From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/caller-save.c | 1420 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1420 insertions(+) create mode 100644 gcc/caller-save.c (limited to 'gcc/caller-save.c') diff --git a/gcc/caller-save.c b/gcc/caller-save.c new file mode 100644 index 000000000..160d2e911 --- /dev/null +++ b/gcc/caller-save.c @@ -0,0 +1,1420 @@ +/* Save and restore call-clobbered registers which are live across a call. + Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000, + 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "regs.h" +#include "insn-config.h" +#include "flags.h" +#include "hard-reg-set.h" +#include "recog.h" +#include "basic-block.h" +#include "df.h" +#include "reload.h" +#include "function.h" +#include "expr.h" +#include "diagnostic-core.h" +#include "tm_p.h" +#include "addresses.h" +#include "output.h" +#include "ggc.h" + +#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD) + +#define regno_save_mode \ + (this_target_reload->x_regno_save_mode) +#define cached_reg_save_code \ + (this_target_reload->x_cached_reg_save_code) +#define cached_reg_restore_code \ + (this_target_reload->x_cached_reg_restore_code) + +/* For each hard register, a place on the stack where it can be saved, + if needed. */ + +static rtx + regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; + +/* The number of elements in the subsequent array. */ +static int save_slots_num; + +/* Allocated slots so far. */ +static rtx save_slots[FIRST_PSEUDO_REGISTER]; + +/* Set of hard regs currently residing in save area (during insn scan). */ + +static HARD_REG_SET hard_regs_saved; + +/* Number of registers currently in hard_regs_saved. */ + +static int n_regs_saved; + +/* Computed by mark_referenced_regs, all regs referenced in a given + insn. */ +static HARD_REG_SET referenced_regs; + + +typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno, + void *mark_arg); + +static int reg_save_code (int, enum machine_mode); +static int reg_restore_code (int, enum machine_mode); + +struct saved_hard_reg; +static void initiate_saved_hard_regs (void); +static struct saved_hard_reg *new_saved_hard_reg (int, int); +static void finish_saved_hard_regs (void); +static int saved_hard_reg_compare_func (const void *, const void *); + +static void mark_set_regs (rtx, const_rtx, void *); +static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg); +static refmarker_fn mark_reg_as_referenced; +static refmarker_fn replace_reg_with_saved_mem; +static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *, + enum machine_mode *); +static int insert_restore (struct insn_chain *, int, int, int, + enum machine_mode *); +static struct insn_chain *insert_one_insn (struct insn_chain *, int, int, + rtx); +static void add_stored_regs (rtx, const_rtx, void *); + + + +static GTY(()) rtx savepat; +static GTY(()) rtx restpat; +static GTY(()) rtx test_reg; +static GTY(()) rtx test_mem; +static GTY(()) rtx saveinsn; +static GTY(()) rtx restinsn; + +/* Return the INSN_CODE used to save register REG in mode MODE. */ +static int +reg_save_code (int reg, enum machine_mode mode) +{ + bool ok; + if (cached_reg_save_code[reg][mode]) + return cached_reg_save_code[reg][mode]; + if (!HARD_REGNO_MODE_OK (reg, mode)) + { + /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation + might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert + below silences a warning. */ + gcc_assert (reg < FIRST_PSEUDO_REGISTER); + cached_reg_save_code[reg][mode] = -1; + cached_reg_restore_code[reg][mode] = -1; + return -1; + } + + /* Update the register number and modes of the register + and memory operand. */ + SET_REGNO_RAW (test_reg, reg); + PUT_MODE (test_reg, mode); + PUT_MODE (test_mem, mode); + + /* Force re-recognition of the modified insns. */ + INSN_CODE (saveinsn) = -1; + INSN_CODE (restinsn) = -1; + + cached_reg_save_code[reg][mode] = recog_memoized (saveinsn); + cached_reg_restore_code[reg][mode] = recog_memoized (restinsn); + + /* Now extract both insns and see if we can meet their + constraints. */ + ok = (cached_reg_save_code[reg][mode] != -1 + && cached_reg_restore_code[reg][mode] != -1); + if (ok) + { + extract_insn (saveinsn); + ok = constrain_operands (1); + extract_insn (restinsn); + ok &= constrain_operands (1); + } + + if (! ok) + { + cached_reg_save_code[reg][mode] = -1; + cached_reg_restore_code[reg][mode] = -1; + } + gcc_assert (cached_reg_save_code[reg][mode]); + return cached_reg_save_code[reg][mode]; +} + +/* Return the INSN_CODE used to restore register REG in mode MODE. */ +static int +reg_restore_code (int reg, enum machine_mode mode) +{ + if (cached_reg_restore_code[reg][mode]) + return cached_reg_restore_code[reg][mode]; + /* Populate our cache. */ + reg_save_code (reg, mode); + return cached_reg_restore_code[reg][mode]; +} + +/* Initialize for caller-save. + + Look at all the hard registers that are used by a call and for which + reginfo.c has not already excluded from being used across a call. + + Ensure that we can find a mode to save the register and that there is a + simple insn to save and restore the register. This latter check avoids + problems that would occur if we tried to save the MQ register of some + machines directly into memory. */ + +void +init_caller_save (void) +{ + rtx addr_reg; + int offset; + rtx address; + int i, j; + + if (caller_save_initialized_p) + return; + + caller_save_initialized_p = true; + + CLEAR_HARD_REG_SET (no_caller_save_reg_set); + /* First find all the registers that we need to deal with and all + the modes that they can have. If we can't find a mode to use, + we can't have the register live over calls. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (call_used_regs[i] + && !TEST_HARD_REG_BIT (call_fixed_reg_set, i)) + { + for (j = 1; j <= MOVE_MAX_WORDS; j++) + { + regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j, + VOIDmode); + if (regno_save_mode[i][j] == VOIDmode && j == 1) + { + SET_HARD_REG_BIT (call_fixed_reg_set, i); + } + } + } + else + regno_save_mode[i][1] = VOIDmode; + } + + /* The following code tries to approximate the conditions under which + we can easily save and restore a register without scratch registers or + other complexities. It will usually work, except under conditions where + the validity of an insn operand is dependent on the address offset. + No such cases are currently known. + + We first find a typical offset from some BASE_REG_CLASS register. + This address is chosen by finding the first register in the class + and by finding the smallest power of two that is a valid offset from + that register in every mode we will use to save registers. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT + (reg_class_contents + [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i)) + break; + + gcc_assert (i < FIRST_PSEUDO_REGISTER); + + addr_reg = gen_rtx_REG (Pmode, i); + + for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1) + { + address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset)); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regno_save_mode[i][1] != VOIDmode + && ! strict_memory_address_p (regno_save_mode[i][1], address)) + break; + + if (i == FIRST_PSEUDO_REGISTER) + break; + } + + /* If we didn't find a valid address, we must use register indirect. */ + if (offset == 0) + address = addr_reg; + + /* Next we try to form an insn to save and restore the register. We + see if such an insn is recognized and meets its constraints. + + To avoid lots of unnecessary RTL allocation, we construct all the RTL + once, then modify the memory and register operands in-place. */ + + test_reg = gen_rtx_REG (VOIDmode, 0); + test_mem = gen_rtx_MEM (VOIDmode, address); + savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg); + restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem); + + saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0); + restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = 1; j <= MOVE_MAX_WORDS; j++) + if (reg_save_code (i,regno_save_mode[i][j]) == -1) + { + regno_save_mode[i][j] = VOIDmode; + if (j == 1) + { + SET_HARD_REG_BIT (call_fixed_reg_set, i); + if (call_used_regs[i]) + SET_HARD_REG_BIT (no_caller_save_reg_set, i); + } + } +} + + + +/* Initialize save areas by showing that we haven't allocated any yet. */ + +void +init_save_areas (void) +{ + int i, j; + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = 1; j <= MOVE_MAX_WORDS; j++) + regno_save_mem[i][j] = 0; + save_slots_num = 0; + +} + +/* The structure represents a hard register which should be saved + through the call. It is used when the integrated register + allocator (IRA) is used and sharing save slots is on. */ +struct saved_hard_reg +{ + /* Order number starting with 0. */ + int num; + /* The hard regno. */ + int hard_regno; + /* Execution frequency of all calls through which given hard + register should be saved. */ + int call_freq; + /* Stack slot reserved to save the hard register through calls. */ + rtx slot; + /* True if it is first hard register in the chain of hard registers + sharing the same stack slot. */ + int first_p; + /* Order number of the next hard register structure with the same + slot in the chain. -1 represents end of the chain. */ + int next; +}; + +/* Map: hard register number to the corresponding structure. */ +static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER]; + +/* The number of all structures representing hard registers should be + saved, in order words, the number of used elements in the following + array. */ +static int saved_regs_num; + +/* Pointers to all the structures. Index is the order number of the + corresponding structure. */ +static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER]; + +/* First called function for work with saved hard registers. */ +static void +initiate_saved_hard_regs (void) +{ + int i; + + saved_regs_num = 0; + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + hard_reg_map[i] = NULL; +} + +/* Allocate and return new saved hard register with given REGNO and + CALL_FREQ. */ +static struct saved_hard_reg * +new_saved_hard_reg (int regno, int call_freq) +{ + struct saved_hard_reg *saved_reg; + + saved_reg + = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg)); + hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg; + saved_reg->num = saved_regs_num++; + saved_reg->hard_regno = regno; + saved_reg->call_freq = call_freq; + saved_reg->first_p = FALSE; + saved_reg->next = -1; + return saved_reg; +} + +/* Free memory allocated for the saved hard registers. */ +static void +finish_saved_hard_regs (void) +{ + int i; + + for (i = 0; i < saved_regs_num; i++) + free (all_saved_regs[i]); +} + +/* The function is used to sort the saved hard register structures + according their frequency. */ +static int +saved_hard_reg_compare_func (const void *v1p, const void *v2p) +{ + const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p; + const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p; + + if (flag_omit_frame_pointer) + { + if (p1->call_freq - p2->call_freq != 0) + return p1->call_freq - p2->call_freq; + } + else if (p2->call_freq - p1->call_freq != 0) + return p2->call_freq - p1->call_freq; + + return p1->num - p2->num; +} + +/* Allocate save areas for any hard registers that might need saving. + We take a conservative approach here and look for call-clobbered hard + registers that are assigned to pseudos that cross calls. This may + overestimate slightly (especially if some of these registers are later + used as spill registers), but it should not be significant. + + For IRA we use priority coloring to decrease stack slots needed for + saving hard registers through calls. We build conflicts for them + to do coloring. + + Future work: + + In the fallback case we should iterate backwards across all possible + modes for the save, choosing the largest available one instead of + falling back to the smallest mode immediately. (eg TF -> DF -> SF). + + We do not try to use "move multiple" instructions that exist + on some machines (such as the 68k moveml). It could be a win to try + and use them when possible. The hard part is doing it in a way that is + machine independent since they might be saving non-consecutive + registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */ + +void +setup_save_areas (void) +{ + int i, j, k, freq; + HARD_REG_SET hard_regs_used; + struct saved_hard_reg *saved_reg; + rtx insn; + struct insn_chain *chain, *next; + unsigned int regno; + HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets; + reg_set_iterator rsi; + + CLEAR_HARD_REG_SET (hard_regs_used); + + /* Find every CALL_INSN and record which hard regs are live across the + call into HARD_REG_MAP and HARD_REGS_USED. */ + initiate_saved_hard_regs (); + /* Create hard reg saved regs. */ + for (chain = reload_insn_chain; chain != 0; chain = next) + { + insn = chain->insn; + next = chain->next; + if (!CALL_P (insn) + || find_reg_note (insn, REG_NORETURN, NULL)) + continue; + freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)); + REG_SET_TO_HARD_REG_SET (hard_regs_to_save, + &chain->live_throughout); + COPY_HARD_REG_SET (used_regs, call_used_reg_set); + + /* Record all registers set in this call insn. These don't + need to be saved. N.B. the call insn might set a subreg + of a multi-hard-reg pseudo; then the pseudo is considered + live during the call, but the subreg that is set + isn't. */ + CLEAR_HARD_REG_SET (this_insn_sets); + note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets); + /* Sibcalls are considered to set the return value. */ + if (SIBLING_CALL_P (insn) && crtl->return_rtx) + mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets); + + AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set); + AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets); + AND_HARD_REG_SET (hard_regs_to_save, used_regs); + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) + { + if (hard_reg_map[regno] != NULL) + hard_reg_map[regno]->call_freq += freq; + else + saved_reg = new_saved_hard_reg (regno, freq); + SET_HARD_REG_BIT (hard_regs_used, regno); + } + /* Look through all live pseudos, mark their hard registers. */ + EXECUTE_IF_SET_IN_REG_SET + (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi) + { + int r = reg_renumber[regno]; + int bound; + + if (r < 0) + continue; + + bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)]; + for (; r < bound; r++) + if (TEST_HARD_REG_BIT (used_regs, r)) + { + if (hard_reg_map[r] != NULL) + hard_reg_map[r]->call_freq += freq; + else + saved_reg = new_saved_hard_reg (r, freq); + SET_HARD_REG_BIT (hard_regs_to_save, r); + SET_HARD_REG_BIT (hard_regs_used, r); + } + } + } + + /* If requested, figure out which hard regs can share save slots. */ + if (optimize && flag_ira_share_save_slots) + { + rtx slot; + char *saved_reg_conflicts; + int next_k; + struct saved_hard_reg *saved_reg2, *saved_reg3; + int call_saved_regs_num; + struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER]; + int best_slot_num; + int prev_save_slots_num; + rtx prev_save_slots[FIRST_PSEUDO_REGISTER]; + + /* Find saved hard register conflicts. */ + saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num); + memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num); + for (chain = reload_insn_chain; chain != 0; chain = next) + { + call_saved_regs_num = 0; + insn = chain->insn; + next = chain->next; + if (!CALL_P (insn) + || find_reg_note (insn, REG_NORETURN, NULL)) + continue; + REG_SET_TO_HARD_REG_SET (hard_regs_to_save, + &chain->live_throughout); + COPY_HARD_REG_SET (used_regs, call_used_reg_set); + + /* Record all registers set in this call insn. These don't + need to be saved. N.B. the call insn might set a subreg + of a multi-hard-reg pseudo; then the pseudo is considered + live during the call, but the subreg that is set + isn't. */ + CLEAR_HARD_REG_SET (this_insn_sets); + note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets); + /* Sibcalls are considered to set the return value, + compare df-scan.c:df_get_call_refs. */ + if (SIBLING_CALL_P (insn) && crtl->return_rtx) + mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets); + + AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set); + AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets); + AND_HARD_REG_SET (hard_regs_to_save, used_regs); + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) + { + gcc_assert (hard_reg_map[regno] != NULL); + call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno]; + } + /* Look through all live pseudos, mark their hard registers. */ + EXECUTE_IF_SET_IN_REG_SET + (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi) + { + int r = reg_renumber[regno]; + int bound; + + if (r < 0) + continue; + + bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)]; + for (; r < bound; r++) + if (TEST_HARD_REG_BIT (used_regs, r)) + call_saved_regs[call_saved_regs_num++] = hard_reg_map[r]; + } + for (i = 0; i < call_saved_regs_num; i++) + { + saved_reg = call_saved_regs[i]; + for (j = 0; j < call_saved_regs_num; j++) + if (i != j) + { + saved_reg2 = call_saved_regs[j]; + saved_reg_conflicts[saved_reg->num * saved_regs_num + + saved_reg2->num] + = saved_reg_conflicts[saved_reg2->num * saved_regs_num + + saved_reg->num] + = TRUE; + } + } + } + /* Sort saved hard regs. */ + qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *), + saved_hard_reg_compare_func); + /* Initiate slots available from the previous reload + iteration. */ + prev_save_slots_num = save_slots_num; + memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx)); + save_slots_num = 0; + /* Allocate stack slots for the saved hard registers. */ + for (i = 0; i < saved_regs_num; i++) + { + saved_reg = all_saved_regs[i]; + regno = saved_reg->hard_regno; + for (j = 0; j < i; j++) + { + saved_reg2 = all_saved_regs[j]; + if (! saved_reg2->first_p) + continue; + slot = saved_reg2->slot; + for (k = j; k >= 0; k = next_k) + { + saved_reg3 = all_saved_regs[k]; + next_k = saved_reg3->next; + if (saved_reg_conflicts[saved_reg->num * saved_regs_num + + saved_reg3->num]) + break; + } + if (k < 0 + && (GET_MODE_SIZE (regno_save_mode[regno][1]) + <= GET_MODE_SIZE (regno_save_mode + [saved_reg2->hard_regno][1]))) + { + saved_reg->slot + = adjust_address_nv + (slot, regno_save_mode[saved_reg->hard_regno][1], 0); + regno_save_mem[regno][1] = saved_reg->slot; + saved_reg->next = saved_reg2->next; + saved_reg2->next = i; + if (dump_file != NULL) + fprintf (dump_file, "%d uses slot of %d\n", + regno, saved_reg2->hard_regno); + break; + } + } + if (j == i) + { + saved_reg->first_p = TRUE; + for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++) + { + slot = prev_save_slots[j]; + if (slot == NULL_RTX) + continue; + if (GET_MODE_SIZE (regno_save_mode[regno][1]) + <= GET_MODE_SIZE (GET_MODE (slot)) + && best_slot_num < 0) + best_slot_num = j; + if (GET_MODE (slot) == regno_save_mode[regno][1]) + break; + } + if (best_slot_num >= 0) + { + saved_reg->slot = prev_save_slots[best_slot_num]; + saved_reg->slot + = adjust_address_nv + (saved_reg->slot, + regno_save_mode[saved_reg->hard_regno][1], 0); + if (dump_file != NULL) + fprintf (dump_file, + "%d uses a slot from prev iteration\n", regno); + prev_save_slots[best_slot_num] = NULL_RTX; + if (best_slot_num + 1 == prev_save_slots_num) + prev_save_slots_num--; + } + else + { + saved_reg->slot + = assign_stack_local_1 + (regno_save_mode[regno][1], + GET_MODE_SIZE (regno_save_mode[regno][1]), 0, + ASLK_REDUCE_ALIGN); + if (dump_file != NULL) + fprintf (dump_file, "%d uses a new slot\n", regno); + } + regno_save_mem[regno][1] = saved_reg->slot; + save_slots[save_slots_num++] = saved_reg->slot; + } + } + free (saved_reg_conflicts); + finish_saved_hard_regs (); + } + else + { + /* We are not sharing slots. + + Run through all the call-used hard-registers and allocate + space for each in the caller-save area. Try to allocate space + in a manner which allows multi-register saves/restores to be done. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = MOVE_MAX_WORDS; j > 0; j--) + { + int do_save = 1; + + /* If no mode exists for this size, try another. Also break out + if we have already saved this hard register. */ + if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0) + continue; + + /* See if any register in this group has been saved. */ + for (k = 0; k < j; k++) + if (regno_save_mem[i + k][1]) + { + do_save = 0; + break; + } + if (! do_save) + continue; + + for (k = 0; k < j; k++) + if (! TEST_HARD_REG_BIT (hard_regs_used, i + k)) + { + do_save = 0; + break; + } + if (! do_save) + continue; + + /* We have found an acceptable mode to store in. Since + hard register is always saved in the widest mode + available, the mode may be wider than necessary, it is + OK to reduce the alignment of spill space. We will + verify that it is equal to or greater than required + when we restore and save the hard register in + insert_restore and insert_save. */ + regno_save_mem[i][j] + = assign_stack_local_1 (regno_save_mode[i][j], + GET_MODE_SIZE (regno_save_mode[i][j]), + 0, ASLK_REDUCE_ALIGN); + + /* Setup single word save area just in case... */ + for (k = 0; k < j; k++) + /* This should not depend on WORDS_BIG_ENDIAN. + The order of words in regs is the same as in memory. */ + regno_save_mem[i + k][1] + = adjust_address_nv (regno_save_mem[i][j], + regno_save_mode[i + k][1], + k * UNITS_PER_WORD); + } + } + + /* Now loop again and set the alias set of any save areas we made to + the alias set used to represent frame objects. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = MOVE_MAX_WORDS; j > 0; j--) + if (regno_save_mem[i][j] != 0) + set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ()); +} + + + +/* Find the places where hard regs are live across calls and save them. */ + +void +save_call_clobbered_regs (void) +{ + struct insn_chain *chain, *next, *last = NULL; + enum machine_mode save_mode [FIRST_PSEUDO_REGISTER]; + + /* Computed in mark_set_regs, holds all registers set by the current + instruction. */ + HARD_REG_SET this_insn_sets; + + CLEAR_HARD_REG_SET (hard_regs_saved); + n_regs_saved = 0; + + for (chain = reload_insn_chain; chain != 0; chain = next) + { + rtx insn = chain->insn; + enum rtx_code code = GET_CODE (insn); + + next = chain->next; + + gcc_assert (!chain->is_caller_save_insn); + + if (NONDEBUG_INSN_P (insn)) + { + /* If some registers have been saved, see if INSN references + any of them. We must restore them before the insn if so. */ + + if (n_regs_saved) + { + int regno; + HARD_REG_SET this_insn_sets; + + if (code == JUMP_INSN) + /* Restore all registers if this is a JUMP_INSN. */ + COPY_HARD_REG_SET (referenced_regs, hard_regs_saved); + else + { + CLEAR_HARD_REG_SET (referenced_regs); + mark_referenced_regs (&PATTERN (insn), + mark_reg_as_referenced, NULL); + AND_HARD_REG_SET (referenced_regs, hard_regs_saved); + } + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (referenced_regs, regno)) + regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, + save_mode); + /* If a saved register is set after the call, this means we no + longer should restore it. This can happen when parts of a + multi-word pseudo do not conflict with other pseudos, so + IRA may allocate the same hard register for both. One may + be live across the call, while the other is set + afterwards. */ + CLEAR_HARD_REG_SET (this_insn_sets); + note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets); + AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets); + } + + if (code == CALL_INSN + && ! SIBLING_CALL_P (insn) + && ! find_reg_note (insn, REG_NORETURN, NULL)) + { + unsigned regno; + HARD_REG_SET hard_regs_to_save; + reg_set_iterator rsi; + + /* Use the register life information in CHAIN to compute which + regs are live during the call. */ + REG_SET_TO_HARD_REG_SET (hard_regs_to_save, + &chain->live_throughout); + /* Save hard registers always in the widest mode available. */ + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) + save_mode [regno] = regno_save_mode [regno][1]; + else + save_mode [regno] = VOIDmode; + + /* Look through all live pseudos, mark their hard registers + and choose proper mode for saving. */ + EXECUTE_IF_SET_IN_REG_SET + (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi) + { + int r = reg_renumber[regno]; + int nregs; + enum machine_mode mode; + + if (r < 0) + continue; + nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)]; + mode = HARD_REGNO_CALLER_SAVE_MODE + (r, nregs, PSEUDO_REGNO_MODE (regno)); + if (GET_MODE_BITSIZE (mode) + > GET_MODE_BITSIZE (save_mode[r])) + save_mode[r] = mode; + while (nregs-- > 0) + SET_HARD_REG_BIT (hard_regs_to_save, r + nregs); + } + + /* Record all registers set in this call insn. These don't need + to be saved. N.B. the call insn might set a subreg of a + multi-hard-reg pseudo; then the pseudo is considered live + during the call, but the subreg that is set isn't. */ + CLEAR_HARD_REG_SET (this_insn_sets); + note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets); + + /* Compute which hard regs must be saved before this call. */ + AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set); + AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets); + AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved); + AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set); + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) + regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode); + + /* Must recompute n_regs_saved. */ + n_regs_saved = 0; + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) + n_regs_saved++; + } + last = chain; + } + else if (DEBUG_INSN_P (insn) && n_regs_saved) + mark_referenced_regs (&PATTERN (insn), + replace_reg_with_saved_mem, + save_mode); + + if (chain->next == 0 || chain->next->block != chain->block) + { + int regno; + /* At the end of the basic block, we must restore any registers that + remain saved. If the last insn in the block is a JUMP_INSN, put + the restore before the insn, otherwise, put it after the insn. */ + + if (n_regs_saved + && DEBUG_INSN_P (insn) + && last + && last->block == chain->block) + { + rtx ins, prev; + basic_block bb = BLOCK_FOR_INSN (insn); + + /* When adding hard reg restores after a DEBUG_INSN, move + all notes between last real insn and this DEBUG_INSN after + the DEBUG_INSN, otherwise we could get code + -g/-g0 differences. */ + for (ins = PREV_INSN (insn); ins != last->insn; ins = prev) + { + prev = PREV_INSN (ins); + if (NOTE_P (ins)) + { + NEXT_INSN (prev) = NEXT_INSN (ins); + PREV_INSN (NEXT_INSN (ins)) = prev; + PREV_INSN (ins) = insn; + NEXT_INSN (ins) = NEXT_INSN (insn); + NEXT_INSN (insn) = ins; + if (NEXT_INSN (ins)) + PREV_INSN (NEXT_INSN (ins)) = ins; + if (BB_END (bb) == insn) + BB_END (bb) = ins; + } + else + gcc_assert (DEBUG_INSN_P (ins)); + } + } + last = NULL; + + if (n_regs_saved) + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) + regno += insert_restore (chain, JUMP_P (insn), + regno, MOVE_MAX_WORDS, save_mode); + } + } +} + +/* Here from note_stores, or directly from save_call_clobbered_regs, when + an insn stores a value in a register. + Set the proper bit or bits in this_insn_sets. All pseudos that have + been assigned hard regs have had their register number changed already, + so we can ignore pseudos. */ +static void +mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data) +{ + int regno, endregno, i; + HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data; + + if (GET_CODE (reg) == SUBREG) + { + rtx inner = SUBREG_REG (reg); + if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER) + return; + regno = subreg_regno (reg); + endregno = regno + subreg_nregs (reg); + } + else if (REG_P (reg) + && REGNO (reg) < FIRST_PSEUDO_REGISTER) + { + regno = REGNO (reg); + endregno = END_HARD_REGNO (reg); + } + else + return; + + for (i = regno; i < endregno; i++) + SET_HARD_REG_BIT (*this_insn_sets, i); +} + +/* Here from note_stores when an insn stores a value in a register. + Set the proper bit or bits in the passed regset. All pseudos that have + been assigned hard regs have had their register number changed already, + so we can ignore pseudos. */ +static void +add_stored_regs (rtx reg, const_rtx setter, void *data) +{ + int regno, endregno, i; + enum machine_mode mode = GET_MODE (reg); + int offset = 0; + + if (GET_CODE (setter) == CLOBBER) + return; + + if (GET_CODE (reg) == SUBREG + && REG_P (SUBREG_REG (reg)) + && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER) + { + offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)), + GET_MODE (SUBREG_REG (reg)), + SUBREG_BYTE (reg), + GET_MODE (reg)); + regno = REGNO (SUBREG_REG (reg)) + offset; + endregno = regno + subreg_nregs (reg); + } + else + { + if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER) + return; + + regno = REGNO (reg) + offset; + endregno = end_hard_regno (mode, regno); + } + + for (i = regno; i < endregno; i++) + SET_REGNO_REG_SET ((regset) data, i); +} + +/* Walk X and record all referenced registers in REFERENCED_REGS. */ +static void +mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg) +{ + enum rtx_code code = GET_CODE (*loc); + const char *fmt; + int i, j; + + if (code == SET) + mark_referenced_regs (&SET_SRC (*loc), mark, arg); + if (code == SET || code == CLOBBER) + { + loc = &SET_DEST (*loc); + code = GET_CODE (*loc); + if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER) + || code == PC || code == CC0 + || (code == SUBREG && REG_P (SUBREG_REG (*loc)) + && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER + /* If we're setting only part of a multi-word register, + we shall mark it as referenced, because the words + that are not being set should be restored. */ + && ((GET_MODE_SIZE (GET_MODE (*loc)) + >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))) + || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))) + <= UNITS_PER_WORD)))) + return; + } + if (code == MEM || code == SUBREG) + { + loc = &XEXP (*loc, 0); + code = GET_CODE (*loc); + } + + if (code == REG) + { + int regno = REGNO (*loc); + int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno + : reg_renumber[regno]); + + if (hardregno >= 0) + mark (loc, GET_MODE (*loc), hardregno, arg); + else if (arg) + /* ??? Will we ever end up with an equiv expression in a debug + insn, that would have required restoring a reg, or will + reload take care of it for us? */ + return; + /* If this is a pseudo that did not get a hard register, scan its + memory location, since it might involve the use of another + register, which might be saved. */ + else if (reg_equiv_mem[regno] != 0) + mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg); + else if (reg_equiv_address[regno] != 0) + mark_referenced_regs (®_equiv_address[regno], mark, arg); + return; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + mark_referenced_regs (&XEXP (*loc, i), mark, arg); + else if (fmt[i] == 'E') + for (j = XVECLEN (*loc, i) - 1; j >= 0; j--) + mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg); + } +} + +/* Parameter function for mark_referenced_regs() that adds registers + present in the insn and in equivalent mems and addresses to + referenced_regs. */ + +static void +mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED, + enum machine_mode mode, + int hardregno, + void *arg ATTRIBUTE_UNUSED) +{ + add_to_hard_reg_set (&referenced_regs, mode, hardregno); +} + +/* Parameter function for mark_referenced_regs() that replaces + registers referenced in a debug_insn that would have been restored, + should it be a non-debug_insn, with their save locations. */ + +static void +replace_reg_with_saved_mem (rtx *loc, + enum machine_mode mode, + int