -- we make no distinction between delays on the Calendar clock and delays + -- on the Real_Time clock. That is technically incorrect, if the Calendar + -- clock happens to be reset or adjusted. To solve this defect will require + -- modification to the compiler interface, so that it can pass through more + -- information, to tell us here which clock to use! + + -- cond_timedwait will return if any of the following happens: + -- 1) some other task did cond_signal on this condition variable + -- In this case, the return value is 0 + -- 2) the call just returned, for no good reason + -- This is called a "spurious wakeup". + -- In this case, the return value may also be 0. + -- 3) the time delay expires + -- In this case, the return value is ETIME + -- 4) this task received a signal, which was handled by some + -- handler procedure, and now the thread is resuming execution + -- UNIX calls this an "interrupted" system call. + -- In this case, the return value is EINTR + + -- If the cond_timedwait returns 0 or EINTR, it is still possible that the + -- time has actually expired, and by chance a signal or cond_signal + -- occurred at around the same time. + + -- We have also observed that on some OS's the value ETIME will be + -- returned, but the clock will show that the full delay has not yet + -- expired. + + -- For these reasons, we need to check the clock after return from + -- cond_timedwait. If the time has expired, we will set Timedout = True. + + -- This check might be omitted for systems on which the cond_timedwait() + -- never returns early or wakes up spuriously. + + -- Annex D requires that completion of a delay cause the task to go to the + -- end of its priority queue, regardless of whether the task actually was + -- suspended by the delay. Since cond_timedwait does not do this on + -- Solaris, we add a call to thr_yield at the end. We might do this at the + -- beginning, instead, but then the round-robin effect would not be the + -- same; the delayed task would be ahead of other tasks of the same + -- priority that awoke while it was sleeping. + + -- For Timed_Sleep, we are expecting possible cond_signals to indicate + -- other events (e.g., completion of a RV or completion of the abortable + -- part of an async. select), we want to always return if interrupted. The + -- caller will be responsible for checking the task state to see whether + -- the wakeup was spurious, and to go back to sleep again in that case. We + -- don't need to check for pending abort or priority change on the way in + -- our out; that is the caller's responsibility. + + -- For Timed_Delay, we are not expecting any cond_signals or other + -- interruptions, except for priority changes and aborts. Therefore, we + -- don't want to return unless the delay has actually expired, or the call + -- has been aborted. In this case, since we want to implement the entire + -- delay statement semantics, we do need to check for pending abort and + -- priority changes. We can quietly handle priority changes inside the + -- procedure, since there is no entry-queue reordering involved. + + ----------------- + -- Timed_Sleep -- + ----------------- + + procedure Timed_Sleep + (Self_ID : Task_Id; + Time : Duration; + Mode : ST.Delay_Modes; + Reason : System.Tasking.Task_States; + Timedout : out Boolean; + Yielded : out Boolean) + is + Base_Time : constant Duration := Monotonic_Clock; + Check_Time : Duration := Base_Time; + Abs_Time : Duration; + Request : aliased timespec; + Result : Interfaces.C.int; + + begin + pragma Assert (Check_Sleep (Reason)); + Timedout := True; + Yielded := False; + + Abs_Time := + (if Mode = Relative + then Duration'Min (Time, Max_Sensible_Delay) + Check_Time + else Duration'Min (Check_Time + Max_Sensible_Delay, Time)); + + if Abs_Time > Check_Time then + Request := To_Timespec (Abs_Time); + loop + exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; + + if Single_Lock then + Result := + cond_timedwait + (Self_ID.Common.LL.CV'Access, + Single_RTS_Lock.L'Access, Request'Access); + else + Result := + cond_timedwait + (Self_ID.Common.LL.CV'Access, + Self_ID.Common.LL.L.L'Access, Request'Access); + end if; + + Yielded := True; + + Check_Time := Monotonic_Clock; + exit when Abs_Time <= Check_Time or else Check_Time < Base_Time; + + if Result = 0 or Result = EINTR then + + -- Somebody may have called Wakeup for us + + Timedout := False; + exit; + end if; + + pragma Assert (Result = ETIME); + end loop; + end if; + + pragma Assert + (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason)); + end