From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/ada/s-tassta.adb | 2026 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2026 insertions(+) create mode 100644 gcc/ada/s-tassta.adb (limited to 'gcc/ada/s-tassta.adb') diff --git a/gcc/ada/s-tassta.adb b/gcc/ada/s-tassta.adb new file mode 100644 index 000000000..1663b89c6 --- /dev/null +++ b/gcc/ada/s-tassta.adb @@ -0,0 +1,2026 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- +-- -- +-- S Y S T E M . T A S K I N G . S T A G E S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 1992-2010, Free Software Foundation, Inc. -- +-- -- +-- GNARL is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- . -- +-- -- +-- GNARL was developed by the GNARL team at Florida State University. -- +-- Extensive contributions were provided by Ada Core Technologies, Inc. -- +-- -- +------------------------------------------------------------------------------ + +pragma Polling (Off); +-- Turn off polling, we do not want ATC polling to take place during tasking +-- operations. It causes infinite loops and other problems. + +with Ada.Exceptions; +with Ada.Unchecked_Deallocation; + +with System.Interrupt_Management; +with System.Tasking.Debug; +with System.Address_Image; +with System.Task_Primitives; +with System.Task_Primitives.Operations; +with System.Tasking.Utilities; +with System.Tasking.Queuing; +with System.Tasking.Rendezvous; +with System.OS_Primitives; +with System.Secondary_Stack; +with System.Storage_Elements; +with System.Restrictions; +with System.Standard_Library; +with System.Traces.Tasking; +with System.Stack_Usage; + +with System.Soft_Links; +-- These are procedure pointers to non-tasking routines that use task +-- specific data. In the absence of tasking, these routines refer to global +-- data. In the presence of tasking, they must be replaced with pointers to +-- task-specific versions. Also used for Create_TSD, Destroy_TSD, +-- Get_Current_Excep, Finalize_Global_List, Task_Termination, Handler. + +with System.Tasking.Initialization; +pragma Elaborate_All (System.Tasking.Initialization); +-- This insures that tasking is initialized if any tasks are created + +package body System.Tasking.Stages is + + package STPO renames System.Task_Primitives.Operations; + package SSL renames System.Soft_Links; + package SSE renames System.Storage_Elements; + package SST renames System.Secondary_Stack; + + use Ada.Exceptions; + + use Parameters; + use Task_Primitives; + use Task_Primitives.Operations; + use Task_Info; + + use System.Traces; + use System.Traces.Tasking; + + ----------------------- + -- Local Subprograms -- + ----------------------- + + procedure Free is new + Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id); + + procedure Free_Entry_Names (T : Task_Id); + -- Deallocate all string names associated with task entries + + procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id); + -- This procedure outputs the task specific message for exception + -- tracing purposes. + + procedure Task_Wrapper (Self_ID : Task_Id); + pragma Convention (C, Task_Wrapper); + -- This is the procedure that is called by the GNULL from the new context + -- when a task is created. It waits for activation and then calls the task + -- body procedure. When the task body procedure completes, it terminates + -- the task. + -- + -- The Task_Wrapper's address will be provided to the underlying threads + -- library as the task entry point. Convention C is what makes most sense + -- for that purpose (Export C would make the function globally visible, + -- and affect the link name on which GDB depends). This will in addition + -- trigger an automatic stack alignment suitable for GCC's assumptions if + -- need be. + + -- "Vulnerable_..." in the procedure names below means they must be called + -- with abort deferred. + + procedure Vulnerable_Complete_Task (Self_ID : Task_Id); + -- Complete the calling task. This procedure must be called with + -- abort deferred. It should only be called by Complete_Task and + -- Finalize_Global_Tasks (for the environment task). + + procedure Vulnerable_Complete_Master (Self_ID : Task_Id); + -- Complete the current master of the calling task. This procedure + -- must be called with abort deferred. It should only be called by + -- Vulnerable_Complete_Task and Complete_Master. + + procedure Vulnerable_Complete_Activation (Self_ID : Task_Id); + -- Signal to Self_ID's activator that Self_ID has completed activation. + -- This procedure must be called with abort deferred. + + procedure Abort_Dependents (Self_ID : Task_Id); + -- Abort all the direct dependents of Self at its current master nesting + -- level, plus all of their dependents, transitively. RTS_Lock should be + -- locked by the caller. + + procedure Vulnerable_Free_Task (T : Task_Id); + -- Recover all runtime system storage associated with the task T. This + -- should only be called after T has terminated and will no longer be + -- referenced. + -- + -- For tasks created by an allocator that fails, due to an exception, it is + -- called from Expunge_Unactivated_Tasks. + -- + -- Different code is used at master completion, in Terminate_Dependents, + -- due to a need for tighter synchronization with the master. + + ---------------------- + -- Abort_Dependents -- + ---------------------- + + procedure Abort_Dependents (Self_ID : Task_Id) is + C : Task_Id; + P : Task_Id; + + begin + C := All_Tasks_List; + while C /= null loop + P := C.Common.Parent; + while P /= null loop + if P = Self_ID then + + -- ??? C is supposed to take care of its own dependents, so + -- there should be no need to worry about them. Need to double + -- check this. + + if C.Master_of_Task = Self_ID.Master_Within then + Utilities.Abort_One_Task (Self_ID, C); + C.Dependents_Aborted := True; + end if; + + exit; + end if; + + P := P.Common.Parent; + end loop; + + C := C.Common.All_Tasks_Link; + end loop; + + Self_ID.Dependents_Aborted := True; + end Abort_Dependents; + + ----------------- + -- Abort_Tasks -- + ----------------- + + procedure Abort_Tasks (Tasks : Task_List) is + begin + Utilities.Abort_Tasks (Tasks); + end Abort_Tasks; + + -------------------- + -- Activate_Tasks -- + -------------------- + + -- Note that locks of activator and activated task are both locked here. + -- This is necessary because C.Common.State and Self.Common.Wait_Count have + -- to be synchronized. This is safe from deadlock because the activator is + -- always created before the activated task. That satisfies our + -- in-order-of-creation ATCB locking policy. + + -- At one point, we may also lock the parent, if the parent is different + -- from the activator. That is also consistent with the lock ordering + -- policy, since the activator cannot be created before the parent. + + -- Since we are holding both the activator's lock, and Task_Wrapper locks + -- that before it does anything more than initialize the low-level ATCB + -- components, it should be safe to wait to update the counts until we see + -- that the thread creation is successful. + + -- If the thread creation fails, we do need to close the entries of the + -- task. The first phase, of dequeuing calls, only requires locking the + -- acceptor's ATCB, but the waking up of the callers requires locking the + -- caller's ATCB. We cannot safely do this while we are holding other + -- locks. Therefore, the queue-clearing operation is done in a separate + -- pass over the activation chain. + + procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is + Self_ID : constant Task_Id := STPO.Self; + P : Task_Id; + C : Task_Id; + Next_C, Last_C : Task_Id; + Activate_Prio : System.Any_Priority; + Success : Boolean; + All_Elaborated : Boolean := True; + + begin + -- If pragma Detect_Blocking is active, then we must check whether this + -- potentially blocking operation is called from a protected action. + + if System.Tasking.Detect_Blocking + and then Self_ID.Common.Protected_Action_Nesting > 0 + then + raise Program_Error with "potentially blocking operation"; + end if; + + pragma Debug + (Debug.Trace (Self_ID, "Activate_Tasks", 'C')); + + Initialization.Defer_Abort_Nestable (Self_ID); + + pragma Assert (Self_ID.Common.Wait_Count = 0); + + -- Lock RTS_Lock, to prevent activated tasks from racing ahead before + -- we finish activating the chain. + + Lock_RTS; + + -- Check that all task bodies have been elaborated + + C := Chain_Access.T_ID; + Last_C := null; + while C /= null loop + if C.Common.Elaborated /= null + and then not C.Common.Elaborated.all + then + All_Elaborated := False; + end if; + + -- Reverse the activation chain so that tasks are activated in the + -- same order they're declared. + + Next_C := C.Common.Activation_Link; + C.Common.Activation_Link := Last_C; + Last_C := C; + C := Next_C; + end loop; + + Chain_Access.T_ID := Last_C; + + if not All_Elaborated then + Unlock_RTS; + Initialization.Undefer_Abort_Nestable (Self_ID); + raise Program_Error with "Some tasks have not been elaborated"; + end if; + + -- Activate all the tasks in the chain. Creation of the thread of + -- control was deferred until activation. So create it now. + + C := Chain_Access.T_ID; + while C /= null loop + if C.Common.State /= Terminated then + pragma Assert (C.Common.State = Unactivated); + + P := C.Common.Parent; + Write_Lock (P); + Write_Lock (C); + + Activate_Prio := + (if C.Common.Base_Priority < Get_Priority (Self_ID) + then Get_Priority (Self_ID) + else C.Common.Base_Priority); + + System.Task_Primitives.Operations.Create_Task + (C, Task_Wrapper'Address, + Parameters.Size_Type + (C.Common.Compiler_Data.Pri_Stack_Info.Size), + Activate_Prio, Success); + + -- There would be a race between the created task and the creator + -- to do the following initialization, if we did not have a + -- Lock/Unlock_RTS pair in the task wrapper to prevent it from + -- racing ahead. + + if Success then + C.Common.State := Activating; + C.Awake_Count := 1; + C.Alive_Count := 1; + P.Awake_Count := P.Awake_Count + 1; + P.Alive_Count := P.Alive_Count + 1; + + if P.Common.State = Master_Completion_Sleep and then + C.Master_of_Task = P.Master_Within + then + pragma Assert (Self_ID /= P); + P.Common.Wait_Count := P.Common.Wait_Count + 1; + end if; + + for J in System.Tasking.Debug.Known_Tasks'Range loop + if System.Tasking.Debug.Known_Tasks (J) = null then + System.Tasking.Debug.Known_Tasks (J) := C; + C.Known_Tasks_Index := J; + exit; + end if; + end loop; + + if Global_Task_Debug_Event_Set then + Debug.Signal_Debug_Event + (Debug.Debug_Event_Activating, C); + end if; + + C.Common.State := Runnable; + + Unlock (C); + Unlock (P); + + else + -- No need to set Awake_Count, State, etc. here since the loop + -- below will do that for any Unactivated tasks. + + Unlock (C); + Unlock (P); + Self_ID.Common.Activation_Failed := True; + end if; + end if; + + C := C.Common.Activation_Link; + end loop; + + if not Single_Lock then + Unlock_RTS; + end if; + + -- Close the entries of any tasks that failed thread creation, and count + -- those that have not finished activation. + + Write_Lock (Self_ID); + Self_ID.Common.State := Activator_Sleep; + + C := Chain_Access.T_ID; + while C /= null loop + Write_Lock (C); + + if C.Common.State = Unactivated then + C.Common.Activator := null; + C.Common.State := Terminated; + C.Callable := False; + Utilities.Cancel_Queued_Entry_Calls (C); + + elsif C.Common.Activator /= null then + Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1; + end if; + + Unlock (C); + P := C.Common.Activation_Link; + C.Common.Activation_Link := null; + C := P; + end loop; + + -- Wait for the activated tasks to complete activation. It is + -- unsafe to abort any of these tasks until the count goes to zero. + + loop + exit when Self_ID.Common.Wait_Count = 0; + Sleep (Self_ID, Activator_Sleep); + end loop; + + Self_ID.Common.State := Runnable; + Unlock (Self_ID); + + if Single_Lock then + Unlock_RTS; + end if; + + -- Remove the tasks from the chain + + Chain_Access.T_ID := null; + Initialization.Undefer_Abort_Nestable (Self_ID); + + if Self_ID.Common.Activation_Failed then + Self_ID.Common.Activation_Failed := False; + raise Tasking_Error with "Failure during activation"; + end if; + end Activate_Tasks; + + ------------------------- + -- Complete_Activation -- + ------------------------- + + procedure Complete_Activation is + Self_ID : constant Task_Id := STPO.Self; + + begin + Initialization.Defer_Abort_Nestable (Self_ID); + + if Single_Lock then + Lock_RTS; + end if; + + Vulnerable_Complete_Activation (Self_ID); + + if Single_Lock then + Unlock_RTS; + end if; + + Initialization.Undefer_Abort_Nestable (Self_ID); + + -- ??? Why do we need to allow for nested deferral here? + + if Runtime_Traces then + Send_Trace_Info (T_Activate); + end if; + end Complete_Activation; + + --------------------- + -- Complete_Master -- + --------------------- + + procedure Complete_Master is + Self_ID : constant Task_Id := STPO.Self; + begin + pragma Assert + (Self_ID.Deferral_Level > 0 + or else not System.Restrictions.Abort_Allowed); + Vulnerable_Complete_Master (Self_ID); + end Complete_Master; + + ------------------- + -- Complete_Task -- + ------------------- + + -- See comments on Vulnerable_Complete_Task for details + + procedure Complete_Task is + Self_ID : constant Task_Id := STPO.Self; + + begin + pragma Assert + (Self_ID.Deferral_Level > 0 + or else not System.Restrictions.Abort_Allowed); + + Vulnerable_Complete_Task (Self_ID); + + -- All of our dependents have terminated. Never undefer abort again! + + end Complete_Task; + + ----------------- + -- Create_Task -- + ----------------- + + -- Compiler interface only. Do not call from within the RTS. This must be + -- called to create a new task. + + procedure Create_Task + (Priority : Integer; + Size : System.Parameters.Size_Type; + Task_Info : System.Task_Info.Task_Info_Type; + CPU : Integer; + Relative_Deadline : Ada.Real_Time.Time_Span; + Num_Entries : Task_Entry_Index; + Master : Master_Level; + State : Task_Procedure_Access; + Discriminants : System.Address; + Elaborated : Access_Boolean; + Chain : in out Activation_Chain; + Task_Image : String; + Created_Task : out Task_Id; + Build_Entry_Names : Boolean) + is + T, P : Task_Id; + Self_ID : constant Task_Id := STPO.Self; + Success : Boolean; + Base_Priority : System.Any_Priority; + Len : Natural; + Base_CPU : System.Multiprocessors.CPU_Range; + + pragma Unreferenced (Relative_Deadline); + -- EDF scheduling is not supported by any of the target platforms so + -- this parameter is not passed any further. + + begin + -- If Master is greater than the current master, it means that Master + -- has already awaited its dependent tasks. This raises Program_Error, + -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads. + + if Self_ID.Master_of_Task /= Foreign_Task_Level + and then Master > Self_ID.Master_Within + then + raise Program_Error with + "create task after awaiting termination"; + end if; + + -- If pragma Detect_Blocking is active must be checked whether this + -- potentially