From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/config/alpha/alpha.c | 11210 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 11210 insertions(+) create mode 100644 gcc/config/alpha/alpha.c (limited to 'gcc/config/alpha/alpha.c') diff --git a/gcc/config/alpha/alpha.c b/gcc/config/alpha/alpha.c new file mode 100644 index 000000000..ba6179e71 --- /dev/null +++ b/gcc/config/alpha/alpha.c @@ -0,0 +1,11210 @@ +/* Subroutines used for code generation on the DEC Alpha. + Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, + 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "tree.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "insn-config.h" +#include "conditions.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "recog.h" +#include "expr.h" +#include "optabs.h" +#include "reload.h" +#include "obstack.h" +#include "except.h" +#include "function.h" +#include "diagnostic-core.h" +#include "ggc.h" +#include "integrate.h" +#include "tm_p.h" +#include "target.h" +#include "target-def.h" +#include "debug.h" +#include "langhooks.h" +#include "splay-tree.h" +#include "cfglayout.h" +#include "gimple.h" +#include "tree-flow.h" +#include "tree-stdarg.h" +#include "tm-constrs.h" +#include "df.h" +#include "libfuncs.h" + +/* Specify which cpu to schedule for. */ +enum processor_type alpha_tune; + +/* Which cpu we're generating code for. */ +enum processor_type alpha_cpu; + +static const char * const alpha_cpu_name[] = +{ + "ev4", "ev5", "ev6" +}; + +/* Specify how accurate floating-point traps need to be. */ + +enum alpha_trap_precision alpha_tp; + +/* Specify the floating-point rounding mode. */ + +enum alpha_fp_rounding_mode alpha_fprm; + +/* Specify which things cause traps. */ + +enum alpha_fp_trap_mode alpha_fptm; + +/* Nonzero if inside of a function, because the Alpha asm can't + handle .files inside of functions. */ + +static int inside_function = FALSE; + +/* The number of cycles of latency we should assume on memory reads. */ + +int alpha_memory_latency = 3; + +/* Whether the function needs the GP. */ + +static int alpha_function_needs_gp; + +/* The assembler name of the current function. */ + +static const char *alpha_fnname; + +/* The next explicit relocation sequence number. */ +extern GTY(()) int alpha_next_sequence_number; +int alpha_next_sequence_number = 1; + +/* The literal and gpdisp sequence numbers for this insn, as printed + by %# and %* respectively. */ +extern GTY(()) int alpha_this_literal_sequence_number; +extern GTY(()) int alpha_this_gpdisp_sequence_number; +int alpha_this_literal_sequence_number; +int alpha_this_gpdisp_sequence_number; + +/* Costs of various operations on the different architectures. */ + +struct alpha_rtx_cost_data +{ + unsigned char fp_add; + unsigned char fp_mult; + unsigned char fp_div_sf; + unsigned char fp_div_df; + unsigned char int_mult_si; + unsigned char int_mult_di; + unsigned char int_shift; + unsigned char int_cmov; + unsigned short int_div; +}; + +static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] = +{ + { /* EV4 */ + COSTS_N_INSNS (6), /* fp_add */ + COSTS_N_INSNS (6), /* fp_mult */ + COSTS_N_INSNS (34), /* fp_div_sf */ + COSTS_N_INSNS (63), /* fp_div_df */ + COSTS_N_INSNS (23), /* int_mult_si */ + COSTS_N_INSNS (23), /* int_mult_di */ + COSTS_N_INSNS (2), /* int_shift */ + COSTS_N_INSNS (2), /* int_cmov */ + COSTS_N_INSNS (97), /* int_div */ + }, + { /* EV5 */ + COSTS_N_INSNS (4), /* fp_add */ + COSTS_N_INSNS (4), /* fp_mult */ + COSTS_N_INSNS (15), /* fp_div_sf */ + COSTS_N_INSNS (22), /* fp_div_df */ + COSTS_N_INSNS (8), /* int_mult_si */ + COSTS_N_INSNS (12), /* int_mult_di */ + COSTS_N_INSNS (1) + 1, /* int_shift */ + COSTS_N_INSNS (1), /* int_cmov */ + COSTS_N_INSNS (83), /* int_div */ + }, + { /* EV6 */ + COSTS_N_INSNS (4), /* fp_add */ + COSTS_N_INSNS (4), /* fp_mult */ + COSTS_N_INSNS (12), /* fp_div_sf */ + COSTS_N_INSNS (15), /* fp_div_df */ + COSTS_N_INSNS (7), /* int_mult_si */ + COSTS_N_INSNS (7), /* int_mult_di */ + COSTS_N_INSNS (1), /* int_shift */ + COSTS_N_INSNS (2), /* int_cmov */ + COSTS_N_INSNS (86), /* int_div */ + }, +}; + +/* Similar but tuned for code size instead of execution latency. The + extra +N is fractional cost tuning based on latency. It's used to + encourage use of cheaper insns like shift, but only if there's just + one of them. */ + +static struct alpha_rtx_cost_data const alpha_rtx_cost_size = +{ + COSTS_N_INSNS (1), /* fp_add */ + COSTS_N_INSNS (1), /* fp_mult */ + COSTS_N_INSNS (1), /* fp_div_sf */ + COSTS_N_INSNS (1) + 1, /* fp_div_df */ + COSTS_N_INSNS (1) + 1, /* int_mult_si */ + COSTS_N_INSNS (1) + 2, /* int_mult_di */ + COSTS_N_INSNS (1), /* int_shift */ + COSTS_N_INSNS (1), /* int_cmov */ + COSTS_N_INSNS (6), /* int_div */ +}; + +/* Get the number of args of a function in one of two ways. */ +#if TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK +#define NUM_ARGS crtl->args.info.num_args +#else +#define NUM_ARGS crtl->args.info +#endif + +#define REG_PV 27 +#define REG_RA 26 + +/* Declarations of static functions. */ +static struct machine_function *alpha_init_machine_status (void); +static rtx alpha_emit_xfloating_compare (enum rtx_code *, rtx, rtx); + +#if TARGET_ABI_OPEN_VMS +static void alpha_write_linkage (FILE *, const char *, tree); +static bool vms_valid_pointer_mode (enum machine_mode); +#endif + +static void unicosmk_output_deferred_case_vectors (FILE *); +static void unicosmk_gen_dsib (unsigned long *); +static void unicosmk_output_ssib (FILE *, const char *); +static int unicosmk_need_dex (rtx); + +/* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */ +static const struct default_options alpha_option_optimization_table[] = + { + { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 }, + { OPT_LEVELS_NONE, 0, NULL, 0 } + }; + +/* Implement TARGET_HANDLE_OPTION. */ + +static bool +alpha_handle_option (size_t code, const char *arg, int value) +{ + switch (code) + { + case OPT_mfp_regs: + if (value == 0) + target_flags |= MASK_SOFT_FP; + break; + + case OPT_mieee: + case OPT_mieee_with_inexact: + target_flags |= MASK_IEEE_CONFORMANT; + break; + + case OPT_mtls_size_: + if (value != 16 && value != 32 && value != 64) + error ("bad value %qs for -mtls-size switch", arg); + break; + } + + return true; +} + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +/* Implement TARGET_MANGLE_TYPE. */ + +static const char * +alpha_mangle_type (const_tree type) +{ + if (TYPE_MAIN_VARIANT (type) == long_double_type_node + && TARGET_LONG_DOUBLE_128) + return "g"; + + /* For all other types, use normal C++ mangling. */ + return NULL; +} +#endif + +/* Parse target option strings. */ + +static void +alpha_option_override (void) +{ + static const struct cpu_table { + const char *const name; + const enum processor_type processor; + const int flags; + } cpu_table[] = { + { "ev4", PROCESSOR_EV4, 0 }, + { "ev45", PROCESSOR_EV4, 0 }, + { "21064", PROCESSOR_EV4, 0 }, + { "ev5", PROCESSOR_EV5, 0 }, + { "21164", PROCESSOR_EV5, 0 }, + { "ev56", PROCESSOR_EV5, MASK_BWX }, + { "21164a", PROCESSOR_EV5, MASK_BWX }, + { "pca56", PROCESSOR_EV5, MASK_BWX|MASK_MAX }, + { "21164PC",PROCESSOR_EV5, MASK_BWX|MASK_MAX }, + { "21164pc",PROCESSOR_EV5, MASK_BWX|MASK_MAX }, + { "ev6", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX }, + { "21264", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX }, + { "ev67", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX }, + { "21264a", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX } + }; + + int const ct_size = ARRAY_SIZE (cpu_table); + int i; + +#ifdef SUBTARGET_OVERRIDE_OPTIONS + SUBTARGET_OVERRIDE_OPTIONS; +#endif + + /* Unicos/Mk doesn't have shared libraries. */ + if (TARGET_ABI_UNICOSMK && flag_pic) + { + warning (0, "-f%s ignored for Unicos/Mk (not supported)", + (flag_pic > 1) ? "PIC" : "pic"); + flag_pic = 0; + } + + /* On Unicos/Mk, the native compiler consistently generates /d suffices for + floating-point instructions. Make that the default for this target. */ + if (TARGET_ABI_UNICOSMK) + alpha_fprm = ALPHA_FPRM_DYN; + else + alpha_fprm = ALPHA_FPRM_NORM; + + alpha_tp = ALPHA_TP_PROG; + alpha_fptm = ALPHA_FPTM_N; + + /* We cannot use su and sui qualifiers for conversion instructions on + Unicos/Mk. I'm not sure if this is due to assembler or hardware + limitations. Right now, we issue a warning if -mieee is specified + and then ignore it; eventually, we should either get it right or + disable the option altogether. */ + + if (TARGET_IEEE) + { + if (TARGET_ABI_UNICOSMK) + warning (0, "-mieee not supported on Unicos/Mk"); + else + { + alpha_tp = ALPHA_TP_INSN; + alpha_fptm = ALPHA_FPTM_SU; + } + } + + if (TARGET_IEEE_WITH_INEXACT) + { + if (TARGET_ABI_UNICOSMK) + warning (0, "-mieee-with-inexact not supported on Unicos/Mk"); + else + { + alpha_tp = ALPHA_TP_INSN; + alpha_fptm = ALPHA_FPTM_SUI; + } + } + + if (alpha_tp_string) + { + if (! strcmp (alpha_tp_string, "p")) + alpha_tp = ALPHA_TP_PROG; + else if (! strcmp (alpha_tp_string, "f")) + alpha_tp = ALPHA_TP_FUNC; + else if (! strcmp (alpha_tp_string, "i")) + alpha_tp = ALPHA_TP_INSN; + else + error ("bad value %qs for -mtrap-precision switch", alpha_tp_string); + } + + if (alpha_fprm_string) + { + if (! strcmp (alpha_fprm_string, "n")) + alpha_fprm = ALPHA_FPRM_NORM; + else if (! strcmp (alpha_fprm_string, "m")) + alpha_fprm = ALPHA_FPRM_MINF; + else if (! strcmp (alpha_fprm_string, "c")) + alpha_fprm = ALPHA_FPRM_CHOP; + else if (! strcmp (alpha_fprm_string,"d")) + alpha_fprm = ALPHA_FPRM_DYN; + else + error ("bad value %qs for -mfp-rounding-mode switch", + alpha_fprm_string); + } + + if (alpha_fptm_string) + { + if (strcmp (alpha_fptm_string, "n") == 0) + alpha_fptm = ALPHA_FPTM_N; + else if (strcmp (alpha_fptm_string, "u") == 0) + alpha_fptm = ALPHA_FPTM_U; + else if (strcmp (alpha_fptm_string, "su") == 0) + alpha_fptm = ALPHA_FPTM_SU; + else if (strcmp (alpha_fptm_string, "sui") == 0) + alpha_fptm = ALPHA_FPTM_SUI; + else + error ("bad value %qs for -mfp-trap-mode switch", alpha_fptm_string); + } + + if (alpha_cpu_string) + { + for (i = 0; i < ct_size; i++) + if (! strcmp (alpha_cpu_string, cpu_table [i].name)) + { + alpha_tune = alpha_cpu = cpu_table [i].processor; + target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX); + target_flags |= cpu_table [i].flags; + break; + } + if (i == ct_size) + error ("bad value %qs for -mcpu switch", alpha_cpu_string); + } + + if (alpha_tune_string) + { + for (i = 0; i < ct_size; i++) + if (! strcmp (alpha_tune_string, cpu_table [i].name)) + { + alpha_tune = cpu_table [i].processor; + break; + } + if (i == ct_size) + error ("bad value %qs for -mtune switch", alpha_tune_string); + } + + /* Do some sanity checks on the above options. */ + + if (TARGET_ABI_UNICOSMK && alpha_fptm != ALPHA_FPTM_N) + { + warning (0, "trap mode not supported on Unicos/Mk"); + alpha_fptm = ALPHA_FPTM_N; + } + + if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI) + && alpha_tp != ALPHA_TP_INSN && alpha_cpu != PROCESSOR_EV6) + { + warning (0, "fp software completion requires -mtrap-precision=i"); + alpha_tp = ALPHA_TP_INSN; + } + + if (alpha_cpu == PROCESSOR_EV6) + { + /* Except for EV6 pass 1 (not released), we always have precise + arithmetic traps. Which means we can do software completion + without minding trap shadows. */ + alpha_tp = ALPHA_TP_PROG; + } + + if (TARGET_FLOAT_VAX) + { + if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN) + { + warning (0, "rounding mode not supported for VAX floats"); + alpha_fprm = ALPHA_FPRM_NORM; + } + if (alpha_fptm == ALPHA_FPTM_SUI) + { + warning (0, "trap mode not supported for VAX floats"); + alpha_fptm = ALPHA_FPTM_SU; + } + if (target_flags_explicit & MASK_LONG_DOUBLE_128) + warning (0, "128-bit long double not supported for VAX floats"); + target_flags &= ~MASK_LONG_DOUBLE_128; + } + + { + char *end; + int lat; + + if (!alpha_mlat_string) + alpha_mlat_string = "L1"; + + if (ISDIGIT ((unsigned char)alpha_mlat_string[0]) + && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0')) + ; + else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l') + && ISDIGIT ((unsigned char)alpha_mlat_string[1]) + && alpha_mlat_string[2] == '\0') + { + static int const cache_latency[][4] = + { + { 3, 30, -1 }, /* ev4 -- Bcache is a guess */ + { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */ + { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */ + }; + + lat = alpha_mlat_string[1] - '0'; + if (lat <= 0 || lat > 3 || cache_latency[alpha_tune][lat-1] == -1) + { + warning (0, "L%d cache latency unknown for %s", + lat, alpha_cpu_name[alpha_tune]); + lat = 3; + } + else + lat = cache_latency[alpha_tune][lat-1]; + } + else if (! strcmp (alpha_mlat_string, "main")) + { + /* Most current memories have about 370ns latency. This is + a reasonable guess for a fast cpu. */ + lat = 150; + } + else + { + warning (0, "bad value %qs for -mmemory-latency", alpha_mlat_string); + lat = 3; + } + + alpha_memory_latency = lat; + } + + /* Default the definition of "small data" to 8 bytes. */ + if (!global_options_set.x_g_switch_value) + g_switch_value = 8; + + /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */ + if (flag_pic == 1) + target_flags |= MASK_SMALL_DATA; + else if (flag_pic == 2) + target_flags &= ~MASK_SMALL_DATA; + + /* Align labels and loops for optimal branching. */ + /* ??? Kludge these by not doing anything if we don't optimize and also if + we are writing ECOFF symbols to work around a bug in DEC's assembler. */ + if (optimize > 0 && write_symbols != SDB_DEBUG) + { + if (align_loops <= 0) + align_loops = 16; + if (align_jumps <= 0) + align_jumps = 16; + } + if (align_functions <= 0) + align_functions = 16; + + /* Register variables and functions with the garbage collector. */ + + /* Set up function hooks. */ + init_machine_status = alpha_init_machine_status; + + /* Tell the compiler when we're using VAX floating point. */ + if (TARGET_FLOAT_VAX) + { + REAL_MODE_FORMAT (SFmode) = &vax_f_format; + REAL_MODE_FORMAT (DFmode) = &vax_g_format; + REAL_MODE_FORMAT (TFmode) = NULL; + } + +#ifdef TARGET_DEFAULT_LONG_DOUBLE_128 + if (!(target_flags_explicit & MASK_LONG_DOUBLE_128)) + target_flags |= MASK_LONG_DOUBLE_128; +#endif + + /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0) + can be optimized to ap = __builtin_next_arg (0). */ + if (TARGET_ABI_UNICOSMK) + targetm.expand_builtin_va_start = NULL; +} + +/* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */ + +int +zap_mask (HOST_WIDE_INT value) +{ + int i; + + for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; + i++, value >>= 8) + if ((value & 0xff) != 0 && (value & 0xff) != 0xff) + return 0; + + return 1; +} + +/* Return true if OP is valid for a particular TLS relocation. + We are already guaranteed that OP is a CONST. */ + +int +tls_symbolic_operand_1 (rtx op, int size, int unspec) +{ + op = XEXP (op, 0); + + if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec) + return 0; + op = XVECEXP (op, 0, 0); + + if (GET_CODE (op) != SYMBOL_REF) + return 0; + + switch (SYMBOL_REF_TLS_MODEL (op)) + { + case TLS_MODEL_LOCAL_DYNAMIC: + return unspec == UNSPEC_DTPREL && size == alpha_tls_size; + case TLS_MODEL_INITIAL_EXEC: + return unspec == UNSPEC_TPREL && size == 64; + case TLS_MODEL_LOCAL_EXEC: + return unspec == UNSPEC_TPREL && size == alpha_tls_size; + default: + gcc_unreachable (); + } +} + +/* Used by aligned_memory_operand and unaligned_memory_operand to + resolve what reload is going to do with OP if it's a register. */ + +rtx +resolve_reload_operand (rtx op) +{ + if (reload_in_progress) + { + rtx tmp = op; + if (GET_CODE (tmp) == SUBREG) + tmp = SUBREG_REG (tmp); + if (REG_P (tmp) + && REGNO (tmp) >= FIRST_PSEUDO_REGISTER) + { + op = reg_equiv_memory_loc[REGNO (tmp)]; + if (op == 0) + return 0; + } + } + return op; +} + +/* The scalar modes supported differs from the default check-what-c-supports + version in that sometimes TFmode is available even when long double + indicates only DFmode. On unicosmk, we have the situation that HImode + doesn't map to any C type, but of course we still support that. */ + +static bool +alpha_scalar_mode_supported_p (enum machine_mode mode) +{ + switch (mode) + { + case QImode: + case HImode: + case SImode: + case DImode: + case TImode: /* via optabs.c */ + return true; + + case SFmode: + case DFmode: + return true; + + case TFmode: + return TARGET_HAS_XFLOATING_LIBS; + + default: + return false; + } +} + +/* Alpha implements a couple of integer vector mode operations when + TARGET_MAX is enabled. We do not check TARGET_MAX here, however, + which allows the vectorizer to operate on e.g. move instructions, + or when expand_vector_operations can do something useful. */ + +static bool +alpha_vector_mode_supported_p (enum machine_mode mode) +{ + return mode == V8QImode || mode == V4HImode || mode == V2SImode; +} + +/* Return 1 if this function can directly return via $26. */ + +int +direct_return (void) +{ + return (! TARGET_ABI_OPEN_VMS && ! TARGET_ABI_UNICOSMK + && reload_completed + && alpha_sa_size () == 0 + && get_frame_size () == 0 + && crtl->outgoing_args_size == 0 + && crtl->args.pretend_args_size == 0); +} + +/* Return the ADDR_VEC associated with a tablejump insn. */ + +rtx +alpha_tablejump_addr_vec (rtx insn) +{ + rtx tmp; + + tmp = JUMP_LABEL (insn); + if (!tmp) + return NULL_RTX; + tmp = NEXT_INSN (tmp); + if (!tmp) + return NULL_RTX; + if (JUMP_P (tmp) + && GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC) + return PATTERN (tmp); + return NULL_RTX; +} + +/* Return the label of the predicted edge, or CONST0_RTX if we don't know. */ + +rtx +alpha_tablejump_best_label (rtx insn) +{ + rtx jump_table = alpha_tablejump_addr_vec (insn); + rtx best_label = NULL_RTX; + + /* ??? Once the CFG doesn't keep getting completely rebuilt, look + there for edge frequency counts from profile data. */ + + if (jump_table) + { + int n_labels = XVECLEN (jump_table, 1); + int best_count = -1; + int i, j; + + for (i = 0; i < n_labels; i++) + { + int count = 1; + + for (j = i + 1; j < n_labels; j++) + if (XEXP (XVECEXP (jump_table, 1, i), 0) + == XEXP (XVECEXP (jump_table, 1, j), 0)) + count++; + + if (count > best_count) + best_count = count, best_label = XVECEXP (jump_table, 1, i); + } + } + + return best_label ? best_label : const0_rtx; +} + +/* Return the TLS model to use for SYMBOL. */ + +static enum tls_model +tls_symbolic_operand_type (rtx symbol) +{ + enum tls_model model; + + if (GET_CODE (symbol) != SYMBOL_REF) + return TLS_MODEL_NONE; + model = SYMBOL_REF_TLS_MODEL (symbol); + + /* Local-exec with a 64-bit size is the same code as initial-exec. */ + if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64) + model = TLS_MODEL_INITIAL_EXEC; + + return model; +} + +/* Return true if the function DECL will share the same GP as any + function in the current unit of translation. */ + +static bool +decl_has_samegp (const_tree decl) +{ + /* Functions that are not local can be overridden, and thus may + not share the same gp. */ + if (!(*targetm.binds_local_p) (decl)) + return false; + + /* If -msmall-data is in effect, assume that there is only one GP + for the module, and so any local symbol has this property. We + need explicit relocations to be able to enforce this for symbols + not defined in this unit of translation, however. */ + if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA) + return true; + + /* Functions that are not external are defined in this UoT. */ + /* ??? Irritatingly, static functions not yet emitted are still + marked "external". Apply this to non-static functions only. */ + return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl); +} + +/* Return true if EXP should be placed in the small data section. */ + +static bool +alpha_in_small_data_p (const_tree exp) +{ + /* We want to merge strings, so we never consider them small data. */ + if (TREE_CODE (exp) == STRING_CST) + return false; + + /* Functions are never in the small data area. Duh. */ + if (TREE_CODE (exp) == FUNCTION_DECL) + return false; + + if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp)) + { + const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp)); + if (strcmp (section, ".sdata") == 0 + || strcmp (section, ".sbss") == 0) + return true; + } + else + { + HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); + + /* If this is an incomplete type with size 0, then we can't put it + in sdata because it might be too big when completed. */ + if (size > 0 && size <= g_switch_value) + return true; + } + + return false; +} + +#if TARGET_ABI_OPEN_VMS +static bool +vms_valid_pointer_mode (enum machine_mode mode) +{ + return (mode == SImode || mode == DImode); +} + +static bool +alpha_linkage_symbol_p (const char *symname) +{ + int symlen = strlen (symname); + + if (symlen > 4) + return strcmp (&symname [symlen - 4], "..lk") == 0; + + return false; +} + +#define LINKAGE_SYMBOL_REF_P(X) \ + ((GET_CODE (X) == SYMBOL_REF \ + && alpha_linkage_symbol_p (XSTR (X, 0))) \ + || (GET_CODE (X) == CONST \ + && GET_CODE (XEXP (X, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ + && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0)))) +#endif + +/* legitimate_address_p recognizes an RTL expression that is a valid + memory address for an instruction. The MODE argument is the + machine mode for the MEM expression that wants to use this address. + + For Alpha, we have either a constant address or the sum of a + register and a constant address, or just a register. For DImode, + any of those forms can be surrounded with an AND that clear the + low-order three bits; this is an "unaligned" access. */ + +static bool +alpha_legitimate_address_p (enum machine_mode mode, rtx x, bool strict) +{ + /* If this is an ldq_u type address, discard the outer AND. */ + if (mode == DImode + && GET_CODE (x) == AND + && CONST_INT_P (XEXP (x, 1)) + && INTVAL (XEXP (x, 1)) == -8) + x = XEXP (x, 0); + + /* Discard non-paradoxical subregs. */ + if (GET_CODE (x) == SUBREG + && (GET_MODE_SIZE (GET_MODE (x)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) + x = SUBREG_REG (x); + + /* Unadorned general registers are valid. */ + if (REG_P (x) + && (strict + ? STRICT_REG_OK_FOR_BASE_P (x) + : NONSTRICT_REG_OK_FOR_BASE_P (x))) + return true; + + /* Constant addresses (i.e. +/- 32k) are valid. */ + if (CONSTANT_ADDRESS_P (x)) + return true; + +#if TARGET_ABI_OPEN_VMS + if (LINKAGE_SYMBOL_REF_P (x)) + return true; +#endif + + /* Register plus a small constant offset is valid. */ + if (GET_CODE (x) == PLUS) + { + rtx ofs = XEXP (x, 1); + x = XEXP (x, 0); + + /* Discard non-paradoxical subregs. */ + if (GET_CODE (x) == SUBREG + && (GET_MODE_SIZE (GET_MODE (x)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) + x = SUBREG_REG (x); + + if (REG_P (x)) + { + if (! strict + && NONSTRICT_REG_OK_FP_BASE_P (x) + && CONST_INT_P (ofs)) + return true; + if ((strict + ? STRICT_REG_OK_FOR_BASE_P (x) + : NONSTRICT_REG_OK_FOR_BASE_P (x)) + && CONSTANT_ADDRESS_P (ofs)) + return true; + } + } + + /* If we're managing explicit relocations, LO_SUM is valid, as are small + data symbols. Avoid explicit relocations of modes larger than word + mode since i.e. $LC0+8($1) can fold around +/- 32k offset. */ + else if (TARGET_EXPLICIT_RELOCS + && GET_MODE_SIZE (mode) <= UNITS_PER_WORD) + { + if (small_symbolic_operand (x, Pmode)) + return true; + + if (GET_CODE (x) == LO_SUM) + { + rtx ofs = XEXP (x, 1); + x = XEXP (x, 0); + + /* Discard non-paradoxical subregs. */ + if (GET_CODE (x) == SUBREG + && (GET_MODE_SIZE (GET_MODE (x)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) + x = SUBREG_REG (x); + + /* Must have a valid base register. */ + if (! (REG_P (x) + && (strict + ? STRICT_REG_OK_FOR_BASE_P (x) + : NONSTRICT_REG_OK_FOR_BASE_P (x)))) + return false; + + /* The symbol must be local. */ + if (local_symbolic_operand (ofs, Pmode) + || dtp32_symbolic_operand (ofs, Pmode) + || tp32_symbolic_operand (ofs, Pmode)) + return true; + } + } + + return false; +} + +/* Build the SYMBOL_REF for __tls_get_addr. */ + +static GTY(()) rtx tls_get_addr_libfunc; + +static rtx +get_tls_get_addr (void) +{ + if (!tls_get_addr_libfunc) + tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr"); + return tls_get_addr_libfunc; +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. */ + +static rtx +alpha_legitimize_address_1 (rtx x, rtx scratch, enum machine_mode mode) +{ + HOST_WIDE_INT addend; + + /* If the address is (plus reg const_int) and the CONST_INT is not a + valid offset, compute the high part of the constant and add it to + the register. Then our address is (plus temp low-part-const). */ + if (GET_CODE (x) == PLUS + && REG_P (XEXP (x, 0)) + && CONST_INT_P (XEXP (x, 1)) + && ! CONSTANT_ADDRESS_P (XEXP (x, 1))) + { + addend = INTVAL (XEXP (x, 1)); + x = XEXP (x, 0); + goto split_addend; + } + + /* If the address is (const (plus FOO const_int)), find the low-order + part of the CONST_INT. Then load FOO plus any high-order part of the + CONST_INT into a register. Our address is (plus reg low-part-const). + This is done to reduce the number of GOT entries. */ + if (can_create_pseudo_p () + && GET_CODE (x) == CONST + && GET_CODE (XEXP (x, 0)) == PLUS + && CONST_INT_P (XEXP (XEXP (x, 0), 1))) + { + addend = INTVAL (XEXP (XEXP (x, 0), 1)); + x = force_reg (Pmode, XEXP (XEXP (x, 0), 0)); + goto split_addend; + } + + /* If we have a (plus reg const), emit the load as in (2), then add + the two registers, and finally generate (plus reg low-part-const) as + our address. */ + if (can_create_pseudo_p () + && GET_CODE (x) == PLUS + && REG_P (XEXP (x, 0)) + && GET_CODE (XEXP (x, 1)) == CONST + && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS + && CONST_INT_P (XEXP (XEXP (XEXP (x, 1), 0), 1))) + { + addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1)); + x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0), + XEXP (XEXP (XEXP (x, 1), 0), 0), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + goto split_addend; + } + + /* If this is a local symbol, split the address into HIGH/LO_SUM parts. + Avoid modes larger than word mode since i.e. $LC0+8($1) can fold + around +/- 32k offset. */ + if (TARGET_EXPLICIT_RELOCS + && GET_MODE_SIZE (mode) <= UNITS_PER_WORD + && symbolic_operand (x, Pmode)) + { + rtx r0, r16, eqv, tga, tp, insn, dest, seq; + + switch (tls_symbolic_operand_type (x)) + { + case TLS_MODEL_NONE: + break; + + case TLS_MODEL_GLOBAL_DYNAMIC: + start_sequence (); + + r0 = gen_rtx_REG (Pmode, 0); + r16 = gen_rtx_REG (Pmode, 16); + tga = get_tls_get_addr (); + dest = gen_reg_rtx (Pmode); + seq = GEN_INT (alpha_next_sequence_number++); + + emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq)); + insn = gen_call_value_osf_tlsgd (r0, tga, seq); + insn = emit_call_insn (insn); + RTL_CONST_CALL_P (insn) = 1; + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16); + + insn = get_insns (); + end_sequence (); + + emit_libcall_block (insn, dest, r0, x); + return dest; + + case TLS_MODEL_LOCAL_DYNAMIC: + start_sequence (); + + r0 = gen_rtx_REG (Pmode, 0); + r16 = gen_rtx_REG (Pmode, 16); + tga = get_tls_get_addr (); + scratch = gen_reg_rtx (Pmode); + seq = GEN_INT (alpha_next_sequence_number++); + + emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq)); + insn = gen_call_value_osf_tlsldm (r0, tga, seq); + insn = emit_call_insn (insn); + RTL_CONST_CALL_P (insn) = 1; + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16); + + insn = get_insns (); + end_sequence (); + + eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), + UNSPEC_TLSLDM_CALL); + emit_libcall_block (insn, scratch, r0, eqv); + + eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL); + eqv = gen_rtx_CONST (Pmode, eqv); + + if (alpha_tls_size == 64) + { + dest = gen_reg_rtx (Pmode); + emit_insn (gen_rtx_SET (VOIDmode, dest, eqv)); + emit_insn (gen_adddi3 (dest, dest, scratch)); + return dest; + } + if (alpha_tls_size == 32) + { + insn = gen_rtx_HIGH (Pmode, eqv); + insn = gen_rtx_PLUS (Pmode, scratch, insn); + scratch = gen_reg_rtx (Pmode); + emit_insn (gen_rtx_SET (VOIDmode, scratch, insn)); + } + return gen_rtx_LO_SUM (Pmode, scratch, eqv); + + case TLS_MODEL_INITIAL_EXEC: + eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL); + eqv = gen_rtx_CONST (Pmode, eqv); + tp = gen_reg_rtx (Pmode); + scratch = gen_reg_rtx (Pmode); + dest = gen_reg_rtx (Pmode); + + emit_insn (gen_load_tp (tp)); + emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv)); + emit_insn (gen_adddi3 (dest, tp, scratch)); + return dest; + + case TLS_MODEL_LOCAL_EXEC: + eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL); + eqv = gen_rtx_CONST (Pmode, eqv); + tp = gen_reg_rtx (Pmode); + + emit_insn (gen_load_tp (tp)); + if (alpha_tls_size == 32) + { + insn = gen_rtx_HIGH (Pmode, eqv); + insn = gen_rtx_PLUS (Pmode, tp, insn); + tp = gen_reg_rtx (Pmode); + emit_insn (gen_rtx_SET (VOIDmode, tp, insn)); + } + return gen_rtx_LO_SUM (Pmode, tp, eqv); + + default: + gcc_unreachable (); + } + + if (local_symbolic_operand (x, Pmode)) + { + if (small_symbolic_operand (x, Pmode)) + return x; + else + { + if (can_create_pseudo_p ()) + scratch = gen_reg_rtx (Pmode); + emit_insn (gen_rtx_SET (VOIDmode, scratch, + gen_rtx_HIGH (Pmode, x))); + return gen_rtx_LO_SUM (Pmode, scratch, x); + } + } + } + + return NULL; + + split_addend: + { + HOST_WIDE_INT low, high; + + low = ((addend & 0xffff) ^ 0x8000) - 0x8000; + addend -= low; + high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000; + addend -= high; + + if (addend) + x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend), + (!can_create_pseudo_p () ? scratch : NULL_RTX), + 1, OPTAB_LIB_WIDEN); + if (high) + x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high), + (!can_create_pseudo_p () ? scratch : NULL_RTX), + 1, OPTAB_LIB_WIDEN); + + return plus_constant (x, low); + } +} + + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. Return X or the new, valid address. */ + +static rtx +alpha_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, + enum machine_mode mode) +{ + rtx new_x = alpha_legitimize_address_1 (x, NULL_RTX, mode); + return new_x ? new_x : x; +} + +/* Primarily this is required for TLS symbols, but given that our move + patterns *ought* to be able to handle any symbol at any time, we + should never be spilling symbolic operands to the constant pool, ever. */ + +static bool +alpha_cannot_force_const_mem (rtx x) +{ + enum rtx_code code = GET_CODE (x); + return code == SYMBOL_REF || code == LABEL_REF || code == CONST; +} + +/* We do not allow indirect calls to be optimized into sibling calls, nor + can we allow a call to a function with a different GP to be optimized + into a sibcall. */ + +static bool +alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) +{ + /* Can't do indirect tail calls, since we don't know if the target + uses the same GP. */ + if (!decl) + return false; + + /* Otherwise, we can make a tail call if the target function shares + the same GP. */ + return decl_has_samegp (decl); +} + +int +some_small_symbolic_operand_int (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + rtx x = *px; + + /* Don't re-split. */ + if (GET_CODE (x) == LO_SUM) + return -1; + + return small_symbolic_operand (x, Pmode) != 0; +} + +static int +split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + rtx x = *px; + + /* Don't re-split. */ + if (GET_CODE (x) == LO_SUM) + return -1; + + if (small_symbolic_operand (x, Pmode)) + { + x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x); + *px = x; + return -1; + } + + return 0; +} + +rtx +split_small_symbolic_operand (rtx x) +{ + x = copy_insn (x); + for_each_rtx (&x, split_small_symbolic_operand_1, NULL); + return x; +} + +/* Indicate that INSN cannot be duplicated. This is true for any insn + that we've marked with gpdisp relocs, since those have to stay in + 1-1 correspondence with one another. + + Technically we could copy them if we could set up a mapping from one + sequence number to another, across the set of insns to be duplicated. + This seems overly complicated and error-prone since interblock motion + from sched-ebb could move one of the pair of insns to a different block. + + Also cannot allow jsr insns to be duplicated. If they throw exceptions, + then they'll be in a different block from their ldgp. Which could lead + the bb reorder code to think that it would be ok to copy just the block + containing the call and branch to the block containing the ldgp. */ + +static bool +alpha_cannot_copy_insn_p (rtx insn) +{ + if (!reload_completed || !TARGET_EXPLICIT_RELOCS) + return false; + if (recog_memoized (insn) >= 0) + return get_attr_cannot_copy (insn); + else + return false; +} + + +/* Try a machine-dependent way of reloading an illegitimate address + operand. If we find one, push the reload and return the new rtx. */ + +rtx +alpha_legitimize_reload_address (rtx x, + enum machine_mode mode ATTRIBUTE_UNUSED, + int opnum, int type, + int ind_levels ATTRIBUTE_UNUSED) +{ + /* We must recognize output that we have already generated ourselves. */ + if (GET_CODE (x) == PLUS + && GET_CODE (XEXP (x, 0)) == PLUS + && REG_P (XEXP (XEXP (x, 0), 0)) + && CONST_INT_P (XEXP (XEXP (x, 0), 1)) + && CONST_INT_P (XEXP (x, 1))) + { + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type) type); + return x; + } + + /* We wish to handle large displacements off a base register by + splitting the addend across an ldah and the mem insn. This + cuts number of extra insns needed from 3 to 1. */ + if (GET_CODE (x) == PLUS + && REG_P (XEXP (x, 0)) + && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER + && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0))) + && GET_CODE (XEXP (x, 1)) == CONST_INT) + { + HOST_WIDE_INT val = INTVAL (XEXP (x, 1)); + HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; + HOST_WIDE_INT high + = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; + + /* Check for 32-bit overflow. */ + if (high + low != val) + return NULL_RTX; + + /* Reload the high part into a base reg; leave the low part + in the mem directly. */ + x = gen_rtx_PLUS (GET_MODE (x), + gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), + GEN_INT (high)), + GEN_INT (low)); + + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type) type); + return x; + } + + return NULL_RTX; +} + +/* Compute a (partial) cost for rtx X. Return true if the complete + cost has been computed, and false if subexpressions should be + scanned. In either case, *TOTAL contains the cost result. */ + +static bool +alpha_rtx_costs (rtx x, int code, int outer_code, int *total, + bool speed) +{ + enum machine_mode mode = GET_MODE (x); + bool float_mode_p = FLOAT_MODE_P (mode); + const struct alpha_rtx_cost_data *cost_data; + + if (!speed) + cost_data = &alpha_rtx_cost_size; + else + cost_data = &alpha_rtx_cost_data[alpha_tune]; + + switch (code) + { + case CONST_INT: + /* If this is an 8-bit constant, return zero since it can be used + nearly anywhere with no cost. If it is a valid operand for an + ADD or AND, likewise return 0 if we know it will be used in that + context. Otherwise, return 2 since it might be used there later. + All other constants take at least two insns. */ + if (INTVAL (x) >= 0 && INTVAL (x) < 256) + { + *total = 0; + return true; + } + /* FALLTHRU */ + + case CONST_DOUBLE: + if (x == CONST0_RTX (mode)) + *total = 0; + else if ((outer_code == PLUS && add_operand (x, VOIDmode)) + || (outer_code == AND && and_operand (x, VOIDmode))) + *total = 0; + else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode)) + *total = 2; + else + *total = COSTS_N_INSNS (2); + return true; + + case CONST: + case SYMBOL_REF: + case LABEL_REF: + if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode)) + *total = COSTS_N_INSNS (outer_code != MEM); + else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode)) + *total = COSTS_N_INSNS (1 + (outer_code != MEM)); + else if (tls_symbolic_operand_type (x)) + /* Estimate of cost for call_pal rduniq. */ + /* ??? How many insns do we emit here? More than one... */ + *total = COSTS_N_INSNS (15); + else + /* Otherwise we do a load from the GOT. */ + *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency); + return true; + + case HIGH: + /* This is effectively an add_operand. */ + *total = 2; + return true; + + case PLUS: + case MINUS: + if (float_mode_p) + *total = cost_data->fp_add; + else if (GET_CODE (XEXP (x, 0)) == MULT + && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode)) + { + *total = (rtx_cost (XEXP (XEXP (x, 0), 0), + (enum rtx_code) outer_code, speed) + + rtx_cost (XEXP (x, 1), + (enum rtx_code) outer_code, speed) + + COSTS_N_INSNS (1)); + return true; + } + return false; + + case MULT: + if (float_mode_p) + *total = cost_data->fp_mult; + else if (mode == DImode) + *total = cost_data->int_mult_di; + else + *total = cost_data->int_mult_si; + return false; + + case ASHIFT: + if (CONST_INT_P (XEXP (x, 1)) + && INTVAL (XEXP (x, 1)) <= 3) + { + *total = COSTS_N_INSNS (1); + return false; + } + /* FALLTHRU */ + + case ASHIFTRT: + case LSHIFTRT: + *total = cost_data->int_shift; + return false; + + case IF_THEN_ELSE: + if (float_mode_p) + *total = cost_data->fp_add; + else + *total = cost_data->int_cmov; + return false; + + case DIV: + case UDIV: + case MOD: + case UMOD: + if (!float_mode_p) + *total = cost_data->int_div; + else if (mode == SFmode) + *total = cost_data->fp_div_sf; + else + *total = cost_data->fp_div_df; + return false; + + case MEM: + *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency); + return true; + + case NEG: + if (! float_mode_p) + { + *total = COSTS_N_INSNS (1); + return false; + } + /* FALLTHRU */ + + case ABS: + if (! float_mode_p) + { + *total = COSTS_N_INSNS (1) + cost_data->int_cmov; + return false; + } + /* FALLTHRU */ + + case FLOAT: + case UNSIGNED_FLOAT: + case FIX: + case UNSIGNED_FIX: + case FLOAT_TRUNCATE: + *total = cost_data->fp_add; + return false; + + case FLOAT_EXTEND: + if (MEM_P (XEXP (x, 0))) + *total = 0; + else + *total = cost_data->fp_add; + return false; + + default: + return false; + } +} + +/* REF is an alignable memory location. Place an aligned SImode + reference into *PALIGNED_MEM and the number of bits to shift into + *PBITNUM. SCRATCH is a free register for use in reloading out + of range stack slots. */ + +void +get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum) +{ + rtx base; + HOST_WIDE_INT disp, offset; + + gcc_assert (MEM_P (ref)); + + if (reload_in_progress + && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0))) + { + base = find_replacement (&XEXP (ref, 0)); + gcc_assert (memory_address_p (GET_MODE (ref), base)); + } + else + base = XEXP (ref, 0); + + if (GET_CODE (base) == PLUS) + disp = INTVAL (XEXP (base, 1)), base = XEXP (base, 0); + else + disp = 0; + + /* Find the byte offset within an aligned word. If the memory itself is + claimed to be aligned, believe it. Otherwise, aligned_memory_operand + will have examined the base register and determined it is aligned, and + thus displacements from it are naturally alignable. */ + if (MEM_ALIGN (ref) >= 32) + offset = 0; + else + offset = disp & 3; + + /* The location should not cross aligned word boundary. */ + gcc_assert (offset + GET_MODE_SIZE (GET_MODE (ref)) + <= GET_MODE_SIZE (SImode)); + + /* Access the entire aligned word. */ + *paligned_mem = widen_memory_access (ref, SImode, -offset); + + /* Convert the byte offset within the word to a bit offset. */ + if (WORDS_BIG_ENDIAN) + offset = 32 - (GET_MODE_BITSIZE (GET_MODE (ref)) + offset * 8); + else + offset *= 8; + *pbitnum = GEN_INT (offset); +} + +/* Similar, but just get the address. Handle the two reload cases. + Add EXTRA_OFFSET to the address we return. */ + +rtx +get_unaligned_address (rtx ref) +{ + rtx base; + HOST_WIDE_INT offset = 0; + + gcc_assert (MEM_P (ref)); + + if (reload_in_progress + && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0))) + { + base = find_replacement (&XEXP (ref, 0)); + + gcc_assert (memory_address_p (GET_MODE (ref), base)); + } + else + base = XEXP (ref, 0); + + if (GET_CODE (base) == PLUS) + offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0); + + return plus_constant (base, offset); +} + +/* Compute a value X, such that X & 7 == (ADDR + OFS) & 7. + X is always returned in a register. */ + +rtx +get_unaligned_offset (rtx addr, HOST_WIDE_INT ofs) +{ + if (GET_CODE (addr) == PLUS) + { + ofs += INTVAL (XEXP (addr, 1)); + addr = XEXP (addr, 0); + } + + return expand_simple_binop (Pmode, PLUS, addr, GEN_INT (ofs & 7), + NULL_RTX, 1, OPTAB_LIB_WIDEN); +} + +/* On the Alpha, all (non-symbolic) constants except zero go into + a floating-point register via memory. Note that we cannot + return anything that is not a subset of RCLASS, and that some + symbolic constants cannot be dropped to memory. */ + +enum reg_class +alpha_preferred_reload_class(rtx x, enum reg_class rclass) +{ + /* Zero is present in any register class. */ + if (x == CONST0_RTX (GET_MODE (x))) + return rclass; + + /* These sorts of constants we can easily drop to memory. */ + if (CONST_INT_P (x) + || GET_CODE (x) == CONST_DOUBLE + || GET_CODE (x) == CONST_VECTOR) + { + if (rclass == FLOAT_REGS) + return NO_REGS; + if (rclass == ALL_REGS) + return GENERAL_REGS; + return rclass; + } + + /* All other kinds of constants should not (and in the case of HIGH + cannot) be dropped to memory -- instead we use a GENERAL_REGS + secondary reload. */ + if (CONSTANT_P (x)) + return (rclass == ALL_REGS ? GENERAL_REGS : rclass); + + return rclass; +} + +/* Inform reload about cases where moving X with a mode MODE to a register in + RCLASS requires an extra scratch or immediate register. Return the class + needed for the immediate register. */ + +static reg_class_t +alpha_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i, + enum machine_mode mode, secondary_reload_info *sri) +{ + enum reg_class rclass = (enum reg_class) rclass_i; + + /* Loading and storing HImode or QImode values to and from memory + usually requires a scratch register. */ + if (!TARGET_BWX && (mode == QImode || mode == HImode || mode == CQImode)) + { + if (any_memory_operand (x, mode)) + { + if (in_p) + { + if (!aligned_memory_operand (x, mode)) + sri->icode = direct_optab_handler (reload_in_optab, mode); + } + else + sri->icode = direct_optab_handler (reload_out_optab, mode); + return NO_REGS; + } + } + + /* We also cannot do integral arithmetic into FP regs, as might result + from register elimination into a DImode fp register. */ + if (rclass == FLOAT_REGS) + { + if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND) + return GENERAL_REGS; + if (in_p && INTEGRAL_MODE_P (mode) + && !MEM_P (x) && !REG_P (x) && !CONST_INT_P (x)) + return GENERAL_REGS; + } + + return NO_REGS; +} + +/* Subfunction of the following function. Update the flags of any MEM + found in part of X. */ + +static int +alpha_set_memflags_1 (rtx *xp, void *data) +{ + rtx x = *xp, orig = (rtx) data; + + if (!MEM_P (x)) + return 0; + + MEM_VOLATILE_P (x) = MEM_VOLATILE_P (orig); + MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (orig); + MEM_SCALAR_P (x) = MEM_SCALAR_P (orig); + MEM_NOTRAP_P (x) = MEM_NOTRAP_P (orig); + MEM_READONLY_P (x) = MEM_READONLY_P (orig); + + /* Sadly, we cannot use alias sets because the extra aliasing + produced by the AND interferes. Given that two-byte quantities + are the only thing we would be able to differentiate anyway, + there does not seem to be any point in convoluting the early + out of the alias check. */ + + return -1; +} + +/* Given SEQ, which is an INSN list, look for any MEMs in either + a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and + volatile flags from REF into each of the MEMs found. If REF is not + a MEM, don't do anything. */ + +void +alpha_set_memflags (rtx seq, rtx ref) +{ + rtx insn; + + if (!MEM_P (ref)) + return; + + /* This is only called from alpha.md, after having had something + generated from one of the insn patterns. So if everything is + zero, the pattern is already up-to-date. */ + if (!MEM_VOLATILE_P (ref) + && !MEM_IN_STRUCT_P (ref) + && !MEM_SCALAR_P (ref) + && !MEM_NOTRAP_P (ref) + && !MEM_READONLY_P (ref)) + return; + + for (insn = seq; insn; insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + for_each_rtx (&PATTERN (insn), alpha_set_memflags_1, (void *) ref); + else + gcc_unreachable (); +} + +static rtx alpha_emit_set_const (rtx, enum machine_mode, HOST_WIDE_INT, + int, bool); + +/* Internal routine for alpha_emit_set_const to check for N or below insns. + If NO_OUTPUT is true, then we only check to see if N insns are possible, + and return pc_rtx if successful. */ + +static rtx +alpha_emit_set_const_1 (rtx target, enum machine_mode mode, + HOST_WIDE_INT c, int n, bool no_output) +{ + HOST_WIDE_INT new_const; + int i, bits; + /* Use a pseudo if highly optimizing and still generating RTL. */ + rtx subtarget + = (flag_expensive_optimizations && can_create_pseudo_p () ? 0 : target); + rtx temp, insn; + + /* If this is a sign-extended 32-bit constant, we can do this in at most + three insns, so do it if we have enough insns left. We always have + a sign-extended 32-bit constant when compiling on a narrow machine. */ + + if (HOST_BITS_PER_WIDE_INT != 64 + || c >> 31 == -1 || c >> 31 == 0) + { + HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000; + HOST_WIDE_INT tmp1 = c - low; + HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000; + HOST_WIDE_INT extra = 0; + + /* If HIGH will be interpreted as negative but the constant is + positive, we must adjust it to do two ldha insns. */ + + if ((high & 0x8000) != 0 && c >= 0) + { + extra = 0x4000; + tmp1 -= 0x40000000; + high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000); + } + + if (c == low || (low == 0 && extra == 0)) + { + /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode) + but that meant that we can't handle INT_MIN on 32-bit machines + (like NT/Alpha), because we recurse indefinitely through + emit_move_insn to gen_movdi. So instead, since we know exactly + what we want, create it explicitly. */ + + if (no_output) + return pc_rtx; + if (target == NULL) + target = gen_reg_rtx (mode); + emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c))); + return target; + } + else if (n >= 2 + (extra != 0)) + { + if (no_output) + return pc_rtx; + if (!can_create_pseudo_p ()) + { + emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (high << 16))); + temp = target; + } + else + temp = copy_to_suggested_reg (GEN_INT (high << 16), + subtarget, mode); + + /* As of 2002-02-23, addsi3 is only available when not optimizing. + This means that if we go through expand_binop, we'll try to + generate extensions, etc, which will require new pseudos, which + will fail during some split phases. The SImode add patterns + still exist, but are not named. So build the insns by hand. */ + + if (extra != 0) + { + if (! subtarget) + subtarget = gen_reg_rtx (mode); + insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16)); + insn = gen_rtx_SET (VOIDmode, subtarget, insn); + emit_insn (insn); + temp = subtarget; + } + + if (target == NULL) + target = gen_reg_rtx (mode); + insn = gen_rtx_PLUS (mode, temp, GEN_INT (low)); + insn = gen_rtx_SET (VOIDmode, target, insn); + emit_insn (insn); + return target; + } + } + + /* If we couldn't do it that way, try some other methods. But if we have + no instructions left, don't bother. Likewise, if this is SImode and + we can't make pseudos, we can't do anything since the expand_binop + and expand_unop calls will widen and try to make pseudos. */ + + if (n == 1 || (mode == SImode && !can_create_pseudo_p ())) + return 0; + + /* Next, see if we can load a related constant and then shift and possibly + negate it to get the constant we want. Try this once each increasing + numbers of insns. */ + + for (i = 1; i < n; i++) + { + /* First, see if minus some low bits, we've an easy load of + high bits. */ + + new_const = ((c & 0xffff) ^ 0x8000) - 0x8000; + if (new_const != 0) + { + temp = alpha_emit_set_const (subtarget, mode, c - new_const, i, no_output); + if (temp) + { + if (no_output) + return temp; + return expand_binop (mode, add_optab, temp, GEN_INT (new_const), + target, 0, OPTAB_WIDEN); + } + } + + /* Next try complementing. */ + temp = alpha_emit_set_const (subtarget, mode, ~c, i, no_output); + if (temp) + { + if (no_output) + return temp; + return expand_unop (mode, one_cmpl_optab, temp, target, 0); + } + + /* Next try to form a constant and do a left shift. We can do this + if some low-order bits are zero; the exact_log2 call below tells + us that information. The bits we are shifting out could be any + value, but here we'll just try the 0- and sign-extended forms of + the constant. To try to increase the chance of having the same + constant in more than one insn, start at the highest number of + bits to shift, but try all possibilities in case a ZAPNOT will + be useful. */ + + bits = exact_log2 (c & -c); + if (bits > 0) + for (; bits > 0; bits--) + { + new_const = c >> bits; + temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output); + if (!temp && c < 0) + { + new_const = (unsigned HOST_WIDE_INT)c >> bits; + temp = alpha_emit_set_const (subtarget, mode, new_const, + i, no_output); + } + if (temp) + { + if (no_output) + return temp; + return expand_binop (mode, ashl_optab, temp, GEN_INT (bits), + target, 0, OPTAB_WIDEN); + } + } + + /* Now try high-order zero bits. Here we try the shifted-in bits as + all zero and all ones. Be careful to avoid shifting outside the + mode and to avoid shifting outside the host wide int size. */ + /* On narrow hosts, don't shift a 1 into the high bit, since we'll + confuse the recursive call and set all of the high 32 bits. */ + + bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8) + - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64)); + if (bits > 0) + for (; bits > 0; bits--) + { + new_const = c << bits; + temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output); + if (!temp) + { + new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1); + temp = alpha_emit_set_const (subtarget, mode, new_const, + i, no_output); + } + if (temp) + { + if (no_output) + return temp; + return expand_binop (mode, lshr_optab, temp, GEN_INT (bits), + target, 1, OPTAB_WIDEN); + } + } + + /* Now try high-order 1 bits. We get that with a sign-extension. + But one bit isn't enough here. Be careful to avoid shifting outside + the mode and to avoid shifting outside the host wide int size. */ + + bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8) + - floor_log2 (~ c) - 2); + if (bits > 0) + for (; bits > 0; bits--) + { + new_const = c << bits; + temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output); + if (!temp) + { + new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1); + temp = alpha_emit_set_const (subtarget, mode, new_const, + i, no_output); + } + if (temp) + { + if (no_output) + return temp; + return expand_binop (mode, ashr_optab, temp, GEN_INT (bits), + target, 0, OPTAB_WIDEN); + } + } + } + +#if HOST_BITS_PER_WIDE_INT == 64 + /* Finally, see if can load a value into the target that is the same as the + constant except that all bytes that are 0 are changed to be 0xff. If we + can, then we can do a ZAPNOT to obtain the desired constant. */ + + new_const = c; + for (i = 0; i < 64; i += 8) + if ((new_const & ((HOST_WIDE_INT) 0xff << i)) == 0) + new_const |= (HOST_WIDE_INT) 0xff << i; + + /* We are only called for SImode and DImode. If this is SImode, ensure that + we are sign extended to a full word. */ + + if (mode == SImode) + new_const = ((new_const & 0xffffffff) ^ 0x80000000) - 0x80000000; + + if (new_const != c) + { + temp = alpha_emit_set_const (subtarget, mode, new_const, n - 1, no_output); + if (temp) + { + if (no_output) + return temp; + return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new_const), + target, 0, OPTAB_WIDEN); + } + } +#endif + + return 0; +} + +/* Try to output insns to set TARGET equal to the constant C if it can be + done in less than N insns. Do all computations in MODE. Returns the place + where the output has been placed if it can be done and the insns have been + emitted. If it would take more than N insns, zero is returned and no + insns and emitted. */ + +static rtx +alpha_emit_set_const (rtx target, enum machine_mode mode, + HOST_WIDE_INT c, int n, bool no_output) +{ + enum machine_mode orig_mode = mode; + rtx orig_target = target; + rtx result = 0; + int i; + + /* If we can't make any pseudos, TARGET is an SImode hard register, we + can't load this constant in one insn, do this in DImode. */ + if (!can_create_pseudo_p () && mode == SImode + && REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER) + { + result = alpha_emit_set_const_1 (target, mode, c, 1, no_output); + if (result) + return result; + + target = no_output ? NULL : gen_lowpart (DImode, target); + mode = DImode; + } + else if (mode == V8QImode || mode == V4HImode || mode == V2SImode) + { + target = no_output ? NULL : gen_lowpart (DImode, target); + mode = DImode; + } + + /* Try 1 insn, then 2, then up to N. */ + for (i = 1; i <= n; i++) + { + result = alpha_emit_set_const_1 (target, mode, c, i, no_output); + if (result) + { + rtx insn, set; + + if (no_output) + return result; + + insn = get_last_insn (); + set = single_set (insn); + if (! CONSTANT_P (SET_SRC (set))) + set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c)); + break; + } + } + + /* Allow for the case where we changed the mode of TARGET. */ + if (result) + { + if (result == target) + result = orig_target; + else if (mode != orig_mode) + result = gen_lowpart (orig_mode, result); + } + + return result; +} + +/* Having failed to find a 3 insn sequence in alpha_emit_set_const, + fall back to a straight forward decomposition. We do this to avoid + exponential run times encountered when looking for longer sequences + with alpha_emit_set_const. */ + +static rtx +alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2) +{ + HOST_WIDE_INT d1, d2, d3, d4; + + /* Decompose the entire word */ +#if HOST_BITS_PER_WIDE_INT >= 64 + gcc_assert (c2 == -(c1 < 0)); + d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000; + c1 -= d1; + d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000; + c1 = (c1 - d2) >> 32; + d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000; + c1 -= d3; + d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000; + gcc_assert (c1 == d4); +#else + d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000; + c1 -= d1; + d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000; + gcc_assert (c1 == d2); + c2 += (d2 < 0); + d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000; + c2 -= d3; + d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000; + gcc_assert (c2 == d4); +#endif + + /* Construct the high word */ + if (d4) + { + emit_move_insn (target, GEN_INT (d4)); + if (d3) + emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3))); + } + else + emit_move_insn (target, GEN_INT (d3)); + + /* Shift it into place */ + emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32))); + + /* Add in the low bits. */ + if (d2) + emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2))); + if (d1) + emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1))); + + return target; +} + +/* Given an integral CONST_INT, CONST_DOUBLE, or CONST_VECTOR, return + the low 64 bits. */ + +static void +alpha_extract_integer (rtx x, HOST_WIDE_INT *p0, HOST_WIDE_INT *p1) +{ + HOST_WIDE_INT i0, i1; + + if (GET_CODE (x) == CONST_VECTOR) + x = simplify_subreg (DImode, x, GET_MODE (x), 0); + + + if (CONST_INT_P (x)) + { + i0 = INTVAL (x); + i1 = -(i0 < 0); + } + else if (HOST_BITS_PER_WIDE_INT >= 64) + { + i0 = CONST_DOUBLE_LOW (x); + i1 = -(i0 < 0); + } + else + { + i0 = CONST_DOUBLE_LOW (x); + i1 = CONST_DOUBLE_HIGH (x); + } + + *p0 = i0; + *p1 = i1; +} + +/* Implement LEGITIMATE_CONSTANT_P. This is all constants for which we + are willing to load the value into a register via a move pattern. + Normally this is all symbolic constants, integral constants that + take three or fewer instructions, and floating-point zero. */ + +bool +alpha_legitimate_constant_p (rtx x) +{ + enum machine_mode mode = GET_MODE (x); + HOST_WIDE_INT i0, i1; + + switch (GET_CODE (x)) + { + case LABEL_REF: + case HIGH: + return true; + + case CONST: + if (GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) + x = XEXP (XEXP (x, 0), 0); + else + return true; + + if (GET_CODE (x) != SYMBOL_REF) + return true; + + /* FALLTHRU */ + + case SYMBOL_REF: + /* TLS symbols are never valid. */ + return SYMBOL_REF_TLS_MODEL (x) == 0; + + case CONST_DOUBLE: + if (x == CONST0_RTX (mode)) + return true; + if (FLOAT_MODE_P (mode)) + return false; + goto do_integer; + + case CONST_VECTOR: + if (x == CONST0_RTX (mode)) + return true; + if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT) + return false; + if (GET_MODE_SIZE (mode) != 8) + return false; + goto do_integer; + + case CONST_INT: + do_integer: + if (TARGET_BUILD_CONSTANTS) + return true; + alpha_extract_integer (x, &i0, &i1); + if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == (-i0 < 0)) + return alpha_emit_set_const_1 (x, mode, i0, 3, true) != NULL; + return false; + + default: + return false; + } +} + +/* Operand 1 is known to be a constant, and should require more than one + instruction to load. Emit that multi-part load. */ + +bool +alpha_split_const_mov (enum machine_mode mode, rtx *operands) +{ + HOST_WIDE_INT i0, i1; + rtx temp = NULL_RTX; + + alpha_extract_integer (operands[1], &i0, &i1); + + if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0)) + temp = alpha_emit_set_const (operands[0], mode, i0, 3, false); + + if (!temp && TARGET_BUILD_CONSTANTS) + temp = alpha_emit_set_long_const (operands[0], i0, i1); + + if (temp) + { + if (!rtx_equal_p (operands[0], temp)) + emit_move_insn (operands[0], temp); + return true; + } + + return false; +} + +/* Expand a move instruction; return true if all work is done. + We don't handle non-bwx subword loads here. */ + +bool +alpha_expand_mov (enum machine_mode mode, rtx *operands) +{ + rtx tmp; + + /* If the output is not a register, the input must be. */ + if (MEM_P (operands[0]) + && ! reg_or_0_operand (operands[1], mode)) + operands[1] = force_reg (mode, operands[1]); + + /* Allow legitimize_address to perform some simplifications. */ + if (mode == Pmode && symbolic_operand (operands[1], mode)) + { + tmp = alpha_legitimize_address_1 (operands[1], operands[0], mode); + if (tmp) + { + if (tmp == operands[0]) + return true; + operands[1] = tmp; + return false; + } + } + + /* Early out for non-constants and valid constants. */ + if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode)) + return false; + + /* Split large integers. */ + if (CONST_INT_P (operands[1]) + || GET_CODE (operands[1]) == CONST_DOUBLE + || GET_CODE (operands[1]) == CONST_VECTOR) + { + if (alpha_split_const_mov (mode, operands)) + return true; + } + + /* Otherwise we've nothing left but to drop the thing to memory. */ + tmp = force_const_mem (mode, operands[1]); + + if (tmp == NULL_RTX) + return false; + + if (reload_in_progress) + { + emit_move_insn (operands[0], XEXP (tmp, 0)); + operands[1] = replace_equiv_address (tmp, operands[0]); + } + else + operands[1] = validize_mem (tmp); + return false; +} + +/* Expand a non-bwx QImode or HImode move instruction; + return true if all work is done. */ + +bool +alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands) +{ + rtx seq; + + /* If the output is not a register, the input must be. */ + if (MEM_P (operands[0])) + operands[1] = force_reg (mode, operands[1]); + + /* Handle four memory cases, unaligned and aligned for either the input + or the output. The only case where we can be called during reload is + for aligned loads; all other cases require temporaries. */ + + if (any_memory_operand (operands[1], mode)) + { + if (aligned_memory_operand (operands[1], mode)) + { + if (reload_in_progress) + { + if (mode == QImode) + seq = gen_reload_inqi_aligned (operands[0], operands[1]); + else + seq = gen_reload_inhi_aligned (operands[0], operands[1]); + emit_insn (seq); + } + else + { + rtx aligned_mem, bitnum; + rtx scratch = gen_reg_rtx (SImode); + rtx subtarget; + bool copyout; + + get_aligned_mem (operands[1], &aligned_mem, &bitnum); + + subtarget = operands[0]; + if (REG_P (subtarget)) + subtarget = gen_lowpart (DImode, subtarget), copyout = false; + else + subtarget = gen_reg_rtx (DImode), copyout = true; + + if (mode == QImode) + seq = gen_aligned_loadqi (subtarget, aligned_mem, + bitnum, scratch); + else + seq = gen_aligned_loadhi (subtarget, aligned_mem, + bitnum, scratch); + emit_insn (seq); + + if (copyout) + emit_move_insn (operands[0], gen_lowpart (mode, subtarget)); + } + } + else + { + /* Don't pass these as parameters since that makes the generated + code depend on parameter evaluation order which will cause + bootstrap failures. */ + + rtx temp1, temp2, subtarget, ua; + bool copyout; + + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + + subtarget = operands[0]; + if (REG_P (subtarget)) + subtarget = gen_lowpart (DImode, subtarget), copyout = false; + else + subtarget = gen_reg_rtx (DImode), copyout = true; + + ua = get_unaligned_address (operands[1]); + if (mode == QImode) + seq = gen_unaligned_loadqi (subtarget, ua, temp1, temp2); + else + seq = gen_unaligned_loadhi (subtarget, ua, temp1, temp2); + + alpha_set_memflags (seq, operands[1]); + emit_insn (seq); + + if (copyout) + emit_move_insn (operands[0], gen_lowpart (mode, subtarget)); + } + return true; + } + + if (any_memory_operand (operands[0], mode)) + { + if (aligned_memory_operand (operands[0], mode)) + { + rtx aligned_mem, bitnum; + rtx temp1 = gen_reg_rtx (SImode); + rtx temp2 = gen_reg_rtx (SImode); + + get_aligned_mem (operands[0], &aligned_mem, &bitnum); + + emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum, + temp1, temp2)); + } + else + { + rtx temp1 = gen_reg_rtx (DImode); + rtx temp2 = gen_reg_rtx (DImode); + rtx temp3 = gen_reg_rtx (DImode); + rtx ua = get_unaligned_address (operands[0]); + + if (mode == QImode) + seq = gen_unaligned_storeqi (ua, operands[1], temp1, temp2, temp3); + else + seq = gen_unaligned_storehi (ua, operands[1], temp1, temp2, temp3); + + alpha_set_memflags (seq, operands[0]); + emit_insn (seq); + } + return true; + } + + return false; +} + +/* Implement the movmisalign patterns. One of the operands is a memory + that is not naturally aligned. Emit instructions to load it. */ + +void +alpha_expand_movmisalign (enum machine_mode mode, rtx *operands) +{ + /* Honor misaligned loads, for those we promised to do so. */ + if (MEM_P (operands[1])) + { + rtx tmp; + + if (register_operand (operands[0], mode)) + tmp = operands[0]; + else + tmp = gen_reg_rtx (mode); + + alpha_expand_unaligned_load (tmp, operands[1], 8, 0, 0); + if (tmp != operands[0]) + emit_move_insn (operands[0], tmp); + } + else if (MEM_P (operands[0])) + { + if (!reg_or_0_operand (operands[1], mode)) + operands[1] = force_reg (mode, operands[1]); + alpha_expand_unaligned_store (operands[0], operands[1], 8, 0); + } + else + gcc_unreachable (); +} + +/* Generate an unsigned DImode to FP conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. + + For SFmode, this is the only construction I've found that can pass + gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode + intermediates will work, because you'll get intermediate rounding + that ruins the end result. Some of this could be fixed by turning + on round-to-positive-infinity, but that requires diddling the fpsr, + which kills performance. I tried turning this around and converting + to a negative number, so that I could turn on /m, but either I did + it wrong or there's something else cause I wound up with the exact + same single-bit error. There is a branch-less form of this same code: + + srl $16,1,$1 + and $16,1,$2 + cmplt $16,0,$3 + or $1,$2,$2 + cmovge $16,$16,$2 + itoft $3,$f10 + itoft $2,$f11 + cvtqs $f11,$f11 + adds $f11,$f11,$f0 + fcmoveq $f10,$f11,$f0 + + I'm not using it because it's the same number of instructions as + this branch-full form, and it has more serialized long latency + instructions on the critical path. + + For DFmode, we can avoid rounding errors by breaking up the word + into two pieces, converting them separately, and adding them back: + + LC0: .long 0,0x5f800000 + + itoft $16,$f11 + lda $2,LC0 + cmplt $16,0,$1 + cpyse $f11,$f31,$f10 + cpyse $f31,$f11,$f11 + s4addq $1,$2,$1 + lds $f12,0($1) + cvtqt $f10,$f10 + cvtqt $f11,$f11 + addt $f12,$f10,$f0 + addt $f0,$f11,$f0 + + This doesn't seem to be a clear-cut win over the optabs form. + It probably all depends on the distribution of numbers being + converted -- in the optabs form, all but high-bit-set has a + much lower minimum execution time. */ + +void +alpha_emit_floatuns (rtx operands[2]) +{ + rtx neglab, donelab, i0, i1, f0, in, out; + enum machine_mode mode; + + out = operands[0]; + in = force_reg (DImode, operands[1]); + mode = GET_MODE (out); + neglab = gen_label_rtx (); + donelab = gen_label_rtx (); + i0 = gen_reg_rtx (DImode); + i1 = gen_reg_rtx (DImode); + f0 = gen_reg_rtx (mode); + + emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab); + + emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in))); + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + emit_insn (gen_lshrdi3 (i0, in, const1_rtx)); + emit_insn (gen_anddi3 (i1, in, const1_rtx)); + emit_insn (gen_iordi3 (i0, i0, i1)); + emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0))); + emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); + + emit_label (donelab); +} + +/* Generate the comparison for a conditional branch. */ + +void +alpha_emit_conditional_branch (rtx operands[], enum machine_mode cmp_mode) +{ + enum rtx_code cmp_code, branch_code; + enum machine_mode branch_mode = VOIDmode; + enum rtx_code code = GET_CODE (operands[0]); + rtx op0 = operands[1], op1 = operands[2]; + rtx tem; + + if (cmp_mode == TFmode) + { + op0 = alpha_emit_xfloating_compare (&code, op0, op1); + op1 = const0_rtx; + cmp_mode = DImode; + } + + /* The general case: fold the comparison code to the types of compares + that we have, choosing the branch as necessary. */ + switch (code) + { + case EQ: case LE: case LT: case LEU: case LTU: + case UNORDERED: + /* We have these compares. */ + cmp_code = code, branch_code = NE; + break; + + case NE: + case ORDERED: + /* These must be reversed. */ + cmp_code = reverse_condition (code), branch_code = EQ; + break; + + case GE: case GT: case GEU: case GTU: + /* For FP, we swap them, for INT, we reverse them. */ + if (cmp_mode == DFmode) + { + cmp_code = swap_condition (code); + branch_code = NE; + tem = op0, op0 = op1, op1 = tem; + } + else + { + cmp_code = reverse_condition (code); + branch_code = EQ; + } + break; + + default: + gcc_unreachable (); + } + + if (cmp_mode == DFmode) + { + if (flag_unsafe_math_optimizations && cmp_code != UNORDERED) + { + /* When we are not as concerned about non-finite values, and we + are comparing against zero, we can branch directly. */ + if (op1 == CONST0_RTX (DFmode)) + cmp_code = UNKNOWN, branch_code = code; + else if (op0 == CONST0_RTX (DFmode)) + { + /* Undo the swap we probably did just above. */ + tem = op0, op0 = op1, op1 = tem; + branch_code = swap_condition (cmp_code); + cmp_code = UNKNOWN; + } + } + else + { + /* ??? We mark the branch mode to be CCmode to prevent the + compare and branch from being combined, since the compare + insn follows IEEE rules that the branch does not. */ + branch_mode = CCmode; + } + } + else + { + /* The following optimizations are only for signed compares. */ + if (code != LEU && code != LTU && code != GEU && code != GTU) + { + /* Whee. Compare and branch against 0 directly. */ + if (op1 == const0_rtx) + cmp_code = UNKNOWN, branch_code = code; + + /* If the constants doesn't fit into an immediate, but can + be generated by lda/ldah, we adjust the argument and + compare against zero, so we can use beq/bne directly. */ + /* ??? Don't do this when comparing against symbols, otherwise + we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will + be declared false out of hand (at least for non-weak). */ + else if (CONST_INT_P (op1) + && (code == EQ || code == NE) + && !