regno, + void *arg) +{ + unsigned int i, nregs = hard_regno_nregs [regno][mode]; + rtx mem; + enum machine_mode *save_mode = (enum machine_mode *)arg; + + for (i = 0; i < nregs; i++) + if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i)) + break; + + /* If none of the registers in the range would need restoring, we're + all set. */ + if (i == nregs) + return; + + while (++i < nregs) + if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i)) + break; + + if (i == nregs + && regno_save_mem[regno][nregs]) + { + mem = copy_rtx (regno_save_mem[regno][nregs]); + + if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]]) + mem = adjust_address_nv (mem, save_mode[regno], 0); + + if (GET_MODE (mem) != mode) + { + /* This is gen_lowpart_if_possible(), but without validating + the newly-formed address. */ + int offset = 0; + + if (WORDS_BIG_ENDIAN) + offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD) + - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD)); + if (BYTES_BIG_ENDIAN) + /* Adjust the address so that the address-after-the-data is + unchanged. */ + offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)) + - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem)))); + + mem = adjust_address_nv (mem, mode, offset); + } + } + else + { + mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs)); + for (i = 0; i < nregs; i++) + if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i)) + { + gcc_assert (regno_save_mem[regno + i][1]); + XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]); + } + else + { + gcc_assert (save_mode[regno] != VOIDmode); + XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno], + regno + i); + } + } + + gcc_assert (GET_MODE (mem) == mode); + *loc = mem; +} + + +/* Insert a sequence of insns to restore. Place these insns in front of + CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is + the maximum number of registers which should be restored during this call. + It should never be less than 1 since we only work with entire registers. + + Note that we have verified in init_caller_save that we can do this + with a simple SET, so use it. Set INSN_CODE to what we save there + since the address might not be valid so the insn might not be recognized. + These insns will be reloaded and have register elimination done by + find_reload, so we need not worry about that here. + + Return the extra number of registers saved. */ + +static int +insert_restore (struct insn_chain *chain, int before_p, int regno, + int maxrestore, enum machine_mode *save_mode) +{ + int i, k; + rtx pat = NULL_RTX; + int code; + unsigned int numregs = 0; + struct insn_chain *new_chain; + rtx mem; + + /* A common failure mode if register status is not correct in the + RTL is for this routine to be called with a REGNO we didn't + expect to save. That will cause us to write an insn with a (nil) + SET_DEST or SET_SRC. Instead of doing so and causing a crash + later, check for this common case here instead. This will remove + one step in debugging such problems. */ + gcc_assert (regno_save_mem[regno][1]); + + /* Get the pattern to emit and update our status. + + See if we can restore `maxrestore' registers at once. Work + backwards to the single register case. */ + for (i = maxrestore; i > 0; i--) + { + int j; + int ok = 1; + + if (regno_save_mem[regno][i] == 0) + continue; + + for (j = 0; j < i; j++) + if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j)) + { + ok = 0; + break; + } + /* Must do this one restore at a time. */ + if (! ok) + continue; + + numregs = i; + break; + } + + mem = regno_save_mem [regno][numregs]; + if (save_mode [regno] != VOIDmode + && save_mode [regno] != GET_MODE (mem) + && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]] + /* Check that insn to restore REGNO in save_mode[regno] is + correct. */ + && reg_save_code (regno, save_mode[regno]) >= 0) + mem = adjust_address_nv (mem, save_mode[regno], 0); + else + mem = copy_rtx (mem); + + /* Verify that the alignment of spill space is equal to or greater + than required. */ + gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT, + GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem)); + + pat = gen_rtx_SET (VOIDmode, + gen_rtx_REG (GET_MODE (mem), + regno), mem); + code = reg_restore_code (regno, GET_MODE (mem)); + new_chain = insert_one_insn (chain, before_p, code, pat); + + /* Clear status for all registers we restored. */ + for (k = 0; k < i; k++) + { + CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k); + SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k); + n_regs_saved--; + } + + /* Tell our callers how many extra registers we saved/restored. */ + return numregs - 1; +} + +/* Like insert_restore above, but save registers instead. */ + +static int +insert_save (struct insn_chain *chain, int before_p, int regno, + HARD_REG_SET (*to_save), enum machine_mode *save_mode) +{ + int i; + unsigned int k; + rtx pat = NULL_RTX; + int code; + unsigned int numregs = 0; + struct insn_chain *new_chain; + rtx mem; + + /* A common failure mode if register status is not correct in the + RTL is for this routine to be called with a REGNO we didn't + expect to save. That will cause us to write an insn with a (nil) + SET_DEST or SET_SRC. Instead of doing so and causing a