blocking operation is called from a protected action. + + if System.Tasking.Detect_Blocking + and then Self_ID.Common.Protected_Action_Nesting > 0 + then + raise Program_Error with "potentially blocking operation"; + end if; + + pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C')); + + Base_Priority := + (if Priority = Unspecified_Priority + then Self_ID.Common.Base_Priority + else System.Any_Priority (Priority)); + + if CPU /= Unspecified_CPU + and then (CPU < Integer (System.Multiprocessors.CPU_Range'First) + or else CPU > Integer (System.Multiprocessors.CPU_Range'Last) + or else CPU > Integer (System.Multiprocessors.Number_Of_CPUs)) + then + raise Tasking_Error with "CPU not in range"; + + -- Normal CPU affinity + else + Base_CPU := + (if CPU = Unspecified_CPU + then Self_ID.Common.Base_CPU + else System.Multiprocessors.CPU_Range (CPU)); + end if; + + -- Find parent P of new Task, via master level number + + P := Self_ID; + + if P /= null then + while P.Master_of_Task >= Master loop + P := P.Common.Parent; + exit when P = null; + end loop; + end if; + + Initialization.Defer_Abort_Nestable (Self_ID); + + begin + T := New_ATCB (Num_Entries); + exception + when others => + Initialization.Undefer_Abort_Nestable (Self_ID); + raise Storage_Error with "Cannot allocate task"; + end; + + -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this + -- point, it is possible that we may be part of a family of tasks that + -- is being aborted. + + Lock_RTS; + Write_Lock (Self_ID); + + -- Now, we must check that we have not been aborted. If so, we should + -- give up on creating this task, and simply return. + + if not Self_ID.Callable then + pragma Assert (Self_ID.Pending_ATC_Level = 0); + pragma Assert (Self_ID.Pending_Action); + pragma Assert + (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated); + + Unlock (Self_ID); + Unlock_RTS; + Initialization.Undefer_Abort_Nestable (Self_ID); + + -- ??? Should never get here + + pragma Assert (False); + raise Standard'Abort_Signal; + end if; + + Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated, + Base_Priority, Base_CPU, Task_Info, Size, T, Success); + + if not Success then + Free (T); + Unlock (Self_ID); + Unlock_RTS; + Initialization.Undefer_Abort_Nestable (Self_ID); + raise Storage_Error with "Failed to initialize task"; + end if; + + if Master = Foreign_Task_Level + 2 then + + -- This should not happen, except when a foreign task creates non + -- library-level Ada tasks. In this case, we pretend the master is + -- a regular library level task, otherwise the run-time will get + -- confused when waiting for these tasks to terminate. + + T.Master_of_Task := Library_Task_Level; + + else + T.Master_of_Task := Master; + end if; + + T.Master_Within := T.Master_of_Task + 1; + + for L in T.Entry_Calls'Range loop + T.Entry_Calls (L).Self := T; + T.Entry_Calls (L).Level := L; + end loop; + + if Task_Image'Length = 0 then + T.Common.Task_Image_Len := 0; + else + Len := 1; + T.Common.Task_Image (1) := Task_Image (Task_Image'First); + + -- Remove unwanted blank space generated by 'Image + + for J in Task_Image'First + 1 .. Task_Image'Last loop + if Task_Image (J) /= ' ' + or else Task_Image (J - 1) /= '(' + then + Len := Len + 1; + T.Common.Task_Image (Len) := Task_Image (J); + exit when Len = T.Common.Task_Image'Last; + end if; + end loop; + + T.Common.Task_Image_Len := Len; + end if; + + Unlock (Self_ID); + Unlock_RTS; + + -- Note: we should not call 'new' while holding locks since new + -- may use locks (e.g. RTS_Lock under Windows) itself and cause a + -- deadlock. + + if Build_Entry_Names then + T.Entry_Names := + new Entry_Names_Array (1 .. Entry_Index (Num_Entries)); + end if; + + -- Create TSD as early as possible in the creation of a task, since it + -- may be used by the operation of Ada code within the task. + + SSL.Create_TSD (T.Common.Compiler_Data); + T.Common.Activation_Link := Chain.T_ID; + Chain.T_ID := T; + Initialization.Initialize_Attributes_Link.all (T); + Created_Task := T; + Initialization.Undefer_Abort_Nestable (Self_ID); + + if Runtime_Traces then + Send_Trace_Info (T_Create, T); + end if; + end Create_Task; + + -------------------- + -- Current_Master -- + -------------------- + + function Current_Master return Master_Level is + begin + return STPO.Self.Master_Within; + end Current_Master; + + ------------------ + -- Enter_Master -- + ------------------ + + procedure Enter_Master is + Self_ID : constant Task_Id := STPO.Self; + begin + Self_ID.Master_Within := Self_ID.Master_Within + 1; + end Enter_Master; + + ------------------------------- + -- Expunge_Unactivated_Tasks -- + ------------------------------- + + -- See procedure Close_Entries for the general case + + procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is + Self_ID : constant Task_Id := STPO.Self; + C : Task_Id; + Call : Entry_Call_Link; + Temp : Task_Id; + + begin + pragma Debug + (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C')); + + Initialization.Defer_Abort_Nestable (Self_ID); + + -- ??? + -- Experimentation has shown that abort is sometimes (but not always) + -- already deferred when this is called. + + -- That may indicate an error. Find out what is going on + + C := Chain.T_ID; + while C /= null loop + pragma Assert (C.Common.State = Unactivated); + + Temp := C.Common.Activation_Link; + + if C.Common.State = Unactivated then + Lock_RTS; + Write_Lock (C); + + for J in 1 .. C.Entry_Num loop + Queuing.Dequeue_Head (C.Entry_Queues (J), Call); + pragma Assert (Call = null); + end loop; + + Unlock (C); + + Initialization.Remove_From_All_Tasks_List (C); + Unlock_RTS; + + Vulnerable_Free_Task (C); + C := Temp; + end if; + end loop; + + Chain.T_ID := null; + Initialization.Undefer_Abort_Nestable (Self_ID); + end Expunge_Unactivated_Tasks; + + --------------------------- + -- Finalize_Global_Tasks -- + --------------------------- + + -- ??? + -- We have a potential problem here if finalization of global objects does + -- anything with signals or the timer server, since by that time those + -- servers have terminated. + + -- It is hard to see how that would occur + + -- However, a better solution might be to do all this finalization + -- using the global finalization chain. + + procedure Finalize_Global_Tasks is + Self_ID : constant Task_Id := STPO.Self; + + Ignore : Boolean; + pragma Unreferenced (Ignore); + + function State + (Int : System.Interrupt_Management.Interrupt_ID) return Character; + pragma Import (C, State, "__gnat_get_interrupt_state"); + -- Get interrupt state for interrupt number Int. Defined in init.c + + Default : constant Character := 's'; + -- 's' Interrupt_State pragma set state to System (use "default" + -- system handler) + + begin + if Self_ID.Deferral_Level = 0 then + -- ??? + -- In principle, we should be able to predict whether abort is + -- already deferred here (and it should not be deferred yet but in + -- practice it seems Finalize_Global_Tasks is being called sometimes, + -- from RTS code for exceptions, with abort already deferred. + + Initialization.Defer_Abort_Nestable (Self_ID); + + -- Never undefer again!!! + end if; + + -- This code is only executed by the environment task + + pragma Assert (Self_ID = Environment_Task); + + -- Set Environment_Task'Callable to false to notify library-level tasks + -- that it is waiting for them. + + Self_ID.Callable := False; + + -- Exit level 2 master, for normal tasks in library-level packages + + Complete_Master; + + -- Force termination of "independent" library-level