(symbolic_operand (op0, VOIDmode) + || (REG_P (op0) && REG_POINTER (op0)))) + { + rtx n_op1 = GEN_INT (-INTVAL (op1)); + + if (! satisfies_constraint_I (op1) + && (satisfies_constraint_K (n_op1) + || satisfies_constraint_L (n_op1))) + cmp_code = PLUS, branch_code = code, op1 = n_op1; + } + } + + if (!reg_or_0_operand (op0, DImode)) + op0 = force_reg (DImode, op0); + if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode)) + op1 = force_reg (DImode, op1); + } + + /* Emit an initial compare instruction, if necessary. */ + tem = op0; + if (cmp_code != UNKNOWN) + { + tem = gen_reg_rtx (cmp_mode); + emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1)); + } + + /* Emit the branch instruction. */ + tem = gen_rtx_SET (VOIDmode, pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx_fmt_ee (branch_code, + branch_mode, tem, + CONST0_RTX (cmp_mode)), + gen_rtx_LABEL_REF (VOIDmode, + operands[3]), + pc_rtx)); + emit_jump_insn (tem); +} + +/* Certain simplifications can be done to make invalid setcc operations + valid. Return the final comparison, or NULL if we can't work. */ + +bool +alpha_emit_setcc (rtx operands[], enum machine_mode cmp_mode) +{ + enum rtx_code cmp_code; + enum rtx_code code = GET_CODE (operands[1]); + rtx op0 = operands[2], op1 = operands[3]; + rtx tmp; + + if (cmp_mode == TFmode) + { + op0 = alpha_emit_xfloating_compare (&code, op0, op1); + op1 = const0_rtx; + cmp_mode = DImode; + } + + if (cmp_mode == DFmode && !TARGET_FIX) + return 0; + + /* The general case: fold the comparison code to the types of compares + that we have, choosing the branch as necessary. */ + + cmp_code = UNKNOWN; + switch (code) + { + case EQ: case LE: case LT: case LEU: case LTU: + case UNORDERED: + /* We have these compares. */ + if (cmp_mode == DFmode) + cmp_code = code, code = NE; + break; + + case NE: + if (cmp_mode == DImode && op1 == const0_rtx) + break; + /* FALLTHRU */ + + case ORDERED: + cmp_code = reverse_condition (code); + code = EQ; + break; + + case GE: case GT: case GEU: case GTU: + /* These normally need swapping, but for integer zero we have + special patterns that recognize swapped operands. */ + if (cmp_mode == DImode && op1 == const0_rtx) + break; + code = swap_condition (code); + if (cmp_mode == DFmode) + cmp_code = code, code = NE; + tmp = op0, op0 = op1, op1 = tmp; + break; + + default: + gcc_unreachable (); + } + + if (cmp_mode == DImode) + { + if (!register_operand (op0, DImode)) + op0 = force_reg (DImode, op0); + if (!reg_or_8bit_operand (op1, DImode)) + op1 = force_reg (DImode, op1); + } + + /* Emit an initial compare instruction, if necessary. */ + if (cmp_code != UNKNOWN) + { + tmp = gen_reg_rtx (cmp_mode); + emit_insn (gen_rtx_SET (VOIDmode, tmp, + gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1))); + + op0 = cmp_mode != DImode ? gen_lowpart (DImode, tmp) : tmp; + op1 = const0_rtx; + } + + /* Emit the setcc instruction. */ + emit_insn (gen_rtx_SET (VOIDmode, operands[0], + gen_rtx_fmt_ee (code, DImode, op0, op1))); + return true; +} + + +/* Rewrite a comparison against zero CMP of the form + (CODE (cc0) (const_int 0)) so it can be written validly in + a conditional move (if_then_else CMP ...). + If both of the operands that set cc0 are nonzero we must emit + an insn to perform the compare (it can't be done within + the conditional move). */ + +rtx +alpha_emit_conditional_move (rtx cmp, enum machine_mode mode) +{ + enum rtx_code code = GET_CODE (cmp); + enum rtx_code cmov_code = NE; + rtx op0 = XEXP (cmp, 0); + rtx op1 = XEXP (cmp, 1); + enum machine_mode cmp_mode + = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0)); + enum machine_mode cmov_mode = VOIDmode; + int local_fast_math = flag_unsafe_math_optimizations; + rtx tem; + + if (cmp_mode == TFmode) + { + op0 = alpha_emit_xfloating_compare (&code, op0, op1); + op1 = const0_rtx; + cmp_mode = DImode; + } + + gcc_assert (cmp_mode == DFmode || cmp_mode == DImode); + + if (FLOAT_MODE_P (cmp_mode) != FLOAT_MODE_P (mode)) + { + enum rtx_code cmp_code; + + if (! TARGET_FIX) + return 0; + + /* If we have fp<->int register move instructions, do a cmov by + performing the comparison in fp registers, and move the + zero/nonzero value to integer registers, where we can then + use a normal cmov, or vice-versa. */ + + switch (code) + { + case EQ: case LE: case LT: case LEU: case LTU: + case UNORDERED: + /* We have these compares. */ + cmp_code = code, code = NE; + break; + + case NE: + case ORDERED: + /* These must be reversed. */ + cmp_code = reverse_condition (code), code = EQ; + break; + + case GE: case GT: case GEU: case GTU: + /* These normally need swapping, but for integer zero we have + special patterns that recognize swapped operands. */ + if (cmp_mode == DImode && op1 == const0_rtx) + cmp_code = code, code = NE; + else + { + cmp_code = swap_condition (code); + code = NE; + tem = op0, op0 = op1, op1 = tem; + } + break; + + default: + gcc_unreachable (); + } + + if (cmp_mode == DImode) + { + if (!reg_or_0_operand (op0, DImode)) + op0 = force_reg (DImode, op0); + if (!reg_or_8bit_operand (op1, DImode)) + op1 = force_reg (DImode, op1); + } + + tem = gen_reg_rtx (cmp_mode); + emit_insn (gen_rtx_SET (VOIDmode, tem, + gen_rtx_fmt_ee (cmp_code, cmp_mode, + op0, op1))); + + cmp_mode = cmp_mode == DImode ? DFmode : DImode; + op0 = gen_lowpart (cmp_mode, tem); + op1 = CONST0_RTX (cmp_mode); + local_fast_math = 1; + } + + if (cmp_mode == DImode) + { + if (!reg_or_0_operand (op0, DImode)) + op0 = force_reg (DImode, op0); + if (!reg_or_8bit_operand (op1, DImode)) + op1 = force_reg (DImode, op1); + } + + /* We may be able to use a conditional move directly. + This avoids emitting spurious compares. */ + if (signed_comparison_operator (cmp, VOIDmode) + && (cmp_mode == DImode || local_fast_math) + && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode))) + return gen_rtx_fmt_ee (code, VOIDmode, op0, op1); + + /* We can't put the comparison inside the conditional move; + emit a compare instruction and put that inside the + conditional move. Make sure we emit only comparisons we have; + swap or reverse as necessary. */ + + if (!can_create_pseudo_p ()) + return NULL_RTX; + + switch (code) + { + case EQ: case LE: case LT: case LEU: case LTU: + case UNORDERED: + /* We have these compares: */ + break; + + case NE: + case ORDERED: + /* These must be reversed. */ + code = reverse_condition (code); + cmov_code = EQ; + break; + + case GE: case GT: case GEU: case GTU: + /* These must be swapped. */ + if (op1 != CONST0_RTX (cmp_mode)) + { + code = swap_condition (code); + tem = op0, op0 = op1, op1 = tem; + } + break; + + default: + gcc_unreachable (); + } + + if (cmp_mode == DImode) + { + if (!reg_or_0_operand (op0, DImode)) + op0 = force_reg (DImode, op0); + if (!reg_or_8bit_operand (op1, DImode)) + op1 = force_reg (DImode, op1); + } + + /* ??? We mark the branch mode to be CCmode to prevent the compare + and cmov from being combined, since the compare insn follows IEEE + rules that the cmov does not. */ + if (cmp_mode == DFmode && !local_fast_math) + cmov_mode = CCmode; + + tem = gen_reg_rtx (cmp_mode); + emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_mode, op0, op1)); + return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_mode)); +} + +/* Simplify a conditional move of two constants into a setcc with + arithmetic. This is done with a splitter since combine would + just undo the work if done during code generation. It also catches + cases we wouldn't have before cse. */ + +int +alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond, + rtx t_rtx, rtx f_rtx) +{ + HOST_WIDE_INT t, f, diff; + enum machine_mode mode; + rtx target, subtarget, tmp; + + mode = GET_MODE (dest); + t = INTVAL (t_rtx); + f = INTVAL (f_rtx); + diff = t - f; + + if (((code == NE || code == EQ) && diff < 0) + || (code == GE || code == GT)) + { + code = reverse_condition (code); + diff = t, t = f, f = diff; + diff = t - f; + } + + subtarget = target = dest; + if (mode != DImode) + { + target = gen_lowpart (DImode, dest); + if (can_create_pseudo_p ()) + subtarget = gen_reg_rtx (DImode); + else + subtarget = target; + } + /* Below, we must be careful to use copy_rtx on target and subtarget + in intermediate insns, as they may be a subreg rtx, which may not + be shared. */ + + if (f == 0 && exact_log2 (diff) > 0 + /* On EV6, we've got enough shifters to make non-arithmetic shifts + viable over a longer latency cmove. On EV5, the E0 slot is a + scarce resource, and on EV4 shift has the same latency as a cmove. */ + && (diff <= 8 || alpha_tune == PROCESSOR_EV6)) + { + tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp)); + + tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget), + GEN_INT (exact_log2 (t))); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + } + else if (f == 0 && t == -1) + { + tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp)); + + emit_insn (gen_negdi2 (target, copy_rtx (subtarget))); + } + else if (diff == 1 || diff == 4 || diff == 8) + { + rtx add_op; + + tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx); + emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp)); + + if (diff == 1) + emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f))); + else + { + add_op = GEN_INT (f); + if (sext_add_operand (add_op, mode)) + { + tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget), + GEN_INT (diff)); + tmp = gen_rtx_PLUS (DImode, tmp, add_op); + emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); + } + else + return 0; + } + } + else + return 0; + + return 1; +} + +/* Look up the function X_floating library function name for the + given operation. */ + +struct GTY(()) xfloating_op +{ + const enum rtx_code code; + const char *const GTY((skip)) osf_func; + const char *const GTY((skip)) vms_func; + rtx libcall; +}; + +static GTY(()) struct xfloating_op xfloating_ops[] = +{ + { PLUS, "_OtsAddX", "OTS$ADD_X", 0 }, + { MINUS, "_OtsSubX", "OTS$SUB_X", 0 }, + { MULT, "_OtsMulX", "OTS$MUL_X", 0 }, + { DIV, "_OtsDivX", "OTS$DIV_X", 0 }, + { EQ, "_OtsEqlX", "OTS$EQL_X", 0 }, + { NE, "_OtsNeqX", "OTS$NEQ_X", 0 }, + { LT, "_OtsLssX", "OTS$LSS_X", 0 }, + { LE, "_OtsLeqX", "OTS$LEQ_X", 0 }, + { GT, "_OtsGtrX", "OTS$GTR_X", 0 }, + { GE, "_OtsGeqX", "OTS$GEQ_X", 0 }, + { FIX, "_OtsCvtXQ", "OTS$CVTXQ", 0 }, + { FLOAT, "_OtsCvtQX", "OTS$CVTQX", 0 }, + { UNSIGNED_FLOAT, "_OtsCvtQUX", "OTS$CVTQUX", 0 }, + { FLOAT_EXTEND, "_OtsConvertFloatTX", "OTS$CVT_FLOAT_T_X", 0 }, + { FLOAT_TRUNCATE, "_OtsConvertFloatXT", "OTS$CVT_FLOAT_X_T", 0 } +}; + +static GTY(()) struct xfloating_op vax_cvt_ops[] = +{ + { FLOAT_EXTEND, "_OtsConvertFloatGX", "OTS$CVT_FLOAT_G_X", 0 }, + { FLOAT_TRUNCATE, "_OtsConvertFloatXG", "OTS$CVT_FLOAT_X_G", 0 } +}; + +static rtx +alpha_lookup_xfloating_lib_func (enum rtx_code code) +{ + struct xfloating_op *ops = xfloating_ops; + long n = ARRAY_SIZE (xfloating_ops); + long i; + + gcc_assert (TARGET_HAS_XFLOATING_LIBS); + + /* How irritating. Nothing to key off for the main table. */ + if (TARGET_FLOAT_VAX && (code == FLOAT_EXTEND || code == FLOAT_TRUNCATE)) + { + ops = vax_cvt_ops; + n = ARRAY_SIZE (vax_cvt_ops); + } + + for (i = 0; i < n; ++i, ++ops) + if (ops->code == code) + { + rtx func = ops->libcall; + if (!func) + { + func = init_one_libfunc (TARGET_ABI_OPEN_VMS + ? ops->vms_func : ops->osf_func); + ops->libcall = func; + } + return func; + } + + gcc_unreachable (); +} + +/* Most X_floating operations take the rounding mode as an argument. + Compute that here. */ + +static int +alpha_compute_xfloating_mode_arg (enum rtx_code code, + enum alpha_fp_rounding_mode round) +{ + int mode; + + switch (round) + { + case ALPHA_FPRM_NORM: + mode = 2; + break; + case ALPHA_FPRM_MINF: + mode = 1; + break; + case ALPHA_FPRM_CHOP: + mode = 0; + break; + case ALPHA_FPRM_DYN: + mode = 4; + break; + default: + gcc_unreachable (); + + /* XXX For reference, round to +inf is mode = 3. */ + } + + if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N) + mode |= 0x10000; + + return mode; +} + +/* Emit an X_floating library function call. + + Note that these functions do not follow normal calling conventions: + TFmode arguments are passed in two integer registers (as opposed to + indirect); TFmode return values appear in R16+R17. + + FUNC is the function to call. + TARGET is where the output belongs. + OPERANDS are the inputs. + NOPERANDS is the count of inputs. + EQUIV is the expression equivalent for the function. +*/ + +static void +alpha_emit_xfloating_libcall (rtx func, rtx target, rtx operands[], + int noperands, rtx equiv) +{ + rtx usage = NULL_RTX, tmp, reg; + int regno = 16, i; + + start_sequence (); + + for (i = 0; i < noperands; ++i) + { + switch (GET_MODE (operands[i])) + { + case TFmode: + reg = gen_rtx_REG (TFmode, regno); + regno += 2; + break; + + case DFmode: + reg = gen_rtx_REG (DFmode, regno + 32); + regno += 1; + break; + + case VOIDmode: + gcc_assert (CONST_INT_P (operands[i])); + /* FALLTHRU */ + case DImode: + reg = gen_rtx_REG (DImode, regno); + regno += 1; + break; + + default: + gcc_unreachable (); + } + + emit_move_insn (reg, operands[i]); + usage = alloc_EXPR_LIST (0, gen_rtx_USE (VOIDmode, reg), usage); + } + + switch (GET_MODE (target)) + { + case TFmode: + reg = gen_rtx_REG (TFmode, 16); + break; + case DFmode: + reg = gen_rtx_REG (DFmode, 32); + break; + case DImode: + reg = gen_rtx_REG (DImode, 0); + break; + default: + gcc_unreachable (); + } + + tmp = gen_rtx_MEM (QImode, func); + tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx, + const0_rtx, const0_rtx)); + CALL_INSN_FUNCTION_USAGE (tmp) = usage; + RTL_CONST_CALL_P (tmp) = 1; + + tmp = get_insns (); + end_sequence (); + + emit_libcall_block (tmp, target, reg, equiv); +} + +/* Emit an X_floating library function call for arithmetic (+,-,*,/). */ + +void +alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[]) +{ + rtx func; + int mode; + rtx out_operands[3]; + + func = alpha_lookup_xfloating_lib_func (code); + mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm); + + out_operands[0] = operands[1]; + out_operands[1] = operands[2]; + out_operands[2] = GEN_INT (mode); + alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3, + gen_rtx_fmt_ee (code, TFmode, operands[1], + operands[2])); +} + +/* Emit an X_floating library function call for a comparison. */ + +static rtx +alpha_emit_xfloating_compare (enum rtx_code *pcode, rtx op0, rtx op1) +{ + enum rtx_code cmp_code, res_code; + rtx func, out, operands[2], note; + + /* X_floating library comparison functions return + -1 unordered + 0 false + 1 true + Convert the compare against the raw return value. */ + + cmp_code = *pcode; + switch (cmp_code) + { + case UNORDERED: + cmp_code = EQ; + res_code = LT; + break; + case ORDERED: + cmp_code = EQ; + res_code = GE; + break; + case NE: + res_code = NE; + break; + case EQ: + case LT: + case GT: + case LE: + case GE: + res_code = GT; + break; + default: + gcc_unreachable (); + } + *pcode = res_code; + + func = alpha_lookup_xfloating_lib_func (cmp_code); + + operands[0] = op0; + operands[1] = op1; + out = gen_reg_rtx (DImode); + + /* What's actually returned is -1,0,1, not a proper boolean value, + so use an EXPR_LIST as with a generic libcall instead of a + comparison type expression. */ + note = gen_rtx_EXPR_LIST (VOIDmode, op1, NULL_RTX); + note = gen_rtx_EXPR_LIST (VOIDmode, op0, note); + note = gen_rtx_EXPR_LIST (VOIDmode, func, note); + alpha_emit_xfloating_libcall (func, out, operands, 2, note); + + return out; +} + +/* Emit an X_floating library function call for a conversion. */ + +void +alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[]) +{ + int noperands = 1, mode; + rtx out_operands[2]; + rtx func; + enum rtx_code code = orig_code; + + if (code == UNSIGNED_FIX) + code = FIX; + + func = alpha_lookup_xfloating_lib_func (code); + + out_operands[0] = operands[1]; + + switch (code) + { + case FIX: + mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP); + out_operands[1] = GEN_INT (mode); + noperands = 2; + break; + case FLOAT_TRUNCATE: + mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm); + out_operands[1] = GEN_INT (mode); + noperands = 2; + break; + default: + break; + } + + alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands, + gen_rtx_fmt_e (orig_code, + GET_MODE (operands[0]), + operands[1])); +} + +/* Split a TImode or TFmode move from OP[1] to OP[0] into a pair of + DImode moves from OP[2,3] to OP[0,1]. If FIXUP_OVERLAP is true, + guarantee that the sequence + set (OP[0] OP[2]) + set (OP[1] OP[3]) + is valid. Naturally, output operand ordering is little-endian. + This is used by *movtf_internal and *movti_internal. */ + +void +alpha_split_tmode_pair (rtx operands[4], enum machine_mode mode, + bool fixup_overlap) +{ + switch (GET_CODE (operands[1])) + { + case REG: + operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1); + operands[2] = gen_rtx_REG (DImode, REGNO (operands[1])); + break; + + case MEM: + operands[3] = adjust_address (operands[1], DImode, 8); + operands[2] = adjust_address (operands[1], DImode, 0); + break; + + case CONST_INT: + case CONST_DOUBLE: + gcc_assert (operands[1] == CONST0_RTX (mode)); + operands[2] = operands[3] = const0_rtx; + break; + + default: + gcc_unreachable (); + } + + switch (GET_CODE (operands[0])) + { + case REG: + operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1); + operands[0] = gen_rtx_REG (DImode, REGNO (operands[0])); + break; + + case MEM: + operands[1] = adjust_address (operands[0], DImode, 8); + operands[0] = adjust_address (operands[0], DImode, 0); + break; + + default: + gcc_unreachable (); + } + + if (fixup_overlap && reg_overlap_mentioned_p (operands[0], operands[3])) + { + rtx tmp; + tmp = operands[0], operands[0] = operands[1], operands[1] = tmp; + tmp = operands[2], operands[2] = operands[3], operands[3] = tmp; + } +} + +/* Implement negtf2 or abstf2. Op0 is destination, op1 is source, + op2 is a register containing the sign bit, operation is the + logical operation to be performed. */ + +void +alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx)) +{ + rtx high_bit = operands[2]; + rtx scratch; + int move; + + alpha_split_tmode_pair (operands, TFmode, false); + + /* Detect three flavors of operand overlap. */ + move = 1; + if (rtx_equal_p (operands[0], operands[2])) + move = 0; + else if (rtx_equal_p (operands[1], operands[2])) + { + if (rtx_equal_p (operands[0], high_bit)) + move = 2; + else + move = -1; + } + + if (move < 0) + emit_move_insn (operands[0], operands[2]); + + /* ??? If the destination overlaps both source tf and high_bit, then + assume source tf is dead in its entirety and use the other half + for a scratch register. Otherwise "scratch" is just the proper + destination register. */ + scratch = operands[move < 2 ? 1 : 3]; + + emit_insn ((*operation) (scratch, high_bit, operands[3])); + + if (move > 0) + { + emit_move_insn (operands[0], operands[2]); + if (move > 1) + emit_move_insn (operands[1], scratch); + } +} + +/* Use ext[wlq][lh] as the Architecture Handbook describes for extracting + unaligned data: + + unsigned: signed: + word: ldq_u r1,X(r11) ldq_u r1,X(r11) + ldq_u r2,X+1(r11) ldq_u r2,X+1(r11) + lda r3,X(r11) lda r3,X+2(r11) + extwl r1,r3,r1 extql r1,r3,r1 + extwh r2,r3,r2 extqh r2,r3,r2 + or r1.r2.r1 or r1,r2,r1 + sra r1,48,r1 + + long: ldq_u r1,X(r11) ldq_u r1,X(r11) + ldq_u r2,X+3(r11) ldq_u r2,X+3(r11) + lda r3,X(r11) lda r3,X(r11) + extll r1,r3,r1 extll r1,r3,r1 + extlh r2,r3,r2 extlh r2,r3,r2 + or r1.r2.r1 addl r1,r2,r1 + + quad: ldq_u r1,X(r11) + ldq_u r2,X+7(r11) + lda r3,X(r11) + extql r1,r3,r1 + extqh r2,r3,r2 + or r1.r2.r1 +*/ + +void +alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size, + HOST_WIDE_INT ofs, int sign) +{ + rtx meml, memh, addr, extl, exth, tmp, mema; + enum machine_mode mode; + + if (TARGET_BWX && size == 2) + { + meml = adjust_address (mem, QImode, ofs); + memh = adjust_address (mem, QImode, ofs+1); + if (BYTES_BIG_ENDIAN) + tmp = meml, meml = memh, memh = tmp; + extl = gen_reg_rtx (DImode); + exth = gen_reg_rtx (DImode); + emit_insn (gen_zero_extendqidi2 (extl, meml)); + emit_insn (gen_zero_extendqidi2 (exth, memh)); + exth = expand_simple_binop (DImode, ASHIFT, exth, GEN_INT (8), + NULL, 1, OPTAB_LIB_WIDEN); + addr = expand_simple_binop (DImode, IOR, extl, exth, + NULL, 1, OPTAB_LIB_WIDEN); + + if (sign && GET_MODE (tgt) != HImode) + { + addr = gen_lowpart (HImode, addr); + emit_insn (gen_extend_insn (tgt, addr, GET_MODE (tgt), HImode, 0)); + } + else + { + if (GET_MODE (tgt) != DImode) + addr = gen_lowpart (GET_MODE (tgt), addr); + emit_move_insn (tgt, addr); + } + return; + } + + meml = gen_reg_rtx (DImode); + memh = gen_reg_rtx (DImode); + addr = gen_reg_rtx (DImode); + extl = gen_reg_rtx (DImode); + exth = gen_reg_rtx (DImode); + + mema = XEXP (mem, 0); + if (GET_CODE (mema) == LO_SUM) + mema = force_reg (Pmode, mema); + + /* AND addresses cannot be in any alias set, since they may implicitly + alias surrounding code. Ideally we'd have some alias set that + covered all types except those with alignment 8 or higher. */ + + tmp = change_address (mem, DImode, + gen_rtx_AND (DImode, + plus_constant (mema, ofs), + GEN_INT (-8))); + set_mem_alias_set (tmp, 0); + emit_move_insn (meml, tmp); + + tmp = change_address (mem, DImode, + gen_rtx_AND (DImode, + plus_constant (mema, ofs + size - 1), + GEN_INT (-8))); + set_mem_alias_set (tmp, 0); + emit_move_insn (memh, tmp); + + if (WORDS_BIG_ENDIAN && sign && (size == 2 || size == 4)) + { + emit_move_insn (addr, plus_constant (mema, -1)); + + emit_insn (gen_extqh_be (extl, meml, addr)); + emit_insn (gen_extxl_be (exth, memh, GEN_INT (64), addr)); + + addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN); + addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (64 - size*8), + addr, 1, OPTAB_WIDEN); + } + else if (sign && size == 2) + { + emit_move_insn (addr, plus_constant (mema, ofs+2)); + + emit_insn (gen_extxl_le (extl, meml, GEN_INT (64), addr)); + emit_insn (gen_extqh_le (exth, memh, addr)); + + /* We must use tgt here for the target. Alpha-vms port fails if we use + addr for the target, because addr is marked as a pointer and combine + knows that pointers are always sign-extended 32-bit values. */ + addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN); + addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48), + addr, 1, OPTAB_WIDEN); + } + else + { + if (WORDS_BIG_ENDIAN) + { + emit_move_insn (addr, plus_constant (mema, ofs+size-1)); + switch ((int) size) + { + case 2: + emit_insn (gen_extwh_be (extl, meml, addr)); + mode = HImode; + break; + + case 4: + emit_insn (gen_extlh_be (extl, meml, addr)); + mode = SImode; + break; + + case 8: + emit_insn (gen_extqh_be (extl, meml, addr)); + mode = DImode; + break; + + default: + gcc_unreachable (); + } + emit_insn (gen_extxl_be (exth, memh, GEN_INT (size*8), addr)); + } + else + { + emit_move_insn (addr, plus_constant (mema, ofs)); + emit_insn (gen_extxl_le (extl, meml, GEN_INT (size*8), addr)); + switch ((int) size) + { + case 2: + emit_insn (gen_extwh_le (exth, memh, addr)); + mode = HImode; + break; + + case 4: + emit_insn (gen_extlh_le (exth, memh, addr)); + mode = SImode; + break; + + case 8: + emit_insn (gen_extqh_le (exth, memh, addr)); + mode = DImode; + break; + + default: + gcc_unreachable (); + } + } + + addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl), + gen_lowpart (mode, exth), gen_lowpart (mode, tgt), + sign, OPTAB_WIDEN); + } + + if (addr != tgt) + emit_move_insn (tgt, gen_lowpart (GET_MODE (tgt), addr)); +} + +/* Similarly, use ins and msk instructions to perform unaligned stores. */ + +void +alpha_expand_unaligned_store (rtx dst, rtx src, + HOST_WIDE_INT size, HOST_WIDE_INT ofs) +{ + rtx dstl, dsth, addr, insl, insh, meml, memh, dsta; + + if (TARGET_BWX && size == 2) + { + if (src != const0_rtx) + { + dstl = gen_lowpart (QImode, src); + dsth = expand_simple_binop (DImode, LSHIFTRT, src, GEN_INT (8), + NULL, 1, OPTAB_LIB_WIDEN); + dsth = gen_lowpart (QImode, dsth); + } + else + dstl = dsth = const0_rtx; + + meml = adjust_address (dst, QImode, ofs); + memh = adjust_address (dst, QImode, ofs+1); + if (BYTES_BIG_ENDIAN) + addr = meml, meml = memh, memh = addr; + + emit_move_insn (meml, dstl); + emit_move_insn (memh, dsth); + return; + } + + dstl = gen_reg_rtx (DImode); + dsth = gen_reg_rtx (DImode); + insl = gen_reg_rtx (DImode); + insh = gen_reg_rtx (DImode); + + dsta = XEXP (dst, 0); + if (GET_CODE (dsta) == LO_SUM) + dsta = force_reg (Pmode, dsta); + + /* AND addresses cannot be in any alias set, since they may implicitly + alias surrounding code. Ideally we'd have some alias set that + covered all types except those with alignment 8 or higher. */ + + meml = change_address (dst, DImode, + gen_rtx_AND (DImode, + plus_constant (dsta, ofs), + GEN_INT (-8))); + set_mem_alias_set (meml, 0); + + memh = change_address (dst, DImode, + gen_rtx_AND (DImode, + plus_constant (dsta, ofs + size - 1), + GEN_INT (-8))); + set_mem_alias_set (memh, 0); + + emit_move_insn (dsth, memh); + emit_move_insn (dstl, meml); + if (WORDS_BIG_ENDIAN) + { + addr = copy_addr_to_reg (plus_constant (dsta, ofs+size-1)); + + if (src != const0_rtx) + { + switch ((int) size) + { + case 2: + emit_insn (gen_inswl_be (insh, gen_lowpart (HImode,src), addr)); + break; + case 4: + emit_insn (gen_insll_be (insh, gen_lowpart (SImode,src), addr)); + break; + case 8: + emit_insn (gen_insql_be (insh, gen_lowpart (DImode,src), addr)); + break; + } + emit_insn (gen_insxh (insl, gen_lowpart (DImode, src), + GEN_INT (size*8), addr)); + } + + switch ((int) size) + { + case 2: + emit_insn (gen_mskxl_be (dsth, dsth, GEN_INT (0xffff), addr)); + break; + case 4: + { + rtx msk = immed_double_const (0xffffffff, 0, DImode); + emit_insn (gen_mskxl_be (dsth, dsth, msk, addr)); + break; + } + case 8: + emit_insn (gen_mskxl_be (dsth, dsth, constm1_rtx, addr)); + break; + } + + emit_insn (gen_mskxh (dstl, dstl, GEN_INT (size*8), addr)); + } + else + { + addr = copy_addr_to_reg (plus_constant (dsta, ofs)); + + if (src != CONST0_RTX (GET_MODE (src))) + { + emit_insn (gen_insxh (insh, gen_lowpart (DImode, src), + GEN_INT (size*8), addr)); + + switch ((int) size) + { + case 2: + emit_insn (gen_inswl_le (insl, gen_lowpart (HImode, src), addr)); + break; + case 4: + emit_insn (gen_insll_le (insl, gen_lowpart (SImode, src), addr)); + break; + case 8: + emit_insn (gen_insql_le (insl, gen_lowpart (DImode, src), addr)); + break; + } + } + + emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr)); + + switch ((int) size) + { + case 2: + emit_insn (gen_mskxl_le (dstl, dstl, GEN_INT (0xffff), addr)); + break; + case 4: + { + rtx msk = immed_double_const (0xffffffff, 0, DImode); + emit_insn (gen_mskxl_le (dstl, dstl, msk, addr)); + break; + } + case 8: + emit_insn (gen_mskxl_le (dstl, dstl, constm1_rtx, addr)); + break; + } + } + + if (src != CONST0_RTX (GET_MODE (src))) + { + dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN); + dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN); + } + + if (WORDS_BIG_ENDIAN) + { + emit_move_insn (meml, dstl); + emit_move_insn (memh, dsth); + } + else + { + /* Must store high before low for degenerate case of aligned. */ + emit_move_insn (memh, dsth); + emit_move_insn (meml, dstl); + } +} + +/* The block move code tries to maximize speed by separating loads and + stores at the expense of register pressure: we load all of the data + before we store it back out. There are two secondary effects worth + mentioning, that this speeds copying to/from aligned and unaligned + buffers, and that it makes the code significantly easier to write. */ + +#define MAX_MOVE_WORDS 8 + +/* Load an integral number of consecutive unaligned quadwords. */ + +static void +alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem, + HOST_WIDE_INT words, HOST_WIDE_INT ofs) +{ + rtx const im8 = GEN_INT (-8); + rtx const i64 = GEN_INT (64); + rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1]; + rtx sreg, areg, tmp, smema; + HOST_WIDE_INT i; + + smema = XEXP (smem, 0); + if (GET_CODE (smema) == LO_SUM) + smema = force_reg (Pmode, smema); + + /* Generate all the tmp registers we need. */ + for (i = 0; i < words; ++i) + { + data_regs[i] = out_regs[i]; + ext_tmps[i] = gen_reg_rtx (DImode); + } + data_regs[words] = gen_reg_rtx (DImode); + + if (ofs != 0) + smem = adjust_address (smem, GET_MODE (smem), ofs); + + /* Load up all of the source data. */ + for (i = 0; i < words; ++i) + { + tmp = change_address (smem, DImode, + gen_rtx_AND (DImode, + plus_constant (smema, 8*i), + im8)); + set_mem_alias_set (tmp, 0); + emit_move_insn (data_regs[i], tmp); + } + + tmp = change_address (smem, DImode, + gen_rtx_AND (DImode, + plus_constant (smema, 8*words - 1), + im8)); + set_mem_alias_set (tmp, 0); + emit_move_insn (data_regs[words], tmp); + + /* Extract the half-word fragments. Unfortunately DEC decided to make + extxh with offset zero a noop instead of zeroing the register, so + we must take care of that edge condition ourselves with cmov. */ + + sreg = copy_addr_to_reg (smema); + areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL, + 1, OPTAB_WIDEN); + if (WORDS_BIG_ENDIAN) + emit_move_insn (sreg, plus_constant (sreg, 7)); + for (i = 0; i < words; ++i) + { + if (WORDS_BIG_ENDIAN) + { + emit_insn (gen_extqh_be (data_regs[i], data_regs[i], sreg)); + emit_insn (gen_extxl_be (ext_tmps[i], data_regs[i+1], i64, sreg)); + } + else + { + emit_insn (gen_extxl_le (data_regs[i], data_regs[i], i64, sreg)); + emit_insn (gen_extqh_le (ext_tmps[i], data_regs[i+1], sreg)); + } + emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i], + gen_rtx_IF_THEN_ELSE (DImode, + gen_rtx_EQ (DImode, areg, + const0_rtx), + const0_rtx, ext_tmps[i]))); + } + + /* Merge the half-words into whole words. */ + for (i = 0; i < words; ++i) + { + out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i], + ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN); + } +} + +/* Store an integral number of consecutive unaligned quadwords. DATA_REGS + may be NULL to store zeros. */ + +static void +alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem, + HOST_WIDE_INT words, HOST_WIDE_INT ofs) +{ + rtx const im8 = GEN_INT (-8); + rtx const i64 = GEN_INT (64); + rtx ins_tmps[MAX_MOVE_WORDS]; + rtx st_tmp_1, st_tmp_2, dreg; + rtx st_addr_1, st_addr_2, dmema; + HOST_WIDE_INT i; + + dmema = XEXP (dmem, 0); + if (GET_CODE (dmema) == LO_SUM) + dmema = force_reg (Pmode, dmema); + + /* Generate all the tmp registers we need. */ + if (data_regs != NULL) + for (i = 0; i < words; ++i) + ins_tmps[i] = gen_reg_rtx(DImode); + st_tmp_1 = gen_reg_rtx(DImode); + st_tmp_2 = gen_reg_rtx(DImode); + + if (ofs != 0) + dmem = adjust_address (dmem, GET_MODE (dmem), ofs); + + st_addr_2 = change_address (dmem, DImode, + gen_rtx_AND (DImode, + plus_constant (dmema, words*8 - 1), + im8)); + set_mem_alias_set (st_addr_2, 0); + + st_addr_1 = change_address (dmem, DImode, + gen_rtx_AND (DImode, dmema, im8)); + set_mem_alias_set (st_addr_1, 0); + + /* Load up the destination end bits. */ + emit_move_insn (st_tmp_2, st_addr_2); + emit_move_insn (st_tmp_1, st_addr_1); + + /* Shift the input data into place. */ + dreg = copy_addr_to_reg (dmema); + if (WORDS_BIG_ENDIAN) + emit_move_insn (dreg, plus_constant (dreg, 7)); + if (data_regs != NULL) + { + for (i = words-1; i >= 0; --i) + { + if (WORDS_BIG_ENDIAN) + { + emit_insn (gen_insql_be (ins_tmps[i], data_regs[i], dreg)); + emit_insn (gen_insxh (data_regs[i], data_regs[i], i64, dreg)); + } + else + { + emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg)); + emit_insn (gen_insql_le (data_regs[i], data_regs[i], dreg)); + } + } + for (i = words-1; i > 0; --i) + { + ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i], + ins_tmps[i-1], ins_tmps[i-1], 1, + OPTAB_WIDEN); + } + } + + /* Split and merge the ends with the destination data. */ + if (WORDS_BIG_ENDIAN) + { + emit_insn (gen_mskxl_be (st_tmp_2, st_tmp_2, constm1_rtx, dreg)); + emit_insn (gen_mskxh (st_tmp_1, st_tmp_1, i64, dreg)); + } + else + { + emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg)); + emit_insn (gen_mskxl_le (st_tmp_1, st_tmp_1, constm1_rtx, dreg)); + } + + if (data_regs != NULL) + { + st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1], + st_tmp_2, 1, OPTAB_WIDEN); + st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0], + st_tmp_1, 1, OPTAB_WIDEN); + } + + /* Store it all. */ + if (WORDS_BIG_ENDIAN) + emit_move_insn (st_addr_1, st_tmp_1); + else + emit_move_insn (st_addr_2, st_tmp_2); + for (i = words-1; i > 0; --i) + { + rtx tmp = change_address (dmem, DImode, + gen_rtx_AND (DImode, + plus_constant(dmema, + WORDS_BIG_ENDIAN ? i*8-1 : i*8), + im8)); + set_mem_alias_set (tmp, 0); + emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx); + } + if (WORDS_BIG_ENDIAN) + emit_move_insn (st_addr_2, st_tmp_2); + else + emit_move_insn (st_addr_1, st_tmp_1); +} + + +/* Expand string/block move operations. + + operands[0] is the pointer to the destination. + operands[1] is the pointer to the source. + operands[2] is the number of bytes to move. + operands[3] is the alignment. */ + +int +alpha_expand_block_move (rtx operands[]) +{ + rtx bytes_rtx = operands[2]; + rtx align_rtx = operands[3]; + HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx); + HOST_WIDE_INT bytes = orig_bytes; + HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT; + HOST_WIDE_INT dst_align = src_align; + rtx orig_src = operands[1]; + rtx orig_dst = operands[0]; + rtx data_regs[2 * MAX_MOVE_WORDS + 16]; + rtx tmp; + unsigned int i, words, ofs, nregs = 0; + + if (orig_bytes <= 0) + return 1; + else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD) + return 0; + + /* Look for additional alignment information from recorded register info. */ + + tmp = XEXP (orig_src, 0); + if (REG_P (tmp)) + src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp))); + else if (GET_CODE (tmp) == PLUS + && REG_P (XEXP (tmp, 0)) + && CONST_INT_P (XEXP (tmp, 1))) + { + unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1)); + unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0))); + + if (a > src_align) + { + if (a >= 64 && c % 8 == 0) + src_align = 64; + else if (a >= 32 && c % 4 == 0) + src_align = 32; + else if (a >= 16 && c % 2 == 0) + src_align = 16; + } + } + + tmp = XEXP (orig_dst, 0); + if (REG_P (tmp)) + dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp))); + else if (GET_CODE (tmp) == PLUS + && REG_P (XEXP (tmp, 0)) + && CONST_INT_P (XEXP (tmp, 1))) + { + unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1)); + unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0))); + + if (a > dst_align) + { + if (a >= 64 && c % 8 == 0) + dst_align = 64; + else if (a >= 32 && c % 4 == 0) + dst_align = 32; + else if (a >= 16 && c % 2 == 0) + dst_align = 16; + } + } + + ofs = 0; + if (src_align >= 64 && bytes >= 8) + { + words = bytes / 8; + + for (i = 0; i < words; ++i) + data_regs[nregs + i] = gen_reg_rtx (DImode); + + for (i = 0; i < words; ++i) + emit_move_insn (data_regs[nregs + i], + adjust_address (orig_src, DImode, ofs + i * 8)); + + nregs += words; + bytes -= words * 8; + ofs += words * 8; + } + + if (src_align >= 32 && bytes >= 4) + { + words = bytes / 4; + + for (i = 0; i < words; ++i) + data_regs[nregs + i] = gen_reg_rtx (SImode); + + for (i = 0; i < words; ++i) + emit_move_insn (data_regs[nregs + i], + adjust_address (orig_src, SImode, ofs + i * 4)); + + nregs += words; + bytes -= words * 4; + ofs += words * 4; + } + + if (bytes >= 8) + { + words = bytes / 8; + + for (i = 0; i < words+1; ++i) + data_regs[nregs + i] = gen_reg_rtx (DImode); + + alpha_expand_unaligned_load_words (data_regs + nregs, orig_src, + words, ofs); + + nregs += words; + bytes -= words * 8; + ofs += words * 8; + } + + if (! TARGET_BWX && bytes >= 4) + { + data_regs[nregs++] = tmp = gen_reg_rtx (SImode); + alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0); + bytes -= 4; + ofs += 4; + } + + if (bytes >= 2) + { + if (src_align >= 16) + { + do { + data_regs[nregs++] = tmp = gen_reg_rtx (HImode); + emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs)); + bytes -= 2; + ofs += 2; + } while (bytes >= 2); + } + else if (! TARGET_BWX) + { + data_regs[nregs++] = tmp = gen_reg_rtx (HImode); + alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0); + bytes -= 2; + ofs += 2; + } + } + + while (bytes > 0) + { + data_regs[nregs++] = tmp = gen_reg_rtx (QImode); + emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs)); + bytes -= 1; + ofs += 1; + } + + gcc_assert (nregs <= ARRAY_SIZE (data_regs)); + + /* Now save it back out again. */ + + i = 0, ofs = 0; + + /* Write out the data in whatever chunks reading the source allowed. */ + if (dst_align >= 64) + { + while (i < nregs && GET_MODE (data_regs[i]) == DImode) + { + emit_move_insn (adjust_address (orig_dst, DImode, ofs), + data_regs[i]); + ofs += 8; + i++; + } + } + + if (dst_align >= 32) + { + /* If the source has remaining DImode regs, write them out in + two pieces. */ + while (i < nregs && GET_MODE (data_regs[i]) == DImode) + { + tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32), + NULL_RTX, 1, OPTAB_WIDEN); + + emit_move_insn (adjust_address (orig_dst, SImode, ofs), + gen_lowpart (SImode, data_regs[i])); + emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4), + gen_lowpart (SImode, tmp)); + ofs += 8; + i++; + } + + while (i < nregs && GET_MODE (data_regs[i]) == SImode) + { + emit_move_insn (adjust_address (orig_dst, SImode, ofs), + data_regs[i]); + ofs += 4; + i++; + } + } + + if (i < nregs && GET_MODE (data_regs[i]) == DImode) + { + /* Write out a remaining block of words using unaligned methods. */ + + for (words = 1; i + words < nregs; words++) + if (GET_MODE (data_regs[i + words]) != DImode) + break; + + if (words == 1) + alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs); + else + alpha_expand_unaligned_store_words (data_regs + i, orig_dst, + words, ofs); + + i += words; + ofs += words * 8; + } + + /* Due to the above, this won't be aligned. */ + /* ??? If we have more than one of these, consider constructing full + words in registers and using alpha_expand_unaligned_store_words. */ + while (i < nregs && GET_MODE (data_regs[i]) == SImode) + { + alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs); + ofs += 4; + i++; + } + + if (dst_align >= 16) + while (i < nregs && GET_MODE (data_regs[i]) == HImode) + { + emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]); + i++; + ofs += 2; + } + else + while (i < nregs && GET_MODE (data_regs[i]) == HImode) + { + alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs); + i++; + ofs += 2; + } + + /* The remainder must be byte copies. */ + while (i < nregs) + { + gcc_assert (GET_MODE (data_regs[i]) == QImode); + emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]); + i++; + ofs += 1; + } + + return 1; +} + +int +alpha_expand_block_clear (rtx operands[]) +{ + rtx bytes_rtx = operands[1]; + rtx align_rtx = operands[3]; + HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx); + HOST_WIDE_INT bytes = orig_bytes; + HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT; + HOST_WIDE_INT alignofs = 0; + rtx orig_dst = operands[0]; + rtx tmp; + int i, words, ofs = 0; + + if (orig_bytes <= 0) + return 1; + if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD) + return 0; + + /* Look for stricter alignment. */ + tmp = XEXP (orig_dst, 0); + if (REG_P (tmp)) + align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp))); + else if (GET_CODE (tmp) == PLUS + && REG_P (XEXP (tmp, 0)) + && CONST_INT_P (XEXP (tmp, 1))) + { + HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1)); + int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0))); + + if (a > align) + { + if (a >= 64) + align = a, alignofs = 8 - c % 8; + else if (a >= 32) + align = a, alignofs = 4 - c % 4; + else if (a >= 16) + align = a, alignofs = 2 - c % 2; + } + } + + /* Handle an unaligned prefix first. */ + + if (alignofs > 0) + { +#if HOST_BITS_PER_WIDE_INT >= 64 + /* Given that alignofs is bounded by align, the only time BWX could + generate three stores is for a 7 byte fill. Prefer two individual + stores over a load/mask/store sequence. */ + if ((!TARGET_BWX || alignofs == 7) + && align >= 32 + && !