crash + later, check for this common case here. This will remove one + step in debugging such problems. */ + gcc_assert (regno_save_mem[regno][1]); + + /* Get the pattern to emit and update our status. + + See if we can save several registers with a single instruction. + Work backwards to the single register case. */ + for (i = MOVE_MAX_WORDS; i > 0; i--) + { + int j; + int ok = 1; + if (regno_save_mem[regno][i] == 0) + continue; + + for (j = 0; j < i; j++) + if (! TEST_HARD_REG_BIT (*to_save, regno + j)) + { + ok = 0; + break; + } + /* Must do this one save at a time. */ + if (! ok) + continue; + + numregs = i; + break; + } + + mem = regno_save_mem [regno][numregs]; + if (save_mode [regno] != VOIDmode + && save_mode [regno] != GET_MODE (mem) + && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]] + /* Check that insn to save REGNO in save_mode[regno] is + correct. */ + && reg_save_code (regno, save_mode[regno]) >= 0) + mem = adjust_address_nv (mem, save_mode[regno], 0); + else + mem = copy_rtx (mem); + + /* Verify that the alignment of spill space is equal to or greater + than required. */ + gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT, + GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem)); + + pat = gen_rtx_SET (VOIDmode, mem, + gen_rtx_REG (GET_MODE (mem), + regno)); + code = reg_save_code (regno, GET_MODE (mem)); + new_chain = insert_one_insn (chain, before_p, code, pat); + + /* Set hard_regs_saved and dead_or_set for all the registers we saved. */ + for (k = 0; k < numregs; k++) + { + SET_HARD_REG_BIT (hard_regs_saved, regno + k); + SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k); + n_regs_saved++; + } + + /* Tell our callers how many extra registers we saved/restored. */ + return numregs - 1; +} + +/* A for_each_rtx callback used by add_used_regs. Add the hard-register + equivalent of each REG to regset DATA. */ + +static int +add_used_regs_1 (rtx *loc, void *data) +{ + int regno, i; + regset live; + rtx x; + + x = *loc; + live = (regset) data; + if (REG_P (x)) + { + regno = REGNO (x); + if (!HARD_REGISTER_NUM_P (regno)) + regno = reg_renumber[regno]; + if (regno >= 0) + for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--) + SET_REGNO_REG_SET (live, regno + i); + } + return 0; +} + +/* A note_uses callback used by insert_one_insn. Add the hard-register + equivalent of each REG to regset DATA. */ + +static void +add_used_regs (rtx *loc, void *data) +{ + for_each_rtx (loc, add_used_regs_1, data); +} + +/* Emit a new caller-save insn and set the code. */ +static struct insn_chain * +insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat) +{ + rtx insn = chain->insn; + struct insn_chain *new_chain; + +#ifdef HAVE_cc0 + /* If INSN references CC0, put our insns in front of the insn that sets + CC0. This is always safe, since the only way we could be passed an + insn that references CC0 is for a restore, and doing a restore earlier + isn't a problem. We do, however, assume here that CALL_INSNs don't + reference CC0. Guard against non-INSN's like CODE_LABEL. */ + + if ((NONJUMP_INSN_P (insn) || JUMP_P (insn)) + && before_p + && reg_referenced_p (cc0_rtx, PATTERN (insn))) + chain = chain->prev, insn = chain->insn; +#endif + + new_chain = new_insn_chain (); + if (before_p) + { + rtx link; + + new_chain->prev = chain->prev; + if (new_chain->prev != 0) + new_chain->prev->next = new_chain; + else + reload_insn_chain = new_chain; + + chain->prev = new_chain; + new_chain->next = chain; + new_chain->insn = emit_insn_before (pat, insn); + /* ??? It would be nice if we could exclude the already / still saved + registers from the live sets. */ + COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout); + note_uses (&PATTERN (chain->insn), add_used_regs, + &new_chain->live_throughout); + /* If CHAIN->INSN is a call, then the registers which contain + the arguments to the function are live in the new insn. */ + if (CALL_P (chain->insn)) + for (link = CALL_INSN_FUNCTION_USAGE (chain->insn); + link != NULL_RTX; + link = XEXP (link, 1)) + note_uses (&XEXP (link, 0), add_used_regs, + &new_chain->live_throughout); + + CLEAR_REG_SET (&new_chain->dead_or_set); + if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block))) + BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn; + } + else + { + new_chain->next = chain->next; + if (new_chain->next != 0) + new_chain->next->prev = new_chain; + chain->next = new_chain; + new_chain->prev = chain; + new_chain->insn = emit_insn_after (pat, insn); + /* ??? It would be nice if we could exclude the already / still saved + registers from the live sets, and observe REG_UNUSED notes. */ + COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout); + /* Registers that are set in CHAIN->INSN live in the new insn. + (Unless there is a REG_UNUSED note for them, but we don't + look for them here.) */ + note_stores (PATTERN (chain->insn), add_stored_regs, + &new_chain->live_throughout); + CLEAR_REG_SET (&new_chain->dead_or_set); + if (chain->insn == BB_END (BASIC_BLOCK (chain->block))) + BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn; + } + new_chain->block = chain->block; + new_chain->is_caller_save_insn = 1; + + INSN_CODE (new_chain->insn) = code; + return new_chain; +} +#include "gt-caller-save.h" -- cgit v1.2.3