server tasks + + Lock_RTS; + + Abort_Dependents (Self_ID); + + if not Single_Lock then + Unlock_RTS; + end if; + + -- We need to explicitly wait for the task to be terminated here + -- because on true concurrent system, we may end this procedure before + -- the tasks are really terminated. + + Write_Lock (Self_ID); + + -- If the Abort_Task signal is set to system, it means that we may not + -- have been able to abort all independent tasks (in particular + -- Server_Task may be blocked, waiting for a signal), in which case, + -- do not wait for Independent_Task_Count to go down to 0. + + if State + (System.Interrupt_Management.Abort_Task_Interrupt) /= Default + then + loop + exit when Utilities.Independent_Task_Count = 0; + + -- We used to yield here, but this did not take into account low + -- priority tasks that would cause dead lock in some cases (true + -- FIFO scheduling). + + Timed_Sleep + (Self_ID, 0.01, System.OS_Primitives.Relative, + Self_ID.Common.State, Ignore, Ignore); + end loop; + end if; + + -- ??? On multi-processor environments, it seems that the above loop + -- isn't sufficient, so we need to add an additional delay. + + Timed_Sleep + (Self_ID, 0.01, System.OS_Primitives.Relative, + Self_ID.Common.State, Ignore, Ignore); + + Unlock (Self_ID); + + if Single_Lock then + Unlock_RTS; + end if; + + -- Complete the environment task + + Vulnerable_Complete_Task (Self_ID); + + -- Handle normal task termination by the environment task, but only + -- for the normal task termination. In the case of Abnormal and + -- Unhandled_Exception they must have been handled before, and the + -- task termination soft link must have been changed so the task + -- termination routine is not executed twice. + + SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence); + + -- Finalize the global list for controlled objects if needed + + SSL.Finalize_Global_List.all; + + -- Reset the soft links to non-tasking + + SSL.Abort_Defer := SSL.Abort_Defer_NT'Access; + SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access; + SSL.Lock_Task := SSL.Task_Lock_NT'Access; + SSL.Unlock_Task := SSL.Task_Unlock_NT'Access; + SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access; + SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access; + SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access; + SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access; + SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access; + SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access; + + -- Don't bother trying to finalize Initialization.Global_Task_Lock + -- and System.Task_Primitives.RTS_Lock. + + end Finalize_Global_Tasks; + + ---------------------- + -- Free_Entry_Names -- + ---------------------- + + procedure Free_Entry_Names (T : Task_Id) is + Names : Entry_Names_Array_Access := T.Entry_Names; + + procedure Free_Entry_Names_Array_Access is new + Ada.Unchecked_Deallocation + (Entry_Names_Array, Entry_Names_Array_Access); + + begin + if Names = null then + return; + end if; + + Free_Entry_Names_Array (Names.all); + Free_Entry_Names_Array_Access (Names); + end Free_Entry_Names; + + --------------- + -- Free_Task -- + --------------- + + procedure Free_Task (T : Task_Id) is + Self_Id : constant Task_Id := Self; + + begin + if T.Common.State = Terminated then + + -- It is not safe to call Abort_Defer or Write_Lock at this stage + + Initialization.Task_Lock (Self_Id); + + Lock_RTS; + Initialization.Finalize_Attributes_Link.all (T); + Initialization.Remove_From_All_Tasks_List (T); + Unlock_RTS; + + Initialization.Task_Unlock (Self_Id); + + Free_Entry_Names (T); + System.Task_Primitives.Operations.Finalize_TCB (T); + + -- If the task is not terminated, then we simply ignore the call. This + -- happens when a user program attempts an unchecked deallocation on + -- a non-terminated task. + + else + null; + end if; + end Free_Task; + + --------------------------- + -- Move_Activation_Chain -- + --------------------------- + + procedure Move_Activation_Chain + (From, To : Activation_Chain_Access; + New_Master : Master_ID) + is + Self_ID : constant Task_Id := STPO.Self; + C : Task_Id; + + begin + pragma Debug + (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C')); + + -- Nothing to do if From is empty, and we can check that without + -- deferring aborts. + + C := From.all.T_ID; + + if C = null then + return; + end if; + + Initialization.Defer_Abort (Self_ID); + + -- Loop through the From chain, changing their Master_of_Task + -- fields, and to find the end of the chain. + + loop + C.Master_of_Task := New_Master; + exit when C.Common.Activation_Link = null; + C := C.Common.Activation_Link; + end loop; + + -- Hook From in at the start of To + + C.Common.Activation_Link := To.all.T_ID; + To.all.T_ID := From.all.T_ID; + + -- Set From to empty + + From.all.T_ID := null; + + Initialization.Undefer_Abort (Self_ID); + end Move_Activation_Chain; + + -- Compiler interface only. Do not call from within the RTS + + -------------------- + -- Set_Entry_Name -- + -------------------- + + procedure Set_Entry_Name + (T : Task_Id; + Pos : Task_Entry_Index; + Val : String_Access) + is + begin + pragma Assert (T.Entry_Names /= null); + + T.Entry_Names (Entry_Index (Pos)) := Val; + end Set_Entry_Name; + + ------------------ + -- Task_Wrapper -- + ------------------ + + -- The task wrapper is a procedure that is called first for each task body + -- and which in turn calls the compiler-generated task body procedure. + -- The wrapper's main job is to do initialization for the task. It also + -- has some locally declared objects that serve as per-task local data. + -- Task finalization is done by Complete_Task, which is called from an + -- at-end handler that the compiler generates. + + procedure Task_Wrapper (Self_ID : Task_Id) is + use type SSE.Storage_Offset; + use System.Standard_Library; + use System.Stack_Usage; + + Bottom_Of_Stack : aliased Integer; + + Task_Alternate_Stack : + aliased SSE.Storage_Array (1 .. Alternate_Stack_Size); + -- The alternate signal stack for this task, if any + + Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0; + -- Whether to use above alternate signal stack for stack overflows + + Secondary_Stack_Size : + constant SSE.Storage_Offset := + Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size * + SSE.Storage_Offset (Parameters.Sec_Stack_Ratio) / 100; + + Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size); + + pragma Warnings (Off); + -- Why are warnings being turned off here??? + + Secondary_Stack_Address : System.Address := Secondary_Stack'Address; + -- Address of secondary stack. In the fixed secondary stack case, this + -- value is not modified, causing a warning, hence the bracketing with + -- Warnings (Off/On). But why is so much *more* bracketed??? + + Small_Overflow_Guard : constant := 12 * 1024; + -- Note: this used to be 4K, but was changed to 12K, since smaller + -- values resulted in segmentation faults from dynamic stack analysis. + + Big_Overflow_Guard : constant := 16 * 1024; + Small_Stack_Limit : constant := 64 * 1024; + -- ??? These three values are experimental, and seems to work on most + -- platforms. They still need to be analyzed further. They also need + -- documentation, what are they??? + + Size : Natural := + Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size); + + Overflow_Guard : Natural; + -- Size of the overflow guard, used by dynamic stack usage analysis + + pragma Warnings (On); + + SEH_Table : aliased SSE.Storage_Array (1 .. 