(alignofs == 4 && bytes >= 4)) + { + enum machine_mode mode = (align >= 64 ? DImode : SImode); + int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs; + rtx mem, tmp; + HOST_WIDE_INT mask; + + mem = adjust_address (orig_dst, mode, ofs - inv_alignofs); + set_mem_alias_set (mem, 0); + + mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8)); + if (bytes < alignofs) + { + mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8); + ofs += bytes; + bytes = 0; + } + else + { + bytes -= alignofs; + ofs += alignofs; + } + alignofs = 0; + + tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask), + NULL_RTX, 1, OPTAB_WIDEN); + + emit_move_insn (mem, tmp); + } +#endif + + if (TARGET_BWX && (alignofs & 1) && bytes >= 1) + { + emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx); + bytes -= 1; + ofs += 1; + alignofs -= 1; + } + if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2) + { + emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx); + bytes -= 2; + ofs += 2; + alignofs -= 2; + } + if (alignofs == 4 && bytes >= 4) + { + emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx); + bytes -= 4; + ofs += 4; + alignofs = 0; + } + + /* If we've not used the extra lead alignment information by now, + we won't be able to. Downgrade align to match what's left over. */ + if (alignofs > 0) + { + alignofs = alignofs & -alignofs; + align = MIN (align, alignofs * BITS_PER_UNIT); + } + } + + /* Handle a block of contiguous long-words. */ + + if (align >= 64 && bytes >= 8) + { + words = bytes / 8; + + for (i = 0; i < words; ++i) + emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8), + const0_rtx); + + bytes -= words * 8; + ofs += words * 8; + } + + /* If the block is large and appropriately aligned, emit a single + store followed by a sequence of stq_u insns. */ + + if (align >= 32 && bytes > 16) + { + rtx orig_dsta; + + emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx); + bytes -= 4; + ofs += 4; + + orig_dsta = XEXP (orig_dst, 0); + if (GET_CODE (orig_dsta) == LO_SUM) + orig_dsta = force_reg (Pmode, orig_dsta); + + words = bytes / 8; + for (i = 0; i < words; ++i) + { + rtx mem + = change_address (orig_dst, DImode, + gen_rtx_AND (DImode, + plus_constant (orig_dsta, ofs + i*8), + GEN_INT (-8))); + set_mem_alias_set (mem, 0); + emit_move_insn (mem, const0_rtx); + } + + /* Depending on the alignment, the first stq_u may have overlapped + with the initial stl, which means that the last stq_u didn't + write as much as it would appear. Leave those questionable bytes + unaccounted for. */ + bytes -= words * 8 - 4; + ofs += words * 8 - 4; + } + + /* Handle a smaller block of aligned words. */ + + if ((align >= 64 && bytes == 4) + || (align == 32 && bytes >= 4)) + { + words = bytes / 4; + + for (i = 0; i < words; ++i) + emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4), + const0_rtx); + + bytes -= words * 4; + ofs += words * 4; + } + + /* An unaligned block uses stq_u stores for as many as possible. */ + + if (bytes >= 8) + { + words = bytes / 8; + + alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs); + + bytes -= words * 8; + ofs += words * 8; + } + + /* Next clean up any trailing pieces. */ + +#if HOST_BITS_PER_WIDE_INT >= 64 + /* Count the number of bits in BYTES for which aligned stores could + be emitted. */ + words = 0; + for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1) + if (bytes & i) + words += 1; + + /* If we have appropriate alignment (and it wouldn't take too many + instructions otherwise), mask out the bytes we need. */ + if (TARGET_BWX ? words > 2 : bytes > 0) + { + if (align >= 64) + { + rtx mem, tmp; + HOST_WIDE_INT mask; + + mem = adjust_address (orig_dst, DImode, ofs); + set_mem_alias_set (mem, 0); + + mask = ~(HOST_WIDE_INT)0 << (bytes * 8); + + tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask), + NULL_RTX, 1, OPTAB_WIDEN); + + emit_move_insn (mem, tmp); + return 1; + } + else if (align >= 32 && bytes < 4) + { + rtx mem, tmp; + HOST_WIDE_INT mask; + + mem = adjust_address (orig_dst, SImode, ofs); + set_mem_alias_set (mem, 0); + + mask = ~(HOST_WIDE_INT)0 << (bytes * 8); + + tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask), + NULL_RTX, 1, OPTAB_WIDEN); + + emit_move_insn (mem, tmp); + return 1; + } + } +#endif + + if (!TARGET_BWX && bytes >= 4) + { + alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs); + bytes -= 4; + ofs += 4; + } + + if (bytes >= 2) + { + if (align >= 16) + { + do { + emit_move_insn (adjust_address (orig_dst, HImode, ofs), + const0_rtx); + bytes -= 2; + ofs += 2; + } while (bytes >= 2); + } + else if (! TARGET_BWX) + { + alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs); + bytes -= 2; + ofs += 2; + } + } + + while (bytes > 0) + { + emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx); + bytes -= 1; + ofs += 1; + } + + return 1; +} + +/* Returns a mask so that zap(x, value) == x & mask. */ + +rtx +alpha_expand_zap_mask (HOST_WIDE_INT value) +{ + rtx result; + int i; + + if (HOST_BITS_PER_WIDE_INT >= 64) + { + HOST_WIDE_INT mask = 0; + + for (i = 7; i >= 0; --i) + { + mask <<= 8; + if (!((value >> i) & 1)) + mask |= 0xff; + } + + result = gen_int_mode (mask, DImode); + } + else + { + HOST_WIDE_INT mask_lo = 0, mask_hi = 0; + + gcc_assert (HOST_BITS_PER_WIDE_INT == 32); + + for (i = 7; i >= 4; --i) + { + mask_hi <<= 8; + if (!((value >> i) & 1)) + mask_hi |= 0xff; + } + + for (i = 3; i >= 0; --i) + { + mask_lo <<= 8; + if (!((value >> i) & 1)) + mask_lo |= 0xff; + } + + result = immed_double_const (mask_lo, mask_hi, DImode); + } + + return result; +} + +void +alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx), + enum machine_mode mode, + rtx op0, rtx op1, rtx op2) +{ + op0 = gen_lowpart (mode, op0); + + if (op1 == const0_rtx) + op1 = CONST0_RTX (mode); + else + op1 = gen_lowpart (mode, op1); + + if (op2 == const0_rtx) + op2 = CONST0_RTX (mode); + else + op2 = gen_lowpart (mode, op2); + + emit_insn ((*gen) (op0, op1, op2)); +} + +/* A subroutine of the atomic operation splitters. Jump to LABEL if + COND is true. Mark the jump as unlikely to be taken. */ + +static void +emit_unlikely_jump (rtx cond, rtx label) +{ + rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1); + rtx x; + + x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx); + x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x)); + add_reg_note (x, REG_BR_PROB, very_unlikely); +} + +/* A subroutine of the atomic operation splitters. Emit a load-locked + instruction in MODE. */ + +static void +emit_load_locked (enum machine_mode mode, rtx reg, rtx mem) +{ + rtx (*fn) (rtx, rtx) = NULL; + if (mode == SImode) + fn = gen_load_locked_si; + else if (mode == DImode) + fn = gen_load_locked_di; + emit_insn (fn (reg, mem)); +} + +/* A subroutine of the atomic operation splitters. Emit a store-conditional + instruction in MODE. */ + +static void +emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val) +{ + rtx (*fn) (rtx, rtx, rtx) = NULL; + if (mode == SImode) + fn = gen_store_conditional_si; + else if (mode == DImode) + fn = gen_store_conditional_di; + emit_insn (fn (res, mem, val)); +} + +/* A subroutine of the atomic operation splitters. Emit an insxl + instruction in MODE. */ + +static rtx +emit_insxl (enum machine_mode mode, rtx op1, rtx op2) +{ + rtx ret = gen_reg_rtx (DImode); + rtx (*fn) (rtx, rtx, rtx); + + if (WORDS_BIG_ENDIAN) + { + if (mode == QImode) + fn = gen_insbl_be; + else + fn = gen_inswl_be; + } + else + { + if (mode == QImode) + fn = gen_insbl_le; + else + fn = gen_inswl_le; + } + /* The insbl and inswl patterns require a register operand. */ + op1 = force_reg (mode, op1); + emit_insn (fn (ret, op1, op2)); + + return ret; +} + +/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation + to perform. MEM is the memory on which to operate. VAL is the second + operand of the binary operator. BEFORE and AFTER are optional locations to + return the value of MEM either before of after the operation. SCRATCH is + a scratch register. */ + +void +alpha_split_atomic_op (enum rtx_code code, rtx mem, rtx val, + rtx before, rtx after, rtx scratch) +{ + enum machine_mode mode = GET_MODE (mem); + rtx label, x, cond = gen_rtx_REG (DImode, REGNO (scratch)); + + emit_insn (gen_memory_barrier ()); + + label = gen_label_rtx (); + emit_label (label); + label = gen_rtx_LABEL_REF (DImode, label); + + if (before == NULL) + before = scratch; + emit_load_locked (mode, before, mem); + + if (code == NOT) + { + x = gen_rtx_AND (mode, before, val); + emit_insn (gen_rtx_SET (VOIDmode, val, x)); + + x = gen_rtx_NOT (mode, val); + } + else + x = gen_rtx_fmt_ee (code, mode, before, val); + if (after) + emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x))); + emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); + + emit_store_conditional (mode, cond, mem, scratch); + + x = gen_rtx_EQ (DImode, cond, const0_rtx); + emit_unlikely_jump (x, label); + + emit_insn (gen_memory_barrier ()); +} + +/* Expand a compare and swap operation. */ + +void +alpha_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval, + rtx scratch) +{ + enum machine_mode mode = GET_MODE (mem); + rtx label1, label2, x, cond = gen_lowpart (DImode, scratch); + + emit_insn (gen_memory_barrier ()); + + label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + emit_label (XEXP (label1, 0)); + + emit_load_locked (mode, retval, mem); + + x = gen_lowpart (DImode, retval); + if (oldval == const0_rtx) + x = gen_rtx_NE (DImode, x, const0_rtx); + else + { + x = gen_rtx_EQ (DImode, x, oldval); + emit_insn (gen_rtx_SET (VOIDmode, cond, x)); + x = gen_rtx_EQ (DImode, cond, const0_rtx); + } + emit_unlikely_jump (x, label2); + + emit_move_insn (scratch, newval); + emit_store_conditional (mode, cond, mem, scratch); + + x = gen_rtx_EQ (DImode, cond, const0_rtx); + emit_unlikely_jump (x, label1); + + emit_insn (gen_memory_barrier ()); + emit_label (XEXP (label2, 0)); +} + +void +alpha_expand_compare_and_swap_12 (rtx dst, rtx mem, rtx oldval, rtx newval) +{ + enum machine_mode mode = GET_MODE (mem); + rtx addr, align, wdst; + rtx (*fn5) (rtx, rtx, rtx, rtx, rtx); + + addr = force_reg (DImode, XEXP (mem, 0)); + align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8), + NULL_RTX, 1, OPTAB_DIRECT); + + oldval = convert_modes (DImode, mode, oldval, 1); + newval = emit_insxl (mode, newval, addr); + + wdst = gen_reg_rtx (DImode); + if (mode == QImode) + fn5 = gen_sync_compare_and_swapqi_1; + else + fn5 = gen_sync_compare_and_swaphi_1; + emit_insn (fn5 (wdst, addr, oldval, newval, align)); + + emit_move_insn (dst, gen_lowpart (mode, wdst)); +} + +void +alpha_split_compare_and_swap_12 (enum machine_mode mode, rtx dest, rtx addr, + rtx oldval, rtx newval, rtx align, + rtx scratch, rtx cond) +{ + rtx label1, label2, mem, width, mask, x; + + mem = gen_rtx_MEM (DImode, align); + MEM_VOLATILE_P (mem) = 1; + + emit_insn (gen_memory_barrier ()); + label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + emit_label (XEXP (label1, 0)); + + emit_load_locked (DImode, scratch, mem); + + width = GEN_INT (GET_MODE_BITSIZE (mode)); + mask = GEN_INT (mode == QImode ? 0xff : 0xffff); + if (WORDS_BIG_ENDIAN) + emit_insn (gen_extxl_be (dest, scratch, width, addr)); + else + emit_insn (gen_extxl_le (dest, scratch, width, addr)); + + if (oldval == const0_rtx) + x = gen_rtx_NE (DImode, dest, const0_rtx); + else + { + x = gen_rtx_EQ (DImode, dest, oldval); + emit_insn (gen_rtx_SET (VOIDmode, cond, x)); + x = gen_rtx_EQ (DImode, cond, const0_rtx); + } + emit_unlikely_jump (x, label2); + + if (WORDS_BIG_ENDIAN) + emit_insn (gen_mskxl_be (scratch, scratch, mask, addr)); + else + emit_insn (gen_mskxl_le (scratch, scratch, mask, addr)); + emit_insn (gen_iordi3 (scratch, scratch, newval)); + + emit_store_conditional (DImode, scratch, mem, scratch); + + x = gen_rtx_EQ (DImode, scratch, const0_rtx); + emit_unlikely_jump (x, label1); + + emit_insn (gen_memory_barrier ()); + emit_label (XEXP (label2, 0)); +} + +/* Expand an atomic exchange operation. */ + +void +alpha_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch) +{ + enum machine_mode mode = GET_MODE (mem); + rtx label, x, cond = gen_lowpart (DImode, scratch); + + label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + emit_label (XEXP (label, 0)); + + emit_load_locked (mode, retval, mem); + emit_move_insn (scratch, val); + emit_store_conditional (mode, cond, mem, scratch); + + x = gen_rtx_EQ (DImode, cond, const0_rtx); + emit_unlikely_jump (x, label); + + emit_insn (gen_memory_barrier ()); +} + +void +alpha_expand_lock_test_and_set_12 (rtx dst, rtx mem, rtx val) +{ + enum machine_mode mode = GET_MODE (mem); + rtx addr, align, wdst; + rtx (*fn4) (rtx, rtx, rtx, rtx); + + /* Force the address into a register. */ + addr = force_reg (DImode, XEXP (mem, 0)); + + /* Align it to a multiple of 8. */ + align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8), + NULL_RTX, 1, OPTAB_DIRECT); + + /* Insert val into the correct byte location within the word. */ + val = emit_insxl (mode, val, addr); + + wdst = gen_reg_rtx (DImode); + if (mode == QImode) + fn4 = gen_sync_lock_test_and_setqi_1; + else + fn4 = gen_sync_lock_test_and_sethi_1; + emit_insn (fn4 (wdst, addr, val, align)); + + emit_move_insn (dst, gen_lowpart (mode, wdst)); +} + +void +alpha_split_lock_test_and_set_12 (enum machine_mode mode, rtx dest, rtx addr, + rtx val, rtx align, rtx scratch) +{ + rtx label, mem, width, mask, x; + + mem = gen_rtx_MEM (DImode, align); + MEM_VOLATILE_P (mem) = 1; + + label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ()); + emit_label (XEXP (label, 0)); + + emit_load_locked (DImode, scratch, mem); + + width = GEN_INT (GET_MODE_BITSIZE (mode)); + mask = GEN_INT (mode == QImode ? 0xff : 0xffff); + if (WORDS_BIG_ENDIAN) + { + emit_insn (gen_extxl_be (dest, scratch, width, addr)); + emit_insn (gen_mskxl_be (scratch, scratch, mask, addr)); + } + else + { + emit_insn (gen_extxl_le (dest, scratch, width, addr)); + emit_insn (gen_mskxl_le (scratch, scratch, mask, addr)); + } + emit_insn (gen_iordi3 (scratch, scratch, val)); + + emit_store_conditional (DImode, scratch, mem, scratch); + + x = gen_rtx_EQ (DImode, scratch, const0_rtx); + emit_unlikely_jump (x, label); + + emit_insn (gen_memory_barrier ()); +} + +/* Adjust the cost of a scheduling dependency. Return the new cost of + a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ + +static int +alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) +{ + enum attr_type dep_insn_type; + + /* If the dependence is an anti-dependence, there is no cost. For an + output dependence, there is sometimes a cost, but it doesn't seem + worth handling those few cases. */ + if (REG_NOTE_KIND (link) != 0) + return cost; + + /* If we can't recognize the insns, we can't really do anything. */ + if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) + return cost; + + dep_insn_type = get_attr_type (dep_insn); + + /* Bring in the user-defined memory latency. */ + if (dep_insn_type == TYPE_ILD + || dep_insn_type == TYPE_FLD + || dep_insn_type == TYPE_LDSYM) + cost += alpha_memory_latency-1; + + /* Everything else handled in DFA bypasses now. */ + + return cost; +} + +/* The number of instructions that can be issued per cycle. */ + +static int +alpha_issue_rate (void) +{ + return (alpha_tune == PROCESSOR_EV4 ? 2 : 4); +} + +/* How many alternative schedules to try. This should be as wide as the + scheduling freedom in the DFA, but no wider. Making this value too + large results extra work for the scheduler. + + For EV4, loads can be issued to either IB0 or IB1, thus we have 2 + alternative schedules. For EV5, we can choose between E0/E1 and + FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */ + +static int +alpha_multipass_dfa_lookahead (void) +{ + return (alpha_tune == PROCESSOR_EV6 ? 4 : 2); +} + +/* Machine-specific function data. */ + +struct GTY(()) machine_function +{ + /* For unicosmk. */ + /* List of call information words for calls from this function. */ + struct rtx_def *first_ciw; + struct rtx_def *last_ciw; + int ciw_count; + + /* List of deferred case vectors. */ + struct rtx_def *addr_list; + + /* For OSF. */ + const char *some_ld_name; + + /* For TARGET_LD_BUGGY_LDGP. */ + struct rtx_def *gp_save_rtx; + + /* For VMS condition handlers. */ + bool uses_condition_handler; +}; + +/* How to allocate a 'struct machine_function'. */ + +static struct machine_function * +alpha_init_machine_status (void) +{ + return ggc_alloc_cleared_machine_function (); +} + +/* Support for frame based VMS condition handlers. */ + +/* A VMS condition handler may be established for a function with a call to + __builtin_establish_vms_condition_handler, and cancelled with a call to + __builtin_revert_vms_condition_handler. + + The VMS Condition Handling Facility knows about the existence of a handler + from the procedure descriptor .handler field. As the VMS native compilers, + we store the user specified handler's address at a fixed location in the + stack frame and point the procedure descriptor at a common wrapper which + fetches the real handler's address and issues an indirect call. + + The indirection wrapper is "__gcc_shell_handler", provided by libgcc. + + We force the procedure kind to PT_STACK, and the fixed frame location is + fp+8, just before the register save area. We use the handler_data field in + the procedure descriptor to state the fp offset at which the installed + handler address can be found. */ + +#define VMS_COND_HANDLER_FP_OFFSET 8 + +/* Expand code to store the currently installed user VMS condition handler + into TARGET and install HANDLER as the new condition handler. */ + +void +alpha_expand_builtin_establish_vms_condition_handler (rtx target, rtx handler) +{ + rtx handler_slot_address + = plus_constant (hard_frame_pointer_rtx, VMS_COND_HANDLER_FP_OFFSET); + + rtx handler_slot + = gen_rtx_MEM (DImode, handler_slot_address); + + emit_move_insn (target, handler_slot); + emit_move_insn (handler_slot, handler); + + /* Notify the start/prologue/epilogue emitters that the condition handler + slot is needed. In addition to reserving the slot space, this will force + the procedure kind to PT_STACK so ensure that the hard_frame_pointer_rtx + use above is correct. */ + cfun->machine->uses_condition_handler = true; +} + +/* Expand code to store the current VMS condition handler into TARGET and + nullify it. */ + +void +alpha_expand_builtin_revert_vms_condition_handler (rtx target) +{ + /* We implement this by establishing a null condition handler, with the tiny + side effect of setting uses_condition_handler. This is a little bit + pessimistic if no actual builtin_establish call is ever issued, which is + not a real problem and expected never to happen anyway. */ + + alpha_expand_builtin_establish_vms_condition_handler (target, const0_rtx); +} + +/* Functions to save and restore alpha_return_addr_rtx. */ + +/* Start the ball rolling with RETURN_ADDR_RTX. */ + +rtx +alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) +{ + if (count != 0) + return const0_rtx; + + return get_hard_reg_initial_val (Pmode, REG_RA); +} + +/* Return or create a memory slot containing the gp value for the current + function. Needed only if TARGET_LD_BUGGY_LDGP. */ + +rtx +alpha_gp_save_rtx (void) +{ + rtx seq, m = cfun->machine->gp_save_rtx; + + if (m == NULL) + { + start_sequence (); + + m = assign_stack_local (DImode, UNITS_PER_WORD, BITS_PER_WORD); + m = validize_mem (m); + emit_move_insn (m, pic_offset_table_rtx); + + seq = get_insns (); + end_sequence (); + + /* We used to simply emit the sequence after entry_of_function. + However this breaks the CFG if the first instruction in the + first block is not the NOTE_INSN_BASIC_BLOCK, for example a + label. Emit the sequence properly on the edge. We are only + invoked from dw2_build_landing_pads and finish_eh_generation + will call commit_edge_insertions thanks to a kludge. */ + insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR)); + + cfun->machine->gp_save_rtx = m; + } + + return m; +} + +static void +alpha_instantiate_decls (void) +{ + if (cfun->machine->gp_save_rtx != NULL_RTX) + instantiate_decl_rtl (cfun->machine->gp_save_rtx); +} + +static int +alpha_ra_ever_killed (void) +{ + rtx top; + + if (!has_hard_reg_initial_val (Pmode, REG_RA)) + return (int)df_regs_ever_live_p (REG_RA); + + push_topmost_sequence (); + top = get_insns (); + pop_topmost_sequence (); + + return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX); +} + + +/* Return the trap mode suffix applicable to the current + instruction, or NULL. */ + +static const char * +get_trap_mode_suffix (void) +{ + enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn); + + switch (s) + { + case TRAP_SUFFIX_NONE: + return NULL; + + case TRAP_SUFFIX_SU: + if (alpha_fptm >= ALPHA_FPTM_SU) + return "su"; + return NULL; + + case TRAP_SUFFIX_SUI: + if (alpha_fptm >= ALPHA_FPTM_SUI) + return "sui"; + return NULL; + + case TRAP_SUFFIX_V_SV: + switch (alpha_fptm) + { + case ALPHA_FPTM_N: + return NULL; + case ALPHA_FPTM_U: + return "v"; + case ALPHA_FPTM_SU: + case ALPHA_FPTM_SUI: + return "sv"; + default: + gcc_unreachable (); + } + + case TRAP_SUFFIX_V_SV_SVI: + switch (alpha_fptm) + { + case ALPHA_FPTM_N: + return NULL; + case ALPHA_FPTM_U: + return "v"; + case ALPHA_FPTM_SU: + return "sv"; + case ALPHA_FPTM_SUI: + return "svi"; + default: + gcc_unreachable (); + } + break; + + case TRAP_SUFFIX_U_SU_SUI: + switch (alpha_fptm) + { + case ALPHA_FPTM_N: + return NULL; + case ALPHA_FPTM_U: + return "u"; + case ALPHA_FPTM_SU: + return "su"; + case ALPHA_FPTM_SUI: + return "sui"; + default: + gcc_unreachable (); + } + break; + + default: + gcc_unreachable (); + } + gcc_unreachable (); +} + +/* Return the rounding mode suffix applicable to the current + instruction, or NULL. */ + +static const char * +get_round_mode_suffix (void) +{ + enum attr_round_suffix s = get_attr_round_suffix (current_output_insn); + + switch (s) + { + case ROUND_SUFFIX_NONE: + return NULL; + case ROUND_SUFFIX_NORMAL: + switch (alpha_fprm) + { + case ALPHA_FPRM_NORM: + return NULL; + case ALPHA_FPRM_MINF: + return "m"; + case ALPHA_FPRM_CHOP: + return "c"; + case ALPHA_FPRM_DYN: + return "d"; + default: + gcc_unreachable (); + } + break; + + case ROUND_SUFFIX_C: + return "c"; + + default: + gcc_unreachable (); + } + gcc_unreachable (); +} + +/* Locate some local-dynamic symbol still in use by this function + so that we can print its name in some movdi_er_tlsldm pattern. */ + +static int +get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + rtx x = *px; + + if (GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) + { + cfun->machine->some_ld_name = XSTR (x, 0); + return 1; + } + + return 0; +} + +static const char * +get_some_local_dynamic_name (void) +{ + rtx insn; + + if (cfun->machine->some_ld_name) + return cfun->machine->some_ld_name; + + for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) + if (INSN_P (insn) + && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) + return cfun->machine->some_ld_name; + + gcc_unreachable (); +} + +/* Print an operand. Recognize special options, documented below. */ + +void +print_operand (FILE *file, rtx x, int code) +{ + int i; + + switch (code) + { + case '~': + /* Print the assembler name of the current function. */ + assemble_name (file, alpha_fnname); + break; + + case '&': + assemble_name (file, get_some_local_dynamic_name ()); + break; + + case '/': + { + const char *trap = get_trap_mode_suffix (); + const char *round = get_round_mode_suffix (); + + if (trap || round) + fprintf (file, (TARGET_AS_SLASH_BEFORE_SUFFIX ? "/%s%s" : "%s%s"), + (trap ? trap : ""), (round ? round : "")); + break; + } + + case ',': + /* Generates single precision instruction suffix. */ + fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file); + break; + + case '-': + /* Generates double precision instruction suffix. */ + fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file); + break; + + case '#': + if (alpha_this_literal_sequence_number == 0) + alpha_this_literal_sequence_number = alpha_next_sequence_number++; + fprintf (file, "%d", alpha_this_literal_sequence_number); + break; + + case '*': + if (alpha_this_gpdisp_sequence_number == 0) + alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++; + fprintf (file, "%d", alpha_this_gpdisp_sequence_number); + break; + + case 'H': + if (GET_CODE (x) == HIGH) + output_addr_const (file, XEXP (x, 0)); + else + output_operand_lossage ("invalid %%H value"); + break; + + case 'J': + { + const char *lituse; + + if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL) + { + x = XVECEXP (x, 0, 0); + lituse = "lituse_tlsgd"; + } + else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL) + { + x = XVECEXP (x, 0, 0); + lituse = "lituse_tlsldm"; + } + else if (CONST_INT_P (x)) + lituse = "lituse_jsr"; + else + { + output_operand_lossage ("invalid %%J value"); + break; + } + + if (x != const0_rtx) + fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x)); + } + break; + + case 'j': + { + const char *lituse; + +#ifdef HAVE_AS_JSRDIRECT_RELOCS + lituse = "lituse_jsrdirect"; +#else + lituse = "lituse_jsr"; +#endif + + gcc_assert (INTVAL (x) != 0); + fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x)); + } + break; + case 'r': + /* If this operand is the constant zero, write it as "$31". */ + if (REG_P (x)) + fprintf (file, "%s", reg_names[REGNO (x)]); + else if (x == CONST0_RTX (GET_MODE (x))) + fprintf (file, "$31"); + else + output_operand_lossage ("invalid %%r value"); + break; + + case 'R': + /* Similar, but for floating-point. */ + if (REG_P (x)) + fprintf (file, "%s", reg_names[REGNO (x)]); + else if (x == CONST0_RTX (GET_MODE (x))) + fprintf (file, "$f31"); + else + output_operand_lossage ("invalid %%R value"); + break; + + case 'N': + /* Write the 1's complement of a constant. */ + if (!CONST_INT_P (x)) + output_operand_lossage ("invalid %%N value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x)); + break; + + case 'P': + /* Write 1 << C, for a constant C. */ + if (!CONST_INT_P (x)) + output_operand_lossage ("invalid %%P value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x)); + break; + + case 'h': + /* Write the high-order 16 bits of a constant, sign-extended. */ + if (!CONST_INT_P (x)) + output_operand_lossage ("invalid %%h value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16); + break; + + case 'L': + /* Write the low-order 16 bits of a constant, sign-extended. */ + if (!CONST_INT_P (x)) + output_operand_lossage ("invalid %%L value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, + (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000)); + break; + + case 'm': + /* Write mask for ZAP insn. */ + if (GET_CODE (x) == CONST_DOUBLE) + { + HOST_WIDE_INT mask = 0; + HOST_WIDE_INT value; + + value = CONST_DOUBLE_LOW (x); + for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; + i++, value >>= 8) + if (value & 0xff) + mask |= (1 << i); + + value = CONST_DOUBLE_HIGH (x); + for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; + i++, value >>= 8) + if (value & 0xff) + mask |= (1 << (i + sizeof (int))); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff); + } + + else if (CONST_INT_P (x)) + { + HOST_WIDE_INT mask = 0, value = INTVAL (x); + + for (i = 0; i < 8; i++, value >>= 8) + if (value & 0xff) + mask |= (1 << i); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask); + } + else + output_operand_lossage ("invalid %%m value"); + break; + + case 'M': + /* 'b', 'w', 'l', or 'q' as the value of the constant. */ + if (!CONST_INT_P (x) + || (INTVAL (x) != 8 && INTVAL (x) != 16 + && INTVAL (x) != 32 && INTVAL (x) != 64)) + output_operand_lossage ("invalid %%M value"); + + fprintf (file, "%s", + (INTVAL (x) == 8 ? "b" + : INTVAL (x) == 16 ? "w" + : INTVAL (x) == 32 ? "l" + : "q")); + break; + + case 'U': + /* Similar, except do it from the mask. */ + if (CONST_INT_P (x)) + { + HOST_WIDE_INT value = INTVAL (x); + + if (value == 0xff) + { + fputc ('b', file); + break; + } + if (value == 0xffff) + { + fputc ('w', file); + break; + } + if (value == 0xffffffff) + { + fputc ('l', file); + break; + } + if (value == -1) + { + fputc ('q', file); + break; + } + } + else if (HOST_BITS_PER_WIDE_INT == 32 + && GET_CODE (x) == CONST_DOUBLE + && CONST_DOUBLE_LOW (x) == 0xffffffff + && CONST_DOUBLE_HIGH (x) == 0) + { + fputc ('l', file); + break; + } + output_operand_lossage ("invalid %%U value"); + break; + + case 's': + /* Write the constant value divided by 8 for little-endian mode or + (56 - value) / 8 for big-endian mode. */ + + if (!CONST_INT_P (x) + || (unsigned HOST_WIDE_INT) INTVAL (x) >= (WORDS_BIG_ENDIAN + ? 56 + : 64) + || (INTVAL (x) & 7) != 0) + output_operand_lossage ("invalid %%s value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, + WORDS_BIG_ENDIAN + ? (56 - INTVAL (x)) / 8 + : INTVAL (x) / 8); + break; + + case 'S': + /* Same, except compute (64 - c) / 8 */ + + if (!CONST_INT_P (x) + && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64 + && (INTVAL (x) & 7) != 8) + output_operand_lossage ("invalid %%s value"); + + fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8); + break; + + case 't': + { + /* On Unicos/Mk systems: use a DEX expression if the symbol + clashes with a register name. */ + int dex = unicosmk_need_dex (x); + if (dex) + fprintf (file, "DEX(%d)", dex); + else + output_addr_const (file, x); + } + break; + + case 'C': case 'D': case 'c': case 'd': + /* Write out comparison name. */ + { + enum rtx_code c = GET_CODE (x); + + if (!COMPARISON_P (x)) + output_operand_lossage ("invalid %%C value"); + + else if (code == 'D') + c = reverse_condition (c); + else if (code == 'c') + c = swap_condition (c); + else if (code == 'd') + c = swap_condition (reverse_condition (c)); + + if (c == LEU) + fprintf (file, "ule"); + else if (c == LTU) + fprintf (file, "ult"); + else if (c == UNORDERED) + fprintf (file, "un"); + else + fprintf (file, "%s", GET_RTX_NAME (c)); + } + break; + + case 'E': + /* Write the divide or modulus operator. */ + switch (GET_CODE (x)) + { + case DIV: + fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q"); + break; + case UDIV: + fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q"); + break; + case MOD: + fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q"); + break; + case UMOD: + fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q"); + break; + default: + output_operand_lossage ("invalid %%E value"); + break; + } + break; + + case 'A': + /* Write "_u" for unaligned access. */ + if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND) + fprintf (file, "_u"); + break; + + case 0: + if (REG_P (x)) + fprintf (file, "%s", reg_names[REGNO (x)]); + else if (MEM_P (x)) + output_address (XEXP (x, 0)); + else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC) + { + switch (XINT (XEXP (x, 0), 1)) + { + case UNSPEC_DTPREL: + case UNSPEC_TPREL: + output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0)); + break; + default: + output_operand_lossage ("unknown relocation unspec"); + break; + } + } + else + output_addr_const (file, x); + break; + + default: + output_operand_lossage ("invalid %%xn code"); + } +} + +void +print_operand_address (FILE *file, rtx addr) +{ + int basereg = 31; + HOST_WIDE_INT offset = 0; + + if (GET_CODE (addr) == AND) + addr = XEXP (addr, 0); + + if (GET_CODE (addr) == PLUS + && CONST_INT_P (XEXP (addr, 1))) + { + offset = INTVAL (XEXP (addr, 1)); + addr = XEXP (addr, 0); + } + + if (GET_CODE (addr) == LO_SUM) + { + const char *reloc16, *reloclo; + rtx op1 = XEXP (addr, 1); + + if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC) + { + op1 = XEXP (op1, 0); + switch (XINT (op1, 1)) + { + case UNSPEC_DTPREL: + reloc16 = NULL; + reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello"); + break; + case UNSPEC_TPREL: + reloc16 = NULL; + reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello"); + break; + default: + output_operand_lossage ("unknown relocation unspec"); + return; + } + + output_addr_const (file, XVECEXP (op1, 0, 0)); + } + else + { + reloc16 = "gprel"; + reloclo = "gprellow"; + output_addr_const (file, op1); + } + + if (offset) + fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset); + + addr = XEXP (addr, 0); + switch (GET_CODE (addr)) + { + case REG: + basereg = REGNO (addr); + break; + + case SUBREG: + basereg = subreg_regno (addr); + break; + + default: + gcc_unreachable (); + } + + fprintf (file, "($%d)\t\t!%s", basereg, + (basereg == 29 ? reloc16 : reloclo)); + return; + } + + switch (GET_CODE (addr)) + { + case REG: + basereg = REGNO (addr); + break; + + case SUBREG: + basereg = subreg_regno (addr); + break; + + case CONST_INT: + offset = INTVAL (addr); + break; + +#if TARGET_ABI_OPEN_VMS + case SYMBOL_REF: + fprintf (file, "%s", XSTR (addr, 0)); + return; + + case CONST: + gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS + && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF); + fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC, + XSTR (XEXP (XEXP (addr, 0), 0), 0), + INTVAL (XEXP (XEXP (addr, 0), 1))); + return; + +#endif + default: + gcc_unreachable (); + } + + fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg); +} + +/* Emit RTL insns to initialize the variable parts of a trampoline at + M_TRAMP. FNDECL is target function's decl. CHAIN_VALUE is an rtx + for the static chain value for the function. */ + +static void +alpha_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) +{ + rtx fnaddr, mem, word1, word2; + + fnaddr = XEXP (DECL_RTL (fndecl), 0); + +#ifdef POINTERS_EXTEND_UNSIGNED + fnaddr = convert_memory_address (Pmode, fnaddr); + chain_value = convert_memory_address (Pmode, chain_value); +#endif + + if (TARGET_ABI_OPEN_VMS) + { + const char *fnname; + char *trname; + + /* Construct the name of the trampoline entry point. */ + fnname = XSTR (fnaddr, 0); + trname = (char *) alloca (strlen (fnname) + 5); + strcpy (trname, fnname); + strcat (trname, "..tr"); + fnname = ggc_alloc_string (trname, strlen (trname) + 1); + word2 = gen_rtx_SYMBOL_REF (Pmode, fnname); + + /* Trampoline (or "bounded") procedure descriptor is constructed from + the function's procedure descriptor with certain fields zeroed IAW + the VMS calling standard. This is stored in the first quadword. */ + word1 = force_reg (DImode, gen_const_mem (DImode, fnaddr)); + word1 = expand_and (DImode, word1, GEN_INT (0xffff0fff0000fff0), NULL); + } + else + { + /* These 4 instructions are: + ldq $1,24($27) + ldq $27,16($27) + jmp $31,($27),0 + nop + We don't bother setting the HINT field of the jump; the nop + is merely there for padding. */ + word1 = GEN_INT (0xa77b0010a43b0018); + word2 = GEN_INT (0x47ff041f6bfb0000); + } + + /* Store the first two words, as computed above. */ + mem = adjust_address (m_tramp, DImode, 0); + emit_move_insn (mem, word1); + mem = adjust_address (m_tramp, DImode, 8); + emit_move_insn (mem, word2); + + /* Store function address and static chain value. */ + mem = adjust_address (m_tramp, Pmode, 16); + emit_move_insn (mem, fnaddr); + mem = adjust_address (m_tramp, Pmode, 24); + emit_move_insn (mem, chain_value); + + if (!TARGET_ABI_OPEN_VMS) + { + emit_insn (gen_imb ()); +#ifdef ENABLE_EXECUTE_STACK + emit_library_call (init_one_libfunc ("__enable_execute_stack"), + LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); +#endif + } +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On Alpha the first 6 words of args are normally in registers + and the rest are pushed. */ + +static rtx +alpha_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named ATTRIBUTE_UNUSED) +{ + int basereg; + int num_args; + + /* Don't get confused and pass small structures in FP registers. */ + if (type && AGGREGATE_TYPE_P (type)) + basereg = 16; + else + { +#ifdef ENABLE_CHECKING + /* With alpha_split_complex_arg, we shouldn't see any raw complex + values here. */ + gcc_assert (!COMPLEX_MODE_P (mode)); +#endif + + /* Set up defaults for FP operands passed in FP registers, and + integral operands passed in integer registers. */ + if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT) + basereg = 32 + 16; + else + basereg = 16; + } + + /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for + the two platforms, so we can't avoid conditional compilation. */ +#if TARGET_ABI_OPEN_VMS + { + if (mode == VOIDmode) + return alpha_arg_info_reg_val (*cum); + + num_args = cum->num_args; + if (num_args >= 6 + || targetm.calls.must_pass_in_stack (mode, type)) + return NULL_RTX; + } +#elif TARGET_ABI_OSF + { + if (*cum >= 6) + return NULL_RTX; + num_args = *cum; + + /* VOID is passed as a special flag for "last argument". */ + if (type == void_type_node) + basereg = 16; + else if (targetm.calls.must_pass_in_stack (mode, type)) + return NULL_RTX; + } +#else +#error Unhandled ABI +#endif + + return gen_rtx_REG (mode, num_args + basereg); +} + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +static void +alpha_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named ATTRIBUTE_UNUSED) +{ + bool onstack = targetm.calls.must_pass_in_stack (mode, type); + int increment = onstack ? 