From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/cse.c | 7555 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 7555 insertions(+) create mode 100644 gcc/cse.c (limited to 'gcc/cse.c') diff --git a/gcc/cse.c b/gcc/cse.c new file mode 100644 index 000000000..078977fbc --- /dev/null +++ b/gcc/cse.c @@ -0,0 +1,7555 @@ +/* Common subexpression elimination for GNU compiler. + Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998 + 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "regs.h" +#include "basic-block.h" +#include "flags.h" +#include "insn-config.h" +#include "recog.h" +#include "function.h" +#include "expr.h" +#include "diagnostic-core.h" +#include "toplev.h" +#include "output.h" +#include "ggc.h" +#include "timevar.h" +#include "except.h" +#include "target.h" +#include "params.h" +#include "rtlhooks-def.h" +#include "tree-pass.h" +#include "df.h" +#include "dbgcnt.h" + +/* The basic idea of common subexpression elimination is to go + through the code, keeping a record of expressions that would + have the same value at the current scan point, and replacing + expressions encountered with the cheapest equivalent expression. + + It is too complicated to keep track of the different possibilities + when control paths merge in this code; so, at each label, we forget all + that is known and start fresh. This can be described as processing each + extended basic block separately. We have a separate pass to perform + global CSE. + + Note CSE can turn a conditional or computed jump into a nop or + an unconditional jump. When this occurs we arrange to run the jump + optimizer after CSE to delete the unreachable code. + + We use two data structures to record the equivalent expressions: + a hash table for most expressions, and a vector of "quantity + numbers" to record equivalent (pseudo) registers. + + The use of the special data structure for registers is desirable + because it is faster. It is possible because registers references + contain a fairly small number, the register number, taken from + a contiguously allocated series, and two register references are + identical if they have the same number. General expressions + do not have any such thing, so the only way to retrieve the + information recorded on an expression other than a register + is to keep it in a hash table. + +Registers and "quantity numbers": + + At the start of each basic block, all of the (hardware and pseudo) + registers used in the function are given distinct quantity + numbers to indicate their contents. During scan, when the code + copies one register into another, we copy the quantity number. + When a register is loaded in any other way, we allocate a new + quantity number to describe the value generated by this operation. + `REG_QTY (N)' records what quantity register N is currently thought + of as containing. + + All real quantity numbers are greater than or equal to zero. + If register N has not been assigned a quantity, `REG_QTY (N)' will + equal -N - 1, which is always negative. + + Quantity numbers below zero do not exist and none of the `qty_table' + entries should be referenced with a negative index. + + We also maintain a bidirectional chain of registers for each + quantity number. The `qty_table` members `first_reg' and `last_reg', + and `reg_eqv_table' members `next' and `prev' hold these chains. + + The first register in a chain is the one whose lifespan is least local. + Among equals, it is the one that was seen first. + We replace any equivalent register with that one. + + If two registers have the same quantity number, it must be true that + REG expressions with qty_table `mode' must be in the hash table for both + registers and must be in the same class. + + The converse is not true. Since hard registers may be referenced in + any mode, two REG expressions might be equivalent in the hash table + but not have the same quantity number if the quantity number of one + of the registers is not the same mode as those expressions. + +Constants and quantity numbers + + When a quantity has a known constant value, that value is stored + in the appropriate qty_table `const_rtx'. This is in addition to + putting the constant in the hash table as is usual for non-regs. + + Whether a reg or a constant is preferred is determined by the configuration + macro CONST_COSTS and will often depend on the constant value. In any + event, expressions containing constants can be simplified, by fold_rtx. + + When a quantity has a known nearly constant value (such as an address + of a stack slot), that value is stored in the appropriate qty_table + `const_rtx'. + + Integer constants don't have a machine mode. However, cse + determines the intended machine mode from the destination + of the instruction that moves the constant. The machine mode + is recorded in the hash table along with the actual RTL + constant expression so that different modes are kept separate. + +Other expressions: + + To record known equivalences among expressions in general + we use a hash table called `table'. It has a fixed number of buckets + that contain chains of `struct table_elt' elements for expressions. + These chains connect the elements whose expressions have the same + hash codes. + + Other chains through the same elements connect the elements which + currently have equivalent values. + + Register references in an expression are canonicalized before hashing + the expression. This is done using `reg_qty' and qty_table `first_reg'. + The hash code of a register reference is computed using the quantity + number, not the register number. + + When the value of an expression changes, it is necessary to remove from the + hash table not just that expression but all expressions whose values + could be different as a result. + + 1. If the value changing is in memory, except in special cases + ANYTHING referring to memory could be changed. That is because + nobody knows where a pointer does not point. + The function `invalidate_memory' removes what is necessary. + + The special cases are when the address is constant or is + a constant plus a fixed register such as the frame pointer + or a static chain pointer. When such addresses are stored in, + we can tell exactly which other such addresses must be invalidated + due to overlap. `invalidate' does this. + All expressions that refer to non-constant + memory addresses are also invalidated. `invalidate_memory' does this. + + 2. If the value changing is a register, all expressions + containing references to that register, and only those, + must be removed. + + Because searching the entire hash table for expressions that contain + a register is very slow, we try to figure out when it isn't necessary. + Precisely, this is necessary only when expressions have been + entered in the hash table using this register, and then the value has + changed, and then another expression wants to be added to refer to + the register's new value. This sequence of circumstances is rare + within any one basic block. + + `REG_TICK' and `REG_IN_TABLE', accessors for members of + cse_reg_info, are used to detect this case. REG_TICK (i) is + incremented whenever a value is stored in register i. + REG_IN_TABLE (i) holds -1 if no references to register i have been + entered in the table; otherwise, it contains the value REG_TICK (i) + had when the references were entered. If we want to enter a + reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and + remove old references. Until we want to enter a new entry, the + mere fact that the two vectors don't match makes the entries be + ignored if anyone tries to match them. + + Registers themselves are entered in the hash table as well as in + the equivalent-register chains. However, `REG_TICK' and + `REG_IN_TABLE' do not apply to expressions which are simple + register references. These expressions are removed from the table + immediately when they become invalid, and this can be done even if + we do not immediately search for all the expressions that refer to + the register. + + A CLOBBER rtx in an instruction invalidates its operand for further + reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK + invalidates everything that resides in memory. + +Related expressions: + + Constant expressions that differ only by an additive integer + are called related. When a constant expression is put in + the table, the related expression with no constant term + is also entered. These are made to point at each other + so that it is possible to find out if there exists any + register equivalent to an expression related to a given expression. */ + +/* Length of qty_table vector. We know in advance we will not need + a quantity number this big. */ + +static int max_qty; + +/* Next quantity number to be allocated. + This is 1 + the largest number needed so far. */ + +static int next_qty; + +/* Per-qty information tracking. + + `first_reg' and `last_reg' track the head and tail of the + chain of registers which currently contain this quantity. + + `mode' contains the machine mode of this quantity. + + `const_rtx' holds the rtx of the constant value of this + quantity, if known. A summations of the frame/arg pointer + and a constant can also be entered here. When this holds + a known value, `const_insn' is the insn which stored the + constant value. + + `comparison_{code,const,qty}' are used to track when a + comparison between a quantity and some constant or register has + been passed. In such a case, we know the results of the comparison + in case we see it again. These members record a comparison that + is known to be true. `comparison_code' holds the rtx code of such + a comparison, else it is set to UNKNOWN and the other two + comparison members are undefined. `comparison_const' holds + the constant being compared against, or zero if the comparison + is not against a constant. `comparison_qty' holds the quantity + being compared against when the result is known. If the comparison + is not with a register, `comparison_qty' is -1. */ + +struct qty_table_elem +{ + rtx const_rtx; + rtx const_insn; + rtx comparison_const; + int comparison_qty; + unsigned int first_reg, last_reg; + /* The sizes of these fields should match the sizes of the + code and mode fields of struct rtx_def (see rtl.h). */ + ENUM_BITFIELD(rtx_code) comparison_code : 16; + ENUM_BITFIELD(machine_mode) mode : 8; +}; + +/* The table of all qtys, indexed by qty number. */ +static struct qty_table_elem *qty_table; + +/* Structure used to pass arguments via for_each_rtx to function + cse_change_cc_mode. */ +struct change_cc_mode_args +{ + rtx insn; + rtx newreg; +}; + +#ifdef HAVE_cc0 +/* For machines that have a CC0, we do not record its value in the hash + table since its use is guaranteed to be the insn immediately following + its definition and any other insn is presumed to invalidate it. + + Instead, we store below the current and last value assigned to CC0. + If it should happen to be a constant, it is stored in preference + to the actual assigned value. In case it is a constant, we store + the mode in which the constant should be interpreted. */ + +static rtx this_insn_cc0, prev_insn_cc0; +static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode; +#endif + +/* Insn being scanned. */ + +static rtx this_insn; +static bool optimize_this_for_speed_p; + +/* Index by register number, gives the number of the next (or + previous) register in the chain of registers sharing the same + value. + + Or -1 if this register is at the end of the chain. + + If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */ + +/* Per-register equivalence chain. */ +struct reg_eqv_elem +{ + int next, prev; +}; + +/* The table of all register equivalence chains. */ +static struct reg_eqv_elem *reg_eqv_table; + +struct cse_reg_info +{ + /* The timestamp at which this register is initialized. */ + unsigned int timestamp; + + /* The quantity number of the register's current contents. */ + int reg_qty; + + /* The number of times the register has been altered in the current + basic block. */ + int reg_tick; + + /* The REG_TICK value at which rtx's containing this register are + valid in the hash table. If this does not equal the current + reg_tick value, such expressions existing in the hash table are + invalid. */ + int reg_in_table; + + /* The SUBREG that was set when REG_TICK was last incremented. Set + to -1 if the last store was to the whole register, not a subreg. */ + unsigned int subreg_ticked; +}; + +/* A table of cse_reg_info indexed by register numbers. */ +static struct cse_reg_info *cse_reg_info_table; + +/* The size of the above table. */ +static unsigned int cse_reg_info_table_size; + +/* The index of the first entry that has not been initialized. */ +static unsigned int cse_reg_info_table_first_uninitialized; + +/* The timestamp at the beginning of the current run of + cse_extended_basic_block. We increment this variable at the beginning of + the current run of cse_extended_basic_block. The timestamp field of a + cse_reg_info entry matches the value of this variable if and only + if the entry has been initialized during the current run of + cse_extended_basic_block. */ +static unsigned int cse_reg_info_timestamp; + +/* A HARD_REG_SET containing all the hard registers for which there is + currently a REG expression in the hash table. Note the difference + from the above variables, which indicate if the REG is mentioned in some + expression in the table. */ + +static HARD_REG_SET hard_regs_in_table; + +/* True if CSE has altered the CFG. */ +static bool cse_cfg_altered; + +/* True if CSE has altered conditional jump insns in such a way + that jump optimization should be redone. */ +static bool cse_jumps_altered; + +/* True if we put a LABEL_REF into the hash table for an INSN + without a REG_LABEL_OPERAND, we have to rerun jump after CSE + to put in the note. */ +static bool recorded_label_ref; + +/* canon_hash stores 1 in do_not_record + if it notices a reference to CC0, PC, or some other volatile + subexpression. */ + +static int do_not_record; + +/* canon_hash stores 1 in hash_arg_in_memory + if it notices a reference to memory within the expression being hashed. */ + +static int hash_arg_in_memory; + +/* The hash table contains buckets which are chains of `struct table_elt's, + each recording one expression's information. + That expression is in the `exp' field. + + The canon_exp field contains a canonical (from the point of view of + alias analysis) version of the `exp' field. + + Those elements with the same hash code are chained in both directions + through the `next_same_hash' and `prev_same_hash' fields. + + Each set of expressions with equivalent values + are on a two-way chain through the `next_same_value' + and `prev_same_value' fields, and all point with + the `first_same_value' field at the first element in + that chain. The chain is in order of increasing cost. + Each element's cost value is in its `cost' field. + + The `in_memory' field is nonzero for elements that + involve any reference to memory. These elements are removed + whenever a write is done to an unidentified location in memory. + To be safe, we assume that a memory address is unidentified unless + the address is either a symbol constant or a constant plus + the frame pointer or argument pointer. + + The `related_value' field is used to connect related expressions + (that differ by adding an integer). + The related expressions are chained in a circular fashion. + `related_value' is zero for expressions for which this + chain is not useful. + + The `cost' field stores the cost of this element's expression. + The `regcost' field stores the value returned by approx_reg_cost for + this element's expression. + + The `is_const' flag is set if the element is a constant (including + a fixed address). + + The `flag' field is used as a temporary during some search routines. + + The `mode' field is usually the same as GET_MODE (`exp'), but + if `exp' is a CONST_INT and has no machine mode then the `mode' + field is the mode it was being used as. Each constant is + recorded separately for each mode it is used with. */ + +struct table_elt +{ + rtx exp; + rtx canon_exp; + struct table_elt *next_same_hash; + struct table_elt *prev_same_hash; + struct table_elt *next_same_value; + struct table_elt *prev_same_value; + struct table_elt *first_same_value; + struct table_elt *related_value; + int cost; + int regcost; + /* The size of this field should match the size + of the mode field of struct rtx_def (see rtl.h). */ + ENUM_BITFIELD(machine_mode) mode : 8; + char in_memory; + char is_const; + char flag; +}; + +/* We don't want a lot of buckets, because we rarely have very many + things stored in the hash table, and a lot of buckets slows + down a lot of loops that happen frequently. */ +#define HASH_SHIFT 5 +#define HASH_SIZE (1 << HASH_SHIFT) +#define HASH_MASK (HASH_SIZE - 1) + +/* Compute hash code of X in mode M. Special-case case where X is a pseudo + register (hard registers may require `do_not_record' to be set). */ + +#define HASH(X, M) \ + ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ + ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ + : canon_hash (X, M)) & HASH_MASK) + +/* Like HASH, but without side-effects. */ +#define SAFE_HASH(X, M) \ + ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \ + ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \ + : safe_hash (X, M)) & HASH_MASK) + +/* Determine whether register number N is considered a fixed register for the + purpose of approximating register costs. + It is desirable to replace other regs with fixed regs, to reduce need for + non-fixed hard regs. + A reg wins if it is either the frame pointer or designated as fixed. */ +#define FIXED_REGNO_P(N) \ + ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \ + || fixed_regs[N] || global_regs[N]) + +/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed + hard registers and pointers into the frame are the cheapest with a cost + of 0. Next come pseudos with a cost of one and other hard registers with + a cost of 2. Aside from these special cases, call `rtx_cost'. */ + +#define CHEAP_REGNO(N) \ + (REGNO_PTR_FRAME_P(N) \ + || (HARD_REGISTER_NUM_P (N) \ + && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS)) + +#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET)) +#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER)) + +/* Get the number of times this register has been updated in this + basic block. */ + +#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick) + +/* Get the point at which REG was recorded in the table. */ + +#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table) + +/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a + SUBREG). */ + +#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked) + +/* Get the quantity number for REG. */ + +#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty) + +/* Determine if the quantity number for register X represents a valid index + into the qty_table. */ + +#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0) + +/* Compare table_elt X and Y and return true iff X is cheaper than Y. */ + +#define CHEAPER(X, Y) \ + (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0) + +static struct table_elt *table[HASH_SIZE]; + +/* Chain of `struct table_elt's made so far for this function + but currently removed from the table. */ + +static struct table_elt *free_element_chain; + +/* Set to the cost of a constant pool reference if one was found for a + symbolic constant. If this was found, it means we should try to + convert constants into constant pool entries if they don't fit in + the insn. */ + +static int constant_pool_entries_cost; +static int constant_pool_entries_regcost; + +/* Trace a patch through the CFG. */ + +struct branch_path +{ + /* The basic block for this path entry. */ + basic_block bb; +}; + +/* This data describes a block that will be processed by + cse_extended_basic_block. */ + +struct cse_basic_block_data +{ + /* Total number of SETs in block. */ + int nsets; + /* Size of current branch path, if any. */ + int path_size; + /* Current path, indicating which basic_blocks will be processed. */ + struct branch_path *path; +}; + + +/* Pointers to the live in/live out bitmaps for the boundaries of the + current EBB. */ +static bitmap cse_ebb_live_in, cse_ebb_live_out; + +/* A simple bitmap to track which basic blocks have been visited + already as part of an already processed extended basic block. */ +static sbitmap cse_visited_basic_blocks; + +static bool fixed_base_plus_p (rtx x); +static int notreg_cost (rtx, enum rtx_code); +static int approx_reg_cost_1 (rtx *, void *); +static int approx_reg_cost (rtx); +static int preferable (int, int, int, int); +static void new_basic_block (void); +static void make_new_qty (unsigned int, enum machine_mode); +static void make_regs_eqv (unsigned int, unsigned int); +static void delete_reg_equiv (unsigned int); +static int mention_regs (rtx); +static int insert_regs (rtx, struct table_elt *, int); +static void remove_from_table (struct table_elt *, unsigned); +static void remove_pseudo_from_table (rtx, unsigned); +static struct table_elt *lookup (rtx, unsigned, enum machine_mode); +static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode); +static rtx lookup_as_function (rtx, enum rtx_code); +static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned, + enum machine_mode, int, int); +static struct table_elt *insert (rtx, struct table_elt *, unsigned, + enum machine_mode); +static void merge_equiv_classes (struct table_elt *, struct table_elt *); +static void invalidate (rtx, enum machine_mode); +static bool cse_rtx_varies_p (const_rtx, bool); +static void remove_invalid_refs (unsigned int); +static void remove_invalid_subreg_refs (unsigned int, unsigned int, + enum machine_mode); +static void rehash_using_reg (rtx); +static void invalidate_memory (void); +static void invalidate_for_call (void); +static rtx use_related_value (rtx, struct table_elt *); + +static inline unsigned canon_hash (rtx, enum machine_mode); +static inline unsigned safe_hash (rtx, enum machine_mode); +static inline unsigned hash_rtx_string (const char *); + +static rtx canon_reg (rtx, rtx); +static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *, + enum machine_mode *, + enum machine_mode *); +static rtx fold_rtx (rtx, rtx); +static rtx equiv_constant (rtx); +static void record_jump_equiv (rtx, bool); +static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx, + int); +static void cse_insn (rtx); +static void cse_prescan_path (struct cse_basic_block_data *); +static void invalidate_from_clobbers (rtx); +static rtx cse_process_notes (rtx, rtx, bool *); +static void cse_extended_basic_block (struct cse_basic_block_data *); +static void count_reg_usage (rtx, int *, rtx, int); +static int check_for_label_ref (rtx *, void *); +extern void dump_class (struct table_elt*); +static void get_cse_reg_info_1 (unsigned int regno); +static struct cse_reg_info * get_cse_reg_info (unsigned int regno); +static int check_dependence (rtx *, void *); + +static void flush_hash_table (void); +static bool insn_live_p (rtx, int *); +static bool set_live_p (rtx, rtx, int *); +static int cse_change_cc_mode (rtx *, void *); +static void cse_change_cc_mode_insn (rtx, rtx); +static void cse_change_cc_mode_insns (rtx, rtx, rtx); +static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx, + bool); + + +#undef RTL_HOOKS_GEN_LOWPART +#define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible + +static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER; + +/* Nonzero if X has the form (PLUS frame-pointer integer). We check for + virtual regs here because the simplify_*_operation routines are called + by integrate.c, which is called before virtual register instantiation. */ + +static bool +fixed_base_plus_p (rtx x) +{ + switch (GET_CODE (x)) + { + case REG: + if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx) + return true; + if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) + return true; + if (REGNO (x) >= FIRST_VIRTUAL_REGISTER + && REGNO (x) <= LAST_VIRTUAL_REGISTER) + return true; + return false; + + case PLUS: + if (!CONST_INT_P (XEXP (x, 1))) + return false; + return fixed_base_plus_p (XEXP (x, 0)); + + default: + return false; + } +} + +/* Dump the expressions in the equivalence class indicated by CLASSP. + This function is used only for debugging. */ +void +dump_class (struct table_elt *classp) +{ + struct table_elt *elt; + + fprintf (stderr, "Equivalence chain for "); + print_rtl (stderr, classp->exp); + fprintf (stderr, ": \n"); + + for (elt = classp->first_same_value; elt; elt = elt->next_same_value) + { + print_rtl (stderr, elt->exp); + fprintf (stderr, "\n"); + } +} + +/* Subroutine of approx_reg_cost; called through for_each_rtx. */ + +static int +approx_reg_cost_1 (rtx *xp, void *data) +{ + rtx x = *xp; + int *cost_p = (int *) data; + + if (x && REG_P (x)) + { + unsigned int regno = REGNO (x); + + if (! CHEAP_REGNO (regno)) + { + if (regno < FIRST_PSEUDO_REGISTER) + { + if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) + return 1; + *cost_p += 2; + } + else + *cost_p += 1; + } + } + + return 0; +} + +/* Return an estimate of the cost of the registers used in an rtx. + This is mostly the number of different REG expressions in the rtx; + however for some exceptions like fixed registers we use a cost of + 0. If any other hard register reference occurs, return MAX_COST. */ + +static int +approx_reg_cost (rtx x) +{ + int cost = 0; + + if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost)) + return MAX_COST; + + return cost; +} + +/* Return a negative value if an rtx A, whose costs are given by COST_A + and REGCOST_A, is more desirable than an rtx B. + Return a positive value if A is less desirable, or 0 if the two are + equally good. */ +static int +preferable (int cost_a, int regcost_a, int cost_b, int regcost_b) +{ + /* First, get rid of cases involving expressions that are entirely + unwanted. */ + if (cost_a != cost_b) + { + if (cost_a == MAX_COST) + return 1; + if (cost_b == MAX_COST) + return -1; + } + + /* Avoid extending lifetimes of hardregs. */ + if (regcost_a != regcost_b) + { + if (regcost_a == MAX_COST) + return 1; + if (regcost_b == MAX_COST) + return -1; + } + + /* Normal operation costs take precedence. */ + if (cost_a != cost_b) + return cost_a - cost_b; + /* Only if these are identical consider effects on register pressure. */ + if (regcost_a != regcost_b) + return regcost_a - regcost_b; + return 0; +} + +/* Internal function, to compute cost when X is not a register; called + from COST macro to keep it simple. */ + +static int +notreg_cost (rtx x, enum rtx_code outer) +{ + return ((GET_CODE (x) == SUBREG + && REG_P (SUBREG_REG (x)) + && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT + && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT + && (GET_MODE_SIZE (GET_MODE (x)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) + && subreg_lowpart_p (x) + && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)), + GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))) + ? 