8); + -- Structured Exception Registration table (2 words) + + procedure Install_SEH_Handler (Addr : System.Address); + pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler"); + -- Install the SEH (Structured Exception Handling) handler + + Cause : Cause_Of_Termination := Normal; + -- Indicates the reason why this task terminates. Normal corresponds to + -- a task terminating due to completing the last statement of its body, + -- or as a result of waiting on a terminate alternative. If the task + -- terminates because it is being aborted then Cause will be set to + -- Abnormal. If the task terminates because of an exception raised by + -- the execution of its task body, then Cause is set to + -- Unhandled_Exception. + + EO : Exception_Occurrence; + -- If the task terminates because of an exception raised by the + -- execution of its task body, then EO will contain the associated + -- exception occurrence. Otherwise, it will contain Null_Occurrence. + + TH : Termination_Handler := null; + -- Pointer to the protected procedure to be executed upon task + -- termination. + + procedure Search_Fall_Back_Handler (ID : Task_Id); + -- Procedure that searches recursively a fall-back handler through the + -- master relationship. If the handler is found, its pointer is stored + -- in TH. + + ------------------------------ + -- Search_Fall_Back_Handler -- + ------------------------------ + + procedure Search_Fall_Back_Handler (ID : Task_Id) is + begin + -- If there is a fall back handler, store its pointer for later + -- execution. + + if ID.Common.Fall_Back_Handler /= null then + TH := ID.Common.Fall_Back_Handler; + + -- Otherwise look for a fall back handler in the parent + + elsif ID.Common.Parent /= null then + Search_Fall_Back_Handler (ID.Common.Parent); + + -- Otherwise, do nothing + + else + return; + end if; + end Search_Fall_Back_Handler; + + begin + pragma Assert (Self_ID.Deferral_Level = 1); + + -- Assume a size of the stack taken at this stage + + if not Parameters.Sec_Stack_Dynamic then + Self_ID.Common.Compiler_Data.Sec_Stack_Addr := + Secondary_Stack'Address; + SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last)); + Size := Size - Natural (Secondary_Stack_Size); + end if; + + if Use_Alternate_Stack then + Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address; + end if; + + -- Set the guard page at the bottom of the stack. The call to unprotect + -- the page is done in Terminate_Task + + Stack_Guard (Self_ID, True); + + -- Initialize low-level TCB components, that cannot be initialized by + -- the creator. Enter_Task sets Self_ID.LL.Thread + + Enter_Task (Self_ID); + + -- Initialize dynamic stack usage + + if System.Stack_Usage.Is_Enabled then + Overflow_Guard := + (if Size < Small_Stack_Limit + then Small_Overflow_Guard + else Big_Overflow_Guard); + + STPO.Lock_RTS; + Initialize_Analyzer + (Self_ID.Common.Analyzer, + Self_ID.Common.Task_Image + (1 .. Self_ID.Common.Task_Image_Len), + Natural + (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size), + Size - Overflow_Guard, + SSE.To_Integer (Bottom_Of_Stack'Address), + SSE.To_Integer + (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit)); + STPO.Unlock_RTS; + Fill_Stack (Self_ID.Common.Analyzer); + end if; + + -- We setup the SEH (Structured Exception Handling) handler if supported + -- on the target. + + Install_SEH_Handler (SEH_Table'Address); + + -- Initialize exception occurrence + + Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence); + + -- We lock RTS_Lock to wait for activator to finish activating the rest + -- of the chain, so that everyone in the chain comes out in priority + -- order. + + -- This also protects the value of + -- Self_ID.Common.Activator.Common.Wait_Count. + + Lock_RTS; + Unlock_RTS; + + if not System.Restrictions.Abort_Allowed then + + -- If Abort is not allowed, reset the deferral level since it will + -- not get changed by the generated code. Keeping a default value + -- of one would prevent some operations (e.g. select or delay) to + -- proceed successfully. + + Self_ID.Deferral_Level := 0; + end if; + + if Global_Task_Debug_Event_Set then + Debug.Signal_Debug_Event + (Debug.Debug_Event_Run, Self_ID); + end if; + + begin + -- We are separating the following portion of the code in order to + -- place the exception handlers in a different block. In this way, + -- we do not call Set_Jmpbuf_Address (which needs Self) before we + -- set Self in Enter_Task + + -- Call the task body procedure + + -- The task body is called with abort still deferred. That + -- eliminates a dangerous window, for which we had to patch-up in + -- Terminate_Task. + + -- During the expansion of the task body, we insert an RTS-call + -- to Abort_Undefer, at the first point where abort should be + -- allowed. + + Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg); + Initialization.Defer_Abort_Nestable (Self_ID); + + exception + -- We can't call Terminate_Task in the exception handlers below, + -- since there may be (e.g. in the case of GCC exception handling) + -- clean ups associated with the exception handler that need to + -- access task specific data. + + -- Defer abort so that this task can't be aborted while exiting + + when Standard'Abort_Signal => + Initialization.Defer_Abort_Nestable (Self_ID); + + -- Update the cause that motivated the task termination so that + -- the appropriate information is passed to the task termination + -- procedure. Task termination as a result of waiting on a + -- terminate alternative is a normal termination, although it is + -- implemented using the abort mechanisms. + + if Self_ID.Terminate_Alternative then + Cause := Normal; + + if Global_Task_Debug_Event_Set then + Debug.Signal_Debug_Event + (Debug.Debug_Event_Terminated, Self_ID); + end if; + else + Cause := Abnormal; + + if Global_Task_Debug_Event_Set then + Debug.Signal_Debug_Event + (Debug.Debug_Event_Abort_Terminated, Self_ID); + end if; + end if; + when others => + -- ??? Using an E : others here causes CD2C11A to fail on Tru64 + + Initialization.Defer_Abort_Nestable (Self_ID); + + -- Perform the task specific exception tracing duty. We handle + -- these outputs here and not in the common notification routine + -- because we need access to tasking related data and we don't + -- want to drag dependencies against tasking related units in the + -- the common notification units. Additionally, no trace is ever + -- triggered from the common routine for the Unhandled_Raise case + -- in tasks, since an exception never appears unhandled in this + -- context because of this handler. + + if Exception_Trace = Unhandled_Raise then + Trace_Unhandled_Exception_In_Task (Self_ID); + end if; + + -- Update the cause that motivated the task termination so that + -- the appropriate information is passed to the task termination + -- procedure, as well as the associated Exception_Occurrence. + + Cause := Unhandled_Exception; + + Save_Occurrence (EO, SSL.Get_Current_Excep.all.all); + + if Global_Task_Debug_Event_Set then + Debug.Signal_Debug_Event + (Debug.Debug_Event_Exception_Terminated, Self_ID); + end if; + end; + + -- Look for a task termination handler. This code is for all tasks but + -- the environment task. The task termination code for the environment + -- task is executed by SSL.Task_Termination_Handler. + + if Single_Lock then + Lock_RTS; + end if; + + Write_Lock (Self_ID); + + if Self_ID.Common.Specific_Handler /= null then + TH := Self_ID.Common.Specific_Handler; + else + -- Look for a fall-back