6 : ALPHA_ARG_SIZE (mode, type, named); + +#if TARGET_ABI_OSF + *cum += increment; +#else + if (!onstack && cum->num_args < 6) + cum->atypes[cum->num_args] = alpha_arg_type (mode); + cum->num_args += increment; +#endif +} + +static int +alpha_arg_partial_bytes (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + tree type ATTRIBUTE_UNUSED, + bool named ATTRIBUTE_UNUSED) +{ + int words = 0; + +#if TARGET_ABI_OPEN_VMS + if (cum->num_args < 6 + && 6 < cum->num_args + ALPHA_ARG_SIZE (mode, type, named)) + words = 6 - cum->num_args; +#elif TARGET_ABI_UNICOSMK + /* Never any split arguments. */ +#elif TARGET_ABI_OSF + if (*cum < 6 && 6 < *cum + ALPHA_ARG_SIZE (mode, type, named)) + words = 6 - *cum; +#else +#error Unhandled ABI +#endif + + return words * UNITS_PER_WORD; +} + + +/* Return true if TYPE must be returned in memory, instead of in registers. */ + +static bool +alpha_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) +{ + enum machine_mode mode = VOIDmode; + int size; + + if (type) + { + mode = TYPE_MODE (type); + + /* All aggregates are returned in memory, except on OpenVMS where + records that fit 64 bits should be returned by immediate value + as required by section 3.8.7.1 of the OpenVMS Calling Standard. */ + if (TARGET_ABI_OPEN_VMS + && TREE_CODE (type) != ARRAY_TYPE + && (unsigned HOST_WIDE_INT) int_size_in_bytes(type) <= 8) + return false; + + if (AGGREGATE_TYPE_P (type)) + return true; + } + + size = GET_MODE_SIZE (mode); + switch (GET_MODE_CLASS (mode)) + { + case MODE_VECTOR_FLOAT: + /* Pass all float vectors in memory, like an aggregate. */ + return true; + + case MODE_COMPLEX_FLOAT: + /* We judge complex floats on the size of their element, + not the size of the whole type. */ + size = GET_MODE_UNIT_SIZE (mode); + break; + + case MODE_INT: + case MODE_FLOAT: + case MODE_COMPLEX_INT: + case MODE_VECTOR_INT: + break; + + default: + /* ??? We get called on all sorts of random stuff from + aggregate_value_p. We must return something, but it's not + clear what's safe to return. Pretend it's a struct I + guess. */ + return true; + } + + /* Otherwise types must fit in one register. */ + return size > UNITS_PER_WORD; +} + +/* Return true if TYPE should be passed by invisible reference. */ + +static bool +alpha_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, + enum machine_mode mode, + const_tree type ATTRIBUTE_UNUSED, + bool named ATTRIBUTE_UNUSED) +{ + return mode == TFmode || mode == TCmode; +} + +/* Define how to find the value returned by a function. VALTYPE is the + data type of the value (as a tree). If the precise function being + called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. + MODE is set instead of VALTYPE for libcalls. + + On Alpha the value is found in $0 for integer functions and + $f0 for floating-point functions. */ + +rtx +function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED, + enum machine_mode mode) +{ + unsigned int regnum, dummy ATTRIBUTE_UNUSED; + enum mode_class mclass; + + gcc_assert (!valtype || !alpha_return_in_memory (valtype, func)); + + if (valtype) + mode = TYPE_MODE (valtype); + + mclass = GET_MODE_CLASS (mode); + switch (mclass) + { + case MODE_INT: + /* Do the same thing as PROMOTE_MODE except for libcalls on VMS, + where we have them returning both SImode and DImode. */ + if (!(TARGET_ABI_OPEN_VMS && valtype && AGGREGATE_TYPE_P (valtype))) + PROMOTE_MODE (mode, dummy, valtype); + /* FALLTHRU */ + + case MODE_COMPLEX_INT: + case MODE_VECTOR_INT: + regnum = 0; + break; + + case MODE_FLOAT: + regnum = 32; + break; + + case MODE_COMPLEX_FLOAT: + { + enum machine_mode cmode = GET_MODE_INNER (mode); + + return gen_rtx_PARALLEL + (VOIDmode, + gen_rtvec (2, + gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32), + const0_rtx), + gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33), + GEN_INT (GET_MODE_SIZE (cmode))))); + } + + case MODE_RANDOM: + /* We should only reach here for BLKmode on VMS. */ + gcc_assert (TARGET_ABI_OPEN_VMS && mode == BLKmode); + regnum = 0; + break; + + default: + gcc_unreachable (); + } + + return gen_rtx_REG (mode, regnum); +} + +/* TCmode complex values are passed by invisible reference. We + should not split these values. */ + +static bool +alpha_split_complex_arg (const_tree type) +{ + return TYPE_MODE (type) != TCmode; +} + +static tree +alpha_build_builtin_va_list (void) +{ + tree base, ofs, space, record, type_decl; + + if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK) + return ptr_type_node; + + record = (*lang_hooks.types.make_type) (RECORD_TYPE); + type_decl = build_decl (BUILTINS_LOCATION, + TYPE_DECL, get_identifier ("__va_list_tag"), record); + TYPE_STUB_DECL (record) = type_decl; + TYPE_NAME (record) = type_decl; + + /* C++? SET_IS_AGGR_TYPE (record, 1); */ + + /* Dummy field to prevent alignment warnings. */ + space = build_decl (BUILTINS_LOCATION, + FIELD_DECL, NULL_TREE, integer_type_node); + DECL_FIELD_CONTEXT (space) = record; + DECL_ARTIFICIAL (space) = 1; + DECL_IGNORED_P (space) = 1; + + ofs = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("__offset"), + integer_type_node); + DECL_FIELD_CONTEXT (ofs) = record; + DECL_CHAIN (ofs) = space; + /* ??? This is a hack, __offset is marked volatile to prevent + DCE that confuses stdarg optimization and results in + gcc.c-torture/execute/stdarg-1.c failure. See PR 41089. */ + TREE_THIS_VOLATILE (ofs) = 1; + + base = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("__base"), + ptr_type_node); + DECL_FIELD_CONTEXT (base) = record; + DECL_CHAIN (base) = ofs; + + TYPE_FIELDS (record) = base; + layout_type (record); + + va_list_gpr_counter_field = ofs; + return record; +} + +#if TARGET_ABI_OSF +/* Helper function for alpha_stdarg_optimize_hook. Skip over casts + and constant additions. */ + +static gimple +va_list_skip_additions (tree lhs) +{ + gimple stmt; + + for (;;) + { + enum tree_code code; + + stmt = SSA_NAME_DEF_STMT (lhs); + + if (gimple_code (stmt) == GIMPLE_PHI) + return stmt; + + if (!is_gimple_assign (stmt) + || gimple_assign_lhs (stmt) != lhs) + return NULL; + + if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME) + return stmt; + code = gimple_assign_rhs_code (stmt); + if (!CONVERT_EXPR_CODE_P (code) + && ((code != PLUS_EXPR && code != POINTER_PLUS_EXPR) + || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST + || !host_integerp (gimple_assign_rhs2 (stmt), 1))) + return stmt; + + lhs = gimple_assign_rhs1 (stmt); + } +} + +/* Check if LHS = RHS statement is + LHS = *(ap.__base + ap.__offset + cst) + or + LHS = *(ap.__base + + ((ap.__offset + cst <= 47) + ? ap.__offset + cst - 48 : ap.__offset + cst) + cst2). + If the former, indicate that GPR registers are needed, + if the latter, indicate that FPR registers are needed. + + Also look for LHS = (*ptr).field, where ptr is one of the forms + listed above. + + On alpha, cfun->va_list_gpr_size is used as size of the needed + regs and cfun->va_list_fpr_size is a bitmask, bit 0 set if GPR + registers are needed and bit 1 set if FPR registers are needed. + Return true if va_list references should not be scanned for the + current statement. */ + +static bool +alpha_stdarg_optimize_hook (struct stdarg_info *si, const_gimple stmt) +{ + tree base, offset, rhs; + int offset_arg = 1; + gimple base_stmt; + + if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) + != GIMPLE_SINGLE_RHS) + return false; + + rhs = gimple_assign_rhs1 (stmt); + while (handled_component_p (rhs)) + rhs = TREE_OPERAND (rhs, 0); + if (TREE_CODE (rhs) != MEM_REF + || TREE_CODE (TREE_OPERAND (rhs, 0)) != SSA_NAME) + return false; + + stmt = va_list_skip_additions (TREE_OPERAND (rhs, 0)); + if (stmt == NULL + || !is_gimple_assign (stmt) + || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR) + return false; + + base = gimple_assign_rhs1 (stmt); + if (TREE_CODE (base) == SSA_NAME) + { + base_stmt = va_list_skip_additions (base); + if (base_stmt + && is_gimple_assign (base_stmt) + && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF) + base = gimple_assign_rhs1 (base_stmt); + } + + if (TREE_CODE (base) != COMPONENT_REF + || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node)) + { + base = gimple_assign_rhs2 (stmt); + if (TREE_CODE (base) == SSA_NAME) + { + base_stmt = va_list_skip_additions (base); + if (base_stmt + && is_gimple_assign (base_stmt) + && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF) + base = gimple_assign_rhs1 (base_stmt); + } + + if (TREE_CODE (base) != COMPONENT_REF + || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node)) + return false; + + offset_arg = 0; + } + + base = get_base_address (base); + if (TREE_CODE (base) != VAR_DECL + || !bitmap_bit_p (si->va_list_vars, DECL_UID (base))) + return false; + + offset = gimple_op (stmt, 1 + offset_arg); + if (TREE_CODE (offset) == SSA_NAME) + { + gimple offset_stmt = va_list_skip_additions (offset); + + if (offset_stmt + && gimple_code (offset_stmt) == GIMPLE_PHI) + { + HOST_WIDE_INT sub; + gimple arg1_stmt, arg2_stmt; + tree arg1, arg2; + enum tree_code code1, code2; + + if (gimple_phi_num_args (offset_stmt) != 2) + goto escapes; + + arg1_stmt + = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 0)); + arg2_stmt + = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 1)); + if (arg1_stmt == NULL + || !is_gimple_assign (arg1_stmt) + || arg2_stmt == NULL + || !is_gimple_assign (arg2_stmt)) + goto escapes; + + code1 = gimple_assign_rhs_code (arg1_stmt); + code2 = gimple_assign_rhs_code (arg2_stmt); + if (code1 == COMPONENT_REF + && (code2 == MINUS_EXPR || code2 == PLUS_EXPR)) + /* Do nothing. */; + else if (code2 == COMPONENT_REF + && (code1 == MINUS_EXPR || code1 == PLUS_EXPR)) + { + gimple tem = arg1_stmt; + code2 = code1; + arg1_stmt = arg2_stmt; + arg2_stmt = tem; + } + else + goto escapes; + + if (!host_integerp (gimple_assign_rhs2 (arg2_stmt), 0)) + goto escapes; + + sub = tree_low_cst (gimple_assign_rhs2 (arg2_stmt), 0); + if (code2 == MINUS_EXPR) + sub = -sub; + if (sub < -48 || sub > -32) + goto escapes; + + arg1 = gimple_assign_rhs1 (arg1_stmt); + arg2 = gimple_assign_rhs1 (arg2_stmt); + if (TREE_CODE (arg2) == SSA_NAME) + { + arg2_stmt = va_list_skip_additions (arg2); + if (arg2_stmt == NULL + || !is_gimple_assign (arg2_stmt) + || gimple_assign_rhs_code (arg2_stmt) != COMPONENT_REF) + goto escapes; + arg2 = gimple_assign_rhs1 (arg2_stmt); + } + if (arg1 != arg2) + goto escapes; + + if (TREE_CODE (arg1) != COMPONENT_REF + || TREE_OPERAND (arg1, 1) != va_list_gpr_counter_field + || get_base_address (arg1) != base) + goto escapes; + + /* Need floating point regs. */ + cfun->va_list_fpr_size |= 2; + return false; + } + if (offset_stmt + && is_gimple_assign (offset_stmt) + && gimple_assign_rhs_code (offset_stmt) == COMPONENT_REF) + offset = gimple_assign_rhs1 (offset_stmt); + } + if (TREE_CODE (offset) != COMPONENT_REF + || TREE_OPERAND (offset, 1) != va_list_gpr_counter_field + || get_base_address (offset) != base) + goto escapes; + else + /* Need general regs. */ + cfun->va_list_fpr_size |= 1; + return false; + +escapes: + si->va_list_escapes = true; + return false; +} +#endif + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. */ + +static void +alpha_setup_incoming_varargs (CUMULATIVE_ARGS *pcum, enum machine_mode mode, + tree type, int *pretend_size, int no_rtl) +{ + CUMULATIVE_ARGS cum = *pcum; + + /* Skip the current argument. */ + targetm.calls.function_arg_advance (&cum, mode, type, true); + +#if TARGET_ABI_UNICOSMK + /* On Unicos/Mk, the standard subroutine __T3E_MISMATCH stores all register + arguments on the stack. Unfortunately, it doesn't always store the first + one (i.e. the one that arrives in $16 or $f16). This is not a problem + with stdargs as we always have at least one named argument there. */ + if (cum.num_reg_words < 6) + { + if (!no_rtl) + { + emit_insn (gen_umk_mismatch_args (GEN_INT (cum.num_reg_words))); + emit_insn (gen_arg_home_umk ()); + } + *pretend_size = 0; + } +#elif TARGET_ABI_OPEN_VMS + /* For VMS, we allocate space for all 6 arg registers plus a count. + + However, if NO registers need to be saved, don't allocate any space. + This is not only because we won't need the space, but because AP + includes the current_pretend_args_size and we don't want to mess up + any ap-relative addresses already made. */ + if (cum.num_args < 6) + { + if (!no_rtl) + { + emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx); + emit_insn (gen_arg_home ()); + } + *pretend_size = 7 * UNITS_PER_WORD; + } +#else + /* On OSF/1 and friends, we allocate space for all 12 arg registers, but + only push those that are remaining. However, if NO registers need to + be saved, don't allocate any space. This is not only because we won't + need the space, but because AP includes the current_pretend_args_size + and we don't want to mess up any ap-relative addresses already made. + + If we are not to use the floating-point registers, save the integer + registers where we would put the floating-point registers. This is + not the most efficient way to implement varargs with just one register + class, but it isn't worth doing anything more efficient in this rare + case. */ + if (cum >= 6) + return; + + if (!no_rtl) + { + int count; + alias_set_type set = get_varargs_alias_set (); + rtx tmp; + + count = cfun->va_list_gpr_size / UNITS_PER_WORD; + if (count > 6 - cum) + count = 6 - cum; + + /* Detect whether integer registers or floating-point registers + are needed by the detected va_arg statements. See above for + how these values are computed. Note that the "escape" value + is VA_LIST_MAX_FPR_SIZE, which is 255, which has both of + these bits set. */ + gcc_assert ((VA_LIST_MAX_FPR_SIZE & 3) == 3); + + if (cfun->va_list_fpr_size & 1) + { + tmp = gen_rtx_MEM (BLKmode, + plus_constant (virtual_incoming_args_rtx, + (cum + 6) * UNITS_PER_WORD)); + MEM_NOTRAP_P (tmp) = 1; + set_mem_alias_set (tmp, set); + move_block_from_reg (16 + cum, tmp, count); + } + + if (cfun->va_list_fpr_size & 2) + { + tmp = gen_rtx_MEM (BLKmode, + plus_constant (virtual_incoming_args_rtx, + cum * UNITS_PER_WORD)); + MEM_NOTRAP_P (tmp) = 1; + set_mem_alias_set (tmp, set); + move_block_from_reg (16 + cum + TARGET_FPREGS*32, tmp, count); + } + } + *pretend_size = 12 * UNITS_PER_WORD; +#endif +} + +static void +alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED) +{ + HOST_WIDE_INT offset; + tree t, offset_field, base_field; + + if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK) + return; + + if (TARGET_ABI_UNICOSMK) + std_expand_builtin_va_start (valist, nextarg); + + /* For Unix, TARGET_SETUP_INCOMING_VARARGS moves the starting address base + up by 48, storing fp arg registers in the first 48 bytes, and the + integer arg registers in the next 48 bytes. This is only done, + however, if any integer registers need to be stored. + + If no integer registers need be stored, then we must subtract 48 + in order to account for the integer arg registers which are counted + in argsize above, but which are not actually stored on the stack. + Must further be careful here about structures straddling the last + integer argument register; that futzes with pretend_args_size, + which changes the meaning of AP. */ + + if (NUM_ARGS < 6) + offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD; + else + offset = -6 * UNITS_PER_WORD + crtl->args.pretend_args_size; + + if (TARGET_ABI_OPEN_VMS) + { + t = make_tree (ptr_type_node, virtual_incoming_args_rtx); + t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, + size_int (offset + NUM_ARGS * UNITS_PER_WORD)); + t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + } + else + { + base_field = TYPE_FIELDS (TREE_TYPE (valist)); + offset_field = DECL_CHAIN (base_field); + + base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field), + valist, base_field, NULL_TREE); + offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field), + valist, offset_field, NULL_TREE); + + t = make_tree (ptr_type_node, virtual_incoming_args_rtx); + t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, + size_int (offset)); + t = build2 (MODIFY_EXPR, TREE_TYPE (base_field), base_field, t); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + t = build_int_cst (NULL_TREE, NUM_ARGS * UNITS_PER_WORD); + t = build2 (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field, t); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + } +} + +static tree +alpha_gimplify_va_arg_1 (tree type, tree base, tree offset, + gimple_seq *pre_p) +{ + tree type_size, ptr_type, addend, t, addr; + gimple_seq internal_post; + + /* If the type could not be passed in registers, skip the block + reserved for the registers. */ + if (targetm.calls.must_pass_in_stack (TYPE_MODE (type), type)) + { + t = build_int_cst (TREE_TYPE (offset), 6*8); + gimplify_assign (offset, + build2 (MAX_EXPR, TREE_TYPE (offset), offset, t), + pre_p); + } + + addend = offset; + ptr_type = build_pointer_type_for_mode (type, ptr_mode, true); + + if (TREE_CODE (type) == COMPLEX_TYPE) + { + tree real_part, imag_part, real_temp; + + real_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base, + offset, pre_p); + + /* Copy the value into a new temporary, lest the formal temporary + be reused out from under us. */ + real_temp = get_initialized_tmp_var (real_part, pre_p, NULL); + + imag_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base, + offset, pre_p); + + return build2 (COMPLEX_EXPR, type, real_temp, imag_part); + } + else if (TREE_CODE (type) == REAL_TYPE) + { + tree fpaddend, cond, fourtyeight; + + fourtyeight = build_int_cst (TREE_TYPE (addend), 6*8); + fpaddend = fold_build2 (MINUS_EXPR, TREE_TYPE (addend), + addend, fourtyeight); + cond = fold_build2 (LT_EXPR, boolean_type_node, addend, fourtyeight); + addend = fold_build3 (COND_EXPR, TREE_TYPE (addend), cond, + fpaddend, addend); + } + + /* Build the final address and force that value into a temporary. */ + addr = build2 (POINTER_PLUS_EXPR, ptr_type, fold_convert (ptr_type, base), + fold_convert (sizetype, addend)); + internal_post = NULL; + gimplify_expr (&addr, pre_p, &internal_post, is_gimple_val, fb_rvalue); + gimple_seq_add_seq (pre_p, internal_post); + + /* Update the offset field. */ + type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type)); + if (type_size == NULL || TREE_OVERFLOW (type_size)) + t = size_zero_node; + else + { + t = size_binop (PLUS_EXPR, type_size, size_int (7)); + t = size_binop (TRUNC_DIV_EXPR, t, size_int (8)); + t = size_binop (MULT_EXPR, t, size_int (8)); + } + t = fold_convert (TREE_TYPE (offset), t); + gimplify_assign (offset, build2 (PLUS_EXPR, TREE_TYPE (offset), offset, t), + pre_p); + + return build_va_arg_indirect_ref (addr); +} + +static tree +alpha_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, + gimple_seq *post_p) +{ + tree offset_field, base_field, offset, base, t, r; + bool indirect; + + if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK) + return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); + + base_field = TYPE_FIELDS (va_list_type_node); + offset_field = DECL_CHAIN (base_field); + base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field), + valist, base_field, NULL_TREE); + offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field), + valist, offset_field, NULL_TREE); + + /* Pull the fields of the structure out into temporaries. Since we never + modify the base field, we can use a formal temporary. Sign-extend the + offset field so that it's the proper width for pointer arithmetic. */ + base = get_formal_tmp_var (base_field, pre_p); + + t = fold_convert (lang_hooks.types.type_for_size (64, 0), offset_field); + offset = get_initialized_tmp_var (t, pre_p, NULL); + + indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false); + if (indirect) + type = build_pointer_type_for_mode (type, ptr_mode, true); + + /* Find the value. Note that this will be a stable indirection, or + a composite of stable indirections in the case of complex. */ + r = alpha_gimplify_va_arg_1 (type, base, offset, pre_p); + + /* Stuff the offset temporary back into its field. */ + gimplify_assign (unshare_expr (offset_field), + fold_convert (TREE_TYPE (offset_field), offset), pre_p); + + if (indirect) + r = build_va_arg_indirect_ref (r); + + return r; +} + +/* Builtins. */ + +enum alpha_builtin +{ + ALPHA_BUILTIN_CMPBGE, + ALPHA_BUILTIN_EXTBL, + ALPHA_BUILTIN_EXTWL, + ALPHA_BUILTIN_EXTLL, + ALPHA_BUILTIN_EXTQL, + ALPHA_BUILTIN_EXTWH, + ALPHA_BUILTIN_EXTLH, + ALPHA_BUILTIN_EXTQH, + ALPHA_BUILTIN_INSBL, + ALPHA_BUILTIN_INSWL, + ALPHA_BUILTIN_INSLL, + ALPHA_BUILTIN_INSQL, + ALPHA_BUILTIN_INSWH, + ALPHA_BUILTIN_INSLH, + ALPHA_BUILTIN_INSQH, + ALPHA_BUILTIN_MSKBL, + ALPHA_BUILTIN_MSKWL, + ALPHA_BUILTIN_MSKLL, + ALPHA_BUILTIN_MSKQL, + ALPHA_BUILTIN_MSKWH, + ALPHA_BUILTIN_MSKLH, + ALPHA_BUILTIN_MSKQH, + ALPHA_BUILTIN_UMULH, + ALPHA_BUILTIN_ZAP, + ALPHA_BUILTIN_ZAPNOT, + ALPHA_BUILTIN_AMASK, + ALPHA_BUILTIN_IMPLVER, + ALPHA_BUILTIN_RPCC, + ALPHA_BUILTIN_THREAD_POINTER, + ALPHA_BUILTIN_SET_THREAD_POINTER, + ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER, + ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER, + + /* TARGET_MAX */ + ALPHA_BUILTIN_MINUB8, + ALPHA_BUILTIN_MINSB8, + ALPHA_BUILTIN_MINUW4, + ALPHA_BUILTIN_MINSW4, + ALPHA_BUILTIN_MAXUB8, + ALPHA_BUILTIN_MAXSB8, + ALPHA_BUILTIN_MAXUW4, + ALPHA_BUILTIN_MAXSW4, + ALPHA_BUILTIN_PERR, + ALPHA_BUILTIN_PKLB, + ALPHA_BUILTIN_PKWB, + ALPHA_BUILTIN_UNPKBL, + ALPHA_BUILTIN_UNPKBW, + + /* TARGET_CIX */ + ALPHA_BUILTIN_CTTZ, + ALPHA_BUILTIN_CTLZ, + ALPHA_BUILTIN_CTPOP, + + ALPHA_BUILTIN_max +}; + +static enum insn_code const code_for_builtin[ALPHA_BUILTIN_max] = { + CODE_FOR_builtin_cmpbge, + CODE_FOR_builtin_extbl, + CODE_FOR_builtin_extwl, + CODE_FOR_builtin_extll, + CODE_FOR_builtin_extql, + CODE_FOR_builtin_extwh, + CODE_FOR_builtin_extlh, + CODE_FOR_builtin_extqh, + CODE_FOR_builtin_insbl, + CODE_FOR_builtin_inswl, + CODE_FOR_builtin_insll, + CODE_FOR_builtin_insql, + CODE_FOR_builtin_inswh, + CODE_FOR_builtin_inslh, + CODE_FOR_builtin_insqh, + CODE_FOR_builtin_mskbl, + CODE_FOR_builtin_mskwl, + CODE_FOR_builtin_mskll, + CODE_FOR_builtin_mskql, + CODE_FOR_builtin_mskwh, + CODE_FOR_builtin_msklh, + CODE_FOR_builtin_mskqh, + CODE_FOR_umuldi3_highpart, + CODE_FOR_builtin_zap, + CODE_FOR_builtin_zapnot, + CODE_FOR_builtin_amask, + CODE_FOR_builtin_implver, + CODE_FOR_builtin_rpcc, + CODE_FOR_load_tp, + CODE_FOR_set_tp, + CODE_FOR_builtin_establish_vms_condition_handler, + CODE_FOR_builtin_revert_vms_condition_handler, + + /* TARGET_MAX */ + CODE_FOR_builtin_minub8, + CODE_FOR_builtin_minsb8, + CODE_FOR_builtin_minuw4, + CODE_FOR_builtin_minsw4, + CODE_FOR_builtin_maxub8, + CODE_FOR_builtin_maxsb8, + CODE_FOR_builtin_maxuw4, + CODE_FOR_builtin_maxsw4, + CODE_FOR_builtin_perr, + CODE_FOR_builtin_pklb, + CODE_FOR_builtin_pkwb, + CODE_FOR_builtin_unpkbl, + CODE_FOR_builtin_unpkbw, + + /* TARGET_CIX */ + CODE_FOR_ctzdi2, + CODE_FOR_clzdi2, + CODE_FOR_popcountdi2 +}; + +struct alpha_builtin_def +{ + const char *name; + enum alpha_builtin code; + unsigned int target_mask; + bool is_const; +}; + +static struct alpha_builtin_def const zero_arg_builtins[] = { + { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0, true }, + { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0, false } +}; + +static struct alpha_builtin_def const one_arg_builtins[] = { + { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0, true }, + { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX, true }, + { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX, true }, + { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX, true }, + { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX, true }, + { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX, true }, + { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX, true }, + { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX, true } +}; + +static struct alpha_builtin_def const two_arg_builtins[] = { + { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0, true }, + { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0, true }, + { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0, true }, + { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0, true }, + { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0, true }, + { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0, true }, + { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0, true }, + { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0, true }, + { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0, true }, + { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0, true }, + { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0, true }, + { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0, true }, + { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0, true }, + { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0, true }, + { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0, true }, + { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0, true }, + { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0, true }, + { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0, true }, + { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0, true }, + { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0, true }, + { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0, true }, + { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0, true }, + { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0, true }, + { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0, true }, + { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0, true }, + { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX, true }, + { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX, true }, + { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX, true }, + { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX, true }, + { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX, true }, + { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX, true }, + { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX, true }, + { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX, true }, + { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX, true } +}; + +static GTY(()) tree alpha_v8qi_u; +static GTY(()) tree alpha_v8qi_s; +static GTY(()) tree alpha_v4hi_u; +static GTY(()) tree alpha_v4hi_s; + +static GTY(()) tree alpha_builtins[(int) ALPHA_BUILTIN_max]; + +/* Return the alpha builtin for CODE. */ + +static tree +alpha_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) +{ + if (code >= ALPHA_BUILTIN_max) + return error_mark_node; + return alpha_builtins[code]; +} + +/* Helper function of alpha_init_builtins. Add the built-in specified + by NAME, TYPE, CODE, and ECF. */ + +static void +alpha_builtin_function (const char *name, tree ftype, + enum alpha_builtin code, unsigned ecf) +{ + tree decl = add_builtin_function (name, ftype, (int) code, + BUILT_IN_MD, NULL, NULL_TREE); + + if (ecf & ECF_CONST) + TREE_READONLY (decl) = 1; + if (ecf & ECF_NOTHROW) + TREE_NOTHROW (decl) = 1; + + alpha_builtins [(int) code] = decl; +} + +/* Helper function of alpha_init_builtins. Add the COUNT built-in + functions pointed to by P, with function type FTYPE. */ + +static void +alpha_add_builtins (const struct alpha_builtin_def *p, size_t count, + tree ftype) +{ + size_t i; + + for (i = 0; i < count; ++i, ++p) + if ((target_flags & p->target_mask) == p->target_mask) + alpha_builtin_function (p->name, ftype, p->code, + (p->is_const ? ECF_CONST : 0) | ECF_NOTHROW); +} + +static void +alpha_init_builtins (void) +{ + tree dimode_integer_type_node; + tree ftype; + + dimode_integer_type_node = lang_hooks.types.type_for_mode (DImode, 0); + + /* Fwrite on VMS is non-standard. */ +#if TARGET_ABI_OPEN_VMS + implicit_built_in_decls[(int) BUILT_IN_FWRITE] = NULL_TREE; + implicit_built_in_decls[(int) BUILT_IN_FWRITE_UNLOCKED] = NULL_TREE; +#endif + + ftype = build_function_type (dimode_integer_type_node, void_list_node); + alpha_add_builtins (zero_arg_builtins, ARRAY_SIZE (zero_arg_builtins), + ftype); + + ftype = build_function_type_list (dimode_integer_type_node, + dimode_integer_type_node, NULL_TREE); + alpha_add_builtins (one_arg_builtins, ARRAY_SIZE (one_arg_builtins), + ftype); + + ftype = build_function_type_list (dimode_integer_type_node, + dimode_integer_type_node, + dimode_integer_type_node, NULL_TREE); + alpha_add_builtins (two_arg_builtins, ARRAY_SIZE (two_arg_builtins), + ftype); + + ftype = build_function_type (ptr_type_node, void_list_node); + alpha_builtin_function ("__builtin_thread_pointer", ftype, + ALPHA_BUILTIN_THREAD_POINTER, ECF_NOTHROW); + + ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); + alpha_builtin_function ("__builtin_set_thread_pointer", ftype, + ALPHA_BUILTIN_SET_THREAD_POINTER, ECF_NOTHROW); + + if (TARGET_ABI_OPEN_VMS) + { + ftype = build_function_type_list (ptr_type_node, ptr_type_node, + NULL_TREE); + alpha_builtin_function ("__builtin_establish_vms_condition_handler", + ftype, + ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER, + 0); + + ftype = build_function_type_list (ptr_type_node, void_type_node, + NULL_TREE); + alpha_builtin_function ("__builtin_revert_vms_condition_handler", ftype, + ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER, 0); + } + + alpha_v8qi_u = build_vector_type (unsigned_intQI_type_node, 8); + alpha_v8qi_s = build_vector_type (intQI_type_node, 8); + alpha_v4hi_u = build_vector_type (unsigned_intHI_type_node, 4); + alpha_v4hi_s = build_vector_type (intHI_type_node, 4); +} + +/* Expand an expression EXP that calls a built-in function, + with result going to TARGET if that's convenient + (and in mode MODE if that's convenient). + SUBTARGET may be used as the target for computing one of EXP's operands. + IGNORE is nonzero if the value is to be ignored. */ + +static rtx +alpha_expand_builtin (tree exp, rtx target, + rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) +{ +#define MAX_ARGS 2 + + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + unsigned int fcode = DECL_FUNCTION_CODE (fndecl); + tree arg; + call_expr_arg_iterator iter; + enum insn_code icode; + rtx op[MAX_ARGS], pat; + int arity; + bool nonvoid; + + if (fcode >= ALPHA_BUILTIN_max) + internal_error ("bad builtin fcode"); + icode = code_for_builtin[fcode]; + if (icode == 0) + internal_error ("bad builtin fcode"); + + nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; + + arity = 0; + FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) + { + const struct insn_operand_data *insn_op; + + if (arg == error_mark_node) + return NULL_RTX; + if (arity > MAX_ARGS) + return NULL_RTX; + + insn_op = &insn_data[icode].operand[arity + nonvoid]; + + op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL); + + if (!(*insn_op->predicate) (op[arity], insn_op->mode)) + op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]); + arity++; + } + + if (nonvoid) + { + enum machine_mode tmode = insn_data[icode].operand[0].mode; + if (!target + || GET_MODE (target) != tmode + || !(*insn_data[icode].operand[0].predicate) (target, tmode)) + target = gen_reg_rtx (tmode); + } + + switch (arity) + { + case 0: + pat = GEN_FCN (icode) (target); + break; + case 1: + if (nonvoid) + pat = GEN_FCN (icode) (target, op[0]); + else + pat = GEN_FCN (icode) (op[0]); + break; + case 2: + pat = GEN_FCN (icode) (target, op[0], op[1]); + break; + default: + gcc_unreachable (); + } + if (!pat) + return NULL_RTX; + emit_insn (pat); + + if (nonvoid) + return target; + else + return const0_rtx; +} + + +/* Several bits below assume HWI >= 64 bits. This should be enforced + by config.gcc. */ +#if HOST_BITS_PER_WIDE_INT < 64 +# error "HOST_WIDE_INT too small" +#endif + +/* Fold the builtin for the CMPBGE instruction. This is a vector comparison + with an 8-bit output vector. OPINT contains the integer operands; bit N + of OP_CONST is set if OPINT[N] is valid. */ + +static tree +alpha_fold_builtin_cmpbge (unsigned HOST_WIDE_INT opint[], long op_const) +{ + if (op_const == 3) + { + int i, val; + for (i = 0, val = 0; i < 8; ++i) + { + unsigned HOST_WIDE_INT c0 = (opint[0] >> (i * 8)) & 0xff; + unsigned HOST_WIDE_INT c1 = (opint[1] >> (i * 8)) & 0xff; + if (c0 >= c1) + val |= 1 << i; + } + return build_int_cst (long_integer_type_node, val); + } + else if (op_const == 2 && opint[1] == 0) + return build_int_cst (long_integer_type_node, 0xff); + return NULL; +} + +/* Fold the builtin for the ZAPNOT instruction. This is essentially a + specialized form of an AND operation. Other byte manipulation instructions + are defined in terms of this instruction, so this is also used as a + subroutine for other builtins. + + OP contains the tree operands; OPINT contains the extracted integer values. + Bit N of OP_CONST it set if OPINT[N] is valid. OP may be null if only + OPINT may be considered. */ + +static tree +alpha_fold_builtin_zapnot (tree *op, unsigned HOST_WIDE_INT opint[], + long op_const) +{ + if (op_const & 2) + { + unsigned HOST_WIDE_INT mask = 0; + int i; + + for (i = 0; i < 8; ++i) + if ((opint[1] >> i) & 1) + mask |= (unsigned HOST_WIDE_INT)0xff << (i * 8); + + if (op_const & 1) + return build_int_cst (long_integer_type_node, opint[0] & mask); + + if (op) + return fold_build2 (BIT_AND_EXPR, long_integer_type_node, op[0], + build_int_cst (long_integer_type_node, mask)); + } + else if ((op_const & 1) && opint[0] == 0) + return build_int_cst (long_integer_type_node, 0); + return NULL; +} + +/* Fold the builtins for the EXT family of instructions. */ + +static tree +alpha_fold_builtin_extxx (tree op[], unsigned HOST_WIDE_INT opint[], + long op_const, unsigned HOST_WIDE_INT bytemask, + bool is_high) +{ + long zap_const = 2; + tree *zap_op = NULL; + + if (op_const & 2) + { + unsigned HOST_WIDE_INT loc; + + loc = opint[1] & 7; + if (BYTES_BIG_ENDIAN) + loc ^= 7; + loc *= 8; + + if (loc != 0) + { + if (op_const & 1) + { + unsigned HOST_WIDE_INT temp = opint[0]; + if (is_high) + temp <<= loc; + else + temp >>= loc; + opint[0] = temp; + zap_const = 3; + } + } + else + zap_op = op; + } + + opint[1] = bytemask; + return alpha_fold_builtin_zapnot (zap_op, opint, zap_const); +} + +/* Fold the builtins for the INS family of instructions. */ + +static tree +alpha_fold_builtin_insxx (tree op[], unsigned HOST_WIDE_INT opint[], + long op_const, unsigned HOST_WIDE_INT bytemask, + bool is_high) +{ + if ((op_const & 1) && opint[0] == 0) + return build_int_cst (long_integer_type_node, 0); + + if (op_const & 2) + { + unsigned HOST_WIDE_INT temp, loc, byteloc; + tree *zap_op = NULL; + + loc = opint[1] & 7; + if (BYTES_BIG_ENDIAN) + loc ^= 7; + bytemask <<= loc; + + temp = opint[0]; + if (is_high) + { + byteloc = (64 - (loc * 8)) & 0x3f; + if (byteloc == 0) + zap_op = op; + else + temp >>= byteloc; + bytemask >>= 8; + } + else + { + byteloc = loc * 8; + if (byteloc == 0) + zap_op = op; + else + temp <<= byteloc; + } + + opint[0] = temp; + opint[1] = bytemask; + return alpha_fold_builtin_zapnot (zap_op, opint, op_const); + } + + return NULL; +} + +static tree +alpha_fold_builtin_mskxx (tree op[], unsigned HOST_WIDE_INT opint[], + long op_const, unsigned HOST_WIDE_INT bytemask, + bool is_high) +{ + if (op_const & 2) + { + unsigned HOST_WIDE_INT loc; + + loc = opint[1] & 7; + if (BYTES_BIG_ENDIAN) + loc ^= 7; + bytemask <<= loc; + + if (is_high) + bytemask >>= 8; + + opint[1] = bytemask ^ 0xff; + } + + return alpha_fold_builtin_zapnot (op, opint, op_const); +} + +static tree +alpha_fold_builtin_umulh (unsigned HOST_WIDE_INT opint[], long op_const) +{ + switch (op_const) + { + case 3: + { + unsigned HOST_WIDE_INT l; + HOST_WIDE_INT h; + + mul_double (opint[0], 0, opint[1], 0, &l, &h); + +#if HOST_BITS_PER_WIDE_INT > 64 +# error fixme +#endif + + return build_int_cst (long_integer_type_node, h); + } + + case 1: + opint[1] = opint[0]; + /* FALLTHRU */ + case 2: + /* Note that (X*1) >> 64 == 0. */ + if (opint[1] == 0 || opint[1] == 1) + return build_int_cst (long_integer_type_node, 0); + break; + } + return NULL; +} + +static tree +alpha_fold_vector_minmax (enum tree_code code, tree op[], tree vtype) +{ + tree op0 = fold_convert (vtype, op[0]); + tree op1 = fold_convert (vtype, op[1]); + tree val = fold_build2 (code, vtype, op0, op1); + return fold_build1 (VIEW_CONVERT_EXPR, long_integer_type_node, val); +} + +static tree +alpha_fold_builtin_perr (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp = 0; + int i; + + if (op_const != 3) + return NULL; + + for (i = 0; i < 8; ++i) + { + unsigned HOST_WIDE_INT a = (opint[0] >> (i * 8)) & 0xff; + unsigned HOST_WIDE_INT b = (opint[1] >> (i * 8)) & 0xff; + if (a >= b) + temp += a - b; + else + temp += b - a; + } + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_pklb (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + temp = opint[0] & 0xff; + temp |= (opint[0] >> 24) & 0xff00; + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_pkwb (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + temp = opint[0] & 0xff; + temp |= (opint[0] >> 8) & 0xff00; + temp |= (opint[0] >> 16) & 0xff0000; + temp |= (opint[0] >> 24) & 0xff000000; + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_unpkbl (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + temp = opint[0] & 0xff; + temp |= (opint[0] & 0xff00) << 24; + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_unpkbw (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + temp = opint[0] & 0xff; + temp |= (opint[0] & 0x0000ff00) << 8; + temp |= (opint[0] & 0x00ff0000) << 16; + temp |= (opint[0] & 0xff000000) << 24; + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_cttz (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + if (opint[0] == 0) + temp = 64; + else + temp = exact_log2 (opint[0] & -opint[0]); + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_ctlz (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp; + + if (op_const == 0) + return NULL; + + if (opint[0] == 0) + temp = 64; + else + temp = 64 - floor_log2 (opint[0]) - 1; + + return build_int_cst (long_integer_type_node, temp); +} + +static tree +alpha_fold_builtin_ctpop (unsigned HOST_WIDE_INT opint[], long op_const) +{ + unsigned HOST_WIDE_INT temp, op; + + if (op_const == 0) + return NULL; + + op = opint[0]; + temp = 0; + while (op) + temp++, op &= op - 1; + + return build_int_cst (long_integer_type_node, temp); +} + +/* Fold one of our builtin functions. */ + +static tree +alpha_fold_builtin (tree fndecl, int n_args, tree *op, + bool ignore ATTRIBUTE_UNUSED) +{ + unsigned HOST_WIDE_INT opint[MAX_ARGS]; + long op_const = 0; + int i; + + if (n_args >= MAX_ARGS) + return NULL; + + for (i = 0; i < n_args; i++) + { + tree arg = op[i]; + if (arg == error_mark_node) + return NULL; + + opint[i] = 0; + if (TREE_CODE (arg) == INTEGER_CST) + { + op_const |= 1L << i; + opint[i] = int_cst_value (arg); + } + } + + switch (DECL_FUNCTION_CODE (fndecl)) + { + case ALPHA_BUILTIN_CMPBGE: + return alpha_fold_builtin_cmpbge (opint, op_const); + + case ALPHA_BUILTIN_EXTBL: + return alpha_fold_builtin_extxx (op, opint, op_const, 0x01, false); + case ALPHA_BUILTIN_EXTWL: + return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, false); + case ALPHA_BUILTIN_EXTLL: + return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, false); + case ALPHA_BUILTIN_EXTQL: + return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, false); + case ALPHA_BUILTIN_EXTWH: + return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, true); + case ALPHA_BUILTIN_EXTLH: + return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, true); + case ALPHA_BUILTIN_EXTQH: + return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, true); + + case ALPHA_BUILTIN_INSBL: + return alpha_fold_builtin_insxx (op, opint, op_const, 0x01, false); + case ALPHA_BUILTIN_INSWL: + return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, false); + case ALPHA_BUILTIN_INSLL: + return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, false); + case ALPHA_BUILTIN_INSQL: + return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, false); + case ALPHA_BUILTIN_INSWH: + return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, true); + case ALPHA_BUILTIN_INSLH: + return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, true); + case ALPHA_BUILTIN_INSQH: + return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, true); + + case ALPHA_BUILTIN_MSKBL: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0x01, false); + case ALPHA_BUILTIN_MSKWL: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, false); + case ALPHA_BUILTIN_MSKLL: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, false); + case ALPHA_BUILTIN_MSKQL: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, false); + case ALPHA_BUILTIN_MSKWH: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, true); + case ALPHA_BUILTIN_MSKLH: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, true); + case ALPHA_BUILTIN_MSKQH: + return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, true); + + case ALPHA_BUILTIN_UMULH: + return alpha_fold_builtin_umulh (opint, op_const); + + case ALPHA_BUILTIN_ZAP: + opint[1] ^= 0xff; + /* FALLTHRU */ + case ALPHA_BUILTIN_ZAPNOT: + return alpha_fold_builtin_zapnot (op, opint, op_const); + + case ALPHA_BUILTIN_MINUB8: + return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_u); + case ALPHA_BUILTIN_MINSB8: + return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_s); + case ALPHA_BUILTIN_MINUW4: + return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_u); + case ALPHA_BUILTIN_MINSW4: + return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_s); + case ALPHA_BUILTIN_MAXUB8: + return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_u); + case ALPHA_BUILTIN_MAXSB8: + return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_s); + case ALPHA_BUILTIN_MAXUW4: + return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_u); + case ALPHA_BUILTIN_MAXSW4: + return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_s); + + case ALPHA_BUILTIN_PERR: + return alpha_fold_builtin_perr (opint, op_const); + case ALPHA_BUILTIN_PKLB: + return alpha_fold_builtin_pklb (opint, op_const); + case ALPHA_BUILTIN_PKWB: + return alpha_fold_builtin_pkwb (opint, op_const); + case ALPHA_BUILTIN_UNPKBL: + return alpha_fold_builtin_unpkbl (opint, op_const); + case ALPHA_BUILTIN_UNPKBW: + return alpha_fold_builtin_unpkbw (opint, op_const); + + case ALPHA_BUILTIN_CTTZ: + return alpha_fold_builtin_cttz (opint, op_const); + case ALPHA_BUILTIN_CTLZ: + return alpha_fold_builtin_ctlz (opint, op_const); + case ALPHA_BUILTIN_CTPOP: + return alpha_fold_builtin_ctpop (opint, op_const); + + case ALPHA_BUILTIN_AMASK: + case ALPHA_BUILTIN_IMPLVER: + case ALPHA_BUILTIN_RPCC: + case ALPHA_BUILTIN_THREAD_POINTER: + case ALPHA_BUILTIN_SET_THREAD_POINTER: + /* None of these are foldable at compile-time. */ + default: + return NULL; + } +} + +/* This page contains routines that are used to determine what the function + prologue and epilogue code will do and write them out. */ + +/* Compute the size of the save area in the stack. */ + +/* These variables are used for communication between the following functions. + They indicate various things about the current function being compiled + that are used to tell what kind of prologue, epilogue and procedure + descriptor to generate. */ + +/* Nonzero if we need a stack procedure. */ +enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2}; +static enum alpha_procedure_types alpha_procedure_type; + +/* Register number (either FP or SP) that is used to unwind the frame. */ +static int vms_unwind_regno; + +/* Register number used to save FP. We need not have one for RA since + we don't modify it for register procedures. This is only defined + for register frame procedures. */ +static int vms_save_fp_regno; + +/* Register number used to reference objects off our PV. */ +static int vms_base_regno; + +/* Compute register masks for saved registers. */ + +static void +alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP) +{ + unsigned long imask = 0; + unsigned long fmask = 0; + unsigned int i; + + /* When outputting a thunk, we don't have valid register life info, + but assemble_start_function wants to output .frame and .mask + directives. */ + if (cfun->is_thunk) + { + *imaskP = 0; + *fmaskP = 0; + return; + } + + if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK) + imask |= (1UL << HARD_FRAME_POINTER_REGNUM); + + /* One for every register we have to save. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (! fixed_regs[i] && ! call_used_regs[i] + && df_regs_ever_live_p (i) && i != REG_RA + && (!TARGET_ABI_UNICOSMK || i != HARD_FRAME_POINTER_REGNUM)) + { + if (i < 32) + imask |= (1UL << i); + else + fmask |= (1UL << (i - 32)); + } + + /* We need to restore these for the handler. */ + if (crtl->calls_eh_return) + { + for (i = 0; ; ++i) + { + unsigned regno = EH_RETURN_DATA_REGNO (i); + if (regno == INVALID_REGNUM) + break; + imask |= 1UL << regno; + } + } + + /* If any register spilled, then spill the return address also. */ + /* ??? This is required by the Digital stack unwind specification + and isn't needed if we're doing Dwarf2 unwinding. */ + if (imask || fmask || alpha_ra_ever_killed ()) + imask |= (1UL << REG_RA); + + *imaskP = imask; + *fmaskP = fmask; +} + +int +alpha_sa_size (void) +{ + unsigned long mask[2]; + int sa_size = 0; + int i, j; + + alpha_sa_mask (&mask[0], &mask[1]); + + if (TARGET_ABI_UNICOSMK) + { + if (mask[0] || mask[1]) + sa_size = 14; + } + else + { + for (j = 0; j < 2; ++j) + for (i = 0; i < 32; ++i) + if ((mask[j] >> i) & 1) + sa_size++; + } + + if (TARGET_ABI_UNICOSMK) + { + /* We might not need to generate a frame if we don't make any calls + (including calls to __T3E_MISMATCH if this is a vararg function), + don't have any local variables which require stack slots, don't + use alloca and have not determined that we need a frame for other + reasons. */ + + alpha_procedure_type + = (sa_size || get_frame_size() != 0 + || crtl->outgoing_args_size + || cfun->stdarg || cfun->calls_alloca + || frame_pointer_needed) + ? PT_STACK : PT_REGISTER; + + /* Always reserve space for saving callee-saved registers if we + need a frame as required by the calling convention. */ + if (alpha_procedure_type == PT_STACK) + sa_size = 14; + } + else if (TARGET_ABI_OPEN_VMS) + { + /* Start with a stack procedure if we make any calls (REG_RA used), or + need a frame pointer, with a register procedure if we otherwise need + at least a slot, and with a null procedure in other cases. */ + if ((mask[0] >> REG_RA) & 1 || frame_pointer_needed) + alpha_procedure_type = PT_STACK; + else if (get_frame_size() != 0) + alpha_procedure_type = PT_REGISTER; + else + alpha_procedure_type = PT_NULL; + + /* Don't reserve space for saving FP & RA yet. Do that later after we've + made the final decision on stack procedure vs register procedure. */ + if (alpha_procedure_type == PT_STACK) + sa_size -= 2; + + /* Decide whether to refer to objects off our PV via FP or PV. + If we need FP for something else or if we receive a nonlocal + goto (which expects PV to contain the value), we must use PV. + Otherwise, start by assuming we can use FP. */ + + vms_base_regno + = (frame_pointer_needed + || cfun->has_nonlocal_label + || alpha_procedure_type == PT_STACK + || crtl->outgoing_args_size) + ? REG_PV : HARD_FRAME_POINTER_REGNUM; + + /* If we want to copy PV into FP, we need to find some register + in which to save FP. */ + + vms_save_fp_regno = -1; + if (vms_base_regno == HARD_FRAME_POINTER_REGNUM) + for (i = 0; i < 32; i++) + if (! fixed_regs[i] && call_used_regs[i] && ! df_regs_ever_live_p (i)) + vms_save_fp_regno = i; + + /* A VMS condition handler requires a stack procedure in our + implementation. (not required by the calling standard). */ + if ((vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER) + || cfun->machine->uses_condition_handler) + vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK; + else if (alpha_procedure_type == PT_NULL) + vms_base_regno = REG_PV; + + /* Stack unwinding should be done via FP unless we use it for PV. */ + vms_unwind_regno = (vms_base_regno == REG_PV + ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); + + /* If this is a stack procedure, allow space for saving FP, RA and + a condition handler slot if needed. */ + if (alpha_procedure_type == PT_STACK) + sa_size += 2 + cfun->machine->uses_condition_handler; + } + else + { + /* Our size must be even (multiple of 16 bytes). */ + if (sa_size & 1) + sa_size++; + } + + return sa_size * 8; +} + +/* Define the offset between two registers, one to be eliminated, + and the other its replacement, at the start of a routine. */ + +HOST_WIDE_INT +alpha_initial_elimination_offset (unsigned int from, + unsigned int to ATTRIBUTE_UNUSED) +{ + HOST_WIDE_INT ret; + + ret = alpha_sa_size (); + ret += ALPHA_ROUND (crtl->outgoing_args_size); + + switch (from) + { + case FRAME_POINTER_REGNUM: + break; + + case ARG_POINTER_REGNUM: + ret += (ALPHA_ROUND (get_frame_size () + + crtl->args.pretend_args_size) + - crtl->args.pretend_args_size); + break; + + default: + gcc_unreachable (); + } + + return ret; +} + +#if TARGET_ABI_OPEN_VMS + +/* Worker function for TARGET_CAN_ELIMINATE. */ + +static bool +alpha_vms_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) +{ + /* We need the alpha_procedure_type to decide. Evaluate it now. */ + alpha_sa_size (); + + switch (alpha_procedure_type) + { + case PT_NULL: + /* NULL procedures have no frame of their own and we only + know how to resolve from the current stack pointer. */ + return to == STACK_POINTER_REGNUM; + + case PT_REGISTER: + case PT_STACK: + /* We always eliminate except to the stack pointer if there is no + usable frame pointer at hand. */ + return (to != STACK_POINTER_REGNUM + || vms_unwind_regno != HARD_FRAME_POINTER_REGNUM); + } + + gcc_unreachable (); +} + +/* FROM is to be eliminated for TO. Return the offset so that TO+offset + designates the same location as FROM. */ + +HOST_WIDE_INT +alpha_vms_initial_elimination_offset (unsigned int from, unsigned int to) +{ + /* The only possible attempts we ever expect are ARG or FRAME_PTR to + HARD_FRAME or STACK_PTR. We need the alpha_procedure_type to decide + on the proper computations and will need the register save area size + in most cases. */ + + HOST_WIDE_INT sa_size = alpha_sa_size (); + + /* PT_NULL procedures have no frame of their own and we only allow + elimination to the stack pointer. This is the argument pointer and we + resolve the soft frame pointer to that as well. */ + + if (alpha_procedure_type == PT_NULL) + return 0; + + /* For a PT_STACK procedure the frame layout looks as follows + + -----> decreasing addresses + + < size rounded up to 16 | likewise > + --------------#------------------------------+++--------------+++-------# + incoming args # pretended args | "frame" | regs sa | PV | outgoing args # + --------------#---------------------------------------------------------# + ^ ^ ^ ^ + ARG_PTR FRAME_PTR HARD_FRAME_PTR STACK_PTR + + + PT_REGISTER procedures are similar in that they may have a frame of their + own. They have no regs-sa/pv/outgoing-args area. + + We first compute offset to HARD_FRAME_PTR, then add what we need to get + to STACK_PTR if need be. */ + + { + HOST_WIDE_INT offset; + HOST_WIDE_INT pv_save_size = alpha_procedure_type == PT_STACK ? 8 : 0; + + switch (from) + { + case FRAME_POINTER_REGNUM: + offset = ALPHA_ROUND (sa_size + pv_save_size); + break; + case ARG_POINTER_REGNUM: + offset = (ALPHA_ROUND (sa_size + pv_save_size + + get_frame_size () + + crtl->args.pretend_args_size) + - crtl->args.pretend_args_size); + break; + default: + gcc_unreachable (); + } + + if (to == STACK_POINTER_REGNUM) + offset += ALPHA_ROUND (crtl->outgoing_args_size); + + return offset; + } +} + +#define COMMON_OBJECT "common_object" + +static tree +common_object_handler (tree *node, tree name ATTRIBUTE_UNUSED, + tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, + bool *no_add_attrs ATTRIBUTE_UNUSED) +{ + tree decl = *node; + gcc_assert (DECL_P (decl)); + + DECL_COMMON (decl) = 1; + return NULL_TREE; +} + +static const struct attribute_spec vms_attribute_table[] = +{ + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ + { COMMON_OBJECT, 0, 1, true, false, false, common_object_handler }, + { NULL, 0, 0, false, false, false, NULL } +}; + +void +vms_output_aligned_decl_common(FILE *file, tree decl, const char *name, + unsigned HOST_WIDE_INT size, + unsigned int align) +{ + tree attr = DECL_ATTRIBUTES (decl); + fprintf (file, "%s", COMMON_ASM_OP); + assemble_name (file, name); + fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED, size); + /* ??? Unlike on OSF/1, the alignment factor is not in log units. */ + fprintf (file, ",%u", align / BITS_PER_UNIT); + if (attr) + { + attr = lookup_attribute (COMMON_OBJECT, attr); + if (attr) + fprintf (file, ",%s", + IDENTIFIER_POINTER (TREE_VALUE (TREE_VALUE (attr)))); + } + fputc ('\n', file); +} + +#undef COMMON_OBJECT + +#endif + +static int +find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx; +} + +int +alpha_find_lo_sum_using_gp (rtx insn) +{ + return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0; +} + +static int +alpha_does_function_need_gp (void) +{ + rtx insn; + + /* The GP being variable is an OSF abi thing. */ + if (! TARGET_ABI_OSF) + return 0; + + /* We need the gp to load the address of __mcount. */ + if (TARGET_PROFILING_NEEDS_GP && crtl->profile) + return 1; + + /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */ + if (cfun->is_thunk) + return 1; + + /* The nonlocal receiver pattern assumes that the gp is valid for + the nested function. Reasonable because it's almost always set + correctly already. For the cases where that's wrong, make sure + the nested function loads its gp on entry. */ + if (crtl->has_nonlocal_goto) + return 1; + + /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first. + Even if we are a static function, we still need to do this in case + our address is taken and passed to something like qsort. */ + + push_topmost_sequence (); + insn = get_insns (); + pop_topmost_sequence (); + + for (; insn; insn = NEXT_INSN (insn)) + if (NONDEBUG_INSN_P (insn) + && ! JUMP_TABLE_DATA_P (insn) + && GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER + && get_attr_usegp (insn)) + return 1; + + return 0; +} + + +/* Helper function to set RTX_FRAME_RELATED_P on instructions, including + sequences. */ + +static rtx +set_frame_related_p (void) +{ + rtx seq = get_insns (); + rtx insn; + + end_sequence (); + + if (!seq) + return NULL_RTX; + + if (INSN_P (seq)) + { + insn = seq; + while (insn != NULL_RTX) + { + RTX_FRAME_RELATED_P (insn) = 1; + insn = NEXT_INSN (insn); + } + seq = emit_insn (seq); + } + else + { + seq = emit_insn (seq); + RTX_FRAME_RELATED_P (seq) = 1; + } + return seq; +} + +#define FRP(exp) (start_sequence (), exp, set_frame_related_p ()) + +/* Generates a store with the proper unwind info attached. VALUE is + stored at BASE_REG+BASE_OFS. If FRAME_BIAS is nonzero, then BASE_REG + contains SP+FRAME_BIAS, and that is the unwind info that should be + generated. If FRAME_REG != VALUE, then VALUE is being stored on + behalf of FRAME_REG, and FRAME_REG should be present in the unwind. */ + +static void +emit_frame_store_1 (rtx value, rtx base_reg, HOST_WIDE_INT frame_bias, + HOST_WIDE_INT base_ofs, rtx frame_reg) +{ + rtx addr, mem, insn; + + addr = plus_constant (base_reg, base_ofs); + mem = gen_frame_mem (DImode, addr); + + insn = emit_move_insn (mem, value); + RTX_FRAME_RELATED_P (insn) = 1; + + if (frame_bias || value != frame_reg) + { + if (frame_bias) + { + addr = plus_constant (stack_pointer_rtx, frame_bias + base_ofs); + mem = gen_rtx_MEM (DImode, addr); + } + + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_rtx_SET (VOIDmode, mem, frame_reg)); + } +} + +static void +emit_frame_store (unsigned int regno, rtx base_reg, + HOST_WIDE_INT frame_bias, HOST_WIDE_INT base_ofs) +{ + rtx reg = gen_rtx_REG (DImode, regno); + emit_frame_store_1 (reg, base_reg, frame_bias, base_ofs, reg); +} + +/* Compute the frame size. SIZE is the size of the "naked" frame + and SA_SIZE is the size of the register save area. */ + +static HOST_WIDE_INT +compute_frame_size (HOST_WIDE_INT size, HOST_WIDE_INT sa_size) +{ + if (TARGET_ABI_OPEN_VMS) + return ALPHA_ROUND (sa_size + + (alpha_procedure_type == PT_STACK ? 8 : 0) + + size + + crtl->args.pretend_args_size); + else if (TARGET_ABI_UNICOSMK) + /* We have to allocate space for the DSIB if we generate a frame. */ + return ALPHA_ROUND (sa_size + + (alpha_procedure_type == PT_STACK ? 48 : 0)) + + ALPHA_ROUND (size + + crtl->outgoing_args_size); + else + return ALPHA_ROUND (crtl->outgoing_args_size) + + sa_size + + ALPHA_ROUND (size + + crtl->args.pretend_args_size); +} + +/* Write function prologue. */ + +/* On vms we have two kinds of functions: + + - stack frame (PROC_STACK) + these are 'normal' functions with local vars and which are + calling other functions + - register frame (PROC_REGISTER) + keeps all data in registers, needs no stack + + We must pass this to the assembler so it can generate the + proper pdsc (procedure descriptor) + This is done with the '.pdesc' command. + + On not-vms, we don't really differentiate between the two, as we can + simply allocate stack without saving registers. */ + +void +alpha_expand_prologue (void) +{ + /* Registers to save. */ + unsigned long imask = 0; + unsigned long fmask = 0; + /* Stack space needed for pushing registers clobbered by us. */ + HOST_WIDE_INT sa_size; + /* Complete stack size needed. */ + HOST_WIDE_INT frame_size; + /* Probed stack size; it additionally includes the size of + the "reserve region" if any. */ + HOST_WIDE_INT probed_size; + /* Offset from base reg to register save area. */ + HOST_WIDE_INT reg_offset; + rtx sa_reg; + int i; + + sa_size = alpha_sa_size (); + frame_size = compute_frame_size (get_frame_size (), sa_size); + + if (flag_stack_usage) + current_function_static_stack_size = frame_size; + + if (TARGET_ABI_OPEN_VMS) + reg_offset = 8 + 8 * cfun->machine->uses_condition_handler; + else + reg_offset = ALPHA_ROUND (crtl->outgoing_args_size); + + alpha_sa_mask (&imask, &fmask); + + /* Emit an insn to reload GP, if needed. */ + if (TARGET_ABI_OSF) + { + alpha_function_needs_gp = alpha_does_function_need_gp (); + if (alpha_function_needs_gp) + emit_insn (gen_prologue_ldgp ()); + } + + /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert + the call to mcount ourselves, rather than having the linker do it + magically in response to -pg. Since _mcount has special linkage, + don't represent the call as a call. */ + if (TARGET_PROFILING_NEEDS_GP && crtl->profile) + emit_insn (gen_prologue_mcount ()); + + if (TARGET_ABI_UNICOSMK) + unicosmk_gen_dsib (&imask); + + /* Adjust the stack by the frame size. If the frame size is > 4096 + bytes, we need to be sure we probe somewhere in the first and last + 4096 bytes (we can probably get away without the latter test) and + every 8192 bytes in between. If the frame size is > 32768, we + do this in a loop. Otherwise, we generate the explicit probe + instructions. + + Note that we are only allowed to adjust sp once in the prologue. */ + + probed_size = frame_size; + if (flag_stack_check) + probed_size += STACK_CHECK_PROTECT; + + if (probed_size <= 32768) + { + if (probed_size > 4096) + { + int probed; + + for (probed = 4096; probed < probed_size; probed += 8192) + emit_insn (gen_probe_stack (GEN_INT (TARGET_ABI_UNICOSMK + ? -probed + 64 + : -probed))); + + /* We only have to do this probe if we aren't saving registers or + if we are probing beyond the frame because of -fstack-check. */ + if ((sa_size == 0 && probed_size > probed - 4096) + || flag_stack_check) + emit_insn (gen_probe_stack (GEN_INT (-probed_size))); + } + + if (frame_size != 0) + FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (TARGET_ABI_UNICOSMK + ? -frame_size + 64 + : -frame_size)))); + } + else + { + /* Here we generate code to set R22 to SP + 4096 and set R23 to the + number of 8192 byte blocks to probe. We then probe each block + in the loop and then set SP to the proper location. If the + amount remaining is > 4096, we have to do one more probe if we + are not saving any registers or if we are probing beyond the + frame because of -fstack-check. */ + + HOST_WIDE_INT blocks = (probed_size + 4096) / 8192; + HOST_WIDE_INT leftover = probed_size + 4096 - blocks * 8192; + rtx ptr = gen_rtx_REG (DImode, 22); + rtx count = gen_rtx_REG (DImode, 23); + rtx seq; + + emit_move_insn (count, GEN_INT (blocks)); + emit_insn (gen_adddi3 (ptr, stack_pointer_rtx, + GEN_INT (TARGET_ABI_UNICOSMK ? 4096 - 64 : 4096))); + + /* Because of the difficulty in emitting a new basic block this + late in the compilation, generate the loop as a single insn. */ + emit_insn (gen_prologue_stack_probe_loop (count, ptr)); + + if ((leftover > 4096 && sa_size == 0) || flag_stack_check) + { + rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover)); + MEM_VOLATILE_P (last) = 1; + emit_move_insn (last, const0_rtx); + } + + if (TARGET_ABI_WINDOWS_NT || flag_stack_check) + { + /* For NT stack unwind (done by 'reverse execution'), it's + not OK to take the result of a loop, even though the value + is already in ptr, so we reload it via a single operation + and subtract it to sp. + + Same if -fstack-check is specified, because the probed stack + size is not equal to the frame size. + + Yes, that's correct -- we have to reload the whole constant + into a temporary via ldah+lda then subtract from sp. */ + + HOST_WIDE_INT lo, hi; + lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000; + hi = frame_size - lo; + + emit_move_insn (ptr, GEN_INT (hi)); + emit_insn (gen_adddi3 (ptr, ptr, GEN_INT (lo))); + seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx, + ptr)); + } + else + { + seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr, + GEN_INT (-leftover))); + } + + /* This alternative is special, because the DWARF code cannot + possibly intuit through the loop above. So we invent this + note it looks at instead. */ + RTX_FRAME_RELATED_P (seq) = 1; + add_reg_note (seq, REG_FRAME_RELATED_EXPR, + gen_rtx_SET (VOIDmode, stack_pointer_rtx, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, + GEN_INT (TARGET_ABI_UNICOSMK + ? -frame_size + 64 + : -frame_size)))); + } + + if (!TARGET_ABI_UNICOSMK) + { + HOST_WIDE_INT sa_bias = 0; + + /* Cope with very large offsets to the register save area. */ + sa_reg = stack_pointer_rtx; + if (reg_offset + sa_size > 0x8000) + { + int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000; + rtx sa_bias_rtx; + + if (low + sa_size <= 0x8000) + sa_bias = reg_offset - low, reg_offset = low; + else + sa_bias = reg_offset, reg_offset = 0; + + sa_reg = gen_rtx_REG (DImode, 24); + sa_bias_rtx = GEN_INT (sa_bias); + + if (add_operand (sa_bias_rtx, DImode)) + emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_bias_rtx)); + else + { + emit_move_insn (sa_reg, sa_bias_rtx); + emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_reg)); + } + } + + /* Save regs in stack order. Beginning with VMS PV. */ + if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK) + emit_frame_store (REG_PV, stack_pointer_rtx, 0, 0); + + /* Save register RA next. */ + if (imask & (1UL << REG_RA)) + { + emit_frame_store (REG_RA, sa_reg, sa_bias, reg_offset); + imask &= ~(1UL << REG_RA); + reg_offset += 8; + } + + /* Now save any other registers required to be saved. */ + for (i = 0; i < 31; i++) + if (imask & (1UL << i)) + { + emit_frame_store (i, sa_reg, sa_bias, reg_offset); + reg_offset += 8; + } + + for (i = 0; i < 31; i++) + if (fmask & (1UL << i)) + { + emit_frame_store (i+32, sa_reg, sa_bias, reg_offset); + reg_offset += 8; + } + } + else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK) + { + /* The standard frame on the T3E includes space for saving registers. + We just have to use it. We don't have to save the return address and + the old frame pointer here - they are saved in the DSIB. */ + + reg_offset = -56; + for (i = 9; i < 15; i++) + if (imask & (1UL << i)) + { + emit_frame_store (i, hard_frame_pointer_rtx, 0, reg_offset); + reg_offset -= 8; + } + for (i = 2; i < 10; i++) + if (fmask & (1UL << i)) + { + emit_frame_store (i+32, hard_frame_pointer_rtx, 0, reg_offset); + reg_offset -= 8; + } + } + + if (TARGET_ABI_OPEN_VMS) + { + /* Register frame procedures save the fp. */ + if (alpha_procedure_type == PT_REGISTER) + { + rtx insn = emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno), + hard_frame_pointer_rtx); + add_reg_note (insn, REG_CFA_REGISTER, NULL); + RTX_FRAME_RELATED_P (insn) = 1; + } + + if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV) + emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno), + gen_rtx_REG (DImode, REG_PV))); + + if (alpha_procedure_type != PT_NULL + && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM) + FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx)); + + /* If we have to allocate space for outgoing args, do it now. */ + if (crtl->outgoing_args_size != 0) + { + rtx seq + = emit_move_insn (stack_pointer_rtx, + plus_constant + (hard_frame_pointer_rtx, + - (ALPHA_ROUND + (crtl->outgoing_args_size)))); + + /* Only set FRAME_RELATED_P on the stack adjustment we just emitted + if ! frame_pointer_needed. Setting the bit will change the CFA + computation rule to use sp again, which would be wrong if we had + frame_pointer_needed, as this means sp might move unpredictably + later on. + + Also, note that + frame_pointer_needed + => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM + and + crtl->outgoing_args_size != 0 + => alpha_procedure_type != PT_NULL, + + so when we are not setting the bit here, we are guaranteed to + have emitted an FRP frame pointer update just before. */ + RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed; + } + } + else if (!TARGET_ABI_UNICOSMK) + { + /* If we need a frame pointer, set it from the stack pointer. */ + if (frame_pointer_needed) + { + if (TARGET_CAN_FAULT_IN_PROLOGUE) + FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx)); + else + /* This must always be the last instruction in the + prologue, thus we emit a special move + clobber. */ + FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx, + stack_pointer_rtx, sa_reg))); + } + } + + /* The ABIs for VMS and OSF/1 say that while we can schedule insns into + the prologue, for exception handling reasons, we cannot do this for + any insn that might fault. We could prevent this for mems with a + (clobber:BLK (scratch)), but this doesn't work for fp insns. So we + have to prevent all such scheduling with a blockage. + + Linux, on the other hand, never bothered to implement OSF/1's + exception handling, and so doesn't care about such things. Anyone + planning to use dwarf2 frame-unwind info can also omit the blockage. */ + + if (! TARGET_CAN_FAULT_IN_PROLOGUE) + emit_insn (gen_blockage ()); +} + +/* Count the number of .file directives, so that .loc is up to date. */ +int num_source_filenames = 0; + +/* Output the textual info surrounding the prologue. */ + +void +alpha_start_function (FILE *file, const char *fnname, + tree decl ATTRIBUTE_UNUSED) +{ + unsigned long imask = 0; + unsigned long fmask = 0; + /* Stack space needed for pushing registers clobbered by us. */ + HOST_WIDE_INT sa_size; + /* Complete stack size needed. */ + unsigned HOST_WIDE_INT frame_size; + /* The maximum debuggable frame size (512 Kbytes using Tru64 as). */ + unsigned HOST_WIDE_INT max_frame_size = TARGET_ABI_OSF && !TARGET_GAS + ? 524288 + : 1UL << 31; + /* Offset from base reg to register save area. */ + HOST_WIDE_INT reg_offset; + char *entry_label = (char *) alloca (strlen (fnname) + 6); + char *tramp_label = (char *) alloca (strlen (fnname) + 6); + int i; + + /* Don't emit an extern directive for functions defined in the same file. */ + if (TARGET_ABI_UNICOSMK) + { + tree name_tree; + name_tree = get_identifier (fnname); + TREE_ASM_WRITTEN (name_tree) = 1; + } + +#if TARGET_ABI_OPEN_VMS + if (vms_debug_main + && strncmp (vms_debug_main, fnname, strlen (vms_debug_main)) == 0) + { + targetm.asm_out.globalize_label (asm_out_file, VMS_DEBUG_MAIN_POINTER); + ASM_OUTPUT_DEF (asm_out_file, VMS_DEBUG_MAIN_POINTER, fnname); + switch_to_section (text_section); + vms_debug_main = NULL; + } +#endif + + alpha_fnname = fnname; + sa_size = alpha_sa_size (); + frame_size = compute_frame_size (get_frame_size (), sa_size); + + if (TARGET_ABI_OPEN_VMS) + reg_offset = 8 + 8 * cfun->machine->uses_condition_handler; + else + reg_offset = ALPHA_ROUND (crtl->outgoing_args_size); + + alpha_sa_mask (&imask, &fmask); + + /* Ecoff can handle multiple .file directives, so put out file and lineno. + We have to do that before the .ent directive as we cannot switch + files within procedures with native ecoff because line numbers are + linked to procedure descriptors. + Outputting the lineno helps debugging of one line functions as they + would otherwise get no line number at all. Please note that we would + like to put out last_linenum from final.c, but it is not accessible. */ + + if (write_symbols == SDB_DEBUG) + { +#ifdef ASM_OUTPUT_SOURCE_FILENAME + ASM_OUTPUT_SOURCE_FILENAME (file, + DECL_SOURCE_FILE (current_function_decl)); +#endif +#ifdef SDB_OUTPUT_SOURCE_LINE + if (debug_info_level != DINFO_LEVEL_TERSE) + SDB_OUTPUT_SOURCE_LINE (file, + DECL_SOURCE_LINE (current_function_decl)); +#endif + } + + /* Issue function start and label. */ + if (TARGET_ABI_OPEN_VMS + || (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive)) + { + fputs ("\t.ent ", file); + assemble_name (file, fnname); + putc ('\n', file); + + /* If the function needs GP, we'll write the "..ng" label there. + Otherwise, do it here. */ + if (TARGET_ABI_OSF + && ! alpha_function_needs_gp + && ! cfun->is_thunk) + { + putc ('$', file); + assemble_name (file, fnname); + fputs ("..ng:\n", file); + } + } + /* Nested functions on VMS that are potentially called via trampoline + get a special transfer entry point that loads the called functions + procedure descriptor and static chain. */ + if (TARGET_ABI_OPEN_VMS + && !TREE_PUBLIC (decl) + && DECL_CONTEXT (decl) + && !TYPE_P (DECL_CONTEXT (decl))) + { + strcpy (tramp_label, fnname); + strcat (tramp_label, "..tr"); + ASM_OUTPUT_LABEL (file, tramp_label); + fprintf (file, "\tldq $1,24($27)\n"); + fprintf (file, "\tldq $27,16($27)\n"); + } + + strcpy (entry_label, fnname); + if (TARGET_ABI_OPEN_VMS) + strcat (entry_label, "..en"); + + /* For public functions, the label must be globalized by appending an + additional colon. */ + if (TARGET_ABI_UNICOSMK && TREE_PUBLIC (decl)) + strcat (entry_label, ":"); + + ASM_OUTPUT_LABEL (file, entry_label); + inside_function = TRUE; + + if (TARGET_ABI_OPEN_VMS) + fprintf (file, "\t.base $%d\n", vms_base_regno); + + if (!TARGET_ABI_OPEN_VMS && !TARGET_ABI_UNICOSMK && TARGET_IEEE_CONFORMANT + && !flag_inhibit_size_directive) + { + /* Set flags in procedure descriptor to request IEEE-conformant + math-library routines. The value we set it to is PDSC_EXC_IEEE + (/usr/include/pdsc.h). */ + fputs ("\t.eflag 48\n", file); + } + + /* Set up offsets to alpha virtual arg/local debugging pointer. */ + alpha_auto_offset = -frame_size + crtl->args.pretend_args_size; + alpha_arg_offset = -frame_size + 48; + + /* Describe our frame. If the frame size is larger than an integer, + print it as zero to avoid an assembler error. We won't be + properly describing such a frame, but that's the best we can do. */ + if (TARGET_ABI_UNICOSMK) + ; + else if (TARGET_ABI_OPEN_VMS) + fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26," + HOST_WIDE_INT_PRINT_DEC "\n", + vms_unwind_regno, + frame_size >= (1UL << 31) ? 0 : frame_size, + reg_offset); + else if (!flag_inhibit_size_directive) + fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n", + (frame_pointer_needed + ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM), + frame_size >= max_frame_size ? 0 : frame_size, + crtl->args.pretend_args_size); + + /* Describe which registers were spilled. */ + if (TARGET_ABI_UNICOSMK) + ; + else if (TARGET_ABI_OPEN_VMS) + { + if (imask) + /* ??? Does VMS care if mask contains ra? The old code didn't + set it, so I don't here. */ + fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA)); + if (fmask) + fprintf (file, "\t.fmask 0x%lx,0\n", fmask); + if (alpha_procedure_type == PT_REGISTER) + fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno); + } + else if (!flag_inhibit_size_directive) + { + if (imask) + { + fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask, + frame_size >= max_frame_size ? 0 : reg_offset - frame_size); + + for (i = 0; i < 32; ++i) + if (imask & (1UL << i)) + reg_offset += 8; + } + + if (fmask) + fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask, + frame_size >= max_frame_size ? 