0 + : rtx_cost (x, outer, optimize_this_for_speed_p) * 2); +} + + +/* Initialize CSE_REG_INFO_TABLE. */ + +static void +init_cse_reg_info (unsigned int nregs) +{ + /* Do we need to grow the table? */ + if (nregs > cse_reg_info_table_size) + { + unsigned int new_size; + + if (cse_reg_info_table_size < 2048) + { + /* Compute a new size that is a power of 2 and no smaller + than the large of NREGS and 64. */ + new_size = (cse_reg_info_table_size + ? cse_reg_info_table_size : 64); + + while (new_size < nregs) + new_size *= 2; + } + else + { + /* If we need a big table, allocate just enough to hold + NREGS registers. */ + new_size = nregs; + } + + /* Reallocate the table with NEW_SIZE entries. */ + if (cse_reg_info_table) + free (cse_reg_info_table); + cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size); + cse_reg_info_table_size = new_size; + cse_reg_info_table_first_uninitialized = 0; + } + + /* Do we have all of the first NREGS entries initialized? */ + if (cse_reg_info_table_first_uninitialized < nregs) + { + unsigned int old_timestamp = cse_reg_info_timestamp - 1; + unsigned int i; + + /* Put the old timestamp on newly allocated entries so that they + will all be considered out of date. We do not touch those + entries beyond the first NREGS entries to be nice to the + virtual memory. */ + for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++) + cse_reg_info_table[i].timestamp = old_timestamp; + + cse_reg_info_table_first_uninitialized = nregs; + } +} + +/* Given REGNO, initialize the cse_reg_info entry for REGNO. */ + +static void +get_cse_reg_info_1 (unsigned int regno) +{ + /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this + entry will be considered to have been initialized. */ + cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp; + + /* Initialize the rest of the entry. */ + cse_reg_info_table[regno].reg_tick = 1; + cse_reg_info_table[regno].reg_in_table = -1; + cse_reg_info_table[regno].subreg_ticked = -1; + cse_reg_info_table[regno].reg_qty = -regno - 1; +} + +/* Find a cse_reg_info entry for REGNO. */ + +static inline struct cse_reg_info * +get_cse_reg_info (unsigned int regno) +{ + struct cse_reg_info *p = &cse_reg_info_table[regno]; + + /* If this entry has not been initialized, go ahead and initialize + it. */ + if (p->timestamp != cse_reg_info_timestamp) + get_cse_reg_info_1 (regno); + + return p; +} + +/* Clear the hash table and initialize each register with its own quantity, + for a new basic block. */ + +static void +new_basic_block (void) +{ + int i; + + next_qty = 0; + + /* Invalidate cse_reg_info_table. */ + cse_reg_info_timestamp++; + + /* Clear out hash table state for this pass. */ + CLEAR_HARD_REG_SET (hard_regs_in_table); + + /* The per-quantity values used to be initialized here, but it is + much faster to initialize each as it is made in `make_new_qty'. */ + + for (i = 0; i < HASH_SIZE; i++) + { + struct table_elt *first; + + first = table[i]; + if (first != NULL) + { + struct table_elt *last = first; + + table[i] = NULL; + + while (last->next_same_hash != NULL) + last = last->next_same_hash; + + /* Now relink this hash entire chain into + the free element list. */ + + last->next_same_hash = free_element_chain; + free_element_chain = first; + } + } + +#ifdef HAVE_cc0 + prev_insn_cc0 = 0; +#endif +} + +/* Say that register REG contains a quantity in mode MODE not in any + register before and initialize that quantity. */ + +static void +make_new_qty (unsigned int reg, enum machine_mode mode) +{ + int q; + struct qty_table_elem *ent; + struct reg_eqv_elem *eqv; + + gcc_assert (next_qty < max_qty); + + q = REG_QTY (reg) = next_qty++; + ent = &qty_table[q]; + ent->first_reg = reg; + ent->last_reg = reg; + ent->mode = mode; + ent->const_rtx = ent->const_insn = NULL_RTX; + ent->comparison_code = UNKNOWN; + + eqv = ®_eqv_table[reg]; + eqv->next = eqv->prev = -1; +} + +/* Make reg NEW equivalent to reg OLD. + OLD is not changing; NEW is. */ + +static void +make_regs_eqv (unsigned int new_reg, unsigned int old_reg) +{ + unsigned int lastr, firstr; + int q = REG_QTY (old_reg); + struct qty_table_elem *ent; + + ent = &qty_table[q]; + + /* Nothing should become eqv until it has a "non-invalid" qty number. */ + gcc_assert (REGNO_QTY_VALID_P (old_reg)); + + REG_QTY (new_reg) = q; + firstr = ent->first_reg; + lastr = ent->last_reg; + + /* Prefer fixed hard registers to anything. Prefer pseudo regs to other + hard regs. Among pseudos, if NEW will live longer than any other reg + of the same qty, and that is beyond the current basic block, + make it the new canonical replacement for this qty. */ + if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr)) + /* Certain fixed registers might be of the class NO_REGS. This means + that not only can they not be allocated by the compiler, but + they cannot be used in substitutions or canonicalizations + either. */ + && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS) + && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg)) + || (new_reg >= FIRST_PSEUDO_REGISTER + && (firstr < FIRST_PSEUDO_REGISTER + || (bitmap_bit_p (cse_ebb_live_out, new_reg) + && !bitmap_bit_p (cse_ebb_live_out, firstr)) + || (bitmap_bit_p (cse_ebb_live_in, new_reg) + && !bitmap_bit_p (cse_ebb_live_in, firstr)))))) + { + reg_eqv_table[firstr].prev = new_reg; + reg_eqv_table[new_reg].next = firstr; + reg_eqv_table[new_reg].prev = -1; + ent->first_reg = new_reg; + } + else + { + /* If NEW is a hard reg (known to be non-fixed), insert at end. + Otherwise, insert before any non-fixed hard regs that are at the + end. Registers of class NO_REGS cannot be used as an + equivalent for anything. */ + while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0 + && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr)) + && new_reg >= FIRST_PSEUDO_REGISTER) + lastr = reg_eqv_table[lastr].prev; + reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next; + if (reg_eqv_table[lastr].next >= 0) + reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg; + else + qty_table[q].last_reg = new_reg; + reg_eqv_table[lastr].next = new_reg; + reg_eqv_table[new_reg].prev = lastr; + } +} + +/* Remove REG from its equivalence class. */ + +static void +delete_reg_equiv (unsigned int reg) +{ + struct qty_table_elem *ent; + int q = REG_QTY (reg); + int p, n; + + /* If invalid, do nothing. */ + if (! REGNO_QTY_VALID_P (reg)) + return; + + ent = &qty_table[q]; + + p = reg_eqv_table[reg].prev; + n = reg_eqv_table[reg].next; + + if (n != -1) + reg_eqv_table[n].prev = p; + else + ent->last_reg = p; + if (p != -1) + reg_eqv_table[p].next = n; + else + ent->first_reg = n; + + REG_QTY (reg) = -reg - 1; +} + +/* Remove any invalid expressions from the hash table + that refer to any of the registers contained in expression X. + + Make sure that newly inserted references to those registers + as subexpressions will be considered valid. + + mention_regs is not called when a register itself + is being stored in the table. + + Return 1 if we have done something that may have changed the hash code + of X. */ + +static int +mention_regs (rtx x) +{ + enum rtx_code code; + int i, j; + const char *fmt; + int changed = 0; + + if (x == 0) + return 0; + + code = GET_CODE (x); + if (code == REG) + { + unsigned int regno = REGNO (x); + unsigned int endregno = END_REGNO (x); + unsigned int i; + + for (i = regno; i < endregno; i++) + { + if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) + remove_invalid_refs (i); + + REG_IN_TABLE (i) = REG_TICK (i); + SUBREG_TICKED (i) = -1; + } + + return 0; + } + + /* If this is a SUBREG, we don't want to discard other SUBREGs of the same + pseudo if they don't use overlapping words. We handle only pseudos + here for simplicity. */ + if (code == SUBREG && REG_P (SUBREG_REG (x)) + && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER) + { + unsigned int i = REGNO (SUBREG_REG (x)); + + if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i)) + { + /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and + the last store to this register really stored into this + subreg, then remove the memory of this subreg. + Otherwise, remove any memory of the entire register and + all its subregs from the table. */ + if (REG_TICK (i) - REG_IN_TABLE (i) > 1 + || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x))) + remove_invalid_refs (i); + else + remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x)); + } + + REG_IN_TABLE (i) = REG_TICK (i); + SUBREG_TICKED (i) = REGNO (SUBREG_REG (x)); + return 0; + } + + /* If X is a comparison or a COMPARE and either operand is a register + that does not have a quantity, give it one. This is so that a later + call to record_jump_equiv won't cause X to be assigned a different + hash code and not found in the table after that call. + + It is not necessary to do this here, since rehash_using_reg can + fix up the table later, but doing this here eliminates the need to + call that expensive function in the most common case where the only + use of the register is in the comparison. */ + + if (code == COMPARE || COMPARISON_P (x)) + { + if (REG_P (XEXP (x, 0)) + && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))) + if (insert_regs (XEXP (x, 0), NULL, 0)) + { + rehash_using_reg (XEXP (x, 0)); + changed = 1; + } + + if (REG_P (XEXP (x, 1)) + && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))) + if (insert_regs (XEXP (x, 1), NULL, 0)) + { + rehash_using_reg (XEXP (x, 1)); + changed = 1; + } + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + if (fmt[i] == 'e') + changed |= mention_regs (XEXP (x, i)); + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + changed |= mention_regs (XVECEXP (x, i, j)); + + return changed; +} + +/* Update the register quantities for inserting X into the hash table + with a value equivalent to CLASSP. + (If the class does not contain a REG, it is irrelevant.) + If MODIFIED is nonzero, X is a destination; it is being modified. + Note that delete_reg_equiv should be called on a register + before insert_regs is done on that register with MODIFIED != 0. + + Nonzero value means that elements of reg_qty have changed + so X's hash code may be different. */ + +static int +insert_regs (rtx x, struct table_elt *classp, int modified) +{ + if (REG_P (x)) + { + unsigned int regno = REGNO (x); + int qty_valid; + + /* If REGNO is in the equivalence table already but is of the + wrong mode for that equivalence, don't do anything here. */ + + qty_valid = REGNO_QTY_VALID_P (regno); + if (qty_valid) + { + struct qty_table_elem *ent = &qty_table[REG_QTY (regno)]; + + if (ent->mode != GET_MODE (x)) + return 0; + } + + if (modified || ! qty_valid) + { + if (classp) + for (classp = classp->first_same_value; + classp != 0; + classp = classp->next_same_value) + if (REG_P (classp->exp) + && GET_MODE (classp->exp) == GET_MODE (x)) + { + unsigned c_regno = REGNO (classp->exp); + + gcc_assert (REGNO_QTY_VALID_P (c_regno)); + + /* Suppose that 5 is hard reg and 100 and 101 are + pseudos. Consider + + (set (reg:si 100) (reg:si 5)) + (set (reg:si 5) (reg:si 100)) + (set (reg:di 101) (reg:di 5)) + + We would now set REG_QTY (101) = REG_QTY (5), but the + entry for 5 is in SImode. When we use this later in + copy propagation, we get the register in wrong mode. */ + if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x)) + continue; + + make_regs_eqv (regno, c_regno); + return 1; + } + + /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger + than REG_IN_TABLE to find out if there was only a single preceding + invalidation - for the SUBREG - or another one, which would be + for the full register. However, if we find here that REG_TICK + indicates that the register is invalid, it means that it has + been invalidated in a separate operation. The SUBREG might be used + now (then this is a recursive call), or we might use the full REG + now and a SUBREG of it later. So bump up REG_TICK so that + mention_regs will do the right thing. */ + if (! modified + && REG_IN_TABLE (regno) >= 0 + && REG_TICK (regno) == REG_IN_TABLE (regno) + 1) + REG_TICK (regno)++; + make_new_qty (regno, GET_MODE (x)); + return 1; + } + + return 0; + } + + /* If X is a SUBREG, we will likely be inserting the inner register in the + table. If that register doesn't have an assigned quantity number at + this point but does later, the insertion that we will be doing now will + not be accessible because its hash code will have changed. So assign + a quantity number now. */ + + else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) + && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x)))) + { + insert_regs (SUBREG_REG (x), NULL, 0); + mention_regs (x); + return 1; + } + else + return mention_regs (x); +} + + +/* Compute upper and lower anchors for CST. Also compute the offset of CST + from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff + CST is equal to an anchor. */ + +static bool +compute_const_anchors (rtx cst, + HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs, + HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs) +{ + HOST_WIDE_INT n = INTVAL (cst); + + *lower_base = n & ~(targetm.const_anchor - 1); + if (*lower_base == n) + return false; + + *upper_base = + (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1); + *upper_offs = n - *upper_base; + *lower_offs = n - *lower_base; + return true; +} + +/* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */ + +static void +insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs, + enum machine_mode mode) +{ + struct table_elt *elt; + unsigned hash; + rtx anchor_exp; + rtx exp; + + anchor_exp = GEN_INT (anchor); + hash = HASH (anchor_exp, mode); + elt = lookup (anchor_exp, hash, mode); + if (!elt) + elt = insert (anchor_exp, NULL, hash, mode); + + exp = plus_constant (reg, offs); + /* REG has just been inserted and the hash codes recomputed. */ + mention_regs (exp); + hash = HASH (exp, mode); + + /* Use the cost of the register rather than the whole expression. When + looking up constant anchors we will further offset the corresponding + expression therefore it does not make sense to prefer REGs over + reg-immediate additions. Prefer instead the oldest expression. Also + don't prefer pseudos over hard regs so that we derive constants in + argument registers from other argument registers rather than from the + original pseudo that was used to synthesize the constant. */ + insert_with_costs (exp, elt, hash, mode, COST (reg), 1); +} + +/* The constant CST is equivalent to the register REG. Create + equivalences between the two anchors of CST and the corresponding + register-offset expressions using REG. */ + +static void +insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode) +{ + HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; + + if (!compute_const_anchors (cst, &lower_base, &lower_offs, + &upper_base, &upper_offs)) + return; + + /* Ignore anchors of value 0. Constants accessible from zero are + simple. */ + if (lower_base != 0) + insert_const_anchor (lower_base, reg, -lower_offs, mode); + + if (upper_base != 0) + insert_const_anchor (upper_base, reg, -upper_offs, mode); +} + +/* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of + ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a + valid expression. Return the cheapest and oldest of such expressions. In + *OLD, return how old the resulting expression is compared to the other + equivalent expressions. */ + +static rtx +find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs, + unsigned *old) +{ + struct table_elt *elt; + unsigned idx; + struct table_elt *match_elt; + rtx match; + + /* Find the cheapest and *oldest* expression to maximize the chance of + reusing the same pseudo. */ + + match_elt = NULL; + match = NULL_RTX; + for (elt = anchor_elt->first_same_value, idx = 0; + elt; + elt = elt->next_same_value, idx++) + { + if (match_elt && CHEAPER (match_elt, elt)) + return match; + + if (REG_P (elt->exp) + || (GET_CODE (elt->exp) == PLUS + && REG_P (XEXP (elt->exp, 0)) + && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT)) + { + rtx x; + + /* Ignore expressions that are no longer valid. */ + if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false)) + continue; + + x = plus_constant (elt->exp, offs); + if (REG_P (x) + || (GET_CODE (x) == PLUS + && IN_RANGE (INTVAL (XEXP (x, 1)), + -targetm.const_anchor, + targetm.const_anchor - 1))) + { + match = x; + match_elt = elt; + *old = idx; + } + } + } + + return match; +} + +/* Try to express the constant SRC_CONST using a register+offset expression + derived from a constant anchor. Return it if successful or NULL_RTX, + otherwise. */ + +static rtx +try_const_anchors (rtx src_const, enum machine_mode mode) +{ + struct table_elt *lower_elt, *upper_elt; + HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs; + rtx lower_anchor_rtx, upper_anchor_rtx; + rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX; + unsigned lower_old, upper_old; + + if (!compute_const_anchors (src_const, &lower_base, &lower_offs, + &upper_base, &upper_offs)) + return NULL_RTX; + + lower_anchor_rtx = GEN_INT (lower_base); + upper_anchor_rtx = GEN_INT (upper_base); + lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode); + upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode); + + if (lower_elt) + lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old); + if (upper_elt) + upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old); + + if (!lower_exp) + return upper_exp; + if (!upper_exp) + return lower_exp; + + /* Return the older expression. */ + return (upper_old > lower_old ? upper_exp : lower_exp); +} + +/* Look in or update the hash table. */ + +/* Remove table element ELT from use in the table. + HASH is its hash code, made using the HASH macro. + It's an argument because often that is known in advance + and we save much time not recomputing it. */ + +static void +remove_from_table (struct table_elt *elt, unsigned int hash) +{ + if (elt == 0) + return; + + /* Mark this element as removed. See cse_insn. */ + elt->first_same_value = 0; + + /* Remove the table element from its equivalence class. */ + + { + struct table_elt *prev = elt->prev_same_value; + struct table_elt *next = elt->next_same_value; + + if (next) + next->prev_same_value = prev; + + if (prev) + prev->next_same_value = next; + else + { + struct table_elt *newfirst = next; + while (next) + { + next->first_same_value = newfirst; + next = next->next_same_value; + } + } + } + + /* Remove the table element from its hash bucket. */ + + { + struct table_elt *prev = elt->prev_same_hash; + struct table_elt *next = elt->next_same_hash; + + if (next) + next->prev_same_hash = prev; + + if (prev) + prev->next_same_hash = next; + else if (table[hash] == elt) + table[hash] = next; + else + { + /* This entry is not in the proper hash bucket. This can happen + when two classes were merged by `merge_equiv_classes'. Search + for the hash bucket that it heads. This happens only very + rarely, so the cost is acceptable. */ + for (hash = 0; hash < HASH_SIZE; hash++) + if (table[hash] == elt) + table[hash] = next; + } + } + + /* Remove the table element from its related-value circular chain. */ + + if (elt->related_value != 0 && elt->related_value != elt) + { + struct table_elt *p = elt->related_value; + + while (p->related_value != elt) + p = p->related_value; + p->related_value = elt->related_value; + if (p->related_value == p) + p->related_value = 0; + } + + /* Now add it to the free element chain. */ + elt->next_same_hash = free_element_chain; + free_element_chain = elt; +} + +/* Same as above, but X is a pseudo-register. */ + +static void +remove_pseudo_from_table (rtx x, unsigned int hash) +{ + struct table_elt *elt; + + /* Because a pseudo-register can be referenced in more than one + mode, we might have to remove more than one table entry. */ + while ((elt = lookup_for_remove (x, hash, VOIDmode))) + remove_from_table (elt, hash); +} + +/* Look up X in the hash table and return its table element, + or 0 if X is not in the table. + + MODE is the machine-mode of X, or if X is an integer constant + with VOIDmode then MODE is the mode with which X will be used. + + Here we are satisfied to find an expression whose tree structure + looks like X. */ + +static struct table_elt * +lookup (rtx x, unsigned int hash, enum machine_mode mode) +{ + struct table_elt *p; + + for (p = table[hash]; p; p = p->next_same_hash) + if (mode == p->mode && ((x == p->exp && REG_P (x)) + || exp_equiv_p (x, p->exp, !REG_P (x), false))) + return p; + + return 0; +} + +/* Like `lookup' but don't care whether the table element uses invalid regs. + Also ignore discrepancies in the machine mode of a register. */ + +static struct table_elt * +lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode) +{ + struct table_elt *p; + + if (REG_P (x)) + { + unsigned int regno = REGNO (x); + + /* Don't check the machine mode when comparing registers; + invalidating (REG:SI 0) also invalidates (REG:DF 0). */ + for (p = table[hash]; p; p = p->next_same_hash) + if (REG_P (p->exp) + && REGNO (p->exp) == regno) + return p; + } + else + { + for (p = table[hash]; p; p = p->next_same_hash) + if (mode == p->mode + && (x == p->exp || exp_equiv_p (x, p->exp, 0, false))) + return p; + } + + return 0; +} + +/* Look for an expression equivalent to X and with code CODE. + If one is found, return that expression. */ + +static rtx +lookup_as_function (rtx x, enum rtx_code code) +{ + struct table_elt *p + = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x)); + + if (p == 0) + return 0; + + for (p = p->first_same_value; p; p = p->next_same_value) + if (GET_CODE (p->exp) == code + /* Make sure this is a valid entry in the table. */ + && exp_equiv_p (p->exp, p->exp, 1, false)) + return p->exp; + + return 0; +} + +/* Insert X in the hash table, assuming HASH is its hash code and + CLASSP is an element of the class it should go in (or 0 if a new + class should be made). COST is the code of X and reg_cost is the + cost of registers in X. It is inserted at the proper position to + keep the class in the order cheapest first. + + MODE is the machine-mode of X, or if X is an integer constant + with VOIDmode then MODE is the mode with which X will be used. + + For elements of equal cheapness, the most recent one + goes in front, except that the first element in the list + remains first unless a cheaper element is added. The order of + pseudo-registers does not matter, as canon_reg will be called to + find the cheapest when a register is retrieved from the table. + + The in_memory field in the hash table element is set to 0. + The caller must set it nonzero if appropriate. + + You should call insert_regs (X, CLASSP, MODIFY) before calling here, + and if insert_regs returns a nonzero value + you must then recompute its hash code before calling here. + + If necessary, update table showing constant values of quantities. */ + +static struct table_elt * +insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash, + enum machine_mode mode, int cost, int reg_cost) +{ + struct table_elt *elt; + + /* If X is a register and we haven't made a quantity for it, + something is wrong. */ + gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x))); + + /* If X is a hard register, show it is being put in the table. */ + if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) + add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x)); + + /* Put an element for X into the right hash bucket. */ + + elt = free_element_chain; + if (elt) + free_element_chain = elt->next_same_hash; + else + elt = XNEW (struct table_elt); + + elt->exp = x; + elt->canon_exp = NULL_RTX; + elt->cost = cost; + elt->regcost = reg_cost; + elt->next_same_value = 0; + elt->prev_same_value = 0; + elt->next_same_hash = table[hash]; + elt->prev_same_hash = 0; + elt->related_value = 0; + elt->in_memory = 0; + elt->mode = mode; + elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x)); + + if (table[hash]) + table[hash]->prev_same_hash = elt; + table[hash] = elt; + + /* Put it into the proper value-class. */ + if (classp) + { + classp = classp->first_same_value; + if (CHEAPER (elt, classp)) + /* Insert at the head of the class. */ + { + struct table_elt *p; + elt->next_same_value = classp; + classp->prev_same_value = elt; + elt->first_same_value = elt; + + for (p = classp; p; p = p->next_same_value) + p->first_same_value = elt; + } + else + { + /* Insert not at head of the class. */ + /* Put it after the last element cheaper than X. */ + struct table_elt *p, *next; + + for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt); + p = next); + + /* Put it after P and before NEXT. */ + elt->next_same_value = next; + if (next) + next->prev_same_value = elt; + + elt->prev_same_value = p; + p->next_same_value = elt; + elt->first_same_value = classp; + } + } + else + elt->first_same_value = elt; + + /* If this is a constant being set equivalent to a register or a register + being set equivalent to a constant, note the constant equivalence. + + If this is a constant, it cannot be equivalent to a different constant, + and a constant is the only thing that can be cheaper than a register. So + we know the register is the head of the class (before the constant was + inserted). + + If this is a register that is not already known equivalent to a + constant, we must check the entire class. + + If this is a register that is already known equivalent to an insn, + update the qtys `const_insn' to show that `this_insn' is the latest + insn making that quantity equivalent to the constant. */ + + if (elt->is_const && classp && REG_P (classp->exp) + && !REG_P (x)) + { + int exp_q = REG_QTY (REGNO (classp->exp)); + struct qty_table_elem *exp_ent = &qty_table[exp_q]; + + exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x); + exp_ent->const_insn = this_insn; + } + + else if (REG_P (x) + && classp + && ! qty_table[REG_QTY (REGNO (x))].const_rtx + && ! elt->is_const) + { + struct table_elt *p; + + for (p = classp; p != 0; p = p->next_same_value) + { + if (p->is_const && !REG_P (p->exp)) + { + int x_q = REG_QTY (REGNO (x)); + struct qty_table_elem *x_ent = &qty_table[x_q]; + + x_ent->const_rtx + = gen_lowpart (GET_MODE (x), p->exp); + x_ent->const_insn = this_insn; + break; + } + } + } + + else if (REG_P (x) + && qty_table[REG_QTY (REGNO (x))].const_rtx + && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode) + qty_table[REG_QTY (REGNO (x))].const_insn = this_insn; + + /* If this is a constant with symbolic value, + and it has a term with an explicit integer value, + link it up with related expressions. */ + if (GET_CODE (x) == CONST) + { + rtx subexp = get_related_value (x); + unsigned subhash; + struct table_elt *subelt, *subelt_prev; + + if (subexp != 0) + { + /* Get the integer-free subexpression in the hash table. */ + subhash = SAFE_HASH (subexp, mode); + subelt = lookup (subexp, subhash, mode); + if (subelt == 0) + subelt = insert (subexp, NULL, subhash, mode); + /* Initialize SUBELT's circular chain if it has none. */ + if (subelt->related_value == 0) + subelt->related_value = subelt; + /* Find the element in the circular chain that precedes SUBELT. */ + subelt_prev = subelt; + while (subelt_prev->related_value != subelt) + subelt_prev = subelt_prev->related_value; + /* Put new ELT into SUBELT's circular chain just before SUBELT. + This way the element that follows SUBELT is the oldest one. */ + elt->related_value = subelt_prev->related_value; + subelt_prev->related_value = elt; + } + } + + return elt; +} + +/* Wrap insert_with_costs by passing the default costs. */ + +static struct table_elt * +insert (rtx x, struct table_elt *classp, unsigned int hash, + enum machine_mode mode) +{ + return + insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x)); +} + + +/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from + CLASS2 into CLASS1. This is done when we have reached an insn which makes + the two classes equivalent. + + CLASS1 will be the surviving class; CLASS2 should not be used after this + call. + + Any invalid entries in CLASS2 will not be copied. */ + +static void +merge_equiv_classes (struct table_elt *class1, struct table_elt *class2) +{ + struct table_elt *elt, *next, *new_elt; + + /* Ensure we start with the head of the classes. */ + class1 = class1->first_same_value; + class2 = class2->first_same_value; + + /* If they were already equal, forget it. */ + if (class1 == class2) + return; + + for (elt = class2; elt; elt = next) + { + unsigned int hash; + rtx exp = elt->exp; + enum machine_mode mode = elt->mode; + + next = elt->next_same_value; + + /* Remove old entry, make a new one in CLASS1's class. + Don't do this for invalid entries as we cannot find their + hash code (it also isn't necessary). */ + if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false)) + { + bool need_rehash = false; + + hash_arg_in_memory = 0; + hash = HASH (exp, mode); + + if (REG_P (exp)) + { + need_rehash = REGNO_QTY_VALID_P (REGNO (exp)); + delete_reg_equiv (REGNO (exp)); + } + + if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER) + remove_pseudo_from_table (exp, hash); + else + remove_from_table (elt, hash); + + if (insert_regs (exp, class1, 0) || need_rehash) + { + rehash_using_reg (exp); + hash = HASH (exp, mode); + } + new_elt = insert (exp, class1, hash, mode); + new_elt->in_memory = hash_arg_in_memory; + } + } +} + +/* Flush the entire hash table. */ + +static void +flush_hash_table (void) +{ + int i; + struct table_elt *p; + + for (i = 0; i < HASH_SIZE; i++) + for (p = table[i]; p; p = table[i]) + { + /* Note that invalidate can remove elements + after P in the current hash chain. */ + if (REG_P (p->exp)) + invalidate (p->exp, VOIDmode); + else + remove_from_table (p, i); + } +} + +/* Function called for each rtx to check whether true dependence exist. */ +struct check_dependence_data +{ + enum machine_mode mode; + rtx exp; + rtx addr; +}; + +static int +check_dependence (rtx *x, void *data) +{ + struct check_dependence_data *d = (struct check_dependence_data *) data; + if (*x && MEM_P (*x)) + return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX, + cse_rtx_varies_p); + else + return 0; +} + +/* Remove from the hash table, or mark as invalid, all expressions whose + values could be altered by storing in X. X is a register, a subreg, or + a memory reference with nonvarying address (because, when a memory + reference with a varying address is stored in, all memory references are + removed by invalidate_memory so specific invalidation is superfluous). + FULL_MODE, if not VOIDmode, indicates that this much should be + invalidated instead of just the amount indicated by the mode of X. This + is only used for bitfield stores into memory. + + A nonvarying address may be just a register or just a symbol reference, + or it may be either of those plus a numeric offset. */ + +static void +invalidate (rtx x, enum machine_mode full_mode) +{ + int i; + struct table_elt *p; + rtx addr; + + switch (GET_CODE (x)) + { + case REG: + { + /* If X is a register, dependencies on its contents are recorded + through the qty number mechanism. Just change the qty number of + the register, mark it as invalid for expressions that refer to it, + and remove it itself. */ + unsigned int regno = REGNO (x); + unsigned int hash = HASH (x, GET_MODE (x)); + + /* Remove REGNO from any quantity list it might be on and indicate + that its value might have changed. If it is a pseudo, remove its + entry from the hash table. + + For a hard register, we do the first two actions above for any + additional hard registers corresponding to X. Then, if any of these + registers are in the table, we must remove any REG entries that + overlap these registers. */ + + delete_reg_equiv (regno); + REG_TICK (regno)++; + SUBREG_TICKED (regno) = -1; + + if (regno >= FIRST_PSEUDO_REGISTER) + remove_pseudo_from_table (x, hash); + else + { + HOST_WIDE_INT in_table + = TEST_HARD_REG_BIT (hard_regs_in_table, regno); + unsigned int endregno = END_HARD_REGNO (x); + unsigned int tregno, tendregno, rn; + struct table_elt *p, *next; + + CLEAR_HARD_REG_BIT (hard_regs_in_table, regno); + + for (rn = regno + 1; rn < endregno; rn++) + { + in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn); + CLEAR_HARD_REG_BIT (hard_regs_in_table, rn); + delete_reg_equiv (rn); + REG_TICK (rn)++; + SUBREG_TICKED (rn) = -1; + } + + if (in_table) + for (hash = 0; hash < HASH_SIZE; hash++) + for (p = table[hash]; p; p = next) + { + next = p->next_same_hash; + + if (!REG_P (p->exp) + || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) + continue; + + tregno = REGNO (p->exp); + tendregno = END_HARD_REGNO (p->exp); + if (tendregno > regno && tregno < endregno) + remove_from_table (p, hash); + } + } + } + return; + + case SUBREG: + invalidate (SUBREG_REG (x), VOIDmode); + return; + + case PARALLEL: + for (i = XVECLEN (x, 0) - 1; i >= 0; --i) + invalidate (XVECEXP (x, 0, i), VOIDmode); + return; + + case EXPR_LIST: + /* This is part of a disjoint return value; extract the location in + question ignoring the offset. */ + invalidate (XEXP (x, 0), VOIDmode); + return; + + case MEM: + addr = canon_rtx (get_addr (XEXP (x, 0))); + /* Calculate the canonical version of X here so that + true_dependence doesn't generate new RTL for X on each call. */ + x = canon_rtx (x); + + /* Remove all hash table elements that refer to overlapping pieces of + memory. */ + if (full_mode == VOIDmode) + full_mode = GET_MODE (x); + + for (i = 0; i < HASH_SIZE; i++) + { + struct table_elt *next; + + for (p = table[i]; p; p = next) + { + next = p->next_same_hash; + if (p->in_memory) + { + struct check_dependence_data d; + + /* Just canonicalize the expression once; + otherwise each time we call invalidate + true_dependence will canonicalize the + expression again. */ + if (!p->canon_exp) + p->canon_exp = canon_rtx (p->exp); + d.exp = x; + d.addr = addr; + d.mode = full_mode; + if (for_each_rtx (&p->canon_exp, check_dependence, &d)) + remove_from_table (p, i); + } + } + } + return; + + default: + gcc_unreachable (); + } +} + +/* Remove all expressions that refer to register REGNO, + since they are already invalid, and we are about to + mark that register valid again and don't want the old + expressions to reappear as valid. */ + +static void +remove_invalid_refs (unsigned int regno) +{ + unsigned int i; + struct table_elt *p, *next; + + for (i = 0; i < HASH_SIZE; i++) + for (p = table[i]; p; p = next) + { + next = p->next_same_hash; + if (!REG_P (p->exp) + && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0)) + remove_from_table (p, i); + } +} + +/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET, + and mode MODE. */ +static void +remove_invalid_subreg_refs (unsigned int regno, unsigned int offset, + enum machine_mode mode) +{ + unsigned int i; + struct table_elt *p, *next; + unsigned int end = offset + (GET_MODE_SIZE (mode) - 1); + + for (i = 0; i < HASH_SIZE; i++) + for (p = table[i]; p; p = next) + { + rtx exp = p->exp; + next = p->next_same_hash; + + if (!REG_P (exp) + && (GET_CODE (exp) != SUBREG + || !REG_P (SUBREG_REG (exp)) + || REGNO (SUBREG_REG (exp)) != regno + || (((SUBREG_BYTE (exp) + + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset) + && SUBREG_BYTE (exp) <= end)) + && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0)) + remove_from_table (p, i); + } +} + +/* Recompute the hash codes of any valid entries in the hash table that + reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG. + + This is called when we make a jump equivalence. */ + +static void +rehash_using_reg (rtx x) +{ + unsigned int i; + struct table_elt *p, *next; + unsigned hash; + + if (GET_CODE (x) == SUBREG) + x = SUBREG_REG (x); + + /* If X is not a register or if the register is known not to be in any + valid entries in the table, we have no work to do. */ + + if (!REG_P (x) + || REG_IN_TABLE (REGNO (x)) < 0 + || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x))) + return; + + /* Scan all hash chains looking for valid entries that mention X. + If we find one and it is in the wrong hash chain, move it. */ + + for (i = 0; i < HASH_SIZE; i++) + for (p = table[i]; p; p = next) + { + next = p->next_same_hash; + if (reg_mentioned_p (x, p->exp) + && exp_equiv_p (p->exp, p->exp, 1, false) + && i != (hash = SAFE_HASH (p->exp, p->mode))) + { + if (p->next_same_hash) + p->next_same_hash->prev_same_hash = p->prev_same_hash; + + if (p->prev_same_hash) + p->prev_same_hash->next_same_hash = p->next_same_hash; + else + table[i] = p->next_same_hash; + + p->next_same_hash = table[hash]; + p->prev_same_hash = 0; + if (table[hash]) + table[hash]->prev_same_hash = p; + table[hash] = p; + } + } +} + +/* Remove from the hash table any expression that is a call-clobbered + register. Also update their TICK values. */ + +static void +invalidate_for_call (void) +{ + unsigned int regno, endregno; + unsigned int i; + unsigned hash; + struct table_elt *p, *next; + int in_table = 0; + + /* Go through all the hard registers. For each that is clobbered in + a CALL_INSN, remove the register from quantity chains and update + reg_tick if defined. Also see if any of these registers is currently + in the table. */ + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) + { + delete_reg_equiv (regno); + if (REG_TICK (regno) >= 0) + { + REG_TICK (regno)++; + SUBREG_TICKED (regno) = -1; + } + + in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0); + } + + /* In the case where we have no call-clobbered hard registers in the + table, we are done. Otherwise, scan the table and remove any + entry that overlaps a call-clobbered register. */ + + if (in_table) + for (hash = 0; hash < HASH_SIZE; hash++) + for (p = table[hash]; p; p = next) + { + next = p->next_same_hash; + + if (!REG_P (p->exp) + || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER) + continue; + + regno = REGNO (p->exp); + endregno = END_HARD_REGNO (p->exp); + + for (i = regno; i < endregno; i++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) + { + remove_from_table (p, hash); + break; + } + } +} + +/* Given an expression X of type CONST, + and ELT which is its table entry (or 0 if it + is not in the hash table), + return an alternate expression for X as a register plus integer. + If none can be found, return 0. */ + +static rtx +use_related_value (rtx x, struct table_elt *elt) +{ + struct table_elt *relt = 0; + struct table_elt *p, *q; + HOST_WIDE_INT offset; + + /* First, is there anything related known? + If we have a table element, we can tell from that. + Otherwise, must look it up. */ + + if (elt != 0 && elt->related_value != 0) + relt = elt; + else if (elt == 0 && GET_CODE (x) == CONST) + { + rtx subexp = get_related_value (x); + if (subexp != 0) + relt = lookup (subexp, + SAFE_HASH (subexp, GET_MODE (subexp)), + GET_MODE (subexp)); + } + + if (relt == 0) + return 0; + + /* Search all related table entries for one that has an + equivalent register. */ + + p = relt; + while (1) + { + /* This loop is strange in that it is executed in two different cases. + The first is when X is already in the table. Then it is searching + the RELATED_VALUE list of X's class (RELT). The second case is when + X is not in the table. Then RELT points to a class for the related + value. + + Ensure that, whatever case we are in, that we ignore classes that have + the same value as X. */ + + if (rtx_equal_p (x, p->exp)) + q = 0; + else + for (q = p->first_same_value; q; q = q->next_same_value) + if (REG_P (q->exp)) + break; + + if (q) + break; + + p = p->related_value; + + /* We went all the way around, so there is nothing to be found. + Alternatively, perhaps RELT was in the table for some other reason + and it has no related values recorded. */ + if (p == relt || p == 0) + break; + } + + if (q == 0) + return 0; + + offset = (get_integer_term (x) - get_integer_term (p->exp)); + /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */ + return plus_constant (q->exp, offset); +} + + +/* Hash a string. Just add its bytes up. */ +static inline unsigned +hash_rtx_string (const char *ps) +{ + unsigned hash = 0; + const unsigned char *p = (const unsigned char *) ps; + + if (p) + while (*p) + hash += *p++; + + return hash; +} + +/* Same as hash_rtx, but call CB on each rtx if it is not NULL. + When the callback returns true, we continue with the new rtx. */ + +unsigned +hash_rtx_cb (const_rtx x, enum machine_mode mode, + int *do_not_record_p, int *hash_arg_in_memory_p, + bool have_reg_qty, hash_rtx_callback_function cb) +{ + int i, j; + unsigned hash = 0; + enum rtx_code code; + const char *fmt; + enum machine_mode newmode; + rtx newx; + + /* Used to turn recursion into iteration. We can't rely on GCC's + tail-recursion elimination since we need to keep accumulating values + in HASH. */ + repeat: + if (x == 0) + return hash; + + /* Invoke the callback first. */ + if (cb != NULL + && ((*cb) (x, mode, &newx, &newmode))) + { + hash += hash_rtx_cb (newx, newmode, do_not_record_p, + hash_arg_in_memory_p, have_reg_qty, cb); + return hash; + } + + code = GET_CODE (x); + switch (code) + { + case REG: + { + unsigned int regno = REGNO (x); + + if (do_not_record_p && !reload_completed) + { + /* On some machines, we can't record any non-fixed hard register, + because extending its life will cause reload problems. We + consider ap, fp, sp, gp to be fixed for this purpose. + + We also consider CCmode registers to be fixed for this purpose; + failure to do so leads to failure to simplify 0<100 type of + conditionals. + + On all machines, we can't record any global registers. + Nor should we record any register that is in a small + class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */ + bool record; + + if (regno >= FIRST_PSEUDO_REGISTER) + record = true; + else if (x == frame_pointer_rtx + || x == hard_frame_pointer_rtx + || x == arg_pointer_rtx + || x == stack_pointer_rtx + || x == pic_offset_table_rtx) + record = true; + else if (global_regs[regno]) + record = false; + else if (fixed_regs[regno]) + record = true; + else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) + record = true; + else if (targetm.small_register_classes_for_mode_p (GET_MODE (x))) + record = false; + else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno))) + record = false; + else + record = true; + + if (!record) + { + *do_not_record_p = 1; + return 0; + } + } + + hash += ((unsigned int) REG << 7); + hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno); + return hash; + } + + /* We handle SUBREG of a REG specially because the underlying + reg changes its hash value with every value change; we don't + want to have to forget unrelated subregs when one subreg changes. */ + case SUBREG: + { + if (REG_P (SUBREG_REG (x))) + { + hash += (((unsigned int) SUBREG << 7) + + REGNO (SUBREG_REG (x)) + + (SUBREG_BYTE (x) / UNITS_PER_WORD)); + return hash; + } + break; + } + + case CONST_INT: + hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode + + (unsigned int) INTVAL (x)); + return hash; + + case CONST_DOUBLE: + /* This is like the general case, except that it only counts + the integers representing the constant. */ + hash += (unsigned int) code + (unsigned int) GET_MODE (x); + if (GET_MODE (x) != VOIDmode) + hash += real_hash (CONST_DOUBLE_REAL_VALUE (x)); + else + hash += ((unsigned int) CONST_DOUBLE_LOW (x) + + (unsigned int) CONST_DOUBLE_HIGH (x)); + return hash; + + case CONST_FIXED: + hash += (unsigned int) code + (unsigned int) GET_MODE (x); + hash += fixed_hash (CONST_FIXED_VALUE (x)); + return hash; + + case CONST_VECTOR: + { + int units; + rtx elt; + + units = CONST_VECTOR_NUNITS (x); + + for (i = 0; i < units; ++i) + { + elt = CONST_VECTOR_ELT (x, i); + hash += hash_rtx_cb (elt, GET_MODE (elt), + do_not_record_p, hash_arg_in_memory_p, + have_reg_qty, cb); + } + + return hash; + } + + /* Assume there is only one rtx object for any given label. */ + case LABEL_REF: + /* We don't hash on the address of the CODE_LABEL to avoid bootstrap + differences and differences between each stage's debugging dumps. */ + hash += (((unsigned int) LABEL_REF << 7) + + CODE_LABEL_NUMBER (XEXP (x, 0))); + return hash; + + case SYMBOL_REF: + { + /* Don't hash on the symbol's address to avoid bootstrap differences. + Different hash values may cause expressions to be recorded in + different orders and thus different registers to be used in the + final assembler. This also avoids differences in the dump files + between various stages. */ + unsigned int h = 0; + const unsigned char *p = (const unsigned char *) XSTR (x, 0); + + while (*p) + h += (h << 7) + *p++; /* ??? revisit */ + + hash += ((unsigned int) SYMBOL_REF << 7) + h; + return hash; + } + + case MEM: + /* We don't record if marked volatile or if BLKmode since we don't + know the size of the move. */ + if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) + { + *do_not_record_p = 1; + return 0; + } + if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) + *hash_arg_in_memory_p = 1; + + /* Now that we have already found this special case, + might as well speed it up as much as possible. */ + hash += (unsigned) MEM; + x = XEXP (x, 0); + goto repeat; + + case USE: + /* A USE that mentions non-volatile memory needs special + handling since the MEM may be BLKmode which normally + prevents an entry from being made. Pure calls are + marked by a USE which mentions BLKmode memory. + See calls.c:emit_call_1. */ + if (MEM_P (XEXP (x, 0)) + && ! MEM_VOLATILE_P (XEXP (x, 0))) + { + hash += (unsigned) USE; + x = XEXP (x, 0); + + if (hash_arg_in_memory_p && !MEM_READONLY_P (x)) + *hash_arg_in_memory_p = 1; + + /* Now that we have already found this special case, + might as well speed it up as much as possible. */ + hash += (unsigned) MEM; + x = XEXP (x, 0); + goto repeat; + } + break; + + case PRE_DEC: + case PRE_INC: + case POST_DEC: + case POST_INC: + case PRE_MODIFY: + case POST_MODIFY: + case PC: + case CC0: + case CALL: + case UNSPEC_VOLATILE: + if (do_not_record_p) { + *do_not_record_p = 1; + return 0; + } + else + return hash; + break; + + case ASM_OPERANDS: + if (do_not_record_p && MEM_VOLATILE_P (x)) + { + *do_not_record_p = 1; + return 0; + } + else + { + /* We don't want to take the filename and line into account. */ + hash += (unsigned) code + (unsigned) GET_MODE (x) + + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x)) + + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x)) + + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x); + + if (ASM_OPERANDS_INPUT_LENGTH (x)) + { + for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) + { + hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i), + GET_MODE (ASM_OPERANDS_INPUT (x, i)), + do_not_record_p, hash_arg_in_memory_p, + have_reg_qty, cb) + + hash_rtx_string + (ASM_OPERANDS_INPUT_CONSTRAINT (x, i))); + } + + hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0)); + x = ASM_OPERANDS_INPUT (x, 0); + mode = GET_MODE (x); + goto repeat; + } + + return hash; + } + break; + + default: + break; + } + + i = GET_RTX_LENGTH (code) - 1; + hash += (unsigned) code + (unsigned) GET_MODE (x); + fmt = GET_RTX_FORMAT (code); + for (; i >= 0; i--) + { + switch (fmt[i]) + { + case 'e': + /* If we are about to do the last recursive call + needed at this level, change it into iteration. + This function is called enough to be worth it. */ + if (i == 0) + { + x = XEXP (x, i); + goto repeat; + } + + hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p, + hash_arg_in_memory_p, + have_reg_qty, cb); + break; + + case 'E': + for (j = 0; j < XVECLEN (x, i); j++) + hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p, + hash_arg_in_memory_p, + have_reg_qty, cb); + break; + + case 's': + hash += hash_rtx_string (XSTR (x, i)); + break; + + case 'i': + hash += (unsigned int) XINT (x, i); + break; + + case '0': case 't': + /* Unused. */ + break; + + default: + gcc_unreachable (); + } + } + + return hash; +} + +/* Hash an rtx. We are careful to make sure the value is never negative. + Equivalent registers hash identically. + MODE is used in hashing for CONST_INTs only; + otherwise the mode of X is used. + + Store 1 in DO_NOT_RECORD_P if any subexpression is volatile. + + If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains + a MEM rtx which does not have the RTX_UNCHANGING_P bit set. + + Note that cse_insn knows that the hash code of a MEM expression + is just (int) MEM plus the hash code of the address. */ + +unsigned +hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p, + int *hash_arg_in_memory_p, bool have_reg_qty) +{ + return hash_rtx_cb (x, mode, do_not_record_p, + hash_arg_in_memory_p, have_reg_qty, NULL); +} + +/* Hash an rtx X for cse via hash_rtx. + Stores 1 in do_not_record if any subexpression is volatile. + Stores 1 in hash_arg_in_memory if X contains a mem rtx which + does not have the RTX_UNCHANGING_P bit set. */ + +static inline unsigned +canon_hash (rtx x, enum machine_mode mode) +{ + return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true); +} + +/* Like canon_hash but with no side effects, i.e. do_not_record + and hash_arg_in_memory are not changed. */ + +static inline unsigned +safe_hash (rtx x, enum machine_mode mode) +{ + int dummy_do_not_record; + return hash_rtx (x, mode, &dummy_do_not_record, NULL, true); +} + +/* Return 1 iff X and Y would canonicalize into the same thing, + without actually constructing the canonicalization of either one. + If VALIDATE is nonzero, + we assume X is an expression being processed from the rtl + and Y was found in the hash table. We check register refs + in Y for being marked as valid. + + If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */ + +int +exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse) +{ + int i, j; + enum rtx_code code; + const char *fmt; + + /* Note: it is incorrect to assume an expression is equivalent to itself + if VALIDATE is nonzero. */ + if (x == y && !validate) + return 1; + + if (x == 0 || y == 0) + return x == y; + + code = GET_CODE (x); + if (code != GET_CODE (y)) + return 0; + + /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ + if (GET_MODE (x) != GET_MODE (y)) + return 0; + + /* MEMs refering to different address space are not equivalent. */ + if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y)) + return 0; + + switch (code) + { + case PC: + case CC0: + case CONST_INT: + case CONST_DOUBLE: + case CONST_FIXED: + return x == y; + + case LABEL_REF: + return XEXP (x, 0) == XEXP (y, 0); + + case SYMBOL_REF: + return XSTR (x, 0) == XSTR (y, 0); + + case REG: + if (for_gcse) + return REGNO (x) == REGNO (y); + else + { + unsigned int regno = REGNO (y); + unsigned int i; + unsigned int endregno = END_REGNO (y); + + /* If the quantities are not the same, the expressions are not + equivalent. If there are and we are not to validate, they + are equivalent. Otherwise, ensure all regs are up-to-date. */ + + if (REG_QTY (REGNO (x)) != REG_QTY (regno)) + return 0; + + if (! validate) + return 1; + + for (i = regno; i < endregno; i++) + if (REG_IN_TABLE (i) != REG_TICK (i)) + return 0; + + return 1; + } + + case MEM: + if (for_gcse) + { + /* A volatile mem should not be considered equivalent to any + other. */ + if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) + return 0; + + /* Can't merge two expressions in different alias sets, since we + can decide that the expression is transparent in a block when + it isn't, due to it being set with the different alias set. + + Also, can't merge two expressions with different MEM_ATTRS. + They could e.g. be two different entities allocated into the + same space on the stack (see e.g. PR25130). In that case, the + MEM addresses can be the same, even though the two MEMs are + absolutely not equivalent. + + But because really all MEM attributes should be the same for + equivalent MEMs, we just use the invariant that MEMs that have + the same attributes share the same mem_attrs data structure. */ + if (MEM_ATTRS (x) != MEM_ATTRS (y)) + return 0; + } + break; + + /* For commutative operations, check both orders. */ + case PLUS: + case MULT: + case AND: + case IOR: + case XOR: + case NE: + case EQ: + return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), + validate, for_gcse) + && exp_equiv_p (XEXP (x, 1), XEXP (y, 1), + validate, for_gcse)) + || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1), + validate, for_gcse) + && exp_equiv_p (XEXP (x, 1), XEXP (y, 0), + validate, for_gcse))); + + case ASM_OPERANDS: + /* We don't use the generic code below because we want to + disregard filename and line numbers. */ + + /* A volatile asm isn't equivalent to any other. */ + if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y)) + return 0; + + if (GET_MODE (x) != GET_MODE (y) + || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y)) + || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x), + ASM_OPERANDS_OUTPUT_CONSTRAINT (y)) + || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y) + || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y)) + return 0; + + if (ASM_OPERANDS_INPUT_LENGTH (x)) + { + for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) + if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i), + ASM_OPERANDS_INPUT (y, i), + validate, for_gcse) + || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i), + ASM_OPERANDS_INPUT_CONSTRAINT (y, i))) + return 0; + } + + return 1; + + default: + break; + } + + /* Compare the elements. If any pair of corresponding elements + fail to match, return 0 for the whole thing. */ + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + switch (fmt[i]) + { + case 'e': + if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), + validate, for_gcse)) + return 0; + break; + + case 'E': + if (XVECLEN (x, i) != XVECLEN (y, i)) + return 0; + for (j = 0; j < XVECLEN (x, i); j++) + if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j), + validate, for_gcse)) + return 0; + break; + + case 's': + if (strcmp (XSTR (x, i), XSTR (y, i))) + return 0; + break; + + case 'i': + if (XINT (x, i) != XINT (y, i)) + return 0; + break; + + case 'w': + if (XWINT (x, i) != XWINT (y, i)) + return 0; + break; + + case '0': + case 't': + break; + + default: + gcc_unreachable (); + } + } + + return 1; +} + +/* Return 1 if X has a value that can vary even between two + executions of the program. 