handler following the master relationship + -- for the task. + + Search_Fall_Back_Handler (Self_ID); + end if; + + Unlock (Self_ID); + + if Single_Lock then + Unlock_RTS; + end if; + + -- Execute the task termination handler if we found it + + if TH /= null then + TH.all (Cause, Self_ID, EO); + end if; + + if System.Stack_Usage.Is_Enabled then + Compute_Result (Self_ID.Common.Analyzer); + Report_Result (Self_ID.Common.Analyzer); + end if; + + Terminate_Task (Self_ID); + end Task_Wrapper; + + -------------------- + -- Terminate_Task -- + -------------------- + + -- Before we allow the thread to exit, we must clean up. This is a + -- delicate job. We must wake up the task's master, who may immediately try + -- to deallocate the ATCB out from under the current task WHILE IT IS STILL + -- EXECUTING. + + -- To avoid this, the parent task must be blocked up to the latest + -- statement executed. The trouble is that we have another step that we + -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD. + -- We have to postpone that until the end because compiler-generated code + -- is likely to try to access that data at just about any point. + + -- We can't call Destroy_TSD while we are holding any other locks, because + -- it locks Global_Task_Lock, and our deadlock prevention rules require + -- that to be the outermost lock. Our first "solution" was to just lock + -- Global_Task_Lock in addition to the other locks, and force the parent to + -- also lock this lock between its wakeup and its freeing of the ATCB. See + -- Complete_Task for the parent-side of the code that has the matching + -- calls to Task_Lock and Task_Unlock. That was not really a solution, + -- since the operation Task_Unlock continued to access the ATCB after + -- unlocking, after which the parent was observed to race ahead, deallocate + -- the ATCB, and then reallocate it to another task. The call to + -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting + -- the data of the new task that reused the ATCB! To solve this problem, we + -- introduced the new operation Final_Task_Unlock. + + procedure Terminate_Task (Self_ID : Task_Id) is + Environment_Task : constant Task_Id := STPO.Environment_Task; + Master_of_Task : Integer; + + begin + Debug.Task_Termination_Hook; + + if Runtime_Traces then + Send_Trace_Info (T_Terminate); + end if; + + -- Since GCC cannot allocate stack chunks efficiently without reordering + -- some of the allocations, we have to handle this unexpected situation + -- here. We should normally never have to call Vulnerable_Complete_Task + -- here. + + if Self_ID.Common.Activator /= null then + Vulnerable_Complete_Task (Self_ID); + end if; + + Initialization.Task_Lock (Self_ID); + + if Single_Lock then + Lock_RTS; + end if; + + Master_of_Task := Self_ID.Master_of_Task; + + -- Check if the current task is an independent task If so, decrement + -- the Independent_Task_Count value. + + if Master_of_Task = Independent_Task_Level then + if Single_Lock then + Utilities.Independent_Task_Count := + Utilities.Independent_Task_Count - 1; + else + Write_Lock (Environment_Task); + Utilities.Independent_Task_Count := + Utilities.Independent_Task_Count - 1; + Unlock (Environment_Task); + end if; + end if; + + -- Unprotect the guard page if needed + + Stack_Guard (Self_ID, False); + + Utilities.Make_Passive (Self_ID, Task_Completed => True); + + if Single_Lock then + Unlock_RTS; + end if; + + pragma Assert (Check_Exit (Self_ID)); + + SSL.Destroy_TSD (Self_ID.Common.Compiler_Data); + Initialization.Final_Task_Unlock (Self_ID); + + -- WARNING: past this point, this thread must assume that the ATCB has + -- been deallocated. It should not be accessed again. + + if Master_of_Task > 0 then + STPO.Exit_Task; + end if; + end Terminate_Task; + + ---------------- + -- Terminated -- + ---------------- + + function Terminated (T : Task_Id) return Boolean is + Self_ID : constant Task_Id := STPO.Self; + Result : Boolean; + + begin + Initialization.Defer_Abort_Nestable (Self_ID); + + if Single_Lock then + Lock_RTS; + end if; + + Write_Lock (T); + Result := T.Common.State = Terminated; + Unlock (T); + + if Single_Lock then + Unlock_RTS; + end if; + + Initialization.Undefer_Abort_Nestable (Self_ID); + return Result; + end Terminated; + + ---------------------------------------- + -- Trace_Unhandled_Exception_In_Task -- + ---------------------------------------- + + procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is + procedure To_Stderr (S : String); + pragma Import (Ada, To_Stderr, "__gnat_to_stderr"); + + use System.Soft_Links; + use System.Standard_Library; + + function To_Address is new + Ada.Unchecked_Conversion + (Task_Id, System.Task_Primitives.Task_Address); + + function Tailored_Exception_Information + (E : Exception_Occurrence) return String; + pragma Import + (Ada, Tailored_Exception_Information, + "__gnat_tailored_exception_information"); + + Excep : constant Exception_Occurrence_Access := + SSL.Get_Current_Excep.all; + + begin + -- This procedure is called by the task outermost handler in + -- Task_Wrapper below, so only once the task stack has been fully + -- unwound. The common notification routine has been called at the + -- raise point already. + + -- Lock to prevent unsynchronized output + + Initialization.Task_Lock (Self_Id); + To_Stderr ("task "); + + if Self_Id.Common.Task_Image_Len /= 0 then + To_Stderr + (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len)); + To_Stderr ("_"); + end if; + + To_Stderr (System.Address_Image (To_Address (Self_Id))); + To_Stderr (" terminated by unhandled exception"); + To_Stderr ((1 => ASCII.LF)); + To_Stderr (Tailored_Exception_Information (Excep.all)); + Initialization.Task_Unlock (Self_Id); + end Trace_Unhandled_Exception_In_Task; + + ------------------------------------ + -- Vulnerable_Complete_Activation -- + ------------------------------------ + + -- As in several other places, the locks of the activator and activated + -- task are both locked here. This follows our deadlock prevention lock + -- ordering policy, since the activated task must be created after the + -- activator. + + procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is + Activator : constant Task_Id := Self_ID.Common.Activator; + + begin + pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C')); + + Write_Lock (Activator); + Write_Lock (Self_ID); + + pragma Assert (Self_ID.Common.Activator /= null); + + -- Remove dangling reference to Activator, since a task may + -- outlive its activator. + + Self_ID.Common.Activator := null; + + -- Wake up the activator, if it is waiting for a chain of tasks to + -- activate, and we are the last in the chain to complete activation. + + if Activator.Common.State = Activator_Sleep then + Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1; + + if Activator.Common.Wait_Count = 0 then + Wakeup (Activator, Activator_Sleep); + end if; + end if; + + -- The activator raises a Tasking_Error if any task it is activating + -- is completed before the activation is done. However, if the reason + -- for the task completion is an abort, we do not raise an exception. + -- See RM 9.2(5). + + if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then + Activator.Common.Activation_Failed := True; + end if; + + Unlock (Self_ID); + Unlock (Activator); + + -- After the activation, active priority should be the same as base + -- priority. We must unlock the Activator first, though, since it + -- should not wait if we have lower