0 : reg_offset - frame_size); + } + +#if TARGET_ABI_OPEN_VMS + /* If a user condition handler has been installed at some point, emit + the procedure descriptor bits to point the Condition Handling Facility + at the indirection wrapper, and state the fp offset at which the user + handler may be found. */ + if (cfun->machine->uses_condition_handler) + { + fprintf (file, "\t.handler __gcc_shell_handler\n"); + fprintf (file, "\t.handler_data %d\n", VMS_COND_HANDLER_FP_OFFSET); + } + + /* Ifdef'ed cause link_section are only available then. */ + switch_to_section (readonly_data_section); + fprintf (file, "\t.align 3\n"); + assemble_name (file, fnname); fputs ("..na:\n", file); + fputs ("\t.ascii \"", file); + assemble_name (file, fnname); + fputs ("\\0\"\n", file); + alpha_need_linkage (fnname, 1); + switch_to_section (text_section); +#endif +} + +/* Emit the .prologue note at the scheduled end of the prologue. */ + +static void +alpha_output_function_end_prologue (FILE *file) +{ + if (TARGET_ABI_UNICOSMK) + ; + else if (TARGET_ABI_OPEN_VMS) + fputs ("\t.prologue\n", file); + else if (TARGET_ABI_WINDOWS_NT) + fputs ("\t.prologue 0\n", file); + else if (!flag_inhibit_size_directive) + fprintf (file, "\t.prologue %d\n", + alpha_function_needs_gp || cfun->is_thunk); +} + +/* Write function epilogue. */ + +void +alpha_expand_epilogue (void) +{ + /* Registers to save. */ + unsigned long imask = 0; + unsigned long fmask = 0; + /* Stack space needed for pushing registers clobbered by us. */ + HOST_WIDE_INT sa_size; + /* Complete stack size needed. */ + HOST_WIDE_INT frame_size; + /* Offset from base reg to register save area. */ + HOST_WIDE_INT reg_offset; + int fp_is_frame_pointer, fp_offset; + rtx sa_reg, sa_reg_exp = NULL; + rtx sp_adj1, sp_adj2, mem, reg, insn; + rtx eh_ofs; + rtx cfa_restores = NULL_RTX; + int i; + + sa_size = alpha_sa_size (); + frame_size = compute_frame_size (get_frame_size (), sa_size); + + if (TARGET_ABI_OPEN_VMS) + { + if (alpha_procedure_type == PT_STACK) + reg_offset = 8 + 8 * cfun->machine->uses_condition_handler; + else + reg_offset = 0; + } + else + reg_offset = ALPHA_ROUND (crtl->outgoing_args_size); + + alpha_sa_mask (&imask, &fmask); + + fp_is_frame_pointer + = ((TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK) + || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed)); + fp_offset = 0; + sa_reg = stack_pointer_rtx; + + if (crtl->calls_eh_return) + eh_ofs = EH_RETURN_STACKADJ_RTX; + else + eh_ofs = NULL_RTX; + + if (!TARGET_ABI_UNICOSMK && sa_size) + { + /* If we have a frame pointer, restore SP from it. */ + if ((TARGET_ABI_OPEN_VMS + && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM) + || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed)) + emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx); + + /* Cope with very large offsets to the register save area. */ + if (reg_offset + sa_size > 0x8000) + { + int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000; + HOST_WIDE_INT bias; + + if (low + sa_size <= 0x8000) + bias = reg_offset - low, reg_offset = low; + else + bias = reg_offset, reg_offset = 0; + + sa_reg = gen_rtx_REG (DImode, 22); + sa_reg_exp = plus_constant (stack_pointer_rtx, bias); + + emit_move_insn (sa_reg, sa_reg_exp); + } + + /* Restore registers in order, excepting a true frame pointer. */ + + mem = gen_frame_mem (DImode, plus_constant (sa_reg, reg_offset)); + reg = gen_rtx_REG (DImode, REG_RA); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores); + + reg_offset += 8; + imask &= ~(1UL << REG_RA); + + for (i = 0; i < 31; ++i) + if (imask & (1UL << i)) + { + if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer) + fp_offset = reg_offset; + else + { + mem = gen_frame_mem (DImode, + plus_constant (sa_reg, reg_offset)); + reg = gen_rtx_REG (DImode, i); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, + cfa_restores); + } + reg_offset += 8; + } + + for (i = 0; i < 31; ++i) + if (fmask & (1UL << i)) + { + mem = gen_frame_mem (DFmode, plus_constant (sa_reg, reg_offset)); + reg = gen_rtx_REG (DFmode, i+32); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores); + reg_offset += 8; + } + } + else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK) + { + /* Restore callee-saved general-purpose registers. */ + + reg_offset = -56; + + for (i = 9; i < 15; i++) + if (imask & (1UL << i)) + { + mem = gen_frame_mem (DImode, + plus_constant (hard_frame_pointer_rtx, + reg_offset)); + reg = gen_rtx_REG (DImode, i); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores); + reg_offset -= 8; + } + + for (i = 2; i < 10; i++) + if (fmask & (1UL << i)) + { + mem = gen_frame_mem (DFmode, + plus_constant (hard_frame_pointer_rtx, + reg_offset)); + reg = gen_rtx_REG (DFmode, i+32); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores); + reg_offset -= 8; + } + + /* Restore the return address from the DSIB. */ + mem = gen_frame_mem (DImode, plus_constant (hard_frame_pointer_rtx, -8)); + reg = gen_rtx_REG (DImode, REG_RA); + emit_move_insn (reg, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores); + } + + if (frame_size || eh_ofs) + { + sp_adj1 = stack_pointer_rtx; + + if (eh_ofs) + { + sp_adj1 = gen_rtx_REG (DImode, 23); + emit_move_insn (sp_adj1, + gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs)); + } + + /* If the stack size is large, begin computation into a temporary + register so as not to interfere with a potential fp restore, + which must be consecutive with an SP restore. */ + if (frame_size < 32768 + && ! (TARGET_ABI_UNICOSMK && cfun->calls_alloca)) + sp_adj2 = GEN_INT (frame_size); + else if (TARGET_ABI_UNICOSMK) + { + sp_adj1 = gen_rtx_REG (DImode, 23); + emit_move_insn (sp_adj1, hard_frame_pointer_rtx); + sp_adj2 = const0_rtx; + } + else if (frame_size < 0x40007fffL) + { + int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000; + + sp_adj2 = plus_constant (sp_adj1, frame_size - low); + if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2)) + sp_adj1 = sa_reg; + else + { + sp_adj1 = gen_rtx_REG (DImode, 23); + emit_move_insn (sp_adj1, sp_adj2); + } + sp_adj2 = GEN_INT (low); + } + else + { + rtx tmp = gen_rtx_REG (DImode, 23); + sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3, false); + if (!sp_adj2) + { + /* We can't drop new things to memory this late, afaik, + so build it up by pieces. */ + sp_adj2 = alpha_emit_set_long_const (tmp, frame_size, + -(frame_size < 0)); + gcc_assert (sp_adj2); + } + } + + /* From now on, things must be in order. So emit blockages. */ + + /* Restore the frame pointer. */ + if (TARGET_ABI_UNICOSMK) + { + emit_insn (gen_blockage ()); + mem = gen_frame_mem (DImode, + plus_constant (hard_frame_pointer_rtx, -16)); + emit_move_insn (hard_frame_pointer_rtx, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, + hard_frame_pointer_rtx, cfa_restores); + } + else if (fp_is_frame_pointer) + { + emit_insn (gen_blockage ()); + mem = gen_frame_mem (DImode, plus_constant (sa_reg, fp_offset)); + emit_move_insn (hard_frame_pointer_rtx, mem); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, + hard_frame_pointer_rtx, cfa_restores); + } + else if (TARGET_ABI_OPEN_VMS) + { + emit_insn (gen_blockage ()); + emit_move_insn (hard_frame_pointer_rtx, + gen_rtx_REG (DImode, vms_save_fp_regno)); + cfa_restores = alloc_reg_note (REG_CFA_RESTORE, + hard_frame_pointer_rtx, cfa_restores); + } + + /* Restore the stack pointer. */ + emit_insn (gen_blockage ()); + if (sp_adj2 == const0_rtx) + insn = emit_move_insn (stack_pointer_rtx, sp_adj1); + else + insn = emit_move_insn (stack_pointer_rtx, + gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)); + REG_NOTES (insn) = cfa_restores; + add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx); + RTX_FRAME_RELATED_P (insn) = 1; + } + else + { + gcc_assert (cfa_restores == NULL); + + if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER) + { + emit_insn (gen_blockage ()); + insn = emit_move_insn (hard_frame_pointer_rtx, + gen_rtx_REG (DImode, vms_save_fp_regno)); + add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx); + RTX_FRAME_RELATED_P (insn) = 1; + } + else if (TARGET_ABI_UNICOSMK && alpha_procedure_type != PT_STACK) + { + /* Decrement the frame pointer if the function does not have a + frame. */ + emit_insn (gen_blockage ()); + emit_insn (gen_adddi3 (hard_frame_pointer_rtx, + hard_frame_pointer_rtx, constm1_rtx)); + } + } +} + +/* Output the rest of the textual info surrounding the epilogue. */ + +void +alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED) +{ + rtx insn; + + /* We output a nop after noreturn calls at the very end of the function to + ensure that the return address always remains in the caller's code range, + as not doing so might confuse unwinding engines. */ + insn = get_last_insn (); + if (!INSN_P (insn)) + insn = prev_active_insn (insn); + if (insn && CALL_P (insn)) + output_asm_insn (get_insn_template (CODE_FOR_nop, NULL), NULL); + +#if TARGET_ABI_OPEN_VMS + alpha_write_linkage (file, fnname, decl); +#endif + + /* End the function. */ + if (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive) + { + fputs ("\t.end ", file); + assemble_name (file, fnname); + putc ('\n', file); + } + inside_function = FALSE; + + /* Output jump tables and the static subroutine information block. */ + if (TARGET_ABI_UNICOSMK) + { + unicosmk_output_ssib (file, fnname); + unicosmk_output_deferred_case_vectors (file); + } +} + +#if TARGET_ABI_OPEN_VMS +void avms_asm_output_external (FILE *file, tree decl ATTRIBUTE_UNUSED, const char *name) +{ +#ifdef DO_CRTL_NAMES + DO_CRTL_NAMES; +#endif +} +#endif + +#if TARGET_ABI_OSF +/* Emit a tail call to FUNCTION after adjusting THIS by DELTA. + + In order to avoid the hordes of differences between generated code + with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating + lots of code loading up large constants, generate rtl and emit it + instead of going straight to text. + + Not sure why this idea hasn't been explored before... */ + +static void +alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, + tree function) +{ + HOST_WIDE_INT hi, lo; + rtx this_rtx, insn, funexp; + + /* We always require a valid GP. */ + emit_insn (gen_prologue_ldgp ()); + emit_note (NOTE_INSN_PROLOGUE_END); + + /* Find the "this" pointer. If the function returns a structure, + the structure return pointer is in $16. */ + if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) + this_rtx = gen_rtx_REG (Pmode, 17); + else + this_rtx = gen_rtx_REG (Pmode, 16); + + /* Add DELTA. When possible we use ldah+lda. Otherwise load the + entire constant for the add. */ + lo = ((delta & 0xffff) ^ 0x8000) - 0x8000; + hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000; + if (hi + lo == delta) + { + if (hi) + emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (hi))); + if (lo) + emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (lo))); + } + else + { + rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0), + delta, -(delta < 0)); + emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp)); + } + + /* Add a delta stored in the vtable at VCALL_OFFSET. */ + if (vcall_offset) + { + rtx tmp, tmp2; + + tmp = gen_rtx_REG (Pmode, 0); + emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx)); + + lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000; + hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000; + if (hi + lo == vcall_offset) + { + if (hi) + emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi))); + } + else + { + tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1), + vcall_offset, -(vcall_offset < 0)); + emit_insn (gen_adddi3 (tmp, tmp, tmp2)); + lo = 0; + } + if (lo) + tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo)); + else + tmp2 = tmp; + emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2)); + + emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp)); + } + + /* Generate a tail call to the target function. */ + if (! TREE_USED (function)) + { + assemble_external (function); + TREE_USED (function) = 1; + } + funexp = XEXP (DECL_RTL (function), 0); + funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); + insn = emit_call_insn (gen_sibcall (funexp, const0_rtx)); + SIBLING_CALL_P (insn) = 1; + + /* Run just enough of rest_of_compilation to get the insns emitted. + There's not really enough bulk here to make other passes such as + instruction scheduling worth while. Note that use_thunk calls + assemble_start_function and assemble_end_function. */ + insn = get_insns (); + insn_locators_alloc (); + shorten_branches (insn); + final_start_function (insn, file, 1); + final (insn, file, 1); + final_end_function (); +} +#endif /* TARGET_ABI_OSF */ + +/* Debugging support. */ + +#include "gstab.h" + +/* Count the number of sdb related labels are generated (to find block + start and end boundaries). */ + +int sdb_label_count = 0; + +/* Name of the file containing the current function. */ + +static const char *current_function_file = ""; + +/* Offsets to alpha virtual arg/local debugging pointers. */ + +long alpha_arg_offset; +long alpha_auto_offset; + +/* Emit a new filename to a stream. */ + +void +alpha_output_filename (FILE *stream, const char *name) +{ + static int first_time = TRUE; + + if (first_time) + { + first_time = FALSE; + ++num_source_filenames; + current_function_file = name; + fprintf (stream, "\t.file\t%d ", num_source_filenames); + output_quoted_string (stream, name); + fprintf (stream, "\n"); + if (!TARGET_GAS && write_symbols == DBX_DEBUG) + fprintf (stream, "\t#@stabs\n"); + } + + else if (write_symbols == DBX_DEBUG) + /* dbxout.c will emit an appropriate .stabs directive. */ + return; + + else if (name != current_function_file + && strcmp (name, current_function_file) != 0) + { + if (inside_function && ! TARGET_GAS) + fprintf (stream, "\t#.file\t%d ", num_source_filenames); + else + { + ++num_source_filenames; + current_function_file = name; + fprintf (stream, "\t.file\t%d ", num_source_filenames); + } + + output_quoted_string (stream, name); + fprintf (stream, "\n"); + } +} + +/* Structure to show the current status of registers and memory. */ + +struct shadow_summary +{ + struct { + unsigned int i : 31; /* Mask of int regs */ + unsigned int fp : 31; /* Mask of fp regs */ + unsigned int mem : 1; /* mem == imem | fpmem */ + } used, defd; +}; + +/* Summary the effects of expression X on the machine. Update SUM, a pointer + to the summary structure. SET is nonzero if the insn is setting the + object, otherwise zero. */ + +static void +summarize_insn (rtx x, struct shadow_summary *sum, int set) +{ + const char *format_ptr; + int i, j; + + if (x == 0) + return; + + switch (GET_CODE (x)) + { + /* ??? Note that this case would be incorrect if the Alpha had a + ZERO_EXTRACT in SET_DEST. */ + case SET: + summarize_insn (SET_SRC (x), sum, 0); + summarize_insn (SET_DEST (x), sum, 1); + break; + + case CLOBBER: + summarize_insn (XEXP (x, 0), sum, 1); + break; + + case USE: + summarize_insn (XEXP (x, 0), sum, 0); + break; + + case ASM_OPERANDS: + for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) + summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0); + break; + + case PARALLEL: + for (i = XVECLEN (x, 0) - 1; i >= 0; i--) + summarize_insn (XVECEXP (x, 0, i), sum, 0); + break; + + case SUBREG: + summarize_insn (SUBREG_REG (x), sum, 0); + break; + + case REG: + { + int regno = REGNO (x); + unsigned long mask = ((unsigned long) 1) << (regno % 32); + + if (regno == 31 || regno == 63) + break; + + if (set) + { + if (regno < 32) + sum->defd.i |= mask; + else + sum->defd.fp |= mask; + } + else + { + if (regno < 32) + sum->used.i |= mask; + else + sum->used.fp |= mask; + } + } + break; + + case MEM: + if (set) + sum->defd.mem = 1; + else + sum->used.mem = 1; + + /* Find the regs used in memory address computation: */ + summarize_insn (XEXP (x, 0), sum, 0); + break; + + case CONST_INT: case CONST_DOUBLE: + case SYMBOL_REF: case LABEL_REF: case CONST: + case SCRATCH: case ASM_INPUT: + break; + + /* Handle common unary and binary ops for efficiency. */ + case COMPARE: case PLUS: case MINUS: case MULT: case DIV: + case MOD: case UDIV: case UMOD: case AND: case IOR: + case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT: + case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX: + case NE: case EQ: case GE: case GT: case LE: + case LT: case GEU: case GTU: case LEU: case LTU: + summarize_insn (XEXP (x, 0), sum, 0); + summarize_insn (XEXP (x, 1), sum, 0); + break; + + case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND: + case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: + case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS: + case SQRT: case FFS: + summarize_insn (XEXP (x, 0), sum, 0); + break; + + default: + format_ptr = GET_RTX_FORMAT (GET_CODE (x)); + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) + switch (format_ptr[i]) + { + case 'e': + summarize_insn (XEXP (x, i), sum, 0); + break; + + case 'E': + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + summarize_insn (XVECEXP (x, i, j), sum, 0); + break; + + case 'i': + break; + + default: + gcc_unreachable (); + } + } +} + +/* Ensure a sufficient number of `trapb' insns are in the code when + the user requests code with a trap precision of functions or + instructions. + + In naive mode, when the user requests a trap-precision of + "instruction", a trapb is needed after every instruction that may + generate a trap. This ensures that the code is resumption safe but + it is also slow. + + When optimizations are turned on, we delay issuing a trapb as long + as possible. In this context, a trap shadow is the sequence of + instructions that starts with a (potentially) trap generating + instruction and extends to the next trapb or call_pal instruction + (but GCC never generates call_pal by itself). We can delay (and + therefore sometimes omit) a trapb subject to the following + conditions: + + (a) On entry to the trap shadow, if any Alpha register or memory + location contains a value that is used as an operand value by some + instruction in the trap shadow (live on entry), then no instruction + in the trap shadow may modify the register or memory location. + + (b) Within the trap shadow, the computation of the base register + for a memory load or store instruction may not involve using the + result of an instruction that might generate an UNPREDICTABLE + result. + + (c) Within the trap shadow, no register may be used more than once + as a destination register. (This is to make life easier for the + trap-handler.) + + (d) The trap shadow may not include any branch instructions. */ + +static void +alpha_handle_trap_shadows (void) +{ + struct shadow_summary shadow; + int trap_pending, exception_nesting; + rtx i, n; + + trap_pending = 0; + exception_nesting = 0; + shadow.used.i = 0; + shadow.used.fp = 0; + shadow.used.mem = 0; + shadow.defd = shadow.used; + + for (i = get_insns (); i ; i = NEXT_INSN (i)) + { + if (NOTE_P (i)) + { + switch (NOTE_KIND (i)) + { + case NOTE_INSN_EH_REGION_BEG: + exception_nesting++; + if (trap_pending) + goto close_shadow; + break; + + case NOTE_INSN_EH_REGION_END: + exception_nesting--; + if (trap_pending) + goto close_shadow; + break; + + case NOTE_INSN_EPILOGUE_BEG: + if (trap_pending && alpha_tp >= ALPHA_TP_FUNC) + goto close_shadow; + break; + } + } + else if (trap_pending) + { + if (alpha_tp == ALPHA_TP_FUNC) + { + if (JUMP_P (i) + && GET_CODE (PATTERN (i)) == RETURN) + goto close_shadow; + } + else if (alpha_tp == ALPHA_TP_INSN) + { + if (optimize > 0) + { + struct shadow_summary sum; + + sum.used.i = 0; + sum.used.fp = 0; + sum.used.mem = 0; + sum.defd = sum.used; + + switch (GET_CODE (i)) + { + case INSN: + /* Annoyingly, get_attr_trap will die on these. */ + if (GET_CODE (PATTERN (i)) == USE + || GET_CODE (PATTERN (i)) == CLOBBER) + break; + + summarize_insn (PATTERN (i), &sum, 0); + + if ((sum.defd.i & shadow.defd.i) + || (sum.defd.fp & shadow.defd.fp)) + { + /* (c) would be violated */ + goto close_shadow; + } + + /* Combine shadow with summary of current insn: */ + shadow.used.i |= sum.used.i; + shadow.used.fp |= sum.used.fp; + shadow.used.mem |= sum.used.mem; + shadow.defd.i |= sum.defd.i; + shadow.defd.fp |= sum.defd.fp; + shadow.defd.mem |= sum.defd.mem; + + if ((sum.defd.i & shadow.used.i) + || (sum.defd.fp & shadow.used.fp) + || (sum.defd.mem & shadow.used.mem)) + { + /* (a) would be violated (also takes care of (b)) */ + gcc_assert (get_attr_trap (i) != TRAP_YES + || (!(sum.defd.i & sum.used.i) + && !(sum.defd.fp & sum.used.fp))); + + goto close_shadow; + } + break; + + case JUMP_INSN: + case CALL_INSN: + case CODE_LABEL: + goto close_shadow; + + default: + gcc_unreachable (); + } + } + else + { + close_shadow: + n = emit_insn_before (gen_trapb (), i); + PUT_MODE (n, TImode); + PUT_MODE (i, TImode); + trap_pending = 0; + shadow.used.i = 0; + shadow.used.fp = 0; + shadow.used.mem = 0; + shadow.defd = shadow.used; + } + } + } + + if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC) + && NONJUMP_INSN_P (i) + && GET_CODE (PATTERN (i)) != USE + && GET_CODE (PATTERN (i)) != CLOBBER + && get_attr_trap (i) == TRAP_YES) + { + if (optimize && !trap_pending) + summarize_insn (PATTERN (i), &shadow, 0); + trap_pending = 1; + } + } +} + +/* Alpha can only issue instruction groups simultaneously if they are + suitably aligned. This is very processor-specific. */ +/* There are a number of entries in alphaev4_insn_pipe and alphaev5_insn_pipe + that are marked "fake". These instructions do not exist on that target, + but it is possible to see these insns with deranged combinations of + command-line options, such as "-mtune=ev4 -mmax". Instead of aborting, + choose a result at random. */ + +enum alphaev4_pipe { + EV4_STOP = 0, + EV4_IB0 = 1, + EV4_IB1 = 2, + EV4_IBX = 4 +}; + +enum alphaev5_pipe { + EV5_STOP = 0, + EV5_NONE = 1, + EV5_E01 = 2, + EV5_E0 = 4, + EV5_E1 = 8, + EV5_FAM = 16, + EV5_FA = 32, + EV5_FM = 64 +}; + +static enum alphaev4_pipe +alphaev4_insn_pipe (rtx insn) +{ + if (recog_memoized (insn) < 0) + return EV4_STOP; + if (get_attr_length (insn) != 4) + return EV4_STOP; + + switch (get_attr_type (insn)) + { + case TYPE_ILD: + case TYPE_LDSYM: + case TYPE_FLD: + case TYPE_LD_L: + return EV4_IBX; + + case TYPE_IADD: + case TYPE_ILOG: + case TYPE_ICMOV: + case TYPE_ICMP: + case TYPE_FST: + case TYPE_SHIFT: + case TYPE_IMUL: + case TYPE_FBR: + case TYPE_MVI: /* fake */ + return EV4_IB0; + + case TYPE_IST: + case TYPE_MISC: + case TYPE_IBR: + case TYPE_JSR: + case TYPE_CALLPAL: + case TYPE_FCPYS: + case TYPE_FCMOV: + case TYPE_FADD: + case TYPE_FDIV: + case TYPE_FMUL: + case TYPE_ST_C: + case TYPE_MB: + case TYPE_FSQRT: /* fake */ + case TYPE_FTOI: /* fake */ + case TYPE_ITOF: /* fake */ + return EV4_IB1; + + default: + gcc_unreachable (); + } +} + +static enum alphaev5_pipe +alphaev5_insn_pipe (rtx insn) +{ + if (recog_memoized (insn) < 0) + return EV5_STOP; + if (get_attr_length (insn) != 4) + return EV5_STOP; + + switch (get_attr_type (insn)) + { + case TYPE_ILD: + case TYPE_FLD: + case TYPE_LDSYM: + case TYPE_IADD: + case TYPE_ILOG: + case TYPE_ICMOV: + case TYPE_ICMP: + return EV5_E01; + + case TYPE_IST: + case TYPE_FST: + case TYPE_SHIFT: + case TYPE_IMUL: + case TYPE_MISC: + case TYPE_MVI: + case TYPE_LD_L: + case TYPE_ST_C: + case TYPE_MB: + case TYPE_FTOI: /* fake */ + case TYPE_ITOF: /* fake */ + return EV5_E0; + + case TYPE_IBR: + case TYPE_JSR: + case TYPE_CALLPAL: + return EV5_E1; + + case TYPE_FCPYS: + return EV5_FAM; + + case TYPE_FBR: + case TYPE_FCMOV: + case TYPE_FADD: + case TYPE_FDIV: + case TYPE_FSQRT: /* fake */ + return EV5_FA; + + case TYPE_FMUL: + return EV5_FM; + + default: + gcc_unreachable (); + } +} + +/* IN_USE is a mask of the slots currently filled within the insn group. + The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then + the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1. + + LEN is, of course, the length of the group in bytes. */ + +static rtx +alphaev4_next_group (rtx insn, int *pin_use, int *plen) +{ + int len, in_use; + + len = in_use = 0; + + if (! INSN_P (insn) + || GET_CODE (PATTERN (insn)) == CLOBBER + || GET_CODE (PATTERN (insn)) == USE) + goto next_and_done; + + while (1) + { + enum alphaev4_pipe pipe; + + pipe = alphaev4_insn_pipe (insn); + switch (pipe) + { + case EV4_STOP: + /* Force complex instructions to start new groups. */ + if (in_use) + goto done; + + /* If this is a completely unrecognized insn, it's an asm. + We don't know how long it is, so record length as -1 to + signal a needed realignment. */ + if (recog_memoized (insn) < 0) + len = -1; + else + len = get_attr_length (insn); + goto next_and_done; + + case EV4_IBX: + if (in_use & EV4_IB0) + { + if (in_use & EV4_IB1) + goto done; + in_use |= EV4_IB1; + } + else + in_use |= EV4_IB0 | EV4_IBX; + break; + + case EV4_IB0: + if (in_use & EV4_IB0) + { + if (!(in_use & EV4_IBX) || (in_use & EV4_IB1)) + goto done; + in_use |= EV4_IB1; + } + in_use |= EV4_IB0; + break; + + case EV4_IB1: + if (in_use & EV4_IB1) + goto done; + in_use |= EV4_IB1; + break; + + default: + gcc_unreachable (); + } + len += 4; + + /* Haifa doesn't do well scheduling branches. */ + if (JUMP_P (insn)) + goto next_and_done; + + next: + insn = next_nonnote_insn (insn); + + if (!insn || ! INSN_P (insn)) + goto done; + + /* Let Haifa tell us where it thinks insn group boundaries are. */ + if (GET_MODE (insn) == TImode) + goto done; + + if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE) + goto next; + } + + next_and_done: + insn = next_nonnote_insn (insn); + + done: + *plen = len; + *pin_use = in_use; + return insn; +} + +/* IN_USE is a mask of the slots currently filled within the insn group. + The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then + the insn in EV5_E0 can be swapped by the hardware into EV5_E1. + + LEN is, of course, the length of the group in bytes. */ + +static rtx +alphaev5_next_group (rtx insn, int *pin_use, int *plen) +{ + int len, in_use; + + len = in_use = 0; + + if (! INSN_P (insn) + || GET_CODE (PATTERN (insn)) == CLOBBER + || GET_CODE (PATTERN (insn)) == USE) + goto next_and_done; + + while (1) + { + enum alphaev5_pipe pipe; + + pipe = alphaev5_insn_pipe (insn); + switch (pipe) + { + case EV5_STOP: + /* Force complex instructions to start new groups. */ + if (in_use) + goto done; + + /* If this is a completely unrecognized insn, it's an asm. + We don't know how long it is, so record length as -1 to + signal a needed realignment. */ + if (recog_memoized (insn) < 0) + len = -1; + else + len = get_attr_length (insn); + goto next_and_done; + + /* ??? Most of the places below, we would like to assert never + happen, as it would indicate an error either in Haifa, or + in the scheduling description. Unfortunately, Haifa never + schedules the last instruction of the BB, so we don't have + an accurate TI bit to go off. */ + case EV5_E01: + if (in_use & EV5_E0) + { + if (in_use & EV5_E1) + goto done; + in_use |= EV5_E1; + } + else + in_use |= EV5_E0 | EV5_E01; + break; + + case EV5_E0: + if (in_use & EV5_E0) + { + if (!(in_use & EV5_E01) || (in_use & EV5_E1)) + goto done; + in_use |= EV5_E1; + } + in_use |= EV5_E0; + break; + + case EV5_E1: + if (in_use & EV5_E1) + goto done; + in_use |= EV5_E1; + break; + + case EV5_FAM: + if (in_use & EV5_FA) + { + if (in_use & EV5_FM) + goto done; + in_use |= EV5_FM; + } + else + in_use |= EV5_FA | EV5_FAM; + break; + + case EV5_FA: + if (in_use & EV5_FA) + goto done; + in_use |= EV5_FA; + break; + + case EV5_FM: + if (in_use & EV5_FM) + goto done; + in_use |= EV5_FM; + break; + + case EV5_NONE: + break; + + default: + gcc_unreachable (); + } + len += 4; + + /* Haifa doesn't do well scheduling branches. */ + /* ??? If this is predicted not-taken, slotting continues, except + that no more IBR, FBR, or JSR insns may be slotted. */ + if (JUMP_P (insn)) + goto next_and_done; + + next: + insn = next_nonnote_insn (insn); + + if (!insn || ! INSN_P (insn)) + goto done; + + /* Let Haifa tell us where it thinks insn group boundaries are. */ + if (GET_MODE (insn) == TImode) + goto done; + + if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE) + goto next; + } + + next_and_done: + insn = next_nonnote_insn (insn); + + done: + *plen = len; + *pin_use = in_use; + return insn; +} + +static rtx +alphaev4_next_nop (int *pin_use) +{ + int in_use = *pin_use; + rtx nop; + + if (!(in_use & EV4_IB0)) + { + in_use |= EV4_IB0; + nop = gen_nop (); + } + else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX) + { + in_use |= EV4_IB1; + nop = gen_nop (); + } + else if (TARGET_FP && !(in_use & EV4_IB1)) + { + in_use |= EV4_IB1; + nop = gen_fnop (); + } + else + nop = gen_unop (); + + *pin_use = in_use; + return nop; +} + +static rtx +alphaev5_next_nop (int *pin_use) +{ + int in_use = *pin_use; + rtx nop; + + if (!(in_use & EV5_E1)) + { + in_use |= EV5_E1; + nop = gen_nop (); + } + else if (TARGET_FP && !(in_use & EV5_FA)) + { + in_use |= EV5_FA; + nop = gen_fnop (); + } + else if (TARGET_FP && !(in_use & EV5_FM)) + { + in_use |= EV5_FM; + nop = gen_fnop (); + } + else + nop = gen_unop (); + + *pin_use = in_use; + return nop; +} + +/* The instruction group alignment main loop. */ + +static void +alpha_align_insns (unsigned int max_align, + rtx (*next_group) (rtx, int *, int *), + rtx (*next_nop) (int *)) +{ + /* ALIGN is the known alignment for the insn group. */ + unsigned int align; + /* OFS is the offset of the current insn in the insn group. */ + int ofs; + int prev_in_use, in_use, len, ldgp; + rtx i, next; + + /* Let shorten branches care for assigning alignments to code labels. */ + shorten_branches (get_insns ()); + + if (align_functions < 4) + align = 4; + else if ((unsigned int) align_functions < max_align) + align = align_functions; + else + align = max_align; + + ofs = prev_in_use = 0; + i = get_insns (); + if (NOTE_P (i)) + i = next_nonnote_insn (i); + + ldgp = alpha_function_needs_gp ? 8 : 0; + + while (i) + { + next = (*next_group) (i, &in_use, &len); + + /* When we see a label, resync alignment etc. */ + if (LABEL_P (i)) + { + unsigned int new_align = 1 << label_to_alignment (i); + + if (new_align >= align) + { + align = new_align < max_align ? new_align : max_align; + ofs = 0; + } + + else if (ofs & (new_align-1)) + ofs = (ofs | (new_align-1)) + 1; + gcc_assert (!len); + } + + /* Handle complex instructions special. */ + else if (in_use == 0) + { + /* Asms will have length < 0. This is a signal that we have + lost alignment knowledge. Assume, however, that the asm + will not mis-align instructions. */ + if (len < 0) + { + ofs = 0; + align = 4; + len = 0; + } + } + + /* If the known alignment is smaller than the recognized insn group, + realign the output. */ + else if ((int) align < len) + { + unsigned int new_log_align = len > 8 ? 4 : 3; + rtx prev, where; + + where = prev = prev_nonnote_insn (i); + if (!where || !LABEL_P (where)) + where = i; + + /* Can't realign between a call and its gp reload. */ + if (! (TARGET_EXPLICIT_RELOCS + && prev && CALL_P (prev))) + { + emit_insn_before (gen_realign (GEN_INT (new_log_align)), where); + align = 1 << new_log_align; + ofs = 0; + } + } + + /* We may not insert padding inside the initial ldgp sequence. */ + else if (ldgp > 0) + ldgp -= len; + + /* If the group won't fit in the same INT16 as the previous, + we need to add padding to keep the group together. Rather + than simply leaving the insn filling to the assembler, we + can make use of the knowledge of what sorts of instructions + were issued in the previous group to make sure that all of + the added nops are really free. */ + else if (ofs + len > (int) align) + { + int nop_count = (align - ofs) / 4; + rtx where; + + /* Insert nops before labels, branches, and calls to truly merge + the execution of the nops with the previous instruction group. */ + where = prev_nonnote_insn (i); + if (where) + { + if (LABEL_P (where)) + { + rtx where2 = prev_nonnote_insn (where); + if (where2 && JUMP_P (where2)) + where = where2; + } + else if (NONJUMP_INSN_P (where)) + where = i; + } + else + where = i; + + do + emit_insn_before ((*next_nop)(&prev_in_use), where); + while (--nop_count); + ofs = 0; + } + + ofs = (ofs + len) & (align - 1); + prev_in_use = in_use; + i = next; + } +} + +/* Insert an unop between sibcall or noreturn function call and GP load. */ + +static void +alpha_pad_function_end (void) +{ + rtx insn, next; + + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + { + if (! (CALL_P (insn) + && (SIBLING_CALL_P (insn) + || find_reg_note (insn, REG_NORETURN, NULL_RTX)))) + continue; + + next = next_active_insn (insn); + + if (next) + { + rtx pat = PATTERN (next); + + if (GET_CODE (pat) == SET + && GET_CODE (SET_SRC (pat)) == UNSPEC_VOLATILE + && XINT (SET_SRC (pat), 1) == UNSPECV_LDGP1) + emit_insn_after (gen_unop (), insn); + } + } +} + +/* Machine dependent reorg pass. */ + +static void +alpha_reorg (void) +{ + /* Workaround for a linker error that triggers when an exception + handler immediatelly follows a sibcall or a noreturn function. + +In the sibcall case: + + The instruction stream from an object file: + + 1d8: 00 00 fb 6b jmp (t12) + 1dc: 00 00 ba 27 ldah gp,0(ra) + 1e0: 00 00 bd 23 lda gp,0(gp) + 1e4: 00 00 7d a7 ldq t12,0(gp) + 1e8: 00 40 5b 6b jsr ra,(t12),1ec <__funcZ+0x1ec> + + was converted in the final link pass to: + + 12003aa88: 67 fa ff c3 br 120039428 <...> + 12003aa8c: 00 00 fe 2f unop + 12003aa90: 00 00 fe 2f unop + 12003aa94: 48 83 7d a7 ldq t12,-31928(gp) + 12003aa98: 00 40 5b 6b jsr ra,(t12),12003aa9c <__func+0x1ec> + +And in the noreturn case: + + The instruction stream from an object file: + + 54: 00 40 5b 6b jsr ra,(t12),58 <__func+0x58> + 58: 00 00 ba 27 ldah gp,0(ra) + 5c: 00 00 bd 23 lda gp,0(gp) + 60: 00 00 7d a7 ldq t12,0(gp) + 64: 00 40 5b 6b jsr ra,(t12),68 <__func+0x68> + + was converted in the final link pass to: + + fdb24: a0 03 40 d3 bsr ra,fe9a8 <_called_func+0x8> + fdb28: 00 00 fe 2f unop + fdb2c: 00 00 fe 2f unop + fdb30: 30 82 7d a7 ldq t12,-32208(gp) + fdb34: 00 40 5b 6b jsr ra,(t12),fdb38 <__func+0x68> + + GP load instructions were wrongly cleared by the linker relaxation + pass. This workaround prevents removal of GP loads by inserting + an unop instruction between a sibcall or noreturn function call and + exception handler prologue. */ + + if (current_function_has_exception_handlers ()) + alpha_pad_function_end (); + + if (alpha_tp != ALPHA_TP_PROG || flag_exceptions) + alpha_handle_trap_shadows (); + + /* Due to the number of extra trapb insns, don't bother fixing up + alignment when trap precision is instruction. Moreover, we can + only do our job when sched2 is run. */ + if (optimize && !optimize_size + && alpha_tp != ALPHA_TP_INSN + && flag_schedule_insns_after_reload) + { + if (alpha_tune == PROCESSOR_EV4) + alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop); + else if (alpha_tune == PROCESSOR_EV5) + alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop); + } +} + +#if !TARGET_ABI_UNICOSMK + +#ifdef HAVE_STAMP_H +#include +#endif + +static void +alpha_file_start (void) +{ +#ifdef OBJECT_FORMAT_ELF + /* If emitting dwarf2 debug information, we cannot generate a .file + directive to start the file, as it will conflict with dwarf2out + file numbers. So it's only useful when emitting mdebug output. */ + targetm.asm_file_start_file_directive = (write_symbols == DBX_DEBUG); +#endif + + default_file_start (); +#ifdef MS_STAMP + fprintf (asm_out_file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP); +#endif + + fputs ("\t.set noreorder\n", asm_out_file); + fputs ("\t.set volatile\n", asm_out_file); + if (!TARGET_ABI_OPEN_VMS) + fputs ("\t.set noat\n", asm_out_file); + if (TARGET_EXPLICIT_RELOCS) + fputs ("\t.set nomacro\n", asm_out_file); + if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX) + { + const char *arch; + + if (alpha_cpu == PROCESSOR_EV6 || TARGET_FIX || TARGET_CIX) + arch = "ev6"; + else if (TARGET_MAX) + arch = "pca56"; + else if (TARGET_BWX) + arch = "ev56"; + else if (alpha_cpu == PROCESSOR_EV5) + arch = "ev5"; + else + arch = "ev4"; + + fprintf (asm_out_file, "\t.arch %s\n", arch); + } +} +#endif + +#ifdef OBJECT_FORMAT_ELF +/* Since we don't have a .dynbss section, we should not allow global + relocations in the .rodata section. */ + +static int +alpha_elf_reloc_rw_mask (void) +{ + return flag_pic ? 