0 means X can be compared reliably + against certain constants or near-constants. */ + +static bool +cse_rtx_varies_p (const_rtx x, bool from_alias) +{ + /* We need not check for X and the equivalence class being of the same + mode because if X is equivalent to a constant in some mode, it + doesn't vary in any mode. */ + + if (REG_P (x) + && REGNO_QTY_VALID_P (REGNO (x))) + { + int x_q = REG_QTY (REGNO (x)); + struct qty_table_elem *x_ent = &qty_table[x_q]; + + if (GET_MODE (x) == x_ent->mode + && x_ent->const_rtx != NULL_RTX) + return 0; + } + + if (GET_CODE (x) == PLUS + && CONST_INT_P (XEXP (x, 1)) + && REG_P (XEXP (x, 0)) + && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))) + { + int x0_q = REG_QTY (REGNO (XEXP (x, 0))); + struct qty_table_elem *x0_ent = &qty_table[x0_q]; + + if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode) + && x0_ent->const_rtx != NULL_RTX) + return 0; + } + + /* This can happen as the result of virtual register instantiation, if + the initial constant is too large to be a valid address. This gives + us a three instruction sequence, load large offset into a register, + load fp minus a constant into a register, then a MEM which is the + sum of the two `constant' registers. */ + if (GET_CODE (x) == PLUS + && REG_P (XEXP (x, 0)) + && REG_P (XEXP (x, 1)) + && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))) + && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))) + { + int x0_q = REG_QTY (REGNO (XEXP (x, 0))); + int x1_q = REG_QTY (REGNO (XEXP (x, 1))); + struct qty_table_elem *x0_ent = &qty_table[x0_q]; + struct qty_table_elem *x1_ent = &qty_table[x1_q]; + + if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode) + && x0_ent->const_rtx != NULL_RTX + && (GET_MODE (XEXP (x, 1)) == x1_ent->mode) + && x1_ent->const_rtx != NULL_RTX) + return 0; + } + + return rtx_varies_p (x, from_alias); +} + +/* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate + the result if necessary. INSN is as for canon_reg. */ + +static void +validate_canon_reg (rtx *xloc, rtx insn) +{ + if (*xloc) + { + rtx new_rtx = canon_reg (*xloc, insn); + + /* If replacing pseudo with hard reg or vice versa, ensure the + insn remains valid. Likewise if the insn has MATCH_DUPs. */ + gcc_assert (insn && new_rtx); + validate_change (insn, xloc, new_rtx, 1); + } +} + +/* Canonicalize an expression: + replace each register reference inside it + with the "oldest" equivalent register. + + If INSN is nonzero validate_change is used to ensure that INSN remains valid + after we make our substitution. The calls are made with IN_GROUP nonzero + so apply_change_group must be called upon the outermost return from this + function (unless INSN is zero). The result of apply_change_group can + generally be discarded since the changes we are making are optional. */ + +static rtx +canon_reg (rtx x, rtx insn) +{ + int i; + enum rtx_code code; + const char *fmt; + + if (x == 0) + return x; + + code = GET_CODE (x); + switch (code) + { + case PC: + case CC0: + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_FIXED: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return x; + + case REG: + { + int first; + int q; + struct qty_table_elem *ent; + + /* Never replace a hard reg, because hard regs can appear + in more than one machine mode, and we must preserve the mode + of each occurrence. Also, some hard regs appear in + MEMs that are shared and mustn't be altered. Don't try to + replace any reg that maps to a reg of class NO_REGS. */ + if (REGNO (x) < FIRST_PSEUDO_REGISTER + || ! REGNO_QTY_VALID_P (REGNO (x))) + return x; + + q = REG_QTY (REGNO (x)); + ent = &qty_table[q]; + first = ent->first_reg; + return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first] + : REGNO_REG_CLASS (first) == NO_REGS ? x + : gen_rtx_REG (ent->mode, first)); + } + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + int j; + + if (fmt[i] == 'e') + validate_canon_reg (&XEXP (x, i), insn); + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + validate_canon_reg (&XVECEXP (x, i, j), insn); + } + + return x; +} + +/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison + operation (EQ, NE, GT, etc.), follow it back through the hash table and + what values are being compared. + + *PARG1 and *PARG2 are updated to contain the rtx representing the values + actually being compared. For example, if *PARG1 was (cc0) and *PARG2 + was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were + compared to produce cc0. + + The return value is the comparison operator and is either the code of + A or the code corresponding to the inverse of the comparison. */ + +static enum rtx_code +find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2, + enum machine_mode *pmode1, enum machine_mode *pmode2) +{ + rtx arg1, arg2; + + arg1 = *parg1, arg2 = *parg2; + + /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */ + + while (arg2 == CONST0_RTX (GET_MODE (arg1))) + { + /* Set nonzero when we find something of interest. */ + rtx x = 0; + int reverse_code = 0; + struct table_elt *p = 0; + + /* If arg1 is a COMPARE, extract the comparison arguments from it. + On machines with CC0, this is the only case that can occur, since + fold_rtx will return the COMPARE or item being compared with zero + when given CC0. */ + + if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx) + x = arg1; + + /* If ARG1 is a comparison operator and CODE is testing for + STORE_FLAG_VALUE, get the inner arguments. */ + + else if (COMPARISON_P (arg1)) + { +#ifdef FLOAT_STORE_FLAG_VALUE + REAL_VALUE_TYPE fsfv; +#endif + + if (code == NE + || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT + && code == LT && STORE_FLAG_VALUE == -1) +#ifdef FLOAT_STORE_FLAG_VALUE + || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) + && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), + REAL_VALUE_NEGATIVE (fsfv))) +#endif + ) + x = arg1; + else if (code == EQ + || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT + && code == GE && STORE_FLAG_VALUE == -1) +#ifdef FLOAT_STORE_FLAG_VALUE + || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1)) + && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), + REAL_VALUE_NEGATIVE (fsfv))) +#endif + ) + x = arg1, reverse_code = 1; + } + + /* ??? We could also check for + + (ne (and (eq (...) (const_int 1))) (const_int 0)) + + and related forms, but let's wait until we see them occurring. */ + + if (x == 0) + /* Look up ARG1 in the hash table and see if it has an equivalence + that lets us see what is being compared. */ + p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1)); + if (p) + { + p = p->first_same_value; + + /* If what we compare is already known to be constant, that is as + good as it gets. + We need to break the loop in this case, because otherwise we + can have an infinite loop when looking at a reg that is known + to be a constant which is the same as a comparison of a reg + against zero which appears later in the insn stream, which in + turn is constant and the same as the comparison of the first reg + against zero... */ + if (p->is_const) + break; + } + + for (; p; p = p->next_same_value) + { + enum machine_mode inner_mode = GET_MODE (p->exp); +#ifdef FLOAT_STORE_FLAG_VALUE + REAL_VALUE_TYPE fsfv; +#endif + + /* If the entry isn't valid, skip it. */ + if (! exp_equiv_p (p->exp, p->exp, 1, false)) + continue; + + if (GET_CODE (p->exp) == COMPARE + /* Another possibility is that this machine has a compare insn + that includes the comparison code. In that case, ARG1 would + be equivalent to a comparison operation that would set ARG1 to + either STORE_FLAG_VALUE or zero. If this is an NE operation, + ORIG_CODE is the actual comparison being done; if it is an EQ, + we must reverse ORIG_CODE. On machine with a negative value + for STORE_FLAG_VALUE, also look at LT and GE operations. */ + || ((code == NE + || (code == LT + && GET_MODE_CLASS (inner_mode) == MODE_INT + && (GET_MODE_BITSIZE (inner_mode) + <= HOST_BITS_PER_WIDE_INT) + && (STORE_FLAG_VALUE + & ((HOST_WIDE_INT) 1 + << (GET_MODE_BITSIZE (inner_mode) - 1)))) +#ifdef FLOAT_STORE_FLAG_VALUE + || (code == LT + && SCALAR_FLOAT_MODE_P (inner_mode) + && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), + REAL_VALUE_NEGATIVE (fsfv))) +#endif + ) + && COMPARISON_P (p->exp))) + { + x = p->exp; + break; + } + else if ((code == EQ + || (code == GE + && GET_MODE_CLASS (inner_mode) == MODE_INT + && (GET_MODE_BITSIZE (inner_mode) + <= HOST_BITS_PER_WIDE_INT) + && (STORE_FLAG_VALUE + & ((HOST_WIDE_INT) 1 + << (GET_MODE_BITSIZE (inner_mode) - 1)))) +#ifdef FLOAT_STORE_FLAG_VALUE + || (code == GE + && SCALAR_FLOAT_MODE_P (inner_mode) + && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)), + REAL_VALUE_NEGATIVE (fsfv))) +#endif + ) + && COMPARISON_P (p->exp)) + { + reverse_code = 1; + x = p->exp; + break; + } + + /* If this non-trapping address, e.g. fp + constant, the + equivalent is a better operand since it may let us predict + the value of the comparison. */ + else if (!rtx_addr_can_trap_p (p->exp)) + { + arg1 = p->exp; + continue; + } + } + + /* If we didn't find a useful equivalence for ARG1, we are done. + Otherwise, set up for the next iteration. */ + if (x == 0) + break; + + /* If we need to reverse the comparison, make sure that that is + possible -- we can't necessarily infer the value of GE from LT + with floating-point operands. */ + if (reverse_code) + { + enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX); + if (reversed == UNKNOWN) + break; + else + code = reversed; + } + else if (COMPARISON_P (x)) + code = GET_CODE (x); + arg1 = XEXP (x, 0), arg2 = XEXP (x, 1); + } + + /* Return our results. Return the modes from before fold_rtx + because fold_rtx might produce const_int, and then it's too late. */ + *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2); + *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0); + + return code; +} + +/* If X is a nontrivial arithmetic operation on an argument for which + a constant value can be determined, return the result of operating + on that value, as a constant. Otherwise, return X, possibly with + one or more operands changed to a forward-propagated constant. + + If X is a register whose contents are known, we do NOT return + those contents here; equiv_constant is called to perform that task. + For SUBREGs and MEMs, we do that both here and in equiv_constant. + + INSN is the insn that we may be modifying. If it is 0, make a copy + of X before modifying it. */ + +static rtx +fold_rtx (rtx x, rtx insn) +{ + enum rtx_code code; + enum machine_mode mode; + const char *fmt; + int i; + rtx new_rtx = 0; + int changed = 0; + + /* Operands of X. */ + rtx folded_arg0; + rtx folded_arg1; + + /* Constant equivalents of first three operands of X; + 0 when no such equivalent is known. */ + rtx const_arg0; + rtx const_arg1; + rtx const_arg2; + + /* The mode of the first operand of X. We need this for sign and zero + extends. */ + enum machine_mode mode_arg0; + + if (x == 0) + return x; + + /* Try to perform some initial simplifications on X. */ + code = GET_CODE (x); + switch (code) + { + case MEM: + case SUBREG: + if ((new_rtx = equiv_constant (x)) != NULL_RTX) + return new_rtx; + return x; + + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_FIXED: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case REG: + case PC: + /* No use simplifying an EXPR_LIST + since they are used only for lists of args + in a function call's REG_EQUAL note. */ + case EXPR_LIST: + return x; + +#ifdef HAVE_cc0 + case CC0: + return prev_insn_cc0; +#endif + + case ASM_OPERANDS: + if (insn) + { + for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) + validate_change (insn, &ASM_OPERANDS_INPUT (x, i), + fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0); + } + return x; + +#ifdef NO_FUNCTION_CSE + case CALL: + if (CONSTANT_P (XEXP (XEXP (x, 0), 0))) + return x; + break; +#endif + + /* Anything else goes through the loop below. */ + default: + break; + } + + mode = GET_MODE (x); + const_arg0 = 0; + const_arg1 = 0; + const_arg2 = 0; + mode_arg0 = VOIDmode; + + /* Try folding our operands. + Then see which ones have constant values known. */ + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + if (fmt[i] == 'e') + { + rtx folded_arg = XEXP (x, i), const_arg; + enum machine_mode mode_arg = GET_MODE (folded_arg); + + switch (GET_CODE (folded_arg)) + { + case MEM: + case REG: + case SUBREG: + const_arg = equiv_constant (folded_arg); + break; + + case CONST: + case CONST_INT: + case SYMBOL_REF: + case LABEL_REF: + case CONST_DOUBLE: + case CONST_FIXED: + case CONST_VECTOR: + const_arg = folded_arg; + break; + +#ifdef HAVE_cc0 + case CC0: + folded_arg = prev_insn_cc0; + mode_arg = prev_insn_cc0_mode; + const_arg = equiv_constant (folded_arg); + break; +#endif + + default: + folded_arg = fold_rtx (folded_arg, insn); + const_arg = equiv_constant (folded_arg); + break; + } + + /* For the first three operands, see if the operand + is constant or equivalent to a constant. */ + switch (i) + { + case 0: + folded_arg0 = folded_arg; + const_arg0 = const_arg; + mode_arg0 = mode_arg; + break; + case 1: + folded_arg1 = folded_arg; + const_arg1 = const_arg; + break; + case 2: + const_arg2 = const_arg; + break; + } + + /* Pick the least expensive of the argument and an equivalent constant + argument. */ + if (const_arg != 0 + && const_arg != folded_arg + && COST_IN (const_arg, code) <= COST_IN (folded_arg, code) + + /* It's not safe to substitute the operand of a conversion + operator with a constant, as the conversion's identity + depends upon the mode of its operand. This optimization + is handled by the call to simplify_unary_operation. */ + && (GET_RTX_CLASS (code) != RTX_UNARY + || GET_MODE (const_arg) == mode_arg0 + || (code != ZERO_EXTEND + && code != SIGN_EXTEND + && code != TRUNCATE + && code != FLOAT_TRUNCATE + && code != FLOAT_EXTEND + && code != FLOAT + && code != FIX + && code != UNSIGNED_FLOAT + && code != UNSIGNED_FIX))) + folded_arg = const_arg; + + if (folded_arg == XEXP (x, i)) + continue; + + if (insn == NULL_RTX && !changed) + x = copy_rtx (x); + changed = 1; + validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1); + } + + if (changed) + { + /* Canonicalize X if necessary, and keep const_argN and folded_argN + consistent with the order in X. */ + if (canonicalize_change_group (insn, x)) + { + rtx tem; + tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem; + tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem; + } + + apply_change_group (); + } + + /* If X is an arithmetic operation, see if we can simplify it. */ + + switch (GET_RTX_CLASS (code)) + { + case RTX_UNARY: + { + /* We can't simplify extension ops unless we know the + original mode. */ + if ((code == ZERO_EXTEND || code == SIGN_EXTEND) + && mode_arg0 == VOIDmode) + break; + + new_rtx = simplify_unary_operation (code, mode, + const_arg0 ? const_arg0 : folded_arg0, + mode_arg0); + } + break; + + case RTX_COMPARE: + case RTX_COMM_COMPARE: + /* See what items are actually being compared and set FOLDED_ARG[01] + to those values and CODE to the actual comparison code. If any are + constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't + do anything if both operands are already known to be constant. */ + + /* ??? Vector mode comparisons are not supported yet. */ + if (VECTOR_MODE_P (mode)) + break; + + if (const_arg0 == 0 || const_arg1 == 0) + { + struct table_elt *p0, *p1; + rtx true_rtx, false_rtx; + enum machine_mode mode_arg1; + + if (SCALAR_FLOAT_MODE_P (mode)) + { +#ifdef FLOAT_STORE_FLAG_VALUE + true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE + (FLOAT_STORE_FLAG_VALUE (mode), mode)); +#else + true_rtx = NULL_RTX; +#endif + false_rtx = CONST0_RTX (mode); + } + else + { + true_rtx = const_true_rtx; + false_rtx = const0_rtx; + } + + code = find_comparison_args (code, &folded_arg0, &folded_arg1, + &mode_arg0, &mode_arg1); + + /* If the mode is VOIDmode or a MODE_CC mode, we don't know + what kinds of things are being compared, so we can't do + anything with this comparison. */ + + if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC) + break; + + const_arg0 = equiv_constant (folded_arg0); + const_arg1 = equiv_constant (folded_arg1); + + /* If we do not now have two constants being compared, see + if we can nevertheless deduce some things about the + comparison. */ + if (const_arg0 == 0 || const_arg1 == 0) + { + if (const_arg1 != NULL) + { + rtx cheapest_simplification; + int cheapest_cost; + rtx simp_result; + struct table_elt *p; + + /* See if we can find an equivalent of folded_arg0 + that gets us a cheaper expression, possibly a + constant through simplifications. */ + p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0), + mode_arg0); + + if (p != NULL) + { + cheapest_simplification = x; + cheapest_cost = COST (x); + + for (p = p->first_same_value; p != NULL; p = p->next_same_value) + { + int cost; + + /* If the entry isn't valid, skip it. */ + if (! exp_equiv_p (p->exp, p->exp, 1, false)) + continue; + + /* Try to simplify using this equivalence. */ + simp_result + = simplify_relational_operation (code, mode, + mode_arg0, + p->exp, + const_arg1); + + if (simp_result == NULL) + continue; + + cost = COST (simp_result); + if (cost < cheapest_cost) + { + cheapest_cost = cost; + cheapest_simplification = simp_result; + } + } + + /* If we have a cheaper expression now, use that + and try folding it further, from the top. */ + if (cheapest_simplification != x) + return fold_rtx (copy_rtx (cheapest_simplification), + insn); + } + } + + /* See if the two operands are the same. */ + + if ((REG_P (folded_arg0) + && REG_P (folded_arg1) + && (REG_QTY (REGNO (folded_arg0)) + == REG_QTY (REGNO (folded_arg1)))) + || ((p0 = lookup (folded_arg0, + SAFE_HASH (folded_arg0, mode_arg0), + mode_arg0)) + && (p1 = lookup (folded_arg1, + SAFE_HASH (folded_arg1, mode_arg0), + mode_arg0)) + && p0->first_same_value == p1->first_same_value)) + folded_arg1 = folded_arg0; + + /* If FOLDED_ARG0 is a register, see if the comparison we are + doing now is either the same as we did before or the reverse + (we only check the reverse if not floating-point). */ + else if (REG_P (folded_arg0)) + { + int qty = REG_QTY (REGNO (folded_arg0)); + + if (REGNO_QTY_VALID_P (REGNO (folded_arg0))) + { + struct qty_table_elem *ent = &qty_table[qty]; + + if ((comparison_dominates_p (ent->comparison_code, code) + || (! FLOAT_MODE_P (mode_arg0) + && comparison_dominates_p (ent->comparison_code, + reverse_condition (code)))) + && (rtx_equal_p (ent->comparison_const, folded_arg1) + || (const_arg1 + && rtx_equal_p (ent->comparison_const, + const_arg1)) + || (REG_P (folded_arg1) + && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty)))) + { + if (comparison_dominates_p (ent->comparison_code, code)) + { + if (true_rtx) + return true_rtx; + else + break; + } + else + return false_rtx; + } + } + } + } + } + + /* If we are comparing against zero, see if the first operand is + equivalent to an IOR with a constant. If so, we may be able to + determine the result of this comparison. */ + if (const_arg1 == const0_rtx && !const_arg0) + { + rtx y = lookup_as_function (folded_arg0, IOR); + rtx inner_const; + + if (y != 0 + && (inner_const = equiv_constant (XEXP (y, 1))) != 0 + && CONST_INT_P (inner_const) + && INTVAL (inner_const) != 0) + folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const); + } + + { + rtx op0 = const_arg0 ? const_arg0 : folded_arg0; + rtx op1 = const_arg1 ? const_arg1 : folded_arg1; + new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1); + } + break; + + case RTX_BIN_ARITH: + case RTX_COMM_ARITH: + switch (code) + { + case PLUS: + /* If the second operand is a LABEL_REF, see if the first is a MINUS + with that LABEL_REF as its second operand. If so, the result is + the first operand of that MINUS. This handles switches with an + ADDR_DIFF_VEC table. */ + if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF) + { + rtx y + = GET_CODE (folded_arg0) == MINUS ? folded_arg0 + : lookup_as_function (folded_arg0, MINUS); + + if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF + && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0)) + return XEXP (y, 0); + + /* Now try for a CONST of a MINUS like the above. */ + if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0 + : lookup_as_function (folded_arg0, CONST))) != 0 + && GET_CODE (XEXP (y, 0)) == MINUS + && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF + && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0)) + return XEXP (XEXP (y, 0), 0); + } + + /* Likewise if the operands are in the other order. */ + if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF) + { + rtx y + = GET_CODE (folded_arg1) == MINUS ? folded_arg1 + : lookup_as_function (folded_arg1, MINUS); + + if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF + && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0)) + return XEXP (y, 0); + + /* Now try for a CONST of a MINUS like the above. */ + if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1 + : lookup_as_function (folded_arg1, CONST))) != 0 + && GET_CODE (XEXP (y, 0)) == MINUS + && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF + && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0)) + return XEXP (XEXP (y, 0), 0); + } + + /* If second operand is a register equivalent to a negative + CONST_INT, see if we can find a register equivalent to the + positive constant. Make a MINUS if so. Don't do this for + a non-negative constant since we might then alternate between + choosing positive and negative constants. Having the positive + constant previously-used is the more common case. Be sure + the resulting constant is non-negative; if const_arg1 were + the smallest negative number this would overflow: depending + on the mode, this would either just be the same value (and + hence not save anything) or be incorrect. */ + if (const_arg1 != 0 && CONST_INT_P (const_arg1) + && INTVAL (const_arg1) < 0 + /* This used to test + + -INTVAL (const_arg1) >= 0 + + But The Sun V5.0 compilers mis-compiled that test. So + instead we test for the problematic value in a more direct + manner and hope the Sun compilers get it correct. */ + && INTVAL (const_arg1) != + ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)) + && REG_P (folded_arg1)) + { + rtx new_const = GEN_INT (-INTVAL (const_arg1)); + struct table_elt *p + = lookup (new_const, SAFE_HASH (new_const, mode), mode); + + if (p) + for (p = p->first_same_value; p; p = p->next_same_value) + if (REG_P (p->exp)) + return simplify_gen_binary (MINUS, mode, folded_arg0, + canon_reg (p->exp, NULL_RTX)); + } + goto from_plus; + + case MINUS: + /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2). + If so, produce (PLUS Z C2-C). */ + if (const_arg1 != 0 && CONST_INT_P (const_arg1)) + { + rtx y = lookup_as_function (XEXP (x, 0), PLUS); + if (y && CONST_INT_P (XEXP (y, 1))) + return fold_rtx (plus_constant (copy_rtx (y), + -INTVAL (const_arg1)), + NULL_RTX); + } + + /* Fall through. */ + + from_plus: + case SMIN: case SMAX: case UMIN: case UMAX: + case IOR: case AND: case XOR: + case MULT: + case ASHIFT: case LSHIFTRT: case ASHIFTRT: + /* If we have ( ) for an associative OP and REG + is known to be of similar form, we may be able to replace the + operation with a combined operation. This may eliminate the + intermediate operation if every use is simplified in this way. + Note that the similar optimization done by combine.c only works + if the intermediate operation's result has only one reference. */ + + if (REG_P (folded_arg0) + && const_arg1 && CONST_INT_P (const_arg1)) + { + int is_shift + = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT); + rtx y, inner_const, new_const; + rtx canon_const_arg1 = const_arg1; + enum rtx_code associate_code; + + if (is_shift + && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode) + || INTVAL (const_arg1) < 0)) + { + if (SHIFT_COUNT_TRUNCATED) + canon_const_arg1 = GEN_INT (INTVAL (const_arg1) + & (GET_MODE_BITSIZE (mode) + - 1)); + else + break; + } + + y = lookup_as_function (folded_arg0, code); + if (y == 0) + break; + + /* If we have compiled a statement like + "if (x == (x & mask1))", and now are looking at + "x & mask2", we will have a case where the first operand + of Y is the same as our first operand. Unless we detect + this case, an infinite loop will result. */ + if (XEXP (y, 0) == folded_arg0) + break; + + inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0)); + if (!inner_const || !CONST_INT_P (inner_const)) + break; + + /* Don't associate these operations if they are a PLUS with the + same constant and it is a power of two. These might be doable + with a pre- or post-increment. Similarly for two subtracts of + identical powers of two with post decrement. */ + + if (code == PLUS && const_arg1 == inner_const + && ((HAVE_PRE_INCREMENT + && exact_log2 (INTVAL (const_arg1)) >= 0) + || (HAVE_POST_INCREMENT + && exact_log2 (INTVAL (const_arg1)) >= 0) + || (HAVE_PRE_DECREMENT + && exact_log2 (- INTVAL (const_arg1)) >= 0) + || (HAVE_POST_DECREMENT + && exact_log2 (- INTVAL (const_arg1)) >= 0))) + break; + + /* ??? Vector mode shifts by scalar + shift operand are not supported yet. */ + if (is_shift && VECTOR_MODE_P (mode)) + break; + + if (is_shift + && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode) + || INTVAL (inner_const) < 0)) + { + if (SHIFT_COUNT_TRUNCATED) + inner_const = GEN_INT (INTVAL (inner_const) + & (GET_MODE_BITSIZE (mode) - 1)); + else + break; + } + + /* Compute the code used to compose the constants. For example, + A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */ + + associate_code = (is_shift || code == MINUS ? PLUS : code); + + new_const = simplify_binary_operation (associate_code, mode, + canon_const_arg1, + inner_const); + + if (new_const == 0) + break; + + /* If we are associating shift operations, don't let this + produce a shift of the size of the object or larger. + This could occur when we follow a sign-extend by a right + shift on a machine that does a sign-extend as a pair + of shifts. */ + + if (is_shift + && CONST_INT_P (new_const) + && INTVAL (new_const) >= GET_MODE_BITSIZE (mode)) + { + /* As an exception, we can turn an ASHIFTRT of this + form into a shift of the number of bits - 1. */ + if (code == ASHIFTRT) + new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1); + else if (!side_effects_p (XEXP (y, 0))) + return CONST0_RTX (mode); + else + break; + } + + y = copy_rtx (XEXP (y, 0)); + + /* If Y contains our first operand (the most common way this + can happen is if Y is a MEM), we would do into an infinite + loop if we tried to fold it. So don't in that case. */ + + if (! reg_mentioned_p (folded_arg0, y)) + y = fold_rtx (y, insn); + + return simplify_gen_binary (code, mode, y, new_const); + } + break; + + case DIV: case UDIV: + /* ??? The associative optimization performed immediately above is + also possible for DIV and UDIV using associate_code of MULT. + However, we would need extra code to verify that the + multiplication does not overflow, that is, there is no overflow + in the calculation of new_const. */ + break; + + default: + break; + } + + new_rtx = simplify_binary_operation (code, mode, + const_arg0 ? const_arg0 : folded_arg0, + const_arg1 ? const_arg1 : folded_arg1); + break; + + case RTX_OBJ: + /* (lo_sum (high X) X) is simply X. */ + if (code == LO_SUM && const_arg0 != 0 + && GET_CODE (const_arg0) == HIGH + && rtx_equal_p (XEXP (const_arg0, 0), const_arg1)) + return const_arg1; + break; + + case RTX_TERNARY: + case RTX_BITFIELD_OPS: + new_rtx = simplify_ternary_operation (code, mode, mode_arg0, + const_arg0 ? const_arg0 : folded_arg0, + const_arg1 ? const_arg1 : folded_arg1, + const_arg2 ? const_arg2 : XEXP (x, 2)); + break; + + default: + break; + } + + return new_rtx ? new_rtx : x; +} + +/* Return a constant value currently equivalent to X. + Return 0 if we don't know one. */ + +static rtx +equiv_constant (rtx x) +{ + if (REG_P (x) + && REGNO_QTY_VALID_P (REGNO (x))) + { + int x_q = REG_QTY (REGNO (x)); + struct qty_table_elem *x_ent = &qty_table[x_q]; + + if (x_ent->const_rtx) + x = gen_lowpart (GET_MODE (x), x_ent->const_rtx); + } + + if (x == 0 || CONSTANT_P (x)) + return x; + + if (GET_CODE (x) == SUBREG) + { + enum machine_mode mode = GET_MODE (x); + enum machine_mode imode = GET_MODE (SUBREG_REG (x)); + rtx new_rtx; + + /* See if we previously assigned a constant value to this SUBREG. */ + if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0 + || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0 + || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0) + return new_rtx; + + /* If we didn't and if doing so makes sense, see if we previously + assigned a constant value to the enclosing word mode SUBREG. */ + if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode) + && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode)) + { + int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode); + if (byte >= 0 && (byte % UNITS_PER_WORD) == 0) + { + rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte); + new_rtx = lookup_as_function (y, CONST_INT); + if (new_rtx) + return gen_lowpart (mode, new_rtx); + } + } + + /* Otherwise see if we already have a constant for the inner REG. */ + if (REG_P (SUBREG_REG (x)) + && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0) + return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x)); + + return 0; + } + + /* If X is a MEM, see if it is a constant-pool reference, or look it up in + the hash table in case its value was seen before. */ + + if (MEM_P (x)) + { + struct table_elt *elt; + + x = avoid_constant_pool_reference (x); + if (CONSTANT_P (x)) + return x; + + elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x)); + if (elt == 0) + return 0; + + for (elt = elt->first_same_value; elt; elt = elt->next_same_value) + if (elt->is_const && CONSTANT_P (elt->exp)) + return elt->exp; + } + + return 0; +} + +/* Given INSN, a jump insn, TAKEN indicates if we are following the + "taken" branch. + + In certain cases, this can cause us to add an equivalence. For example, + if we are following the taken case of + if (i == 2) + we can add the fact that `i' and '2' are now equivalent. + + In any case, we can record that this comparison was passed. If the same + comparison is seen later, we will know its value. */ + +static void +record_jump_equiv (rtx insn, bool taken) +{ + int cond_known_true; + rtx op0, op1; + rtx set; + enum machine_mode mode, mode0, mode1; + int reversed_nonequality = 0; + enum rtx_code code; + + /* Ensure this is the right kind of insn. */ + gcc_assert (any_condjump_p (insn)); + + set = pc_set (insn); + + /* See if this jump condition is known true or false. */ + if (taken) + cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx); + else + cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx); + + /* Get the type of comparison being done and the operands being compared. + If we had to reverse a non-equality condition, record that fact so we + know that it isn't valid for floating-point. */ + code = GET_CODE (XEXP (SET_SRC (set), 0)); + op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn); + op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn); + + code = find_comparison_args (code, &op0, &op1, &mode0, &mode1); + if (! cond_known_true) + { + code = reversed_comparison_code_parts (code, op0, op1, insn); + + /* Don't remember if we can't find the inverse. */ + if (code == UNKNOWN) + return; + } + + /* The mode is the mode of the non-constant. */ + mode = mode0; + if (mode1 != VOIDmode) + mode = mode1; + + record_jump_cond (code, mode, op0, op1, reversed_nonequality); +} + +/* Yet another form of subreg creation. In this case, we want something in + MODE, and we should assume OP has MODE iff it is naturally modeless. */ + +static rtx +record_jump_cond_subreg (enum machine_mode mode, rtx op) +{ + enum machine_mode op_mode = GET_MODE (op); + if (op_mode == mode || op_mode == VOIDmode) + return op; + return lowpart_subreg (mode, op, op_mode); +} + +/* We know that comparison CODE applied to OP0 and OP1 in MODE is true. + REVERSED_NONEQUALITY is nonzero if CODE had to be swapped. + Make any useful entries we can with that information. Called from + above function and called recursively. */ + +static void +record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0, + rtx op1, int reversed_nonequality) +{ + unsigned op0_hash, op1_hash; + int op0_in_memory, op1_in_memory; + struct table_elt *op0_elt, *op1_elt; + + /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG, + we know that they are also equal in the smaller mode (this is also + true for all smaller modes whether or not there is a SUBREG, but + is not worth testing for with no SUBREG). */ + + /* Note that GET_MODE (op0) may not equal MODE. */ + if (code == EQ && GET_CODE (op0) == SUBREG + && (GET_MODE_SIZE (GET_MODE (op0)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))) + { + enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); + rtx tem = record_jump_cond_subreg (inner_mode, op1); + if (tem) + record_jump_cond (code, mode, SUBREG_REG (op0), tem, + reversed_nonequality); + } + + if (code == EQ && GET_CODE (op1) == SUBREG + && (GET_MODE_SIZE (GET_MODE (op1)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))) + { + enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); + rtx tem = record_jump_cond_subreg (inner_mode, op0); + if (tem) + record_jump_cond (code, mode, SUBREG_REG (op1), tem, + reversed_nonequality); + } + + /* Similarly, if this is an NE comparison, and either is a SUBREG + making a smaller mode, we know the whole thing is also NE. */ + + /* Note that GET_MODE (op0) may not equal MODE; + if we test MODE instead, we can get an infinite recursion + alternating between two modes each wider than MODE. */ + + if (code == NE && GET_CODE (op0) == SUBREG + && subreg_lowpart_p (op0) + && (GET_MODE_SIZE (GET_MODE (op0)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))) + { + enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0)); + rtx tem = record_jump_cond_subreg (inner_mode, op1); + if (tem) + record_jump_cond (code, mode, SUBREG_REG (op0), tem, + reversed_nonequality); + } + + if (code == NE && GET_CODE (op1) == SUBREG + && subreg_lowpart_p (op1) + && (GET_MODE_SIZE (GET_MODE (op1)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))) + { + enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1)); + rtx tem = record_jump_cond_subreg (inner_mode, op0); + if (tem) + record_jump_cond (code, mode, SUBREG_REG (op1), tem, + reversed_nonequality); + } + + /* Hash both operands. */ + + do_not_record = 0; + hash_arg_in_memory = 0; + op0_hash = HASH (op0, mode); + op0_in_memory = hash_arg_in_memory; + + if (do_not_record) + return; + + do_not_record = 0; + hash_arg_in_memory = 0; + op1_hash = HASH (op1, mode); + op1_in_memory = hash_arg_in_memory; + + if (do_not_record) + return; + + /* Look up both operands. */ + op0_elt = lookup (op0, op0_hash, mode); + op1_elt = lookup (op1, op1_hash, mode); + + /* If both operands are already equivalent or if they are not in the + table but are identical, do nothing. */ + if ((op0_elt != 0 && op1_elt != 0 + && op0_elt->first_same_value == op1_elt->first_same_value) + || op0 == op1 || rtx_equal_p (op0, op1)) + return; + + /* If we aren't setting two things equal all we can do is save this + comparison. Similarly if this is floating-point. In the latter + case, OP1 might be zero and both -0.0 and 0.0 are equal to it. + If we record the equality, we might inadvertently delete code + whose intent was to change -0 to +0. */ + + if (code != EQ || FLOAT_MODE_P (GET_MODE (op0))) + { + struct qty_table_elem *ent; + int qty; + + /* If we reversed a floating-point comparison, if OP0 is not a + register, or if OP1 is neither a register or constant, we can't + do anything. */ + + if (!REG_P (op1)) + op1 = equiv_constant (op1); + + if ((reversed_nonequality && FLOAT_MODE_P (mode)) + || !REG_P (op0) || op1 == 0) + return; + + /* Put OP0 in the hash table if it isn't already. This gives it a + new quantity number. */ + if (op0_elt == 0) + { + if (insert_regs (op0, NULL, 0)) + { + rehash_using_reg (op0); + op0_hash = HASH (op0, mode); + + /* If OP0 is contained in OP1, this changes its hash code + as well. Faster to rehash than to check, except + for the simple case of a constant. */ + if (! CONSTANT_P (op1)) + op1_hash = HASH (op1,mode); + } + + op0_elt = insert (op0, NULL, op0_hash, mode); + op0_elt->in_memory = op0_in_memory; + } + + qty = REG_QTY (REGNO (op0)); + ent = &qty_table[qty]; + + ent->comparison_code = code; + if (REG_P (op1)) + { + /* Look it up again--in case op0 and op1 are the same. */ + op1_elt = lookup (op1, op1_hash, mode); + + /* Put OP1 in the hash table so it gets a new quantity number. */ + if (op1_elt == 0) + { + if (insert_regs (op1, NULL, 0)) + { + rehash_using_reg (op1); + op1_hash = HASH (op1, mode); + } + + op1_elt = insert (op1, NULL, op1_hash, mode); + op1_elt->in_memory = op1_in_memory; + } + + ent->comparison_const = NULL_RTX; + ent->comparison_qty = REG_QTY (REGNO (op1)); + } + else + { + ent->comparison_const = op1; + ent->comparison_qty = -1; + } + + return; + } + + /* If either side is still missing an equivalence, make it now, + then merge the equivalences. */ + + if (op0_elt == 0) + { + if (insert_regs (op0, NULL, 0)) + { + rehash_using_reg (op0); + op0_hash = HASH (op0, mode); + } + + op0_elt = insert (op0, NULL, op0_hash, mode); + op0_elt->in_memory = op0_in_memory; + } + + if (op1_elt == 0) + { + if (insert_regs (op1, NULL, 0)) + { + rehash_using_reg (op1); + op1_hash = HASH (op1, mode); + } + + op1_elt = insert (op1, NULL, op1_hash, mode); + op1_elt->in_memory = op1_in_memory; + } + + merge_equiv_classes (op0_elt, op1_elt); +} + +/* CSE processing for one instruction. + First simplify sources and addresses of all assignments + in the instruction, using previously-computed equivalents values. + Then install the new sources and destinations in the table + of available values. */ + +/* Data on one SET contained in the instruction. */ + +struct set +{ + /* The SET rtx itself. */ + rtx rtl; + /* The SET_SRC of the rtx (the original value, if it is changing). */ + rtx src; + /* The hash-table element for the SET_SRC of the SET. */ + struct table_elt *src_elt; + /* Hash value for the SET_SRC. */ + unsigned src_hash; + /* Hash value for the SET_DEST. */ + unsigned dest_hash; + /* The SET_DEST, with SUBREG, etc., stripped. */ + rtx inner_dest; + /* Nonzero if the SET_SRC is in memory. */ + char src_in_memory; + /* Nonzero if the SET_SRC contains something + whose value cannot be predicted and understood. */ + char src_volatile; + /* Original machine mode, in case it becomes a CONST_INT. + The size of this field should match the size of the mode + field of struct rtx_def (see rtl.h). */ + ENUM_BITFIELD(machine_mode) mode : 8; + /* A constant equivalent for SET_SRC, if any. */ + rtx src_const; + /* Hash value of constant equivalent for SET_SRC. */ + unsigned src_const_hash; + /* Table entry for constant equivalent for SET_SRC, if any. */ + struct table_elt *src_const_elt; + /* Table entry for the destination address. */ + struct table_elt *dest_addr_elt; +}; + +static void +cse_insn (rtx insn) +{ + rtx x = PATTERN (insn); + int i; + rtx tem; + int n_sets = 0; + + rtx src_eqv = 0; + struct table_elt *src_eqv_elt = 0; + int src_eqv_volatile = 0; + int src_eqv_in_memory = 0; + unsigned src_eqv_hash = 0; + + struct set *sets = (struct set *) 0; + + this_insn = insn; +#ifdef HAVE_cc0 + /* Records what this insn does to set CC0. */ + this_insn_cc0 = 0; + this_insn_cc0_mode = VOIDmode; +#endif + + /* Find all the SETs and CLOBBERs in this instruction. + Record all the SETs in the array `set' and count them. + Also determine whether there is a CLOBBER that invalidates + all memory references, or all references at varying addresses. */ + + if (CALL_P (insn)) + { + for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1)) + { + if (GET_CODE (XEXP (tem, 0)) == CLOBBER) + invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode); + XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn); + } + } + + if (GET_CODE (x) == SET) + { + sets = XALLOCA (struct set); + sets[0].rtl = x; + + /* Ignore SETs that are unconditional jumps. + They never need cse processing, so this does not hurt. + The reason is not efficiency but rather + so that we can test at the end for instructions + that have been simplified to unconditional jumps + and not be misled by unchanged instructions + that were unconditional jumps to begin with. */ + if (SET_DEST (x) == pc_rtx + && GET_CODE (SET_SRC (x)) == LABEL_REF) + ; + + /* Don't count call-insns, (set (reg 0) (call ...)), as a set. + The hard function value register is used only once, to copy to + someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)! + Ensure we invalidate the destination register. On the 80386 no + other code would invalidate it since it is a fixed_reg. + We need not check the return of apply_change_group; see canon_reg. */ + + else if (GET_CODE (SET_SRC (x)) == CALL) + { + canon_reg (SET_SRC (x), insn); + apply_change_group (); + fold_rtx (SET_SRC (x), insn); + invalidate (SET_DEST (x), VOIDmode); + } + else + n_sets = 1; + } + else if (GET_CODE (x) == PARALLEL) + { + int lim = XVECLEN (x, 0); + + sets = XALLOCAVEC (struct set, lim); + + /* Find all regs explicitly clobbered in this insn, + and ensure they are not replaced with any other regs + elsewhere in this insn. + When a reg that is clobbered is also used for input, + we should presume that that is for a reason, + and we should not substitute some other register + which is not supposed to be clobbered. + Therefore, this loop cannot be merged into the one below + because a CALL may precede a CLOBBER and refer to the + value clobbered. We must not let a canonicalization do + anything in that case. */ + for (i = 0; i < lim; i++) + { + rtx y = XVECEXP (x, 0, i); + if (GET_CODE (y) == CLOBBER) + { + rtx clobbered = XEXP (y, 0); + + if (REG_P (clobbered) + || GET_CODE (clobbered) == SUBREG) + invalidate (clobbered, VOIDmode); + else if (GET_CODE (clobbered) == STRICT_LOW_PART + || GET_CODE (clobbered) == ZERO_EXTRACT) + invalidate (XEXP (clobbered, 0), GET_MODE (clobbered)); + } + } + + for (i = 0; i < lim; i++) + { + rtx y = XVECEXP (x, 0, i); + if (GET_CODE (y) == SET) + { + /* As above, we ignore unconditional jumps and call-insns and + ignore the result of apply_change_group. */ + if (GET_CODE (SET_SRC (y)) == CALL) + { + canon_reg (SET_SRC (y), insn); + apply_change_group (); + fold_rtx (SET_SRC (y), insn); + invalidate (SET_DEST (y), VOIDmode); + } + else if (SET_DEST (y) == pc_rtx + && GET_CODE (SET_SRC (y)) == LABEL_REF) + ; + else + sets[n_sets++].rtl = y; + } + else if (GET_CODE (y) == CLOBBER) + { + /* If we clobber memory, canon the address. + This does nothing when a register is clobbered + because we have already invalidated the reg. */ + if (MEM_P (XEXP (y, 0))) + canon_reg (XEXP (y, 0), insn); + } + else if (GET_CODE (y) == USE + && ! (REG_P (XEXP (y, 0)) + && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER)) + canon_reg (y, insn); + else if (GET_CODE (y) == CALL) + { + /* The result of apply_change_group can be ignored; see + canon_reg. */ + canon_reg (y, insn); + apply_change_group (); + fold_rtx (y, insn); + } + } + } + else if (GET_CODE (x) == CLOBBER) + { + if (MEM_P (XEXP (x, 0))) + canon_reg (XEXP (x, 0), insn); + } + /* Canonicalize a USE of a pseudo register or memory location. */ + else if (GET_CODE (x) == USE + && ! (REG_P (XEXP (x, 0)) + && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)) + canon_reg (x, insn); + else if (GET_CODE (x) == ASM_OPERANDS) + { + for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) + { + rtx input = ASM_OPERANDS_INPUT (x, i); + if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER)) + { + input = canon_reg (input, insn); + validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1); + } + } + } + else if (GET_CODE (x) == CALL) + { + /* The result of apply_change_group can be ignored; see canon_reg. */ + canon_reg (x, insn); + apply_change_group (); + fold_rtx (x, insn); + } + else if (DEBUG_INSN_P (insn)) + canon_reg (PATTERN (insn), insn); + + /* Store the equivalent value in SRC_EQV, if different, or if the DEST + is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV + is handled specially for this case, and if it isn't set, then there will + be no equivalence for the destination. */ + if (n_sets == 1 && REG_NOTES (insn) != 0 + && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0 + && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)) + || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART)) + { + /* The result of apply_change_group can be ignored; see canon_reg. */ + canon_reg (XEXP (tem, 0), insn); + apply_change_group (); + src_eqv = fold_rtx (XEXP (tem, 0), insn); + XEXP (tem, 0) = copy_rtx (src_eqv); + df_notes_rescan (insn); + } + + /* Canonicalize sources and addresses of destinations. + We do this in a separate pass to avoid problems when a MATCH_DUP is + present in the insn pattern. In that case, we want to ensure that + we don't break the duplicate nature of the pattern. So we will replace + both operands at the same time. Otherwise, we would fail to find an + equivalent substitution in the loop calling validate_change below. + + We used to suppress canonicalization of DEST if it appears in SRC, + but we don't do this any more. */ + + for (i = 0; i < n_sets; i++) + { + rtx dest = SET_DEST (sets[i].rtl); + rtx src = SET_SRC (sets[i].rtl); + rtx new_rtx = canon_reg (src, insn); + + validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); + + if (GET_CODE (dest) == ZERO_EXTRACT) + { + validate_change (insn, &XEXP (dest, 1), + canon_reg (XEXP (dest, 1), insn), 1); + validate_change (insn, &XEXP (dest, 2), + canon_reg (XEXP (dest, 2), insn), 1); + } + + while (GET_CODE (dest) == SUBREG + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == STRICT_LOW_PART) + dest = XEXP (dest, 0); + + if (MEM_P (dest)) + canon_reg (dest, insn); + } + + /* Now that we have done all the replacements, we can apply the change + group and see if they all work. Note that this will cause some + canonicalizations that would have worked individually not to be applied + because some other canonicalization didn't work, but this should not + occur often. + + The result of apply_change_group can be ignored; see canon_reg. */ + + apply_change_group (); + + /* Set sets[i].src_elt to the class each source belongs to. + Detect assignments from or to volatile things + and set set[i] to zero so they will be ignored + in the rest of this function. + + Nothing in this loop changes the hash table or the register chains. */ + + for (i = 0; i < n_sets; i++) + { + bool repeat = false; + rtx src, dest; + rtx src_folded; + struct table_elt *elt = 0, *p; + enum machine_mode mode; + rtx src_eqv_here; + rtx src_const = 0; + rtx src_related = 0; + bool src_related_is_const_anchor = false; + struct table_elt *src_const_elt = 0; + int src_cost = MAX_COST; + int src_eqv_cost = MAX_COST; + int src_folded_cost = MAX_COST; + int src_related_cost = MAX_COST; + int src_elt_cost = MAX_COST; + int src_regcost = MAX_COST; + int src_eqv_regcost = MAX_COST; + int src_folded_regcost = MAX_COST; + int src_related_regcost = MAX_COST; + int src_elt_regcost = MAX_COST; + /* Set nonzero if we need to call force_const_mem on with the + contents of src_folded before using it. */ + int src_folded_force_flag = 0; + + dest = SET_DEST (sets[i].rtl); + src = SET_SRC (sets[i].rtl); + + /* If SRC is a constant that has no machine mode, + hash it with the destination's machine mode. + This way we can keep different modes separate. */ + + mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); + sets[i].mode = mode; + + if (src_eqv) + { + enum machine_mode eqvmode = mode; + if (GET_CODE (dest) == STRICT_LOW_PART) + eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); + do_not_record = 0; + hash_arg_in_memory = 0; + src_eqv_hash = HASH (src_eqv, eqvmode); + + /* Find the equivalence class for the equivalent expression. */ + + if (!do_not_record) + src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode); + + src_eqv_volatile = do_not_record; + src_eqv_in_memory = hash_arg_in_memory; + } + + /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the + value of the INNER register, not the destination. So it is not + a valid substitution for the source. But save it for later. */ + if (GET_CODE (dest) == STRICT_LOW_PART) + src_eqv_here = 0; + else + src_eqv_here = src_eqv; + + /* Simplify and foldable subexpressions in SRC. Then get the fully- + simplified result, which may not necessarily be valid. */ + src_folded = fold_rtx (src, insn); + +#if 0 + /* ??? This caused bad code to be generated for the m68k port with -O2. + Suppose src is (CONST_INT -1), and that after truncation src_folded + is (CONST_INT 3). Suppose src_folded is then used for src_const. + At the end we will add src and src_const to the same equivalence + class. We now have 3 and -1 on the same equivalence class. This + causes later instructions to be mis-optimized. */ + /* If storing a constant in a bitfield, pre-truncate the constant + so we will be able to record it later. */ + if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) + { + rtx width = XEXP (SET_DEST (sets[i].rtl), 1); + + if (CONST_INT_P (src) + && CONST_INT_P (width) + && INTVAL (width) < HOST_BITS_PER_WIDE_INT + && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width)))) + src_folded + = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1 + << INTVAL (width)) - 1)); + } +#endif + + /* Compute SRC's hash code, and also notice if it + should not be recorded at all. In that case, + prevent any further processing of this assignment. */ + do_not_record = 0; + hash_arg_in_memory = 0; + + sets[i].src = src; + sets[i].src_hash = HASH (src, mode); + sets[i].src_volatile = do_not_record; + sets[i].src_in_memory = hash_arg_in_memory; + + /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is + a pseudo, do not record SRC. Using SRC as a replacement for + anything else will be incorrect in that situation. Note that + this usually occurs only for stack slots, in which case all the + RTL