Timed_Sleep; + + ----------------- + -- Timed_Delay -- + ----------------- + + procedure Timed_Delay + (Self_ID : Task_Id; + Time : Duration; + Mode : ST.Delay_Modes) + is + Base_Time : constant Duration := Monotonic_Clock; + Check_Time : Duration := Base_Time; + Abs_Time : Duration; + Request : aliased timespec; + Result : Interfaces.C.int; + Yielded : Boolean := False; + + begin + if Single_Lock then + Lock_RTS; + end if; + + Write_Lock (Self_ID); + + Abs_Time := + (if Mode = Relative + then Time + Check_Time + else Duration'Min (Check_Time + Max_Sensible_Delay, Time)); + + if Abs_Time > Check_Time then + Request := To_Timespec (Abs_Time); + Self_ID.Common.State := Delay_Sleep; + + pragma Assert (Check_Sleep (Delay_Sleep)); + + loop + exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; + + if Single_Lock then + Result := + cond_timedwait + (Self_ID.Common.LL.CV'Access, + Single_RTS_Lock.L'Access, + Request'Access); + else + Result := + cond_timedwait + (Self_ID.Common.LL.CV'Access, + Self_ID.Common.LL.L.L'Access, + Request'Access); + end if; + + Yielded := True; + + Check_Time := Monotonic_Clock; + exit when Abs_Time <= Check_Time or else Check_Time < Base_Time; + + pragma Assert + (Result = 0 or else + Result = ETIME or else + Result = EINTR); + end loop; + + pragma Assert + (Record_Wakeup + (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep)); + + Self_ID.Common.State := Runnable; + end if; + + Unlock (Self_ID); + + if Single_Lock then + Unlock_RTS; + end if; + + if not Yielded then + thr_yield; + end if; + end Timed_Delay; + + ------------ + -- Wakeup -- + ------------ + + procedure Wakeup + (T : Task_Id; + Reason : Task_States) + is + Result : Interfaces.C.int; + begin + pragma Assert (Check_Wakeup (T, Reason)); + Result := cond_signal (T.Common.LL.CV'Access); + pragma Assert (Result = 0); + end Wakeup; + + --------------------------- + -- Check_Initialize_Lock -- + --------------------------- + + -- The following code is intended to check some of the invariant assertions + -- related to lock usage, on which we depend. + + function Check_Initialize_Lock + (L : Lock_Ptr; + Level : Lock_Level) return Boolean + is + Self_ID : constant Task_Id := Self; + + begin + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + -- Check that the lock is not yet initialized + + if L.Level /= 0 then + return False; + end if; + + L.Level := Lock_Level'Pos (Level) + 1; + return True; + end Check_Initialize_Lock; + + ---------------- + -- Check_Lock -- + ---------------- + + function Check_Lock (L : Lock_Ptr) return Boolean is + Self_ID : constant Task_Id := Self; + P : Lock_Ptr; + + begin + -- Check that the argument is not null + + if L = null then + return False; + end if; + + -- Check that L is not frozen + + if L.Frozen then + return False; + end if; + + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + -- Check that caller is not holding this lock already + + if L.Owner = To_Owner_ID (To_Address (Self_ID)) then + return False; + end if; + + if Single_Lock then + return True; + end if; + + -- Check that TCB lock order rules are satisfied + + P := Self_ID.Common.LL.Locks; + if P /= null then + if P.Level >= L.Level + and then (P.Level > 2 or else L.Level > 2) + then + return False; + end if; + end if; + + return True; + end Check_Lock; + + ----------------- + -- Record_Lock -- + ----------------- + + function Record_Lock (L : Lock_Ptr) return Boolean is + Self_ID : constant Task_Id := Self; + P : Lock_Ptr; + + begin + Lock_Count := Lock_Count + 1; + + -- There should be no owner for this lock at this point + + if L.Owner /= null then + return False; + end if; + + -- Record new owner + + L.Owner := To_Owner_ID (To_Address (Self_ID)); + + if Single_Lock then + return True; + end if; + + -- Check that TCB lock order rules are satisfied + + P := Self_ID.Common.LL.Locks; + + if P /= null then + L.Next := P; + end if; + + Self_ID.Common.LL.Locking := null; + Self_ID.Common.LL.Locks := L; + return True; + end Record_Lock; + + ----------------- + -- Check_Sleep -- + ----------------- + + function Check_Sleep (Reason : Task_States) return Boolean is + pragma Unreferenced (Reason); + + Self_ID : constant Task_Id := Self; + P : Lock_Ptr; + + begin + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + if Single_Lock then + return True; + end if; + + -- Check that caller is holding own lock, on top of list + + if Self_ID.Common.LL.Locks /= + To_Lock_Ptr (Self_ID.Common.LL.L'Access) + then + return False; + end if; + + -- Check that TCB lock order rules are satisfied + + if