priority. + + if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then + Write_Lock (Self_ID); + Set_Priority (Self_ID, Self_ID.Common.Base_Priority); + Unlock (Self_ID); + end if; + end Vulnerable_Complete_Activation; + + -------------------------------- + -- Vulnerable_Complete_Master -- + -------------------------------- + + procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is + C : Task_Id; + P : Task_Id; + CM : constant Master_Level := Self_ID.Master_Within; + T : aliased Task_Id; + + To_Be_Freed : Task_Id; + -- This is a list of ATCBs to be freed, after we have released all RTS + -- locks. This is necessary because of the locking order rules, since + -- the storage manager uses Global_Task_Lock. + + pragma Warnings (Off); + function Check_Unactivated_Tasks return Boolean; + pragma Warnings (On); + -- Temporary error-checking code below. This is part of the checks + -- added in the new run time. Call it only inside a pragma Assert. + + ----------------------------- + -- Check_Unactivated_Tasks -- + ----------------------------- + + function Check_Unactivated_Tasks return Boolean is + begin + if not Single_Lock then + Lock_RTS; + end if; + + Write_Lock (Self_ID); + + C := All_Tasks_List; + while C /= null loop + if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then + return False; + end if; + + if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then + Write_Lock (C); + + if C.Common.State = Unactivated then + return False; + end if; + + Unlock (C); + end if; + + C := C.Common.All_Tasks_Link; + end loop; + + Unlock (Self_ID); + + if not Single_Lock then + Unlock_RTS; + end if; + + return True; + end Check_Unactivated_Tasks; + + -- Start of processing for Vulnerable_Complete_Master + + begin + pragma Debug + (Debug.Trace (Self_ID, "V_Complete_Master", 'C')); + + pragma Assert (Self_ID.Common.Wait_Count = 0); + pragma Assert + (Self_ID.Deferral_Level > 0 + or else not System.Restrictions.Abort_Allowed); + + -- Count how many active dependent tasks this master currently has, and + -- record this in Wait_Count. + + -- This count should start at zero, since it is initialized to zero for + -- new tasks, and the task should not exit the sleep-loops that use this + -- count until the count reaches zero. + + -- While we're counting, if we run across any unactivated tasks that + -- belong to this master, we summarily terminate them as required by + -- RM-9.2(6). + + Lock_RTS; + Write_Lock (Self_ID); + + C := All_Tasks_List; + while C /= null loop + + -- Terminate unactivated (never-to-be activated) tasks + + if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then + + pragma Assert (C.Common.State = Unactivated); + -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task + -- = CM. The only case where C is pending activation by this + -- task, but the master of C is not CM is in Ada 2005, when C is + -- part of a return object of a build-in-place function. + + Write_Lock (C); + C.Common.Activator := null; + C.Common.State := Terminated; + C.Callable := False; + Utilities.Cancel_Queued_Entry_Calls (C); + Unlock (C); + end if; + + -- Count it if dependent on this master + + if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then + Write_Lock (C); + + if C.Awake_Count /= 0 then + Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1; + end if; + + Unlock (C); + end if; + + C := C.Common.All_Tasks_Link; + end loop; + + Self_ID.Common.State := Master_Completion_Sleep; + Unlock (Self_ID); + + if not Single_Lock then + Unlock_RTS; + end if; + + -- Wait until dependent tasks are all terminated or ready to terminate. + -- While waiting, the task may be awakened if the task's priority needs + -- changing, or this master is aborted. In the latter case, we abort the + -- dependents, and resume waiting until Wait_Count goes to zero. + + Write_Lock (Self_ID); + + loop + exit when Self_ID.Common.Wait_Count = 0; + + -- Here is a difference as compared to Complete_Master + + if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level + and then not Self_ID.Dependents_Aborted + then + if Single_Lock then + Abort_Dependents (Self_ID); + else + Unlock (Self_ID); + Lock_RTS; + Abort_Dependents (Self_ID); + Unlock_RTS; + Write_Lock (Self_ID); + end if; + else + Sleep (Self_ID, Master_Completion_Sleep); + end if; + end loop; + + Self_ID.Common.State := Runnable; + Unlock (Self_ID); + + -- Dependents are all terminated or on terminate alternatives. Now, + -- force those on terminate alternatives to terminate, by aborting them. + + pragma Assert (Check_Unactivated_Tasks); + + if Self_ID.Alive_Count > 1 then + -- ??? + -- Consider finding a way to skip the following extra steps if there + -- are no dependents with terminate alternatives. This could be done + -- by adding another count to the ATCB, similar to Awake_Count, but + -- keeping track of tasks that are on terminate alternatives. + + pragma Assert (Self_ID.Common.Wait_Count = 0); + + -- Force any remaining dependents to terminate by aborting them + + if not Single_Lock then + Lock_RTS; + end if; + + Abort_Dependents (Self_ID); + + -- Above, when we "abort" the dependents we are simply using this + -- operation for convenience. We are not required to support the full + -- abort-statement semantics; in particular, we are not required to + -- immediately cancel any queued or in-service entry calls. That is + -- good, because if we tried to cancel a call we would need to lock + -- the caller, in order to wake the caller up. Our anti-deadlock + -- rules prevent us from doing that without releasing the locks on C + -- and Self_ID. Releasing and retaking those locks would be wasteful + -- at best, and should not be considered further without more + -- detailed analysis of potential concurrent accesses to the ATCBs + -- of C and Self_ID. + + -- Count how many "alive" dependent tasks this master currently has, + -- and record this in Wait_Count. This count should start at zero, + -- since it is initialized to zero for new tasks, and the task should + -- not exit the sleep-loops that use this count until the count + -- reaches zero. + + pragma Assert (Self_ID.Common.Wait_Count = 0); + + Write_Lock (Self_ID); + + C := All_Tasks_List; + while C /= null loop + if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then + Write_Lock (C); + + pragma Assert (C.Awake_Count = 0); + + if C.Alive_Count > 0 then + pragma Assert (C.Terminate_Alternative); + Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1; + end if; + + Unlock (C); + end if; + + C := C.Common.All_Tasks_Link; + end loop; + + Self_ID.Common.State := Master_Phase_2_Sleep; + Unlock (Self_ID); + + if not Single_Lock then + Unlock_RTS; + end if; + + -- Wait for all counted tasks to finish terminating themselves + + Write_Lock (Self_ID); + + loop + exit when Self_ID.Common.Wait_Count = 0; + Sleep (Self_ID, Master_Phase_2_Sleep); + end loop; + + Self_ID.Common.State := Runnable; + Unlock (Self_ID); + end if; + + -- We don't wake up for abort here. We are already terminating just as + -- fast as we can, so there is no point. + + -- Remove terminated tasks from the list of Self_ID's dependents, but + -- don't free their ATCBs yet, because of lock order restrictions, which + -- don't allow us to call "free" or "malloc" while holding any other + -- locks. Instead, we put those ATCBs to be freed onto a temporary list, + -- called To_Be_Freed. + + if not Single_Lock then + Lock_RTS; + end if; + + C := All_Tasks_List; + P := null; + while C /= null loop + if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then + if P /= null then + P.Common.All_Tasks_Link := C.Common.All_Tasks_Link; + else + All_Tasks_List := C.Common.All_Tasks_Link; + end if; + + T := C.Common.All_Tasks_Link; + C.Common.All_Tasks_Link := To_Be_Freed; + To_Be_Freed := C; + C := T; + + else + P := C; + C := C.Common.All_Tasks_Link; + end if; + end loop; + + Unlock_RTS; + + -- Free all the ATCBs on the list To_Be_Freed + + -- The ATCBs in the list are no longer in All_Tasks_List, and after + -- any interrupt entries are detached from them they should no longer + -- be referenced. + + -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to + -- avoid a race between a terminating task and its parent. The parent + -- might try to deallocate the ACTB out from underneath the exiting + -- task. Note that Free will also lock Global_Task_Lock, but that is + -- OK, since this is the *one* lock for which we have a mechanism to + -- support nested locking. See Task_Wrapper and its finalizer for more + -- explanation. + + -- ??? + -- The check "T.Common.Parent /= null ..." below is to prevent dangling + -- references to terminated library-level tasks, which could otherwise + -- occur during finalization of library-level objects. A better solution + -- might be to hook task objects into the finalization chain and + -- deallocate the ATCB when the task object is deallocated. However, + -- this change is not likely to gain anything significant, since all + -- this storage should be recovered en-masse when the process exits. + + while To_Be_Freed /= null loop + T := To_Be_Freed; + To_Be_Freed := T.Common.All_Tasks_Link; + + -- ??? On SGI there is currently no Interrupt_Manager, that's why we + -- need to check if the Interrupt_Manager_ID is null. + + if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then + declare + Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1; + -- Corresponds to the entry index of System.Interrupts. + -- Interrupt_Manager.Detach_Interrupt_Entries. + -- Be sure to update this value when changing + -- Interrupt_Manager specs. + + type Param_Type is access all Task_Id; + + Param : aliased Param_Type := T'Access; + + begin + System.Tasking.Rendezvous.Call_Simple + (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index, + Param'Address); + end; + end if; + + if (T.Common.Parent /= null + and then T.Common.Parent.Common.Parent /= null) + or else T.Master_of_Task > Library_Task_Level + then + Initialization.Task_Lock (Self_ID); + + -- If Sec_Stack_Addr is not null, it means that Destroy_TSD + -- has not been called yet (case of an unactivated task). + + if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then + SSL.Destroy_TSD (T.Common.Compiler_Data); + end if; + + Vulnerable_Free_Task (T); + Initialization.Task_Unlock (Self_ID); + end if; + end loop; + + -- It might seem nice to let the terminated task deallocate its own + -- ATCB. That would not cover the case of unactivated tasks. It also + -- would force us to keep the underlying thread around past termination, + -- since references to the ATCB are possible past termination. + + -- Currently, we get rid of the thread as soon as the task terminates, + -- and let the parent recover the ATCB later. + + -- Some day, if we want to recover the ATCB earlier, at task + -- termination, we could consider using "fat task IDs", that include the + -- serial number with the ATCB pointer, to catch references to tasks + -- that no longer have ATCBs. It is not clear how much this would gain, + -- since the user-level task object would still be occupying storage. + + -- Make next master level up active. We don't need to lock the ATCB, + -- since the value is only updated by each task for itself. + + Self_ID.Master_Within := CM - 1; + end Vulnerable_Complete_Master; + + ------------------------------ + -- Vulnerable_Complete_Task -- + ------------------------------ + + -- Complete the calling task + + -- This procedure must be called with abort deferred. It should only be + -- called by Complete_Task and Finalize_Global_Tasks (for the environment + -- task). + + -- The effect is similar to that of Complete_Master. Differences include + -- the closing of entries here, and computation of the number of active + -- dependent tasks in Complete_Master. + + -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation, + -- because that does its own locking, and because we do not need the lock + -- to test Self_ID.Common.Activator. That value should only be read and + -- modified by Self. + + procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is + begin + pragma Assert + (Self_ID.Deferral_Level > 0 + or else not System.Restrictions.Abort_Allowed); + pragma Assert (Self_ID = Self); + pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1 + or else + Self_ID.Master_Within = Self_ID.Master_of_Task + 2); + pragma Assert (Self_ID.Common.Wait_Count = 0); + pragma Assert (Self_ID.Open_Accepts = null); + pragma Assert (Self_ID.ATC_Nesting_Level = 1); + + pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C')); + + if Single_Lock then + Lock_RTS; + end if; + + Write_Lock (Self_ID); + Self_ID.Callable := False; + + -- In theory, Self should have no pending entry calls left on its + -- call-stack. Each async. select statement should clean its own call, + -- and blocking entry calls should defer abort until the calls are + -- cancelled, then clean up. + + Utilities.Cancel_Queued_Entry_Calls (Self_ID); + Unlock (Self_ID); + + if Self_ID.Common.Activator /= null then + Vulnerable_Complete_Activation (Self_ID); + end if; + + if Single_Lock then + Unlock_RTS; + end if; + + -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have + -- dependent tasks for which we need to wait. Otherwise we just exit. + + if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then + Vulnerable_Complete_Master (Self_ID); + end if; + end Vulnerable_Complete_Task; + + -------------------------- + -- Vulnerable_Free_Task -- + -------------------------- + + -- Recover all runtime system storage associated with the task T. This + -- should only be called after T has terminated and will no longer be + -- referenced. + + -- For tasks created by an allocator that fails, due to an exception, it + -- is called from Expunge_Unactivated_Tasks. + + -- For tasks created by elaboration of task object declarations it is + -- called from the finalization code of the Task_Wrapper procedure. It is + -- also called from Ada.Unchecked_Deallocation, for objects that are or + -- contain tasks. + + procedure Vulnerable_Free_Task (T : Task_Id) is + begin + pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T)); + + if Single_Lock then + Lock_RTS; + end if; + + Write_Lock (T); + Initialization.Finalize_Attributes_Link.all (T); + Unlock (T); + + if Single_Lock then + Unlock_RTS; + end if; + + Free_Entry_Names (T); + System.Task_Primitives.Operations.Finalize_TCB (T); + end Vulnerable_Free_Task; + +-- Package elaboration code + +begin + -- Establish the Adafinal oftlink + + -- This is not done inside the central RTS initialization routine + -- to avoid with-ing this package from System.Tasking.Initialization. + + SSL.Adafinal := Finalize_Global_Tasks'Access; + + -- Establish soft links for subprograms that manipulate master_id's. + -- This cannot be done when the RTS is initialized, because of various + -- elaboration constraints. + + SSL.Current_Master := Stages.Current_Master'Access; + SSL.Enter_Master := Stages.Enter_Master'Access; + SSL.Complete_Master := Stages.Complete_Master'Access; +end System.Tasking.Stages; -- cgit v1.2.3