would be referring to SRC, so we don't lose any optimization + opportunities by not having SRC in the hash table. */ + + if (MEM_P (src) + && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0 + && REG_P (dest) + && REGNO (dest) >= FIRST_PSEUDO_REGISTER) + sets[i].src_volatile = 1; + +#if 0 + /* It is no longer clear why we used to do this, but it doesn't + appear to still be needed. So let's try without it since this + code hurts cse'ing widened ops. */ + /* If source is a paradoxical subreg (such as QI treated as an SI), + treat it as volatile. It may do the work of an SI in one context + where the extra bits are not being used, but cannot replace an SI + in general. */ + if (GET_CODE (src) == SUBREG + && (GET_MODE_SIZE (GET_MODE (src)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))) + sets[i].src_volatile = 1; +#endif + + /* Locate all possible equivalent forms for SRC. Try to replace + SRC in the insn with each cheaper equivalent. + + We have the following types of equivalents: SRC itself, a folded + version, a value given in a REG_EQUAL note, or a value related + to a constant. + + Each of these equivalents may be part of an additional class + of equivalents (if more than one is in the table, they must be in + the same class; we check for this). + + If the source is volatile, we don't do any table lookups. + + We note any constant equivalent for possible later use in a + REG_NOTE. */ + + if (!sets[i].src_volatile) + elt = lookup (src, sets[i].src_hash, mode); + + sets[i].src_elt = elt; + + if (elt && src_eqv_here && src_eqv_elt) + { + if (elt->first_same_value != src_eqv_elt->first_same_value) + { + /* The REG_EQUAL is indicating that two formerly distinct + classes are now equivalent. So merge them. */ + merge_equiv_classes (elt, src_eqv_elt); + src_eqv_hash = HASH (src_eqv, elt->mode); + src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode); + } + + src_eqv_here = 0; + } + + else if (src_eqv_elt) + elt = src_eqv_elt; + + /* Try to find a constant somewhere and record it in `src_const'. + Record its table element, if any, in `src_const_elt'. Look in + any known equivalences first. (If the constant is not in the + table, also set `sets[i].src_const_hash'). */ + if (elt) + for (p = elt->first_same_value; p; p = p->next_same_value) + if (p->is_const) + { + src_const = p->exp; + src_const_elt = elt; + break; + } + + if (src_const == 0 + && (CONSTANT_P (src_folded) + /* Consider (minus (label_ref L1) (label_ref L2)) as + "constant" here so we will record it. This allows us + to fold switch statements when an ADDR_DIFF_VEC is used. */ + || (GET_CODE (src_folded) == MINUS + && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF + && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF))) + src_const = src_folded, src_const_elt = elt; + else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here)) + src_const = src_eqv_here, src_const_elt = src_eqv_elt; + + /* If we don't know if the constant is in the table, get its + hash code and look it up. */ + if (src_const && src_const_elt == 0) + { + sets[i].src_const_hash = HASH (src_const, mode); + src_const_elt = lookup (src_const, sets[i].src_const_hash, mode); + } + + sets[i].src_const = src_const; + sets[i].src_const_elt = src_const_elt; + + /* If the constant and our source are both in the table, mark them as + equivalent. Otherwise, if a constant is in the table but the source + isn't, set ELT to it. */ + if (src_const_elt && elt + && src_const_elt->first_same_value != elt->first_same_value) + merge_equiv_classes (elt, src_const_elt); + else if (src_const_elt && elt == 0) + elt = src_const_elt; + + /* See if there is a register linearly related to a constant + equivalent of SRC. */ + if (src_const + && (GET_CODE (src_const) == CONST + || (src_const_elt && src_const_elt->related_value != 0))) + { + src_related = use_related_value (src_const, src_const_elt); + if (src_related) + { + struct table_elt *src_related_elt + = lookup (src_related, HASH (src_related, mode), mode); + if (src_related_elt && elt) + { + if (elt->first_same_value + != src_related_elt->first_same_value) + /* This can occur when we previously saw a CONST + involving a SYMBOL_REF and then see the SYMBOL_REF + twice. Merge the involved classes. */ + merge_equiv_classes (elt, src_related_elt); + + src_related = 0; + src_related_elt = 0; + } + else if (src_related_elt && elt == 0) + elt = src_related_elt; + } + } + + /* See if we have a CONST_INT that is already in a register in a + wider mode. */ + + if (src_const && src_related == 0 && CONST_INT_P (src_const) + && GET_MODE_CLASS (mode) == MODE_INT + && GET_MODE_BITSIZE (mode) < BITS_PER_WORD) + { + enum machine_mode wider_mode; + + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode + && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD + && src_related == 0; + wider_mode = GET_MODE_WIDER_MODE (wider_mode)) + { + struct table_elt *const_elt + = lookup (src_const, HASH (src_const, wider_mode), wider_mode); + + if (const_elt == 0) + continue; + + for (const_elt = const_elt->first_same_value; + const_elt; const_elt = const_elt->next_same_value) + if (REG_P (const_elt->exp)) + { + src_related = gen_lowpart (mode, const_elt->exp); + break; + } + } + } + + /* Another possibility is that we have an AND with a constant in + a mode narrower than a word. If so, it might have been generated + as part of an "if" which would narrow the AND. If we already + have done the AND in a wider mode, we can use a SUBREG of that + value. */ + + if (flag_expensive_optimizations && ! src_related + && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1)) + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + { + enum machine_mode tmode; + rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1)); + + for (tmode = GET_MODE_WIDER_MODE (mode); + GET_MODE_SIZE (tmode) <= UNITS_PER_WORD; + tmode = GET_MODE_WIDER_MODE (tmode)) + { + rtx inner = gen_lowpart (tmode, XEXP (src, 0)); + struct table_elt *larger_elt; + + if (inner) + { + PUT_MODE (new_and, tmode); + XEXP (new_and, 0) = inner; + larger_elt = lookup (new_and, HASH (new_and, tmode), tmode); + if (larger_elt == 0) + continue; + + for (larger_elt = larger_elt->first_same_value; + larger_elt; larger_elt = larger_elt->next_same_value) + if (REG_P (larger_elt->exp)) + { + src_related + = gen_lowpart (mode, larger_elt->exp); + break; + } + + if (src_related) + break; + } + } + } + +#ifdef LOAD_EXTEND_OP + /* See if a MEM has already been loaded with a widening operation; + if it has, we can use a subreg of that. Many CISC machines + also have such operations, but this is only likely to be + beneficial on these machines. */ + + if (flag_expensive_optimizations && src_related == 0 + && (GET_MODE_SIZE (mode) < UNITS_PER_WORD) + && GET_MODE_CLASS (mode) == MODE_INT + && MEM_P (src) && ! do_not_record + && LOAD_EXTEND_OP (mode) != UNKNOWN) + { + struct rtx_def memory_extend_buf; + rtx memory_extend_rtx = &memory_extend_buf; + enum machine_mode tmode; + + /* Set what we are trying to extend and the operation it might + have been extended with. */ + memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx)); + PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode)); + XEXP (memory_extend_rtx, 0) = src; + + for (tmode = GET_MODE_WIDER_MODE (mode); + GET_MODE_SIZE (tmode) <= UNITS_PER_WORD; + tmode = GET_MODE_WIDER_MODE (tmode)) + { + struct table_elt *larger_elt; + + PUT_MODE (memory_extend_rtx, tmode); + larger_elt = lookup (memory_extend_rtx, + HASH (memory_extend_rtx, tmode), tmode); + if (larger_elt == 0) + continue; + + for (larger_elt = larger_elt->first_same_value; + larger_elt; larger_elt = larger_elt->next_same_value) + if (REG_P (larger_elt->exp)) + { + src_related = gen_lowpart (mode, larger_elt->exp); + break; + } + + if (src_related) + break; + } + } +#endif /* LOAD_EXTEND_OP */ + + /* Try to express the constant using a register+offset expression + derived from a constant anchor. */ + + if (targetm.const_anchor + && !src_related + && src_const + && GET_CODE (src_const) == CONST_INT) + { + src_related = try_const_anchors (src_const, mode); + src_related_is_const_anchor = src_related != NULL_RTX; + } + + + if (src == src_folded) + src_folded = 0; + + /* At this point, ELT, if nonzero, points to a class of expressions + equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED, + and SRC_RELATED, if nonzero, each contain additional equivalent + expressions. Prune these latter expressions by deleting expressions + already in the equivalence class. + + Check for an equivalent identical to the destination. If found, + this is the preferred equivalent since it will likely lead to + elimination of the insn. Indicate this by placing it in + `src_related'. */ + + if (elt) + elt = elt->first_same_value; + for (p = elt; p; p = p->next_same_value) + { + enum rtx_code code = GET_CODE (p->exp); + + /* If the expression is not valid, ignore it. Then we do not + have to check for validity below. In most cases, we can use + `rtx_equal_p', since canonicalization has already been done. */ + if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false)) + continue; + + /* Also skip paradoxical subregs, unless that's what we're + looking for. */ + if (code == SUBREG + && (GET_MODE_SIZE (GET_MODE (p->exp)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp)))) + && ! (src != 0 + && GET_CODE (src) == SUBREG + && GET_MODE (src) == GET_MODE (p->exp) + && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp)))))) + continue; + + if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp)) + src = 0; + else if (src_folded && GET_CODE (src_folded) == code + && rtx_equal_p (src_folded, p->exp)) + src_folded = 0; + else if (src_eqv_here && GET_CODE (src_eqv_here) == code + && rtx_equal_p (src_eqv_here, p->exp)) + src_eqv_here = 0; + else if (src_related && GET_CODE (src_related) == code + && rtx_equal_p (src_related, p->exp)) + src_related = 0; + + /* This is the same as the destination of the insns, we want + to prefer it. Copy it to src_related. The code below will + then give it a negative cost. */ + if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest)) + src_related = dest; + } + + /* Find the cheapest valid equivalent, trying all the available + possibilities. Prefer items not in the hash table to ones + that are when they are equal cost. Note that we can never + worsen an insn as the current contents will also succeed. + If we find an equivalent identical to the destination, use it as best, + since this insn will probably be eliminated in that case. */ + if (src) + { + if (rtx_equal_p (src, dest)) + src_cost = src_regcost = -1; + else + { + src_cost = COST (src); + src_regcost = approx_reg_cost (src); + } + } + + if (src_eqv_here) + { + if (rtx_equal_p (src_eqv_here, dest)) + src_eqv_cost = src_eqv_regcost = -1; + else + { + src_eqv_cost = COST (src_eqv_here); + src_eqv_regcost = approx_reg_cost (src_eqv_here); + } + } + + if (src_folded) + { + if (rtx_equal_p (src_folded, dest)) + src_folded_cost = src_folded_regcost = -1; + else + { + src_folded_cost = COST (src_folded); + src_folded_regcost = approx_reg_cost (src_folded); + } + } + + if (src_related) + { + if (rtx_equal_p (src_related, dest)) + src_related_cost = src_related_regcost = -1; + else + { + src_related_cost = COST (src_related); + src_related_regcost = approx_reg_cost (src_related); + + /* If a const-anchor is used to synthesize a constant that + normally requires multiple instructions then slightly prefer + it over the original sequence. These instructions are likely + to become redundant now. We can't compare against the cost + of src_eqv_here because, on MIPS for example, multi-insn + constants have zero cost; they are assumed to be hoisted from + loops. */ + if (src_related_is_const_anchor + && src_related_cost == src_cost + && src_eqv_here) + src_related_cost--; + } + } + + /* If this was an indirect jump insn, a known label will really be + cheaper even though it looks more expensive. */ + if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF) + src_folded = src_const, src_folded_cost = src_folded_regcost = -1; + + /* Terminate loop when replacement made. This must terminate since + the current contents will be tested and will always be valid. */ + while (1) + { + rtx trial; + + /* Skip invalid entries. */ + while (elt && !REG_P (elt->exp) + && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) + elt = elt->next_same_value; + + /* A paradoxical subreg would be bad here: it'll be the right + size, but later may be adjusted so that the upper bits aren't + what we want. So reject it. */ + if (elt != 0 + && GET_CODE (elt->exp) == SUBREG + && (GET_MODE_SIZE (GET_MODE (elt->exp)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp)))) + /* It is okay, though, if the rtx we're trying to match + will ignore any of the bits we can't predict. */ + && ! (src != 0 + && GET_CODE (src) == SUBREG + && GET_MODE (src) == GET_MODE (elt->exp) + && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp)))))) + { + elt = elt->next_same_value; + continue; + } + + if (elt) + { + src_elt_cost = elt->cost; + src_elt_regcost = elt->regcost; + } + + /* Find cheapest and skip it for the next time. For items + of equal cost, use this order: + src_folded, src, src_eqv, src_related and hash table entry. */ + if (src_folded + && preferable (src_folded_cost, src_folded_regcost, + src_cost, src_regcost) <= 0 + && preferable (src_folded_cost, src_folded_regcost, + src_eqv_cost, src_eqv_regcost) <= 0 + && preferable (src_folded_cost, src_folded_regcost, + src_related_cost, src_related_regcost) <= 0 + && preferable (src_folded_cost, src_folded_regcost, + src_elt_cost, src_elt_regcost) <= 0) + { + trial = src_folded, src_folded_cost = MAX_COST; + if (src_folded_force_flag) + { + rtx forced = force_const_mem (mode, trial); + if (forced) + trial = forced; + } + } + else if (src + && preferable (src_cost, src_regcost, + src_eqv_cost, src_eqv_regcost) <= 0 + && preferable (src_cost, src_regcost, + src_related_cost, src_related_regcost) <= 0 + && preferable (src_cost, src_regcost, + src_elt_cost, src_elt_regcost) <= 0) + trial = src, src_cost = MAX_COST; + else if (src_eqv_here + && preferable (src_eqv_cost, src_eqv_regcost, + src_related_cost, src_related_regcost) <= 0 + && preferable (src_eqv_cost, src_eqv_regcost, + src_elt_cost, src_elt_regcost) <= 0) + trial = src_eqv_here, src_eqv_cost = MAX_COST; + else if (src_related + && preferable (src_related_cost, src_related_regcost, + src_elt_cost, src_elt_regcost) <= 0) + trial = src_related, src_related_cost = MAX_COST; + else + { + trial = elt->exp; + elt = elt->next_same_value; + src_elt_cost = MAX_COST; + } + + /* Avoid creation of overlapping memory moves. */ + if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl))) + { + rtx src, dest; + + /* BLKmode moves are not handled by cse anyway. */ + if (GET_MODE (trial) == BLKmode) + break; + + src = canon_rtx (trial); + dest = canon_rtx (SET_DEST (sets[i].rtl)); + + if (!MEM_P (src) || !MEM_P (dest) + || !nonoverlapping_memrefs_p (src, dest, false)) + break; + } + + /* Try to optimize + (set (reg:M N) (const_int A)) + (set (reg:M2 O) (const_int B)) + (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D)) + (reg:M2 O)). */ + if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT + && CONST_INT_P (trial) + && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1)) + && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2)) + && REG_P (XEXP (SET_DEST (sets[i].rtl), 0)) + && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (sets[i].rtl))) + >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))) + && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)) + + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2)) + <= HOST_BITS_PER_WIDE_INT)) + { + rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0); + rtx width = XEXP (SET_DEST (sets[i].rtl), 1); + rtx pos = XEXP (SET_DEST (sets[i].rtl), 2); + unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg)); + struct table_elt *dest_elt + = lookup (dest_reg, dest_hash, GET_MODE (dest_reg)); + rtx dest_cst = NULL; + + if (dest_elt) + for (p = dest_elt->first_same_value; p; p = p->next_same_value) + if (p->is_const && CONST_INT_P (p->exp)) + { + dest_cst = p->exp; + break; + } + if (dest_cst) + { + HOST_WIDE_INT val = INTVAL (dest_cst); + HOST_WIDE_INT mask; + unsigned int shift; + if (BITS_BIG_ENDIAN) + shift = GET_MODE_BITSIZE (GET_MODE (dest_reg)) + - INTVAL (pos) - INTVAL (width); + else + shift = INTVAL (pos); + if (INTVAL (width) == HOST_BITS_PER_WIDE_INT) + mask = ~(HOST_WIDE_INT) 0; + else + mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1; + val &= ~(mask << shift); + val |= (INTVAL (trial) & mask) << shift; + val = trunc_int_for_mode (val, GET_MODE (dest_reg)); + validate_unshare_change (insn, &SET_DEST (sets[i].rtl), + dest_reg, 1); + validate_unshare_change (insn, &SET_SRC (sets[i].rtl), + GEN_INT (val), 1); + if (apply_change_group ()) + { + rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX); + if (note) + { + remove_note (insn, note); + df_notes_rescan (insn); + } + src_eqv = NULL_RTX; + src_eqv_elt = NULL; + src_eqv_volatile = 0; + src_eqv_in_memory = 0; + src_eqv_hash = 0; + repeat = true; + break; + } + } + } + + /* We don't normally have an insn matching (set (pc) (pc)), so + check for this separately here. We will delete such an + insn below. + + For other cases such as a table jump or conditional jump + where we know the ultimate target, go ahead and replace the + operand. While that may not make a valid insn, we will + reemit the jump below (and also insert any necessary + barriers). */ + if (n_sets == 1 && dest == pc_rtx + && (trial == pc_rtx + || (GET_CODE (trial) == LABEL_REF + && ! condjump_p (insn)))) + { + /* Don't substitute non-local labels, this confuses CFG. */ + if (GET_CODE (trial) == LABEL_REF + && LABEL_REF_NONLOCAL_P (trial)) + continue; + + SET_SRC (sets[i].rtl) = trial; + cse_jumps_altered = true; + break; + } + + /* Reject certain invalid forms of CONST that we create. */ + else if (CONSTANT_P (trial) + && GET_CODE (trial) == CONST + /* Reject cases that will cause decode_rtx_const to + die. On the alpha when simplifying a switch, we + get (const (truncate (minus (label_ref) + (label_ref)))). */ + && (GET_CODE (XEXP (trial, 0)) == TRUNCATE + /* Likewise on IA-64, except without the + truncate. */ + || (GET_CODE (XEXP (trial, 0)) == MINUS + && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF + && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF))) + /* Do nothing for this case. */ + ; + + /* Look for a substitution that makes a valid insn. */ + else if (validate_unshare_change + (insn, &SET_SRC (sets[i].rtl), trial, 0)) + { + rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn); + + /* The result of apply_change_group can be ignored; see + canon_reg. */ + + validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1); + apply_change_group (); + + break; + } + + /* If we previously found constant pool entries for + constants and this is a constant, try making a + pool entry. Put it in src_folded unless we already have done + this since that is where it likely came from. */ + + else if (constant_pool_entries_cost + && CONSTANT_P (trial) + && (src_folded == 0 + || (!MEM_P (src_folded) + && ! src_folded_force_flag)) + && GET_MODE_CLASS (mode) != MODE_CC + && mode != VOIDmode) + { + src_folded_force_flag = 1; + src_folded = trial; + src_folded_cost = constant_pool_entries_cost; + src_folded_regcost = constant_pool_entries_regcost; + } + } + + /* If we changed the insn too much, handle this set from scratch. */ + if (repeat) + { + i--; + continue; + } + + src = SET_SRC (sets[i].rtl); + + /* In general, it is good to have a SET with SET_SRC == SET_DEST. + However, there is an important exception: If both are registers + that are not the head of their equivalence class, replace SET_SRC + with the head of the class. If we do not do this, we will have + both registers live over a portion of the basic block. This way, + their lifetimes will likely abut instead of overlapping. */ + if (REG_P (dest) + && REGNO_QTY_VALID_P (REGNO (dest))) + { + int dest_q = REG_QTY (REGNO (dest)); + struct qty_table_elem *dest_ent = &qty_table[dest_q]; + + if (dest_ent->mode == GET_MODE (dest) + && dest_ent->first_reg != REGNO (dest) + && REG_P (src) && REGNO (src) == REGNO (dest) + /* Don't do this if the original insn had a hard reg as + SET_SRC or SET_DEST. */ + && (!REG_P (sets[i].src) + || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER) + && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)) + /* We can't call canon_reg here because it won't do anything if + SRC is a hard register. */ + { + int src_q = REG_QTY (REGNO (src)); + struct qty_table_elem *src_ent = &qty_table[src_q]; + int first = src_ent->first_reg; + rtx new_src + = (first >= FIRST_PSEUDO_REGISTER + ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first)); + + /* We must use validate-change even for this, because this + might be a special no-op instruction, suitable only to + tag notes onto. */ + if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0)) + { + src = new_src; + /* If we had a constant that is cheaper than what we are now + setting SRC to, use that constant. We ignored it when we + thought we could make this into a no-op. */ + if (src_const && COST (src_const) < COST (src) + && validate_change (insn, &SET_SRC (sets[i].rtl), + src_const, 0)) + src = src_const; + } + } + } + + /* If we made a change, recompute SRC values. */ + if (src != sets[i].src) + { + do_not_record = 0; + hash_arg_in_memory = 0; + sets[i].src = src; + sets[i].src_hash = HASH (src, mode); + sets[i].src_volatile = do_not_record; + sets[i].src_in_memory = hash_arg_in_memory; + sets[i].src_elt = lookup (src, sets[i].src_hash, mode); + } + + /* If this is a single SET, we are setting a register, and we have an + equivalent constant, we want to add a REG_NOTE. We don't want + to write a REG_EQUAL note for a constant pseudo since verifying that + that pseudo hasn't been eliminated is a pain. Such a note also + won't help anything. + + Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF))) + which can be created for a reference to a compile time computable + entry in a jump table. */ + + if (n_sets == 1 && src_const && REG_P (dest) + && !REG_P (src_const) + && ! (GET_CODE (src_const) == CONST + && GET_CODE (XEXP (src_const, 0)) == MINUS + && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF + && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)) + { + /* We only want a REG_EQUAL note if src_const != src. */ + if (! rtx_equal_p (src, src_const)) + { + /* Make sure that the rtx is not shared. */ + src_const = copy_rtx (src_const); + + /* Record the actual constant value in a REG_EQUAL note, + making a new one if one does not already exist. */ + set_unique_reg_note (insn, REG_EQUAL, src_const); + df_notes_rescan (insn); + } + } + + /* Now deal with the destination. */ + do_not_record = 0; + + /* Look within any ZERO_EXTRACT to the MEM or REG within it. */ + while (GET_CODE (dest) == SUBREG + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == STRICT_LOW_PART) + dest = XEXP (dest, 0); + + sets[i].inner_dest = dest; + + if (MEM_P (dest)) + { +#ifdef PUSH_ROUNDING + /* Stack pushes invalidate the stack pointer. */ + rtx addr = XEXP (dest, 0); + if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC + && XEXP (addr, 0) == stack_pointer_rtx) + invalidate (stack_pointer_rtx, VOIDmode); +#endif + dest = fold_rtx (dest, insn); + } + + /* Compute the hash code of the destination now, + before the effects of this instruction are recorded, + since the register values used in the address computation + are those before this instruction. */ + sets[i].dest_hash = HASH (dest, mode); + + /* Don't enter a bit-field in the hash table + because the value in it after the store + may not equal what was stored, due to truncation. */ + + if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT) + { + rtx width = XEXP (SET_DEST (sets[i].rtl), 1); + + if (src_const != 0 && CONST_INT_P (src_const) + && CONST_INT_P (width) + && INTVAL (width) < HOST_BITS_PER_WIDE_INT + && ! (INTVAL (src_const) + & ((HOST_WIDE_INT) (-1) << INTVAL (width)))) + /* Exception: if the value is constant, + and it won't be truncated, record it. */ + ; + else + { + /* This is chosen so that the destination will be invalidated + but no new value will be recorded. + We must invalidate because sometimes constant + values can be recorded for bitfields. */ + sets[i].src_elt = 0; + sets[i].src_volatile = 1; + src_eqv = 0; + src_eqv_elt = 0; + } + } + + /* If only one set in a JUMP_INSN and it is now a no-op, we can delete + the insn. */ + else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx) + { + /* One less use of the label this insn used to jump to. */ + delete_insn_and_edges (insn); + cse_jumps_altered = true; + /* No more processing for this set. */ + sets[i].rtl = 0; + } + + /* If this SET is now setting PC to a label, we know it used to + be a conditional or computed branch. */ + else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF + && !LABEL_REF_NONLOCAL_P (src)) + { + /* We reemit the jump in as many cases as possible just in + case the form of an unconditional jump is significantly + different than a computed jump or conditional jump. + + If this insn has multiple sets, then reemitting the + jump is nontrivial. So instead we just force rerecognition + and hope for the best. */ + if (n_sets == 1) + { + rtx new_rtx, note; + + new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn); + JUMP_LABEL (new_rtx) = XEXP (src, 0); + LABEL_NUSES (XEXP (src, 0))++; + + /* Make sure to copy over REG_NON_LOCAL_GOTO. */ + note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0); + if (note) + { + XEXP (note, 1) = NULL_RTX; + REG_NOTES (new_rtx) = note; + } + + delete_insn_and_edges (insn); + insn = new_rtx; + } + else + INSN_CODE (insn) = -1; + + /* Do not bother deleting any unreachable code, let jump do it. */ + cse_jumps_altered = true; + sets[i].rtl = 0; + } + + /* If destination is volatile, invalidate it and then do no further + processing for this assignment. */ + + else if (do_not_record) + { + if (REG_P (dest) || GET_CODE (dest) == SUBREG) + invalidate (dest, VOIDmode); + else if (MEM_P (dest)) + invalidate (dest, VOIDmode); + else if (GET_CODE (dest) == STRICT_LOW_PART + || GET_CODE (dest) == ZERO_EXTRACT) + invalidate (XEXP (dest, 0), GET_MODE (dest)); + sets[i].rtl = 0; + } + + if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl)) + sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode); + +#ifdef HAVE_cc0 + /* If setting CC0, record what it was set to, or a constant, if it + is equivalent to a constant. If it is being set to a floating-point + value, make a COMPARE with the appropriate constant of 0. If we + don't do this, later code can interpret this as a test against + const0_rtx, which can cause problems if we try to put it into an + insn as a floating-point operand. */ + if (dest == cc0_rtx) + { + this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src; + this_insn_cc0_mode = mode; + if (FLOAT_MODE_P (mode)) + this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0, + CONST0_RTX (mode)); + } +#endif + } + + /* Now enter all non-volatile source expressions in the hash table + if they are not already present. + Record their equivalence classes in src_elt. + This way we can insert the corresponding destinations into + the same classes even if the actual sources are no longer in them + (having been invalidated). */ + + if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile + && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl))) + { + struct table_elt *elt; + struct table_elt *classp = sets[0].src_elt; + rtx dest = SET_DEST (sets[0].rtl); + enum machine_mode eqvmode = GET_MODE (dest); + + if (GET_CODE (dest) == STRICT_LOW_PART) + { + eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0))); + classp = 0; + } + if (insert_regs (src_eqv, classp, 0)) + { + rehash_using_reg (src_eqv); + src_eqv_hash = HASH (src_eqv, eqvmode); + } + elt = insert (src_eqv, classp, src_eqv_hash, eqvmode); + elt->in_memory = src_eqv_in_memory; + src_eqv_elt = elt; + + /* Check to see if src_eqv_elt is the same as a set source which + does not yet have an elt, and if so set the elt of the set source + to src_eqv_elt. */ + for (i = 0; i < n_sets; i++) + if (sets[i].rtl && sets[i].src_elt == 0 + && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv)) + sets[i].src_elt = src_eqv_elt; + } + + for (i = 0; i < n_sets; i++) + if (sets[i].rtl && ! sets[i].src_volatile + && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl))) + { + if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART) + { + /* REG_EQUAL in setting a STRICT_LOW_PART + gives an equivalent for the entire destination register, + not just for the subreg being stored in now. + This is a more interesting equivalence, so we arrange later + to treat the entire reg as the destination. */ + sets[i].src_elt = src_eqv_elt; + sets[i].src_hash = src_eqv_hash; + } + else + { + /* Insert source and constant equivalent into hash table, if not + already present. */ + struct table_elt *classp = src_eqv_elt; + rtx src = sets[i].src; + rtx dest = SET_DEST (sets[i].rtl); + enum machine_mode mode + = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src); + + /* It's possible that we have a source value known to be + constant but don't have a REG_EQUAL note on the insn. + Lack of a note will mean src_eqv_elt will be NULL. This + can happen where we've generated a SUBREG to access a + CONST_INT that is already in a register in a wider mode. + Ensure that the source expression is put in the proper + constant class. */ + if (!classp) + classp = sets[i].src_const_elt; + + if (sets[i].src_elt == 0) + { + struct table_elt *elt; + + /* Note that these insert_regs calls cannot remove + any of the src_elt's, because they would have failed to + match if not still valid. */ + if (insert_regs (src, classp, 0)) + { + rehash_using_reg (src); + sets[i].src_hash = HASH (src, mode); + } + elt = insert (src, classp, sets[i].src_hash, mode); + elt->in_memory = sets[i].src_in_memory; + sets[i].src_elt = classp = elt; + } + if (sets[i].src_const && sets[i].src_const_elt == 0 + && src != sets[i].src_const + && ! rtx_equal_p (sets[i].src_const, src)) + sets[i].src_elt = insert (sets[i].src_const, classp, + sets[i].src_const_hash, mode); + } + } + else if (sets[i].src_elt == 0) + /* If we did not insert the source into the hash table (e.g., it was + volatile), note the equivalence class for the REG_EQUAL value, if any, + so that the destination goes into that class. */ + sets[i].src_elt = src_eqv_elt; + + /* Record destination addresses in the hash table. This allows us to + check if they are invalidated by other sets. */ + for (i = 0; i < n_sets; i++) + { + if (sets[i].rtl) + { + rtx x = sets[i].inner_dest; + struct table_elt *elt; + enum machine_mode mode; + unsigned hash; + + if (MEM_P (x)) + { + x = XEXP (x, 0); + mode = GET_MODE (x); + hash = HASH (x, mode); + elt = lookup (x, hash, mode); + if (!elt) + { + if (insert_regs (x, NULL, 0)) + { + rtx dest = SET_DEST (sets[i].rtl); + + rehash_using_reg (x); + hash = HASH (x, mode); + sets[i].dest_hash = HASH (dest, GET_MODE (dest)); + } + elt = insert (x, NULL, hash, mode); + } + + sets[i].dest_addr_elt = elt; + } + else + sets[i].dest_addr_elt = NULL; + } + } + + invalidate_from_clobbers (x); + + /* Some registers are invalidated by subroutine calls. Memory is + invalidated by non-constant calls. */ + + if (CALL_P (insn)) + { + if (!(RTL_CONST_OR_PURE_CALL_P (insn))) + invalidate_memory (); + invalidate_for_call (); + } + + /* Now invalidate everything set by this instruction. + If a SUBREG or other funny destination is being set, + sets[i].rtl is still nonzero, so here we invalidate the reg + a part of which is being set. */ + + for (i = 0; i < n_sets; i++) + if (sets[i].rtl) + { + /* We can't use the inner dest, because the mode associated with + a ZERO_EXTRACT is significant. */ + rtx dest = SET_DEST (sets[i].rtl); + + /* Needed for registers to remove the register from its + previous quantity's chain. + Needed for memory if this is a nonvarying address, unless + we have just done an invalidate_memory that covers even those. */ + if (REG_P (dest) || GET_CODE (dest) == SUBREG) + invalidate (dest, VOIDmode); + else if (MEM_P (dest)) + invalidate (dest, VOIDmode); + else if (GET_CODE (dest) == STRICT_LOW_PART + || GET_CODE (dest) == ZERO_EXTRACT) + invalidate (XEXP (dest, 0), GET_MODE (dest)); + } + + /* A volatile ASM invalidates everything. */ + if (NONJUMP_INSN_P (insn) + && GET_CODE (PATTERN (insn)) == ASM_OPERANDS + && MEM_VOLATILE_P (PATTERN (insn))) + flush_hash_table (); + + /* Don't cse over a call to setjmp; on some machines (eg VAX) + the regs restored by the longjmp come from a later time + than the setjmp. */ + if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL)) + { + flush_hash_table (); + goto done; + } + + /* Make sure registers mentioned in destinations + are safe for use in an expression to be inserted. + This removes from the hash table + any invalid entry that refers to one of these registers. + + We don't care about the return value from mention_regs because + we are going to hash the SET_DEST values unconditionally. */ + + for (i = 0; i < n_sets; i++) + { + if (sets[i].rtl) + { + rtx x = SET_DEST (sets[i].rtl); + + if (!REG_P (x)) + mention_regs (x); + else + { + /* We used to rely on all references to a register becoming + inaccessible when a register changes to a new quantity, + since that changes the hash code. However, that is not + safe, since after HASH_SIZE new quantities we get a + hash 'collision' of a register with its own invalid + entries. And since SUBREGs have been changed not to + change their hash code with the hash code of the register, + it wouldn't work any longer at all. So we have to check + for any invalid references lying around now. + This code is similar to the REG case in mention_regs, + but it knows that reg_tick has been incremented, and + it leaves reg_in_table as -1 . */ + unsigned int regno = REGNO (x); + unsigned int endregno = END_REGNO (x); + unsigned int i; + + for (i = regno; i < endregno; i++) + { + if (REG_IN_TABLE (i) >= 0) + { + remove_invalid_refs (i); + REG_IN_TABLE (i) = -1; + } + } + } + } + } + + /* We may have just removed some of the src_elt's from the hash table. + So replace each one with the current head of the same class. + Also check if destination addresses have been removed. */ + + for (i = 0; i < n_sets; i++) + if (sets[i].rtl) + { + if (sets[i].dest_addr_elt + && sets[i].dest_addr_elt->first_same_value == 0) + { + /* The elt was removed, which means this destination is not + valid after this instruction. */ + sets[i].rtl = NULL_RTX; + } + else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0) + /* If elt was removed, find current head of same class, + or 0 if nothing remains of that class. */ + { + struct table_elt *elt = sets[i].src_elt; + + while (elt && elt->prev_same_value) + elt = elt->prev_same_value; + + while (elt && elt->first_same_value == 0) + elt = elt->next_same_value; + sets[i].src_elt = elt ? elt->first_same_value : 0; + } + } + + /* Now insert the destinations into their equivalence classes. */ + + for (i = 0; i < n_sets; i++) + if (sets[i].rtl) + { + rtx dest = SET_DEST (sets[i].rtl); + struct table_elt *elt; + + /* Don't record value if we are not supposed to risk allocating + floating-point values in registers that might be wider than + memory. */ + if ((flag_float_store + && MEM_P (dest) + && FLOAT_MODE_P (GET_MODE (dest))) + /* Don't record BLKmode values, because we don't know the + size of it, and can't be sure that other BLKmode values + have the same or smaller size. */ + || GET_MODE (dest) == BLKmode + /* If we didn't put a REG_EQUAL value or a source into the hash + table, there is no point is recording DEST. */ + || sets[i].src_elt == 0 + /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND + or SIGN_EXTEND, don't record DEST since it can cause + some tracking to be wrong. + + ??? Think about this more later. */ + || (GET_CODE (dest) == SUBREG + && (GET_MODE_SIZE (GET_MODE (dest)) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))) + && (GET_CODE (sets[i].src) == SIGN_EXTEND + || GET_CODE (sets[i].src) == ZERO_EXTEND))) + continue; + + /* STRICT_LOW_PART isn't part of the value BEING set, + and neither is the SUBREG inside it. + Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */ + if (GET_CODE (dest) == STRICT_LOW_PART) + dest = SUBREG_REG (XEXP (dest, 0)); + + if (REG_P (dest) || GET_CODE (dest) == SUBREG) + /* Registers must also be inserted into chains for quantities. */ + if (insert_regs (dest, sets[i].src_elt, 1)) + { + /* If `insert_regs' changes something, the hash code must be + recalculated. */ + rehash_using_reg (dest); + sets[i].dest_hash = HASH (dest, GET_MODE (dest)); + } + + elt = insert (dest, sets[i].src_elt, + sets[i].dest_hash, GET_MODE (dest)); + + /* If this is a constant, insert the constant anchors with the + equivalent register-offset expressions using register DEST. */ + if (targetm.const_anchor + && REG_P (dest) + && SCALAR_INT_MODE_P (GET_MODE (dest)) + && GET_CODE (sets[i].src_elt->exp) == CONST_INT) + insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest)); + + elt->in_memory = (MEM_P (sets[i].inner_dest) + && !MEM_READONLY_P (sets[i].inner_dest)); + + /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no + narrower than M2, and both M1 and M2 are the same number of words, + we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so + make that equivalence as well. + + However, BAR may have equivalences for which gen_lowpart + will produce a simpler value than gen_lowpart applied to + BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all + BAR's equivalences. If we don't get a simplified form, make + the SUBREG. It will not be used in an equivalence, but will + cause two similar assignments to be detected. + + Note the loop below will find SUBREG_REG (DEST) since we have + already entered SRC and DEST of the SET in the table. */ + + if (GET_CODE (dest) == SUBREG + && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1) + / UNITS_PER_WORD) + == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD) + && (GET_MODE_SIZE (GET_MODE (dest)) + >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))) + && sets[i].src_elt != 0) + { + enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest)); + struct table_elt *elt, *classp = 0; + + for (elt = sets[i].src_elt->first_same_value; elt; + elt = elt->next_same_value) + { + rtx new_src = 0; + unsigned src_hash; + struct table_elt *src_elt; + int byte = 0; + + /* Ignore invalid entries. */ + if (!REG_P (elt->exp) + && ! exp_equiv_p (elt->exp, elt->exp, 1, false)) + continue; + + /* We may have already been playing subreg games. If the + mode is already correct for the destination, use it. */ + if (GET_MODE (elt->exp) == new_mode) + new_src = elt->exp; + else + { + /* Calculate big endian correction for the SUBREG_BYTE. + We have already checked that M1 (GET_MODE (dest)) + is not narrower than M2 (new_mode). */ + if (BYTES_BIG_ENDIAN) + byte = (GET_MODE_SIZE (GET_MODE (dest)) + - GET_MODE_SIZE (new_mode)); + + new_src = simplify_gen_subreg (new_mode, elt->exp, + GET_MODE (dest), byte); + } + + /* The call to simplify_gen_subreg fails if the value + is VOIDmode, yet we can't do any simplification, e.g. + for EXPR_LISTs denoting function call results. + It is invalid to construct a SUBREG with a VOIDmode + SUBREG_REG, hence a zero new_src means we can't do + this substitution. */ + if (! new_src) + continue; + + src_hash = HASH (new_src, new_mode); + src_elt = lookup (new_src, src_hash, new_mode); + + /* Put the new source in the hash table is if isn't + already. */ + if (src_elt == 0) + { + if (insert_regs (new_src, classp, 0)) + { + rehash_using_reg (new_src); + src_hash = HASH (new_src, new_mode); + } + src_elt = insert (new_src, classp, src_hash, new_mode); + src_elt->in_memory = elt->in_memory; + } + else if (classp && classp != src_elt->first_same_value) + /* Show that two things that we've seen before are + actually the same. */ + merge_equiv_classes (src_elt, classp); + + classp = src_elt->first_same_value; + /* Ignore invalid entries. */ + while (classp + && !REG_P (classp->exp) + && ! exp_equiv_p (classp->exp, classp->exp, 1, false)) + classp = classp->next_same_value; + } + } + } + + /* Special handling for (set REG0 REG1) where REG0 is the + "cheapest", cheaper than REG1. After cse, REG1 will probably not + be used in the sequel, so (if easily done) change this insn to + (set REG1 REG0) and replace REG1 with REG0 in the previous insn + that computed their value. Then REG1 will become a dead store + and won't cloud the situation for later optimizations. + + Do not make this change if REG1 is a hard register, because it will + then be used in the sequel and we may be changing a two-operand insn + into a three-operand insn. + + Also do not do this if we are operating on a copy of INSN. */ + + if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl)) + && NEXT_INSN (PREV_INSN (insn)) == insn + && REG_P (SET_SRC (sets[0].rtl)) + && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER + && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))) + { + int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl))); + struct qty_table_elem *src_ent = &qty_table[src_q]; + + if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl))) + { + /* Scan for the previous nonnote insn, but stop at a basic + block boundary. */ + rtx prev = insn; + rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn)); + do + { + prev = PREV_INSN (prev); + } + while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev))); + + /* Do not swap the registers around if the previous instruction + attaches a REG_EQUIV note to REG1. + + ??? It's not entirely clear whether we can transfer a REG_EQUIV + from the pseudo that originally shadowed an incoming argument + to another register. Some uses of REG_EQUIV might rely on it + being attached to REG1 rather than REG2. + + This section previously turned the REG_EQUIV into a REG_EQUAL + note. We cannot do that because REG_EQUIV may provide an + uninitialized stack slot when REG_PARM_STACK_SPACE is used. */ + if (NONJUMP_INSN_P (prev) + && GET_CODE (PATTERN (prev)) == SET + && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl) + && ! find_reg_note (prev, REG_EQUIV, NULL_RTX)) + { + rtx dest = SET_DEST (sets[0].rtl); + rtx src = SET_SRC (sets[0].rtl); + rtx note; + + validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1); + validate_change (insn, &SET_DEST (sets[0].rtl), src, 1); + validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1); + apply_change_group (); + + /* If INSN has a REG_EQUAL note, and this note mentions + REG0, then we must delete it, because the value in + REG0 has changed. If the note's value is REG1, we must + also delete it because that is now this insn's dest. */ + note = find_reg_note (insn, REG_EQUAL, NULL_RTX); + if (note != 0 + && (reg_mentioned_p (dest, XEXP (note, 0)) + || rtx_equal_p (src, XEXP (note, 0)))) + remove_note (insn, note); + } + } + } + +done:; +} + +/* Remove from the hash table all expressions that reference memory. */ + +static void +invalidate_memory (void) +{ + int i; + struct table_elt *p, *next; + + for (i = 0; i < HASH_SIZE; i++) + for (p = table[i]; p; p = next) + { + next = p->next_same_hash; + if (p->in_memory) + remove_from_table (p, i); + } +} + +/* Perform invalidation on the basis of everything about an insn + except for invalidating the actual places that are SET in it. + This includes the places CLOBBERed, and anything that might + alias with something that is SET or CLOBBERed. + + X is the pattern of the insn. */ + +static void +invalidate_from_clobbers (rtx x) +{ + if (GET_CODE (x) == CLOBBER) + { + rtx ref = XEXP (x, 0); + if (ref) + { + if (REG_P (ref) || GET_CODE (ref) == SUBREG + || MEM_P (ref)) + invalidate (ref, VOIDmode); + else if (GET_CODE (ref) == STRICT_LOW_PART + || GET_CODE (ref) == ZERO_EXTRACT) + invalidate (XEXP (ref, 0), GET_MODE (ref)); + } + } + else if (GET_CODE (x) == PARALLEL) + { + int i; + for (i = XVECLEN (x, 0) - 1; i >= 0; i--) + { + rtx y = XVECEXP (x, 0, i); + if (GET_CODE (y) == CLOBBER) + { + rtx ref = XEXP (y, 0); + if (REG_P (ref) || GET_CODE (ref) == SUBREG + || MEM_P (ref)) + invalidate (ref, VOIDmode); + else if (GET_CODE (ref) == STRICT_LOW_PART + || GET_CODE (ref) == ZERO_EXTRACT) + invalidate (XEXP (ref, 0), GET_MODE (ref)); + } + } + } +} + +/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes + and replace any registers in them with either an equivalent constant + or the canonical form of the register. If we are inside an address, + only do this if the address remains valid. + + OBJECT is 0 except when within a MEM in which case it is the MEM. + + Return the replacement for X. */ + +static rtx +cse_process_notes_1 (rtx x, rtx object, bool *changed) +{ + enum rtx_code code = GET_CODE (x); + const char *fmt = GET_RTX_FORMAT (code); + int i; + + switch (code) + { + case CONST_INT: + case CONST: + case SYMBOL_REF: + case LABEL_REF: + case CONST_DOUBLE: + case CONST_FIXED: + case CONST_VECTOR: + case PC: + case CC0: + case LO_SUM: + return x; + + case MEM: + validate_change (x, &XEXP (x, 0), + cse_process_notes (XEXP (x, 0), x, changed), 0); + return x; + + case EXPR_LIST: + case INSN_LIST: + if (REG_NOTE_KIND (x) == REG_EQUAL) + XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed); + if (XEXP (x, 1)) + XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed); + return x; + + case SIGN_EXTEND: + case ZERO_EXTEND: + case SUBREG: + { + rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed); + /* We don't substitute VOIDmode constants into these rtx, + since they would impede folding. */ + if (GET_MODE (new_rtx) != VOIDmode) + validate_change (object, &XEXP (x, 0), new_rtx, 0); + return x; + } + + case REG: + i = REG_QTY (REGNO (x)); + + /* Return a constant or a constant register. */ + if (REGNO_QTY_VALID_P (REGNO (x))) + { + struct qty_table_elem *ent = &qty_table[i]; + + if (ent->const_rtx != NULL_RTX + && (CONSTANT_P (ent->const_rtx) + || REG_P (ent->const_rtx))) + { + rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx); + if (new_rtx) + return copy_rtx (new_rtx); + } + } + + /* Otherwise, canonicalize this register. */ + return canon_reg (x, NULL_RTX); + + default: + break; + } + + for (i = 0; i < GET_RTX_LENGTH (code); i++) + if (fmt[i] == 'e') + validate_change (object, &XEXP (x, i), + cse_process_notes (XEXP (x, i), object, changed), 0); + + return x; +} + +static rtx +cse_process_notes (rtx x, rtx object, bool *changed) +{ + rtx new_rtx = cse_process_notes_1 (x, object, changed); + if (new_rtx != x) + *changed = true; + return new_rtx; +} + + +/* Find a path in the CFG, starting with FIRST_BB to perform CSE on. + + DATA is a pointer to a struct cse_basic_block_data, that is used to + describe the path. + It is filled with a queue of basic blocks, starting with FIRST_BB + and following a trace through the CFG. + + If all paths starting at FIRST_BB have been followed, or no new path + starting at FIRST_BB can be constructed, this function returns FALSE. + Otherwise, DATA->path is filled and the function returns TRUE indicating + that a path to follow was found. + + If FOLLOW_JUMPS is false, the maximum path length is 1 and the only + block in the path will be FIRST_BB. */ + +static bool +cse_find_path (basic_block first_bb, struct cse_basic_block_data *data, + int follow_jumps) +{ + basic_block bb; + edge e; + int path_size; + + SET_BIT (cse_visited_basic_blocks, first_bb->index); + + /* See if there is a previous path. */ + path_size = data->path_size; + + /* There is a previous path. Make sure it started with FIRST_BB. */ + if (path_size) + gcc_assert (data->path[0].bb == first_bb); + + /* There was only one basic block in the last path. Clear the path and + return, so that paths starting at another basic block can be tried. */ + if (path_size == 1) + { + path_size = 0; + goto done; + } + + /* If the path was empty from the beginning, construct a new path. */ + if (path_size == 0) + data->path[path_size++].bb = first_bb; + else + { + /* Otherwise, path_size must be equal to or greater than 2, because + a previous path exists that is at least two basic blocks long. + + Update the previous branch path, if any. If the last branch was + previously along the branch edge, take the fallthrough edge now. */ + while (path_size >= 2) + { + basic_block last_bb_in_path, previous_bb_in_path; + edge e; + + --path_size; + last_bb_in_path = data->path[path_size].bb; + previous_bb_in_path = data->path[path_size - 1].bb; + + /* If we previously followed a path along the branch edge, try + the fallthru edge now. */ + if (EDGE_COUNT (previous_bb_in_path->succs) == 2 + && any_condjump_p (BB_END (previous_bb_in_path)) + && (e = find_edge (previous_bb_in_path, last_bb_in_path)) + && e == BRANCH_EDGE (previous_bb_in_path)) + { + bb = FALLTHRU_EDGE (previous_bb_in_path)->dest; + if (bb != EXIT_BLOCK_PTR + && single_pred_p (bb) + /* We used to assert here that we would only see blocks + that we have not visited yet. But we may end up + visiting basic blocks twice if the CFG has changed + in this run of cse_main, because when the CFG changes + the topological sort of the CFG also changes. A basic + blocks that previously had more than two predecessors + may now have a single predecessor, and become part of + a path that starts at another basic block. + + We still want to visit each basic block only once, so + halt the path here if we have already visited BB. */ + && !TEST_BIT (cse_visited_basic_blocks, bb->index)) + { + SET_BIT (cse_visited_basic_blocks, bb->index); + data->path[path_size++].bb = bb; + break; + } + } + + data->path[path_size].bb = NULL; + } + + /* If only one block remains in the path, bail. */ + if (path_size == 1) + { + path_size = 0; + goto done; + } + } + + /* Extend the path if possible. */ + if (follow_jumps) + { + bb = data->path[path_size - 1].bb; + while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)) + { + if (single_succ_p (bb)) + e = single_succ_edge (bb); + else if (EDGE_COUNT (bb->succs) == 2 + && any_condjump_p (BB_END (bb))) + { + /* First try to follow the branch. If that doesn't lead + to a useful path, follow the fallthru edge. */ + e = BRANCH_EDGE (bb); + if (!single_pred_p (e->dest)) + e = FALLTHRU_EDGE (bb); + } + else + e = NULL; + + if (e && e->dest != EXIT_BLOCK_PTR + && single_pred_p (e->dest) + /* Avoid visiting basic blocks twice. The large comment + above explains why this can happen. */ + && !TEST_BIT (cse_visited_basic_blocks, e->dest->index)) + { + basic_block bb2 = e->dest; + SET_BIT (cse_visited_basic_blocks, bb2->index); + data->path[path_size++].bb = bb2; + bb = bb2; + } + else + bb = NULL; + } + } + +done: + data->path_size = path_size; + return path_size != 0; +} + +/* Dump the path in DATA to file F. NSETS is the number of sets + in the path. */ + +static void +cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f) +{ + int path_entry; + + fprintf (f, ";; Following path with %d sets: ", nsets); + for (path_entry = 0; path_entry < data->path_size; path_entry++) + fprintf (f, "%d ", (data->path[path_entry].bb)->index); + fputc ('\n', dump_file); + fflush (f); +} + + +/* Return true if BB has exception handling successor edges. */ + +static bool +have_eh_succ_edges (basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & EDGE_EH) + return true; + + return false; +} + + +/* Scan to the end of the path described by DATA. Return an estimate of + the total number of SETs of all insns in the path. */ + +static void +cse_prescan_path (struct cse_basic_block_data *data) +{ + int nsets = 0; + int path_size = data->path_size; + int path_entry; + + /* Scan to end of each basic block in the path. */ + for (path_entry = 0; path_entry < path_size; path_entry++) + { + basic_block bb; + rtx insn; + + bb = data->path[path_entry].bb; + + FOR_BB_INSNS (bb, insn) + { + if (!INSN_P (insn)) + continue; + + /* A PARALLEL can have lots of SETs in it, + especially if it is really an ASM_OPERANDS. */ + if (GET_CODE (PATTERN (insn)) == PARALLEL) + nsets += XVECLEN (PATTERN (insn), 0); + else + nsets += 1; + } + } + + data->nsets = nsets; +} + +/* Process a single extended basic block described by EBB_DATA. */ + +static void +cse_extended_basic_block (struct cse_basic_block_data *ebb_data) +{ + int path_size = ebb_data->path_size; + int