Self_ID.Common.LL.Locks.Next /= null then + return False; + end if; + + Self_ID.Common.LL.L.Owner := null; + P := Self_ID.Common.LL.Locks; + Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next; + P.Next := null; + return True; + end Check_Sleep; + + ------------------- + -- Record_Wakeup -- + ------------------- + + function Record_Wakeup + (L : Lock_Ptr; + Reason : Task_States) return Boolean + is + pragma Unreferenced (Reason); + + Self_ID : constant Task_Id := Self; + P : Lock_Ptr; + + begin + -- Record new owner + + L.Owner := To_Owner_ID (To_Address (Self_ID)); + + if Single_Lock then + return True; + end if; + + -- Check that TCB lock order rules are satisfied + + P := Self_ID.Common.LL.Locks; + + if P /= null then + L.Next := P; + end if; + + Self_ID.Common.LL.Locking := null; + Self_ID.Common.LL.Locks := L; + return True; + end Record_Wakeup; + + ------------------ + -- Check_Wakeup -- + ------------------ + + function Check_Wakeup + (T : Task_Id; + Reason : Task_States) return Boolean + is + Self_ID : constant Task_Id := Self; + + begin + -- Is caller holding T's lock? + + if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then + return False; + end if; + + -- Are reasons for wakeup and sleep consistent? + + if T.Common.State /= Reason then + return False; + end if; + + return True; + end Check_Wakeup; + + ------------------ + -- Check_Unlock -- + ------------------ + + function Check_Unlock (L : Lock_Ptr) return Boolean is + Self_ID : constant Task_Id := Self; + P : Lock_Ptr; + + begin + Unlock_Count := Unlock_Count + 1; + + if L = null then + return False; + end if; + + if L.Buddy /= null then + return False; + end if; + + -- Magic constant 4??? + + if L.Level = 4 then + Check_Count := Unlock_Count; + end if; + + -- Magic constant 1000??? + + if Unlock_Count - Check_Count > 1000 then + Check_Count := Unlock_Count; + end if; + + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + -- Check that caller is holding this lock, on top of list + + if Self_ID.Common.LL.Locks /= L then + return False; + end if; + + -- Record there is no owner now + + L.Owner := null; + P := Self_ID.Common.LL.Locks; + Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next; + P.Next := null; + return True; + end Check_Unlock; + + -------------------- + -- Check_Finalize -- + -------------------- + + function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is + Self_ID : constant Task_Id := Self; + + begin + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + -- Check that no one is holding this lock + + if L.Owner /= null then + return False; + end if; + + L.Frozen := True; + return True; + end Check_Finalize_Lock; + + ---------------- + -- Initialize -- + ---------------- + + procedure Initialize (S : in out Suspension_Object) is + Result : Interfaces.C.int; + + begin + -- Initialize internal state (always to zero (RM D.10(6))) + + S.State := False; + S.Waiting := False; + + -- Initialize internal mutex + + Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address); + pragma Assert (Result = 0 or else Result = ENOMEM); + + if Result = ENOMEM then + raise Storage_Error with "Failed to allocate a lock"; + end if; + + -- Initialize internal condition variable + + Result := cond_init (S.CV'Access, USYNC_THREAD, 0); + pragma Assert (Result = 0 or else Result = ENOMEM); + + if Result /= 0 then + Result := mutex_destroy (S.L'Access); + pragma Assert (Result = 0); + + if Result = ENOMEM then + raise Storage_Error; + end if; + end if; + end Initialize; + + -------------- + -- Finalize -- + -------------- + + procedure Finalize (S : in out Suspension_Object) is + Result : Interfaces.C.int; + + begin + -- Destroy internal mutex + + Result := mutex_destroy (S.L'Access); + pragma Assert (Result = 0); + + -- Destroy internal condition variable + + Result := cond_destroy (S.CV'Access); + pragma Assert (Result = 0); + end Finalize; + + ------------------- + -- Current_State -- + ------------------- + + function Current_State (S : Suspension_Object) return Boolean is + begin + -- We do not want to use lock on this read operation. State is marked + -- as Atomic so that we ensure that the value retrieved is correct. + + return S.State; + end Current_State; + + --------------- + -- Set_False -- + --------------- + + procedure Set_False (S : in out Suspension_Object) is + Result : Interfaces.C.int; + + begin + SSL.Abort_Defer.all; + + Result := mutex_lock (S.L'Access); + pragma Assert (Result = 0); + + S.State := False; + + Result := mutex_unlock (S.L'Access); + pragma Assert (Result = 