3 : 2; +} + +/* Return a section for X. The only special thing we do here is to + honor small data. */ + +static section * +alpha_elf_select_rtx_section (enum machine_mode mode, rtx x, + unsigned HOST_WIDE_INT align) +{ + if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value) + /* ??? Consider using mergeable sdata sections. */ + return sdata_section; + else + return default_elf_select_rtx_section (mode, x, align); +} + +static unsigned int +alpha_elf_section_type_flags (tree decl, const char *name, int reloc) +{ + unsigned int flags = 0; + + if (strcmp (name, ".sdata") == 0 + || strncmp (name, ".sdata.", 7) == 0 + || strncmp (name, ".gnu.linkonce.s.", 16) == 0 + || strcmp (name, ".sbss") == 0 + || strncmp (name, ".sbss.", 6) == 0 + || strncmp (name, ".gnu.linkonce.sb.", 17) == 0) + flags = SECTION_SMALL; + + flags |= default_section_type_flags (decl, name, reloc); + return flags; +} +#endif /* OBJECT_FORMAT_ELF */ + +/* Structure to collect function names for final output in link section. */ +/* Note that items marked with GTY can't be ifdef'ed out. */ + +enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN}; +enum reloc_kind {KIND_LINKAGE, KIND_CODEADDR}; + +struct GTY(()) alpha_links +{ + int num; + const char *target; + rtx linkage; + enum links_kind lkind; + enum reloc_kind rkind; +}; + +struct GTY(()) alpha_funcs +{ + int num; + splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *))) + links; +}; + +static GTY ((param1_is (char *), param2_is (struct alpha_links *))) + splay_tree alpha_links_tree; +static GTY ((param1_is (tree), param2_is (struct alpha_funcs *))) + splay_tree alpha_funcs_tree; + +static GTY(()) int alpha_funcs_num; + +#if TARGET_ABI_OPEN_VMS + +/* Return the VMS argument type corresponding to MODE. */ + +enum avms_arg_type +alpha_arg_type (enum machine_mode mode) +{ + switch (mode) + { + case SFmode: + return TARGET_FLOAT_VAX ? FF : FS; + case DFmode: + return TARGET_FLOAT_VAX ? FD : FT; + default: + return I64; + } +} + +/* Return an rtx for an integer representing the VMS Argument Information + register value. */ + +rtx +alpha_arg_info_reg_val (CUMULATIVE_ARGS cum) +{ + unsigned HOST_WIDE_INT regval = cum.num_args; + int i; + + for (i = 0; i < 6; i++) + regval |= ((int) cum.atypes[i]) << (i * 3 + 8); + + return GEN_INT (regval); +} + +/* Register the need for a (fake) .linkage entry for calls to function NAME. + IS_LOCAL is 1 if this is for a definition, 0 if this is for a real call. + Return a SYMBOL_REF suited to the call instruction. */ + +rtx +alpha_need_linkage (const char *name, int is_local) +{ + splay_tree_node node; + struct alpha_links *al; + const char *target; + tree id; + + if (name[0] == '*') + name++; + + if (is_local) + { + struct alpha_funcs *cfaf; + + if (!alpha_funcs_tree) + alpha_funcs_tree = splay_tree_new_ggc + (splay_tree_compare_pointers, + ggc_alloc_splay_tree_tree_node_tree_node_splay_tree_s, + ggc_alloc_splay_tree_tree_node_tree_node_splay_tree_node_s); + + + cfaf = ggc_alloc_alpha_funcs (); + + cfaf->links = 0; + cfaf->num = ++alpha_funcs_num; + + splay_tree_insert (alpha_funcs_tree, + (splay_tree_key) current_function_decl, + (splay_tree_value) cfaf); + } + + if (alpha_links_tree) + { + /* Is this name already defined? */ + + node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name); + if (node) + { + al = (struct alpha_links *) node->value; + if (is_local) + { + /* Defined here but external assumed. */ + if (al->lkind == KIND_EXTERN) + al->lkind = KIND_LOCAL; + } + else + { + /* Used here but unused assumed. */ + if (al->lkind == KIND_UNUSED) + al->lkind = KIND_LOCAL; + } + return al->linkage; + } + } + else + alpha_links_tree = splay_tree_new_ggc + ((splay_tree_compare_fn) strcmp, + ggc_alloc_splay_tree_str_alpha_links_splay_tree_s, + ggc_alloc_splay_tree_str_alpha_links_splay_tree_node_s); + + al = ggc_alloc_alpha_links (); + name = ggc_strdup (name); + + /* Assume external if no definition. */ + al->lkind = (is_local ? KIND_UNUSED : KIND_EXTERN); + + /* Ensure we have an IDENTIFIER so assemble_name can mark it used + and find the ultimate alias target like assemble_name. */ + id = get_identifier (name); + target = NULL; + while (IDENTIFIER_TRANSPARENT_ALIAS (id)) + { + id = TREE_CHAIN (id); + target = IDENTIFIER_POINTER (id); + } + + al->target = target ? target : name; + al->linkage = gen_rtx_SYMBOL_REF (Pmode, name); + + splay_tree_insert (alpha_links_tree, (splay_tree_key) name, + (splay_tree_value) al); + + return al->linkage; +} + +/* Return a SYMBOL_REF representing the reference to the .linkage entry + of function FUNC built for calls made from CFUNDECL. LFLAG is 1 if + this is the reference to the linkage pointer value, 0 if this is the + reference to the function entry value. RFLAG is 1 if this a reduced + reference (code address only), 0 if this is a full reference. */ + +rtx +alpha_use_linkage (rtx func, tree cfundecl, int lflag, int rflag) +{ + splay_tree_node cfunnode; + struct alpha_funcs *cfaf; + struct alpha_links *al; + const char *name = XSTR (func, 0); + + cfaf = (struct alpha_funcs *) 0; + al = (struct alpha_links *) 0; + + cfunnode = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) cfundecl); + cfaf = (struct alpha_funcs *) cfunnode->value; + + if (cfaf->links) + { + splay_tree_node lnode; + + /* Is this name already defined? */ + + lnode = splay_tree_lookup (cfaf->links, (splay_tree_key) name); + if (lnode) + al = (struct alpha_links *) lnode->value; + } + else + cfaf->links = splay_tree_new_ggc + ((splay_tree_compare_fn) strcmp, + ggc_alloc_splay_tree_str_alpha_links_splay_tree_s, + ggc_alloc_splay_tree_str_alpha_links_splay_tree_node_s); + + if (!al) + { + size_t name_len; + size_t buflen; + char *linksym; + splay_tree_node node = 0; + struct alpha_links *anl; + + if (name[0] == '*') + name++; + + name_len = strlen (name); + linksym = (char *) alloca (name_len + 50); + + al = ggc_alloc_alpha_links (); + al->num = cfaf->num; + al->target = NULL; + + node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name); + if (node) + { + anl = (struct alpha_links *) node->value; + al->lkind = anl->lkind; + name = anl->target; + } + + sprintf (linksym, "$%d..%s..lk", cfaf->num, name); + buflen = strlen (linksym); + + al->linkage = gen_rtx_SYMBOL_REF + (Pmode, ggc_alloc_string (linksym, buflen + 1)); + + splay_tree_insert (cfaf->links, (splay_tree_key) name, + (splay_tree_value) al); + } + + if (rflag) + al->rkind = KIND_CODEADDR; + else + al->rkind = KIND_LINKAGE; + + if (lflag) + return gen_rtx_MEM (Pmode, plus_constant (al->linkage, 8)); + else + return al->linkage; +} + +static int +alpha_write_one_linkage (splay_tree_node node, void *data) +{ + const char *const name = (const char *) node->key; + struct alpha_links *link = (struct alpha_links *) node->value; + FILE *stream = (FILE *) data; + + fprintf (stream, "$%d..%s..lk:\n", link->num, name); + if (link->rkind == KIND_CODEADDR) + { + if (link->lkind == KIND_LOCAL) + { + /* Local and used */ + fprintf (stream, "\t.quad %s..en\n", name); + } + else + { + /* External and used, request code address. */ + fprintf (stream, "\t.code_address %s\n", name); + } + } + else + { + if (link->lkind == KIND_LOCAL) + { + /* Local and used, build linkage pair. */ + fprintf (stream, "\t.quad %s..en\n", name); + fprintf (stream, "\t.quad %s\n", name); + } + else + { + /* External and used, request linkage pair. */ + fprintf (stream, "\t.linkage %s\n", name); + } + } + + return 0; +} + +static void +alpha_write_linkage (FILE *stream, const char *funname, tree fundecl) +{ + splay_tree_node node; + struct alpha_funcs *func; + + fprintf (stream, "\t.link\n"); + fprintf (stream, "\t.align 3\n"); + in_section = NULL; + + node = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) fundecl); + func = (struct alpha_funcs *) node->value; + + fputs ("\t.name ", stream); + assemble_name (stream, funname); + fputs ("..na\n", stream); + ASM_OUTPUT_LABEL (stream, funname); + fprintf (stream, "\t.pdesc "); + assemble_name (stream, funname); + fprintf (stream, "..en,%s\n", + alpha_procedure_type == PT_STACK ? "stack" + : alpha_procedure_type == PT_REGISTER ? "reg" : "null"); + + if (func->links) + { + splay_tree_foreach (func->links, alpha_write_one_linkage, stream); + /* splay_tree_delete (func->links); */ + } +} + +/* Switch to an arbitrary section NAME with attributes as specified + by FLAGS. ALIGN specifies any known alignment requirements for + the section; 0 if the default should be used. */ + +static void +vms_asm_named_section (const char *name, unsigned int flags, + tree decl ATTRIBUTE_UNUSED) +{ + fputc ('\n', asm_out_file); + fprintf (asm_out_file, ".section\t%s", name); + + if (flags & SECTION_DEBUG) + fprintf (asm_out_file, ",NOWRT"); + + fputc ('\n', asm_out_file); +} + +/* Record an element in the table of global constructors. SYMBOL is + a SYMBOL_REF of the function to be called; PRIORITY is a number + between 0 and MAX_INIT_PRIORITY. + + Differs from default_ctors_section_asm_out_constructor in that the + width of the .ctors entry is always 64 bits, rather than the 32 bits + used by a normal pointer. */ + +static void +vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED) +{ + switch_to_section (ctors_section); + assemble_align (BITS_PER_WORD); + assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1); +} + +static void +vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED) +{ + switch_to_section (dtors_section); + assemble_align (BITS_PER_WORD); + assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1); +} +#else + +rtx +alpha_need_linkage (const char *name ATTRIBUTE_UNUSED, + int is_local ATTRIBUTE_UNUSED) +{ + return NULL_RTX; +} + +rtx +alpha_use_linkage (rtx func ATTRIBUTE_UNUSED, + tree cfundecl ATTRIBUTE_UNUSED, + int lflag ATTRIBUTE_UNUSED, + int rflag ATTRIBUTE_UNUSED) +{ + return NULL_RTX; +} + +#endif /* TARGET_ABI_OPEN_VMS */ + +#if TARGET_ABI_UNICOSMK + +/* This evaluates to true if we do not know how to pass TYPE solely in + registers. This is the case for all arguments that do not fit in two + registers. */ + +static bool +unicosmk_must_pass_in_stack (enum machine_mode mode, const_tree type) +{ + if (type == NULL) + return false; + + if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) + return true; + if (TREE_ADDRESSABLE (type)) + return true; + + return ALPHA_ARG_SIZE (mode, type, 0) > 2; +} + +/* Define the offset between two registers, one to be eliminated, and the + other its replacement, at the start of a routine. */ + +int +unicosmk_initial_elimination_offset (int from, int to) +{ + int fixed_size; + + fixed_size = alpha_sa_size(); + if (fixed_size != 0) + fixed_size += 48; + + if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) + return -fixed_size; + else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) + return 0; + else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return (ALPHA_ROUND (crtl->outgoing_args_size) + + ALPHA_ROUND (get_frame_size())); + else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return (ALPHA_ROUND (fixed_size) + + ALPHA_ROUND (get_frame_size() + + crtl->outgoing_args_size)); + else + gcc_unreachable (); +} + +/* Output the module name for .ident and .end directives. We have to strip + directories and add make sure that the module name starts with a letter + or '$'. */ + +static void +unicosmk_output_module_name (FILE *file) +{ + const char *name = lbasename (main_input_filename); + unsigned len = strlen (name); + char *clean_name = alloca (len + 2); + char *ptr = clean_name; + + /* CAM only accepts module names that start with a letter or '$'. We + prefix the module name with a '$' if necessary. */ + + if (!ISALPHA (*name)) + *ptr++ = '$'; + memcpy (ptr, name, len + 1); + clean_symbol_name (clean_name); + fputs (clean_name, file); +} + +/* Output the definition of a common variable. */ + +void +unicosmk_output_common (FILE *file, const char *name, int size, int align) +{ + tree name_tree; + printf ("T3E__: common %s\n", name); + + in_section = NULL; + fputs("\t.endp\n\n\t.psect ", file); + assemble_name(file, name); + fprintf(file, ",%d,common\n", floor_log2 (align / BITS_PER_UNIT)); + fprintf(file, "\t.byte\t0:%d\n", size); + + /* Mark the symbol as defined in this module. */ + name_tree = get_identifier (name); + TREE_ASM_WRITTEN (name_tree) = 1; +} + +#define SECTION_PUBLIC SECTION_MACH_DEP +#define SECTION_MAIN (SECTION_PUBLIC << 1) +static int current_section_align; + +/* A get_unnamed_section callback for switching to the text section. */ + +static void +unicosmk_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED) +{ + static int count = 0; + fprintf (asm_out_file, "\t.endp\n\n\t.psect\tgcc@text___%d,code\n", count++); +} + +/* A get_unnamed_section callback for switching to the data section. */ + +static void +unicosmk_output_data_section_asm_op (const void *data ATTRIBUTE_UNUSED) +{ + static int count = 1; + fprintf (asm_out_file, "\t.endp\n\n\t.psect\tgcc@data___%d,data\n", count++); +} + +/* Implement TARGET_ASM_INIT_SECTIONS. + + The Cray assembler is really weird with respect to sections. It has only + named sections and you can't reopen a section once it has been closed. + This means that we have to generate unique names whenever we want to + reenter the text or the data section. */ + +static void +unicosmk_init_sections (void) +{ + text_section = get_unnamed_section (SECTION_CODE, + unicosmk_output_text_section_asm_op, + NULL); + data_section = get_unnamed_section (SECTION_WRITE, + unicosmk_output_data_section_asm_op, + NULL); + readonly_data_section = data_section; +} + +static unsigned int +unicosmk_section_type_flags (tree decl, const char *name, + int reloc ATTRIBUTE_UNUSED) +{ + unsigned int flags = default_section_type_flags (decl, name, reloc); + + if (!decl) + return flags; + + if (TREE_CODE (decl) == FUNCTION_DECL) + { + current_section_align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); + if (align_functions_log > current_section_align) + current_section_align = align_functions_log; + + if (! strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "main")) + flags |= SECTION_MAIN; + } + else + current_section_align = floor_log2 (DECL_ALIGN (decl) / BITS_PER_UNIT); + + if (TREE_PUBLIC (decl)) + flags |= SECTION_PUBLIC; + + return flags; +} + +/* Generate a section name for decl and associate it with the + declaration. */ + +static void +unicosmk_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED) +{ + const char *name; + int len; + + gcc_assert (decl); + + name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); + name = default_strip_name_encoding (name); + len = strlen (name); + + if (TREE_CODE (decl) == FUNCTION_DECL) + { + char *string; + + /* It is essential that we prefix the section name here because + otherwise the section names generated for constructors and + destructors confuse collect2. */ + + string = alloca (len + 6); + sprintf (string, "code@%s", name); + DECL_SECTION_NAME (decl) = build_string (len + 5, string); + } + else if (TREE_PUBLIC (decl)) + DECL_SECTION_NAME (decl) = build_string (len, name); + else + { + char *string; + + string = alloca (len + 6); + sprintf (string, "data@%s", name); + DECL_SECTION_NAME (decl) = build_string (len + 5, string); + } +} + +/* Switch to an arbitrary section NAME with attributes as specified + by FLAGS. ALIGN specifies any known alignment requirements for + the section; 0 if the default should be used. */ + +static void +unicosmk_asm_named_section (const char *name, unsigned int flags, + tree decl ATTRIBUTE_UNUSED) +{ + const char *kind; + + /* Close the previous section. */ + + fputs ("\t.endp\n\n", asm_out_file); + + /* Find out what kind of section we are opening. */ + + if (flags & SECTION_MAIN) + fputs ("\t.start\tmain\n", asm_out_file); + + if (flags & SECTION_CODE) + kind = "code"; + else if (flags & SECTION_PUBLIC) + kind = "common"; + else + kind = "data"; + + if (current_section_align != 0) + fprintf (asm_out_file, "\t.psect\t%s,%d,%s\n", name, + current_section_align, kind); + else + fprintf (asm_out_file, "\t.psect\t%s,%s\n", name, kind); +} + +static void +unicosmk_insert_attributes (tree decl, tree *attr_ptr ATTRIBUTE_UNUSED) +{ + if (DECL_P (decl) + && (TREE_PUBLIC (decl) || TREE_CODE (decl) == FUNCTION_DECL)) + unicosmk_unique_section (decl, 0); +} + +/* Output an alignment directive. We have to use the macro 'gcc@code@align' + in code sections because .align fill unused space with zeroes. */ + +void +unicosmk_output_align (FILE *file, int align) +{ + if (inside_function) + fprintf (file, "\tgcc@code@align\t%d\n", align); + else + fprintf (file, "\t.align\t%d\n", align); +} + +/* Add a case vector to the current function's list of deferred case + vectors. Case vectors have to be put into a separate section because CAM + does not allow data definitions in code sections. */ + +void +unicosmk_defer_case_vector (rtx lab, rtx vec) +{ + struct machine_function *machine = cfun->machine; + + vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); + machine->addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, + machine->addr_list); +} + +/* Output a case vector. */ + +static void +unicosmk_output_addr_vec (FILE *file, rtx vec) +{ + rtx lab = XEXP (vec, 0); + rtx body = XEXP (vec, 1); + int vlen = XVECLEN (body, 0); + int idx; + + (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (lab)); + + for (idx = 0; idx < vlen; idx++) + { + ASM_OUTPUT_ADDR_VEC_ELT + (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); + } +} + +/* Output current function's deferred case vectors. */ + +static void +unicosmk_output_deferred_case_vectors (FILE *file) +{ + struct machine_function *machine = cfun->machine; + rtx t; + + if (machine->addr_list == NULL_RTX) + return; + + switch_to_section (data_section); + for (t = machine->addr_list; t; t = XEXP (t, 1)) + unicosmk_output_addr_vec (file, XEXP (t, 0)); +} + +/* Generate the name of the SSIB section for the current function. */ + +#define SSIB_PREFIX "__SSIB_" +#define SSIB_PREFIX_LEN 7 + +static const char * +unicosmk_ssib_name (void) +{ + /* This is ok since CAM won't be able to deal with names longer than that + anyway. */ + + static char name[256]; + + rtx x; + const char *fnname; + int len; + + x = DECL_RTL (cfun->decl); + gcc_assert (MEM_P (x)); + x = XEXP (x, 0); + gcc_assert (GET_CODE (x) == SYMBOL_REF); + fnname = XSTR (x, 0); + + len = strlen (fnname); + if (len + SSIB_PREFIX_LEN > 255) + len = 255 - SSIB_PREFIX_LEN; + + strcpy (name, SSIB_PREFIX); + strncpy (name + SSIB_PREFIX_LEN, fnname, len); + name[len + SSIB_PREFIX_LEN] = 0; + + return name; +} + +/* Set up the dynamic subprogram information block (DSIB) and update the + frame pointer register ($15) for subroutines which have a frame. If the + subroutine doesn't have a frame, simply increment $15. */ + +static void +unicosmk_gen_dsib (unsigned long *imaskP) +{ + if (alpha_procedure_type == PT_STACK) + { + const char *ssib_name; + rtx mem; + + /* Allocate 64 bytes for the DSIB. */ + + FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (-64)))); + emit_insn (gen_blockage ()); + + /* Save the return address. */ + + mem = gen_frame_mem (DImode, plus_constant (stack_pointer_rtx, 56)); + FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA))); + (*imaskP) &= ~(1UL << REG_RA); + + /* Save the old frame pointer. */ + + mem = gen_frame_mem (DImode, plus_constant (stack_pointer_rtx, 48)); + FRP (emit_move_insn (mem, hard_frame_pointer_rtx)); + (*imaskP) &= ~(1UL << HARD_FRAME_POINTER_REGNUM); + + emit_insn (gen_blockage ()); + + /* Store the SSIB pointer. */ + + ssib_name = ggc_strdup (unicosmk_ssib_name ()); + mem = gen_frame_mem (DImode, plus_constant (stack_pointer_rtx, 32)); + + FRP (emit_move_insn (gen_rtx_REG (DImode, 5), + gen_rtx_SYMBOL_REF (Pmode, ssib_name))); + FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 5))); + + /* Save the CIW index. */ + + mem = gen_frame_mem (DImode, plus_constant (stack_pointer_rtx, 24)); + FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 25))); + + emit_insn (gen_blockage ()); + + /* Set the new frame pointer. */ + FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx, + stack_pointer_rtx, GEN_INT (64)))); + } + else + { + /* Increment the frame pointer register to indicate that we do not + have a frame. */ + emit_insn (gen_adddi3 (hard_frame_pointer_rtx, + hard_frame_pointer_rtx, const1_rtx)); + } +} + +/* Output the static subroutine information block for the current + function. */ + +static void +unicosmk_output_ssib (FILE *file, const char *fnname) +{ + int len; + int i; + rtx x; + rtx ciw; + struct machine_function *machine = cfun->machine; + + in_section = NULL; + fprintf (file, "\t.endp\n\n\t.psect\t%s%s,data\n", user_label_prefix, + unicosmk_ssib_name ()); + + /* Some required stuff and the function name length. */ + + len = strlen (fnname); + fprintf (file, "\t.quad\t^X20008%2.2X28\n", len); + + /* Saved registers + ??? We don't do that yet. */ + + fputs ("\t.quad\t0\n", file); + + /* Function address. */ + + fputs ("\t.quad\t", file); + assemble_name (file, fnname); + putc ('\n', file); + + fputs ("\t.quad\t0\n", file); + fputs ("\t.quad\t0\n", file); + + /* Function name. + ??? We do it the same way Cray CC does it but this could be + simplified. */ + + for( i = 0; i < len; i++ ) + fprintf (file, "\t.byte\t%d\n", (int)(fnname[i])); + if( (len % 8) == 0 ) + fputs ("\t.quad\t0\n", file); + else + fprintf (file, "\t.bits\t%d : 0\n", (8 - (len % 8))*8); + + /* All call information words used in the function. */ + + for (x = machine->first_ciw; x; x = XEXP (x, 1)) + { + ciw = XEXP (x, 0); +#if HOST_BITS_PER_WIDE_INT == 32 + fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_DOUBLE_HEX "\n", + CONST_DOUBLE_HIGH (ciw), CONST_DOUBLE_LOW (ciw)); +#else + fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n", INTVAL (ciw)); +#endif + } +} + +/* Add a call information word (CIW) to the list of the current function's + CIWs and return its index. + + X is a CONST_INT or CONST_DOUBLE representing the CIW. */ + +rtx +unicosmk_add_call_info_word (rtx x) +{ + rtx node; + struct machine_function *machine = cfun->machine; + + node = gen_rtx_EXPR_LIST (VOIDmode, x, NULL_RTX); + if (machine->first_ciw == NULL_RTX) + machine->first_ciw = node; + else + XEXP (machine->last_ciw, 1) = node; + + machine->last_ciw = node; + ++machine->ciw_count; + + return GEN_INT (machine->ciw_count + + strlen (current_function_name ())/8 + 5); +} + +/* The Cray assembler doesn't accept extern declarations for symbols which + are defined in the same file. We have to keep track of all global + symbols which are referenced and/or defined in a source file and output + extern declarations for those which are referenced but not defined at + the end of file. */ + +/* List of identifiers for which an extern declaration might have to be + emitted. */ +/* FIXME: needs to use GC, so it can be saved and restored for PCH. */ + +struct unicosmk_extern_list +{ + struct unicosmk_extern_list *next; + const char *name; +}; + +static struct unicosmk_extern_list *unicosmk_extern_head = 0; + +/* Output extern declarations which are required for every asm file. */ + +static void +unicosmk_output_default_externs (FILE *file) +{ + static const char *const externs[] = + { "__T3E_MISMATCH" }; + + int i; + int n; + + n = ARRAY_SIZE (externs); + + for (i = 0; i < n; i++) + fprintf (file, "\t.extern\t%s\n", externs[i]); +} + +/* Output extern declarations for global symbols which are have been + referenced but not defined. */ + +static void +unicosmk_output_externs (FILE *file) +{ + struct unicosmk_extern_list *p; + const char *real_name; + int len; + tree name_tree; + + len = strlen (user_label_prefix); + for (p = unicosmk_extern_head; p != 0; p = p->next) + { + /* We have to strip the encoding and possibly remove user_label_prefix + from the identifier in order to handle -fleading-underscore and + explicit asm names correctly (cf. gcc.dg/asm-names-1.c). */ + real_name = default_strip_name_encoding (p->name); + if (len && p->name[0] == '*' + && !memcmp (real_name, user_label_prefix, len)) + real_name += len; + + name_tree = get_identifier (real_name); + if (! TREE_ASM_WRITTEN (name_tree)) + { + TREE_ASM_WRITTEN (name_tree) = 1; + fputs ("\t.extern\t", file); + assemble_name (file, p->name); + putc ('\n', file); + } + } +} + +/* Record an extern. */ + +void +unicosmk_add_extern (const char *name) +{ + struct unicosmk_extern_list *p; + + p = (struct unicosmk_extern_list *) + xmalloc (sizeof (struct unicosmk_extern_list)); + p->next = unicosmk_extern_head; + p->name = name; + unicosmk_extern_head = p; +} + +/* The Cray assembler generates incorrect code if identifiers which + conflict with register names are used as instruction operands. We have + to replace such identifiers with DEX expressions. */ + +/* Structure to collect identifiers which have been replaced by DEX + expressions. */ +/* FIXME: needs to use GC, so it can be saved and restored for PCH. */ + +struct unicosmk_dex { + struct unicosmk_dex *next; + const char *name; +}; + +/* List of identifiers which have been replaced by DEX expressions. The DEX + number is determined by the position in the list. */ + +static struct unicosmk_dex *unicosmk_dex_list = NULL; + +/* The number of elements in the DEX list. */ + +static int unicosmk_dex_count = 0; + +/* Check if NAME must be replaced by a DEX expression. */ + +static int +unicosmk_special_name (const char *name) +{ + if (name[0] == '*') + ++name; + + if (name[0] == '$') + ++name; + + if (name[0] != 'r' && name[0] != 'f' && name[0] != 'R' && name[0] != 'F') + return 0; + + switch (name[1]) + { + case '1': case '2': + return (name[2] == '\0' || (ISDIGIT (name[2]) && name[3] == '\0')); + + case '3': + return (name[2] == '\0' + || ((name[2] == '0' || name[2] == '1') && name[3] == '\0')); + + default: + return (ISDIGIT (name[1]) && name[2] == '\0'); + } +} + +/* Return the DEX number if X must be replaced by a DEX expression and 0 + otherwise. */ + +static int +unicosmk_need_dex (rtx x) +{ + struct unicosmk_dex *dex; + const char *name; + int i; + + if (GET_CODE (x) != SYMBOL_REF) + return 0; + + name = XSTR (x,0); + if (! unicosmk_special_name (name)) + return 0; + + i = unicosmk_dex_count; + for (dex = unicosmk_dex_list; dex; dex = dex->next) + { + if (! strcmp (name, dex->name)) + return i; + --i; + } + + dex = (struct unicosmk_dex *) xmalloc (sizeof (struct unicosmk_dex)); + dex->name = name; + dex->next = unicosmk_dex_list; + unicosmk_dex_list = dex; + + ++unicosmk_dex_count; + return unicosmk_dex_count; +} + +/* Output the DEX definitions for this file. */ + +static void +unicosmk_output_dex (FILE *file) +{ + struct unicosmk_dex *dex; + int i; + + if (unicosmk_dex_list == NULL) + return; + + fprintf (file, "\t.dexstart\n"); + + i = unicosmk_dex_count; + for (dex = unicosmk_dex_list; dex; dex = dex->next) + { + fprintf (file, "\tDEX (%d) = ", i); + assemble_name (file, dex->name); + putc ('\n', file); + --i; + } + + fprintf (file, "\t.dexend\n"); +} + +/* Output text that to appear at the beginning of an assembler file. */ + +static void +unicosmk_file_start (void) +{ + int i; + + fputs ("\t.ident\t", asm_out_file); + unicosmk_output_module_name (asm_out_file); + fputs ("\n\n", asm_out_file); + + /* The Unicos/Mk assembler uses different register names. Instead of trying + to support them, we simply use micro definitions. */ + + /* CAM has different register names: rN for the integer register N and fN + for the floating-point register N. Instead of trying to use these in + alpha.md, we define the symbols $N and $fN to refer to the appropriate + register. */ + + for (i = 0; i < 32; ++i) + fprintf (asm_out_file, "$%d <- r%d\n", i, i); + + for (i = 0; i < 32; ++i) + fprintf (asm_out_file, "$f%d <- f%d\n", i, i); + + putc ('\n', asm_out_file); + + /* The .align directive fill unused space with zeroes which does not work + in code sections. We define the macro 'gcc@code@align' which uses nops + instead. Note that it assumes that code sections always have the + biggest possible alignment since . refers to the current offset from + the beginning of the section. */ + + fputs ("\t.macro gcc@code@align n\n", asm_out_file); + fputs ("gcc@n@bytes = 1 << n\n", asm_out_file); + fputs ("gcc@here = . % gcc@n@bytes\n", asm_out_file); + fputs ("\t.if ne, gcc@here, 0\n", asm_out_file); + fputs ("\t.repeat (gcc@n@bytes - gcc@here) / 4\n", asm_out_file); + fputs ("\tbis r31,r31,r31\n", asm_out_file); + fputs ("\t.endr\n", asm_out_file); + fputs ("\t.endif\n", asm_out_file); + fputs ("\t.endm gcc@code@align\n\n", asm_out_file); + + /* Output extern declarations which should always be visible. */ + unicosmk_output_default_externs (asm_out_file); + + /* Open a dummy section. We always need to be inside a section for the + section-switching code to work correctly. + ??? This should be a module id or something like that. I still have to + figure out what the rules for those are. */ + fputs ("\n\t.psect\t$SG00000,data\n", asm_out_file); +} + +/* Output text to appear at the end of an assembler file. This includes all + pending extern declarations and DEX expressions. */ + +static void +unicosmk_file_end (void) +{ + fputs ("\t.endp\n\n", asm_out_file); + + /* Output all pending externs. */ + + unicosmk_output_externs (asm_out_file); + + /* Output dex definitions used for functions whose names conflict with + register names. */ + + unicosmk_output_dex (asm_out_file); + + fputs ("\t.end\t", asm_out_file); + unicosmk_output_module_name (asm_out_file); + putc ('\n', asm_out_file); +} + +#else + +static void +unicosmk_output_deferred_case_vectors (FILE *file ATTRIBUTE_UNUSED) +{} + +static void +unicosmk_gen_dsib (unsigned long *imaskP ATTRIBUTE_UNUSED) +{} + +static void +unicosmk_output_ssib (FILE * file ATTRIBUTE_UNUSED, + const char * fnname ATTRIBUTE_UNUSED) +{} + +rtx +unicosmk_add_call_info_word (rtx x ATTRIBUTE_UNUSED) +{ + return NULL_RTX; +} + +static int +unicosmk_need_dex (rtx x ATTRIBUTE_UNUSED) +{ + return 0; +} + +#endif /* TARGET_ABI_UNICOSMK */ + +static void +alpha_init_libfuncs (void) +{ + if (TARGET_ABI_UNICOSMK) + { + /* Prevent gcc from generating calls to __divsi3. */ + set_optab_libfunc (sdiv_optab, SImode, 0); + set_optab_libfunc (udiv_optab, SImode, 0); + + /* Use the functions provided by the system library + for DImode integer division. */ + set_optab_libfunc (sdiv_optab, DImode, "$sldiv"); + set_optab_libfunc (udiv_optab, DImode, "$uldiv"); + } + else if (TARGET_ABI_OPEN_VMS) + { + /* Use the VMS runtime library functions for division and + remainder. */ + set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I"); + set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L"); + set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI"); + set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL"); + set_optab_libfunc (smod_optab, SImode, "OTS$REM_I"); + set_optab_libfunc (smod_optab, DImode, "OTS$REM_L"); + set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI"); + set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL"); + abort_libfunc = init_one_libfunc ("decc$abort"); + memcmp_libfunc = init_one_libfunc ("decc$memcmp"); +#ifdef MEM_LIBFUNCS_INIT + MEM_LIBFUNCS_INIT; +#endif + } +} + +/* On the Alpha, we use this to disable the floating-point registers + when they don't exist. */ + +static void +alpha_conditional_register_usage (void) +{ + int i; + if (! TARGET_FPREGS) + for (i = 32; i < 63; i++) + fixed_regs[i] = call_used_regs[i] = 1; +} + +/* Initialize the GCC target structure. */ +#if TARGET_ABI_OPEN_VMS +# undef TARGET_ATTRIBUTE_TABLE +# define TARGET_ATTRIBUTE_TABLE vms_attribute_table +# undef TARGET_CAN_ELIMINATE +# define TARGET_CAN_ELIMINATE alpha_vms_can_eliminate +#endif + +#undef TARGET_IN_SMALL_DATA_P +#define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p + +#if TARGET_ABI_UNICOSMK +# undef TARGET_INSERT_ATTRIBUTES +# define TARGET_INSERT_ATTRIBUTES unicosmk_insert_attributes +# undef TARGET_SECTION_TYPE_FLAGS +# define TARGET_SECTION_TYPE_FLAGS unicosmk_section_type_flags +# undef TARGET_ASM_UNIQUE_SECTION +# define TARGET_ASM_UNIQUE_SECTION unicosmk_unique_section +#undef TARGET_ASM_FUNCTION_RODATA_SECTION +#define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section +# undef TARGET_ASM_GLOBALIZE_LABEL +# define TARGET_ASM_GLOBALIZE_LABEL hook_void_FILEptr_constcharptr +# undef TARGET_MUST_PASS_IN_STACK +# define TARGET_MUST_PASS_IN_STACK unicosmk_must_pass_in_stack +#endif + +#undef TARGET_ASM_ALIGNED_HI_OP +#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" +#undef TARGET_ASM_ALIGNED_DI_OP +#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" + +/* Default unaligned ops are provided for ELF systems. To get unaligned + data for non-ELF systems, we have to turn off auto alignment. */ +#if !defined (OBJECT_FORMAT_ELF) || TARGET_ABI_OPEN_VMS +#undef TARGET_ASM_UNALIGNED_HI_OP +#define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t" +#undef TARGET_ASM_UNALIGNED_SI_OP +#define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t" +#undef TARGET_ASM_UNALIGNED_DI_OP +#define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t" +#endif + +#ifdef OBJECT_FORMAT_ELF +#undef TARGET_ASM_RELOC_RW_MASK +#define TARGET_ASM_RELOC_RW_MASK alpha_elf_reloc_rw_mask +#undef TARGET_ASM_SELECT_RTX_SECTION +#define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section +#undef TARGET_SECTION_TYPE_FLAGS +#define TARGET_SECTION_TYPE_FLAGS alpha_elf_section_type_flags +#endif + +#undef TARGET_ASM_FUNCTION_END_PROLOGUE +#define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue + +#undef TARGET_INIT_LIBFUNCS +#define TARGET_INIT_LIBFUNCS alpha_init_libfuncs + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS alpha_legitimize_address + +#if TARGET_ABI_UNICOSMK +#undef TARGET_ASM_FILE_START +#define TARGET_ASM_FILE_START unicosmk_file_start +#undef TARGET_ASM_FILE_END +#define TARGET_ASM_FILE_END unicosmk_file_end +#else +#undef TARGET_ASM_FILE_START +#define TARGET_ASM_FILE_START alpha_file_start +#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE +#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true +#endif + +#undef TARGET_SCHED_ADJUST_COST +#define TARGET_SCHED_ADJUST_COST alpha_adjust_cost +#undef TARGET_SCHED_ISSUE_RATE +#define TARGET_SCHED_ISSUE_RATE alpha_issue_rate +#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD +#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ + alpha_multipass_dfa_lookahead + +#undef TARGET_HAVE_TLS +#define TARGET_HAVE_TLS HAVE_AS_TLS + +#undef TARGET_BUILTIN_DECL +#define TARGET_BUILTIN_DECL alpha_builtin_decl +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS alpha_init_builtins +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN alpha_expand_builtin +#undef TARGET_FOLD_BUILTIN +#define TARGET_FOLD_BUILTIN alpha_fold_builtin + +#undef TARGET_FUNCTION_OK_FOR_SIBCALL +#define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall +#undef TARGET_CANNOT_COPY_INSN_P +#define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p +#undef TARGET_CANNOT_FORCE_CONST_MEM +#define TARGET_CANNOT_FORCE_CONST_MEM alpha_cannot_force_const_mem + +#if TARGET_ABI_OSF +#undef TARGET_ASM_OUTPUT_MI_THUNK +#define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf +#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK +#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true +#undef TARGET_STDARG_OPTIMIZE_HOOK +#define TARGET_STDARG_OPTIMIZE_HOOK alpha_stdarg_optimize_hook +#endif + +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS alpha_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST hook_int_rtx_bool_0 + +#undef TARGET_MACHINE_DEPENDENT_REORG +#define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg + +#undef TARGET_PROMOTE_FUNCTION_MODE +#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote +#undef TARGET_PROMOTE_PROTOTYPES +#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY alpha_return_in_memory +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE alpha_pass_by_reference +#undef TARGET_SETUP_INCOMING_VARARGS +#define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true +#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED +#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true +#undef TARGET_SPLIT_COMPLEX_ARG +#define TARGET_SPLIT_COMPLEX_ARG alpha_split_complex_arg +#undef TARGET_GIMPLIFY_VA_ARG_EXPR +#define TARGET_GIMPLIFY_VA_ARG_EXPR alpha_gimplify_va_arg +#undef TARGET_ARG_PARTIAL_BYTES +#define TARGET_ARG_PARTIAL_BYTES alpha_arg_partial_bytes +#undef TARGET_FUNCTION_ARG +#define TARGET_FUNCTION_ARG alpha_function_arg +#undef TARGET_FUNCTION_ARG_ADVANCE +#define TARGET_FUNCTION_ARG_ADVANCE alpha_function_arg_advance +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT alpha_trampoline_init + +#undef TARGET_INSTANTIATE_DECLS +#define TARGET_INSTANTIATE_DECLS alpha_instantiate_decls + +#undef TARGET_SECONDARY_RELOAD +#define TARGET_SECONDARY_RELOAD alpha_secondary_reload + +#undef TARGET_SCALAR_MODE_SUPPORTED_P +#define TARGET_SCALAR_MODE_SUPPORTED_P alpha_scalar_mode_supported_p +#undef TARGET_VECTOR_MODE_SUPPORTED_P +#define TARGET_VECTOR_MODE_SUPPORTED_P alpha_vector_mode_supported_p + +#undef TARGET_BUILD_BUILTIN_VA_LIST +#define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list + +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START alpha_va_start + +/* The Alpha architecture does not require sequential consistency. See + http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html + for an example of how it can be violated in practice. */ +#undef TARGET_RELAXED_ORDERING +#define TARGET_RELAXED_ORDERING true + +#undef TARGET_DEFAULT_TARGET_FLAGS +#define TARGET_DEFAULT_TARGET_FLAGS \ + (TARGET_DEFAULT | TARGET_CPU_DEFAULT | TARGET_DEFAULT_EXPLICIT_RELOCS) +#undef TARGET_HANDLE_OPTION +#define TARGET_HANDLE_OPTION alpha_handle_option + +#undef TARGET_OPTION_OVERRIDE +#define TARGET_OPTION_OVERRIDE alpha_option_override + +#undef TARGET_OPTION_OPTIMIZATION_TABLE +#define TARGET_OPTION_OPTIMIZATION_TABLE alpha_option_optimization_table + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +#undef TARGET_MANGLE_TYPE +#define TARGET_MANGLE_TYPE alpha_mangle_type +#endif + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P alpha_legitimate_address_p + +#undef TARGET_CONDITIONAL_REGISTER_USAGE +#define TARGET_CONDITIONAL_REGISTER_USAGE alpha_conditional_register_usage + +struct gcc_target targetm = TARGET_INITIALIZER; + + +#include "gt-alpha.h" -- cgit v1.2.3