0); + + SSL.Abort_Undefer.all; + end Set_False; + + -------------- + -- Set_True -- + -------------- + + procedure Set_True (S : in out Suspension_Object) is + Result : Interfaces.C.int; + + begin + SSL.Abort_Defer.all; + + Result := mutex_lock (S.L'Access); + pragma Assert (Result = 0); + + -- If there is already a task waiting on this suspension object then + -- we resume it, leaving the state of the suspension object to False, + -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves + -- the state to True. + + if S.Waiting then + S.Waiting := False; + S.State := False; + + Result := cond_signal (S.CV'Access); + pragma Assert (Result = 0); + + else + S.State := True; + end if; + + Result := mutex_unlock (S.L'Access); + pragma Assert (Result = 0); + + SSL.Abort_Undefer.all; + end Set_True; + + ------------------------ + -- Suspend_Until_True -- + ------------------------ + + procedure Suspend_Until_True (S : in out Suspension_Object) is + Result : Interfaces.C.int; + + begin + SSL.Abort_Defer.all; + + Result := mutex_lock (S.L'Access); + pragma Assert (Result = 0); + + if S.Waiting then + + -- Program_Error must be raised upon calling Suspend_Until_True + -- if another task is already waiting on that suspension object + -- (RM D.10(10)). + + Result := mutex_unlock (S.L'Access); + pragma Assert (Result = 0); + + SSL.Abort_Undefer.all; + + raise Program_Error; + + else + -- Suspend the task if the state is False. Otherwise, the task + -- continues its execution, and the state of the suspension object + -- is set to False (ARM D.10 par. 9). + + if S.State then + S.State := False; + else + S.Waiting := True; + + loop + -- Loop in case pthread_cond_wait returns earlier than expected + -- (e.g. in case of EINTR caused by a signal). + + Result := cond_wait (S.CV'Access, S.L'Access); + pragma Assert (Result = 0 or else Result = EINTR); + + exit when not S.Waiting; + end loop; + end if; + + Result := mutex_unlock (S.L'Access); + pragma Assert (Result = 0); + + SSL.Abort_Undefer.all; + end if; + end Suspend_Until_True; + + ---------------- + -- Check_Exit -- + ---------------- + + function Check_Exit (Self_ID : Task_Id) return Boolean is + begin + -- Check that caller is just holding Global_Task_Lock and no other locks + + if Self_ID.Common.LL.Locks = null then + return False; + end if; + + -- 2 = Global_Task_Level + + if Self_ID.Common.LL.Locks.Level /= 2 then + return False; + end if; + + if Self_ID.Common.LL.Locks.Next /= null then + return False; + end if; + + -- Check that caller is abort-deferred + + if Self_ID.Deferral_Level = 0 then + return False; + end if; + + return True; + end Check_Exit; + + -------------------- + -- Check_No_Locks -- + -------------------- + + function Check_No_Locks (Self_ID : Task_Id) return Boolean is + begin + return Self_ID.Common.LL.Locks = null; + end Check_No_Locks; + + ---------------------- + -- Environment_Task -- + ---------------------- + + function Environment_Task return Task_Id is + begin + return Environment_Task_Id; + end Environment_Task; + + -------------- + -- Lock_RTS -- + -------------- + + procedure Lock_RTS is + begin + Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); + end Lock_RTS; + + ---------------- + -- Unlock_RTS -- + ---------------- + + procedure Unlock_RTS is + begin + Unlock (Single_RTS_Lock'Access, Global_Lock => True); + end Unlock_RTS; + + ------------------ + -- Suspend_Task -- + ------------------ + + function Suspend_Task + (T : ST.Task_Id; + Thread_Self : Thread_Id) return Boolean + is + begin + if T.Common.LL.Thread /= Thread_Self then + return thr_suspend (T.Common.LL.Thread) = 0; + else + return True; + end if; + end Suspend_Task; + + ----------------- + -- Resume_Task -- + ----------------- + + function Resume_Task + (T : ST.Task_Id; + Thread_Self : Thread_Id) return Boolean + is + begin + if T.Common.LL.Thread /= Thread_Self then + return thr_continue (T.Common.LL.Thread) = 0; + else + return True; + end if; + end Resume_Task; + + -------------------- + -- Stop_All_Tasks -- + -------------------- + + procedure Stop_All_Tasks is + begin + null; + end Stop_All_Tasks; + + --------------- + -- Stop_Task -- + --------------- + + function Stop_Task (T : ST.Task_Id) return Boolean is + pragma Unreferenced (T); + begin + return False; + end Stop_Task; + + ------------------- + -- Continue_Task -- + ------------------- + + function Continue_Task (T : ST.Task_Id) return Boolean is + pragma Unreferenced (T); + begin + return False; + end Continue_Task; + +end System.Task_Primitives.Operations; -- cgit v1.2.3