path_entry; + int num_insns = 0; + + /* Allocate the space needed by qty_table. */ + qty_table = XNEWVEC (struct qty_table_elem, max_qty); + + new_basic_block (); + cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb); + cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb); + for (path_entry = 0; path_entry < path_size; path_entry++) + { + basic_block bb; + rtx insn; + + bb = ebb_data->path[path_entry].bb; + + /* Invalidate recorded information for eh regs if there is an EH + edge pointing to that bb. */ + if (bb_has_eh_pred (bb)) + { + df_ref *def_rec; + + for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++) + { + df_ref def = *def_rec; + if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) + invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def))); + } + } + + optimize_this_for_speed_p = optimize_bb_for_speed_p (bb); + FOR_BB_INSNS (bb, insn) + { + /* If we have processed 1,000 insns, flush the hash table to + avoid extreme quadratic behavior. We must not include NOTEs + in the count since there may be more of them when generating + debugging information. If we clear the table at different + times, code generated with -g -O might be different than code + generated with -O but not -g. + + FIXME: This is a real kludge and needs to be done some other + way. */ + if (NONDEBUG_INSN_P (insn) + && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS)) + { + flush_hash_table (); + num_insns = 0; + } + + if (INSN_P (insn)) + { + /* Process notes first so we have all notes in canonical forms + when looking for duplicate operations. */ + if (REG_NOTES (insn)) + { + bool changed = false; + REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), + NULL_RTX, &changed); + if (changed) + df_notes_rescan (insn); + } + + cse_insn (insn); + + /* If we haven't already found an insn where we added a LABEL_REF, + check this one. */ + if (INSN_P (insn) && !recorded_label_ref + && for_each_rtx (&PATTERN (insn), check_for_label_ref, + (void *) insn)) + recorded_label_ref = true; + +#ifdef HAVE_cc0 + if (NONDEBUG_INSN_P (insn)) + { + /* If the previous insn sets CC0 and this insn no + longer references CC0, delete the previous insn. + Here we use fact that nothing expects CC0 to be + valid over an insn, which is true until the final + pass. */ + rtx prev_insn, tem; + + prev_insn = prev_nonnote_nondebug_insn (insn); + if (prev_insn && NONJUMP_INSN_P (prev_insn) + && (tem = single_set (prev_insn)) != NULL_RTX + && SET_DEST (tem) == cc0_rtx + && ! reg_mentioned_p (cc0_rtx, PATTERN (insn))) + delete_insn (prev_insn); + + /* If this insn is not the last insn in the basic + block, it will be PREV_INSN(insn) in the next + iteration. If we recorded any CC0-related + information for this insn, remember it. */ + if (insn != BB_END (bb)) + { + prev_insn_cc0 = this_insn_cc0; + prev_insn_cc0_mode = this_insn_cc0_mode; + } + } +#endif + } + } + + /* With non-call exceptions, we are not always able to update + the CFG properly inside cse_insn. So clean up possibly + redundant EH edges here. */ + if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb)) + cse_cfg_altered |= purge_dead_edges (bb); + + /* If we changed a conditional jump, we may have terminated + the path we are following. Check that by verifying that + the edge we would take still exists. If the edge does + not exist anymore, purge the remainder of the path. + Note that this will cause us to return to the caller. */ + if (path_entry < path_size - 1) + { + basic_block next_bb = ebb_data->path[path_entry + 1].bb; + if (!find_edge (bb, next_bb)) + { + do + { + path_size--; + + /* If we truncate the path, we must also reset the + visited bit on the remaining blocks in the path, + or we will never visit them at all. */ + RESET_BIT (cse_visited_basic_blocks, + ebb_data->path[path_size].bb->index); + ebb_data->path[path_size].bb = NULL; + } + while (path_size - 1 != path_entry); + ebb_data->path_size = path_size; + } + } + + /* If this is a conditional jump insn, record any known + equivalences due to the condition being tested. */ + insn = BB_END (bb); + if (path_entry < path_size - 1 + && JUMP_P (insn) + && single_set (insn) + && any_condjump_p (insn)) + { + basic_block next_bb = ebb_data->path[path_entry + 1].bb; + bool taken = (next_bb == BRANCH_EDGE (bb)->dest); + record_jump_equiv (insn, taken); + } + +#ifdef HAVE_cc0 + /* Clear the CC0-tracking related insns, they can't provide + useful information across basic block boundaries. */ + prev_insn_cc0 = 0; +#endif + } + + gcc_assert (next_qty <= max_qty); + + free (qty_table); +} + + +/* Perform cse on the instructions of a function. + F is the first instruction. + NREGS is one plus the highest pseudo-reg number used in the instruction. + + Return 2 if jump optimizations should be redone due to simplifications + in conditional jump instructions. + Return 1 if the CFG should be cleaned up because it has been modified. + Return 0 otherwise. */ + +int +cse_main (rtx f ATTRIBUTE_UNUSED, int nregs) +{ + struct cse_basic_block_data ebb_data; + basic_block bb; + int *rc_order = XNEWVEC (int, last_basic_block); + int i, n_blocks; + + df_set_flags (DF_LR_RUN_DCE); + df_analyze (); + df_set_flags (DF_DEFER_INSN_RESCAN); + + reg_scan (get_insns (), max_reg_num ()); + init_cse_reg_info (nregs); + + ebb_data.path = XNEWVEC (struct branch_path, + PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH)); + + cse_cfg_altered = false; + cse_jumps_altered = false; + recorded_label_ref = false; + constant_pool_entries_cost = 0; + constant_pool_entries_regcost = 0; + ebb_data.path_size = 0; + ebb_data.nsets = 0; + rtl_hooks = cse_rtl_hooks; + + init_recog (); + init_alias_analysis (); + + reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs); + + /* Set up the table of already visited basic blocks. */ + cse_visited_basic_blocks = sbitmap_alloc (last_basic_block); + sbitmap_zero (cse_visited_basic_blocks); + + /* Loop over basic blocks in reverse completion order (RPO), + excluding the ENTRY and EXIT blocks. */ + n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false); + i = 0; + while (i < n_blocks) + { + /* Find the first block in the RPO queue that we have not yet + processed before. */ + do + { + bb = BASIC_BLOCK (rc_order[i++]); + } + while (TEST_BIT (cse_visited_basic_blocks, bb->index) + && i < n_blocks); + + /* Find all paths starting with BB, and process them. */ + while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps)) + { + /* Pre-scan the path. */ + cse_prescan_path (&ebb_data); + + /* If this basic block has no sets, skip it. */ + if (ebb_data.nsets == 0) + continue; + + /* Get a reasonable estimate for the maximum number of qty's + needed for this path. For this, we take the number of sets + and multiply that by MAX_RECOG_OPERANDS. */ + max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS; + + /* Dump the path we're about to process. */ + if (dump_file) + cse_dump_path (&ebb_data, ebb_data.nsets, dump_file); + + cse_extended_basic_block (&ebb_data); + } + } + + /* Clean up. */ + end_alias_analysis (); + free (reg_eqv_table); + free (ebb_data.path); + sbitmap_free (cse_visited_basic_blocks); + free (rc_order); + rtl_hooks = general_rtl_hooks; + + if (cse_jumps_altered || recorded_label_ref) + return 2; + else if (cse_cfg_altered) + return 1; + else + return 0; +} + +/* Called via for_each_rtx to see if an insn is using a LABEL_REF for + which there isn't a REG_LABEL_OPERAND note. + Return one if so. DATA is the insn. */ + +static int +check_for_label_ref (rtx *rtl, void *data) +{ + rtx insn = (rtx) data; + + /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND + note for it, we must rerun jump since it needs to place the note. If + this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain, + don't do this since no REG_LABEL_OPERAND will be added. */ + return (GET_CODE (*rtl) == LABEL_REF + && ! LABEL_REF_NONLOCAL_P (*rtl) + && (!JUMP_P (insn) + || !label_is_jump_target_p (XEXP (*rtl, 0), insn)) + && LABEL_P (XEXP (*rtl, 0)) + && INSN_UID (XEXP (*rtl, 0)) != 0 + && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0))); +} + +/* Count the number of times registers are used (not set) in X. + COUNTS is an array in which we accumulate the count, INCR is how much + we count each register usage. + + Don't count a usage of DEST, which is the SET_DEST of a SET which + contains X in its SET_SRC. This is because such a SET does not + modify the liveness of DEST. + DEST is set to pc_rtx for a trapping insn, or for an insn with side effects. + We must then count uses of a SET_DEST regardless, because the insn can't be + deleted here. */ + +static void +count_reg_usage (rtx x, int *counts, rtx dest, int incr) +{ + enum rtx_code code; + rtx note; + const char *fmt; + int i, j; + + if (x == 0) + return; + + switch (code = GET_CODE (x)) + { + case REG: + if (x != dest) + counts[REGNO (x)] += incr; + return; + + case PC: + case CC0: + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_FIXED: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + return; + + case CLOBBER: + /* If we are clobbering a MEM, mark any registers inside the address + as being used. */ + if (MEM_P (XEXP (x, 0))) + count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr); + return; + + case SET: + /* Unless we are setting a REG, count everything in SET_DEST. */ + if (!REG_P (SET_DEST (x))) + count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr); + count_reg_usage (SET_SRC (x), counts, + dest ? dest : SET_DEST (x), + incr); + return; + + case DEBUG_INSN: + return; + + case CALL_INSN: + case INSN: + case JUMP_INSN: + /* We expect dest to be NULL_RTX here. If the insn may trap, + or if it cannot be deleted due to side-effects, mark this fact + by setting DEST to pc_rtx. */ + if (insn_could_throw_p (x) || side_effects_p (PATTERN (x))) + dest = pc_rtx; + if (code == CALL_INSN) + count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr); + count_reg_usage (PATTERN (x), counts, dest, incr); + + /* Things used in a REG_EQUAL note aren't dead since loop may try to + use them. */ + + note = find_reg_equal_equiv_note (x); + if (note) + { + rtx eqv = XEXP (note, 0); + + if (GET_CODE (eqv) == EXPR_LIST) + /* This REG_EQUAL note describes the result of a function call. + Process all the arguments. */ + do + { + count_reg_usage (XEXP (eqv, 0), counts, dest, incr); + eqv = XEXP (eqv, 1); + } + while (eqv && GET_CODE (eqv) == EXPR_LIST); + else + count_reg_usage (eqv, counts, dest, incr); + } + return; + + case EXPR_LIST: + if (REG_NOTE_KIND (x) == REG_EQUAL + || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE) + /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)), + involving registers in the address. */ + || GET_CODE (XEXP (x, 0)) == CLOBBER) + count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr); + + count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr); + return; + + case ASM_OPERANDS: + /* Iterate over just the inputs, not the constraints as well. */ + for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--) + count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr); + return; + + case INSN_LIST: + gcc_unreachable (); + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + count_reg_usage (XEXP (x, i), counts, dest, incr); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + count_reg_usage (XVECEXP (x, i, j), counts, dest, incr); + } +} + +/* Return true if X is a dead register. */ + +static inline int +is_dead_reg (rtx x, int *counts) +{ + return (REG_P (x) + && REGNO (x) >= FIRST_PSEUDO_REGISTER + && counts[REGNO (x)] == 0); +} + +/* Return true if set is live. */ +static bool +set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */ + int *counts) +{ +#ifdef HAVE_cc0 + rtx tem; +#endif + + if (set_noop_p (set)) + ; + +#ifdef HAVE_cc0 + else if (GET_CODE (SET_DEST (set)) == CC0 + && !side_effects_p (SET_SRC (set)) + && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX + || !INSN_P (tem) + || !reg_referenced_p (cc0_rtx, PATTERN (tem)))) + return false; +#endif + else if (!is_dead_reg (SET_DEST (set), counts) + || side_effects_p (SET_SRC (set))) + return true; + return false; +} + +/* Return true if insn is live. */ + +static bool +insn_live_p (rtx insn, int *counts) +{ + int i; + if (insn_could_throw_p (insn)) + return true; + else if (GET_CODE (PATTERN (insn)) == SET) + return set_live_p (PATTERN (insn), insn, counts); + else if (GET_CODE (PATTERN (insn)) == PARALLEL) + { + for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) + { + rtx elt = XVECEXP (PATTERN (insn), 0, i); + + if (GET_CODE (elt) == SET) + { + if (set_live_p (elt, insn, counts)) + return true; + } + else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE) + return true; + } + return false; + } + else if (DEBUG_INSN_P (insn)) + { + rtx next; + + for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next)) + if (NOTE_P (next)) + continue; + else if (!DEBUG_INSN_P (next)) + return true; + else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next)) + return false; + + return true; + } + else + return true; +} + +/* Count the number of stores into pseudo. Callback for note_stores. */ + +static void +count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data) +{ + int *counts = (int *) data; + if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) + counts[REGNO (x)]++; +} + +struct dead_debug_insn_data +{ + int *counts; + rtx *replacements; + bool seen_repl; +}; + +/* Return if a DEBUG_INSN needs to be reset because some dead + pseudo doesn't have a replacement. Callback for for_each_rtx. */ + +static int +is_dead_debug_insn (rtx *loc, void *data) +{ + rtx x = *loc; + struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data; + + if (is_dead_reg (x, ddid->counts)) + { + if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX) + ddid->seen_repl = true; + else + return 1; + } + return 0; +} + +/* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR. + Callback for simplify_replace_fn_rtx. */ + +static rtx +replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data) +{ + rtx *replacements = (rtx *) data; + + if (REG_P (x) + && REGNO (x) >= FIRST_PSEUDO_REGISTER + && replacements[REGNO (x)] != NULL_RTX) + { + if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)])) + return replacements[REGNO (x)]; + return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)], + GET_MODE (replacements[REGNO (x)])); + } + return NULL_RTX; +} + +/* Scan all the insns and delete any that are dead; i.e., they store a register + that is never used or they copy a register to itself. + + This is used to remove insns made obviously dead by cse, loop or other + optimizations. It improves the heuristics in loop since it won't try to + move dead invariants out of loops or make givs for dead quantities. The + remaining passes of the compilation are also sped up. */ + +int +delete_trivially_dead_insns (rtx insns, int nreg) +{ + int *counts; + rtx insn, prev; + rtx *replacements = NULL; + int ndead = 0; + + timevar_push (TV_DELETE_TRIVIALLY_DEAD); + /* First count the number of times each register is used. */ + if (MAY_HAVE_DEBUG_INSNS) + { + counts = XCNEWVEC (int, nreg * 3); + for (insn = insns; insn; insn = NEXT_INSN (insn)) + if (DEBUG_INSN_P (insn)) + count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, + NULL_RTX, 1); + else if (INSN_P (insn)) + { + count_reg_usage (insn, counts, NULL_RTX, 1); + note_stores (PATTERN (insn), count_stores, counts + nreg * 2); + } + /* If there can be debug insns, COUNTS are 3 consecutive arrays. + First one counts how many times each pseudo is used outside + of debug insns, second counts how many times each pseudo is + used in debug insns and third counts how many times a pseudo + is stored. */ + } + else + { + counts = XCNEWVEC (int, nreg); + for (insn = insns; insn; insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + count_reg_usage (insn, counts, NULL_RTX, 1); + /* If no debug insns can be present, COUNTS is just an array + which counts how many times each pseudo is used. */ + } + /* Go from the last insn to the first and delete insns that only set unused + registers or copy a register to itself. As we delete an insn, remove + usage counts for registers it uses. + + The first jump optimization pass may leave a real insn as the last + insn in the function. We must not skip that insn or we may end + up deleting code that is not really dead. + + If some otherwise unused register is only used in DEBUG_INSNs, + try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before + the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR + has been created for the unused register, replace it with + the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */ + for (insn = get_last_insn (); insn; insn = prev) + { + int live_insn = 0; + + prev = PREV_INSN (insn); + if (!INSN_P (insn)) + continue; + + live_insn = insn_live_p (insn, counts); + + /* If this is a dead insn, delete it and show registers in it aren't + being used. */ + + if (! live_insn && dbg_cnt (delete_trivial_dead)) + { + if (DEBUG_INSN_P (insn)) + count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg, + NULL_RTX, -1); + else + { + rtx set; + if (MAY_HAVE_DEBUG_INSNS + && (set = single_set (insn)) != NULL_RTX + && is_dead_reg (SET_DEST (set), counts) + /* Used at least once in some DEBUG_INSN. */ + && counts[REGNO (SET_DEST (set)) + nreg] > 0 + /* And set exactly once. */ + && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1 + && !side_effects_p (SET_SRC (set)) + && asm_noperands (PATTERN (insn)) < 0) + { + rtx dval, bind; + + /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */ + dval = make_debug_expr_from_rtl (SET_DEST (set)); + + /* Emit a debug bind insn before the insn in which + reg dies. */ + bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)), + DEBUG_EXPR_TREE_DECL (dval), + SET_SRC (set), + VAR_INIT_STATUS_INITIALIZED); + count_reg_usage (bind, counts + nreg, NULL_RTX, 1); + + bind = emit_debug_insn_before (bind, insn); + df_insn_rescan (bind); + + if (replacements == NULL) + replacements = XCNEWVEC (rtx, nreg); + replacements[REGNO (SET_DEST (set))] = dval; + } + + count_reg_usage (insn, counts, NULL_RTX, -1); + ndead++; + } + delete_insn_and_edges (insn); + } + } + + if (MAY_HAVE_DEBUG_INSNS) + { + struct dead_debug_insn_data ddid; + ddid.counts = counts; + ddid.replacements = replacements; + for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) + if (DEBUG_INSN_P (insn)) + { + /* If this debug insn references a dead register that wasn't replaced + with an DEBUG_EXPR, reset the DEBUG_INSN. */ + ddid.seen_repl = false; + if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn), + is_dead_debug_insn, &ddid)) + { + INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC (); + df_insn_rescan (insn); + } + else if (ddid.seen_repl) + { + INSN_VAR_LOCATION_LOC (insn) + = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn), + NULL_RTX, replace_dead_reg, + replacements); + df_insn_rescan (insn); + } + } + if (replacements) + free (replacements); + } + + if (dump_file && ndead) + fprintf (dump_file, "Deleted %i trivially dead insns\n", + ndead); + /* Clean up. */ + free (counts); + timevar_pop (TV_DELETE_TRIVIALLY_DEAD); + return ndead; +} + +/* This function is called via for_each_rtx. The argument, NEWREG, is + a condition code register with the desired mode. If we are looking + at the same register in a different mode, replace it with + NEWREG. */ + +static int +cse_change_cc_mode (rtx *loc, void *data) +{ + struct change_cc_mode_args* args = (struct change_cc_mode_args*)data; + + if (*loc + && REG_P (*loc) + && REGNO (*loc) == REGNO (args->newreg) + && GET_MODE (*loc) != GET_MODE (args->newreg)) + { + validate_change (args->insn, loc, args->newreg, 1); + + return -1; + } + return 0; +} + +/* Change the mode of any reference to the register REGNO (NEWREG) to + GET_MODE (NEWREG) in INSN. */ + +static void +cse_change_cc_mode_insn (rtx insn, rtx newreg) +{ + struct change_cc_mode_args args; + int success; + + if (!INSN_P (insn)) + return; + + args.insn = insn; + args.newreg = newreg; + + for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args); + for_each_rtx (®_NOTES (insn), cse_change_cc_mode, &args); + + /* If the following assertion was triggered, there is most probably + something wrong with the cc_modes_compatible back end function. + CC modes only can be considered compatible if the insn - with the mode + replaced by any of the compatible modes - can still be recognized. */ + success = apply_change_group (); + gcc_assert (success); +} + +/* Change the mode of any reference to the register REGNO (NEWREG) to + GET_MODE (NEWREG), starting at START. Stop before END. Stop at + any instruction which modifies NEWREG. */ + +static void +cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg) +{ + rtx insn; + + for (insn = start; insn != end; insn = NEXT_INSN (insn)) + { + if (! INSN_P (insn)) + continue; + + if (reg_set_p (newreg, insn)) + return; + + cse_change_cc_mode_insn (insn, newreg); + } +} + +/* BB is a basic block which finishes with CC_REG as a condition code + register which is set to CC_SRC. Look through the successors of BB + to find blocks which have a single predecessor (i.e., this one), + and look through those blocks for an assignment to CC_REG which is + equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are + permitted to change the mode of CC_SRC to a compatible mode. This + returns VOIDmode if no equivalent assignments were found. + Otherwise it returns the mode which CC_SRC should wind up with. + ORIG_BB should be the same as BB in the outermost cse_cc_succs call, + but is passed unmodified down to recursive calls in order to prevent + endless recursion. + + The main complexity in this function is handling the mode issues. + We may have more than one duplicate which we can eliminate, and we + try to find a mode which will work for multiple duplicates. */ + +static enum machine_mode +cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src, + bool can_change_mode) +{ + bool found_equiv; + enum machine_mode mode; + unsigned int insn_count; + edge e; + rtx insns[2]; + enum machine_mode modes[2]; + rtx last_insns[2]; + unsigned int i; + rtx newreg; + edge_iterator ei; + + /* We expect to have two successors. Look at both before picking + the final mode for the comparison. If we have more successors + (i.e., some sort of table jump, although that seems unlikely), + then we require all beyond the first two to use the same + mode. */ + + found_equiv = false; + mode = GET_MODE (cc_src); + insn_count = 0; + FOR_EACH_EDGE (e, ei, bb->succs) + { + rtx insn; + rtx end; + + if (e->flags & EDGE_COMPLEX) + continue; + + if (EDGE_COUNT (e->dest->preds) != 1 + || e->dest == EXIT_BLOCK_PTR + /* Avoid endless recursion on unreachable blocks. */ + || e->dest == orig_bb) + continue; + + end = NEXT_INSN (BB_END (e->dest)); + for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn)) + { + rtx set; + + if (! INSN_P (insn)) + continue; + + /* If CC_SRC is modified, we have to stop looking for + something which uses it. */ + if (modified_in_p (cc_src, insn)) + break; + + /* Check whether INSN sets CC_REG to CC_SRC. */ + set = single_set (insn); + if (set + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) == REGNO (cc_reg)) + { + bool found; + enum machine_mode set_mode; + enum machine_mode comp_mode; + + found = false; + set_mode = GET_MODE (SET_SRC (set)); + comp_mode = set_mode; + if (rtx_equal_p (cc_src, SET_SRC (set))) + found = true; + else if (GET_CODE (cc_src) == COMPARE + && GET_CODE (SET_SRC (set)) == COMPARE + && mode != set_mode + && rtx_equal_p (XEXP (cc_src, 0), + XEXP (SET_SRC (set), 0)) + && rtx_equal_p (XEXP (cc_src, 1), + XEXP (SET_SRC (set), 1))) + + { + comp_mode = targetm.cc_modes_compatible (mode, set_mode); + if (comp_mode != VOIDmode + && (can_change_mode || comp_mode == mode)) + found = true; + } + + if (found) + { + found_equiv = true; + if (insn_count < ARRAY_SIZE (insns)) + { + insns[insn_count] = insn; + modes[insn_count] = set_mode; + last_insns[insn_count] = end; + ++insn_count; + + if (mode != comp_mode) + { + gcc_assert (can_change_mode); + mode = comp_mode; + + /* The modified insn will be re-recognized later. */ + PUT_MODE (cc_src, mode); + } + } + else + { + if (set_mode != mode) + { + /* We found a matching expression in the + wrong mode, but we don't have room to + store it in the array. Punt. This case + should be rare. */ + break; + } + /* INSN sets CC_REG to a value equal to CC_SRC + with the right mode. We can simply delete + it. */ + delete_insn (insn); + } + + /* We found an instruction to delete. Keep looking, + in the hopes of finding a three-way jump. */ + continue; + } + + /* We found an instruction which sets the condition + code, so don't look any farther. */ + break; + } + + /* If INSN sets CC_REG in some other way, don't look any + farther. */ + if (reg_set_p (cc_reg, insn)) + break; + } + + /* If we fell off the bottom of the block, we can keep looking + through successors. We pass CAN_CHANGE_MODE as false because + we aren't prepared to handle compatibility between the + further blocks and this block. */ + if (insn == end) + { + enum machine_mode submode; + + submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false); + if (submode != VOIDmode) + { + gcc_assert (submode == mode); + found_equiv = true; + can_change_mode = false; + } + } + } + + if (! found_equiv) + return VOIDmode; + + /* Now INSN_COUNT is the number of instructions we found which set + CC_REG to a value equivalent to CC_SRC. The instructions are in + INSNS. The modes used by those instructions are in MODES. */ + + newreg = NULL_RTX; + for (i = 0; i < insn_count; ++i) + { + if (modes[i] != mode) + { + /* We need to change the mode of CC_REG in INSNS[i] and + subsequent instructions. */ + if (! newreg) + { + if (GET_MODE (cc_reg) == mode) + newreg = cc_reg; + else + newreg = gen_rtx_REG (mode, REGNO (cc_reg)); + } + cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i], + newreg); + } + + delete_insn_and_edges (insns[i]); + } + + return mode; +} + +/* If we have a fixed condition code register (or two), walk through + the instructions and try to eliminate duplicate assignments. */ + +static void +cse_condition_code_reg (void) +{ + unsigned int cc_regno_1; + unsigned int cc_regno_2; + rtx cc_reg_1; + rtx cc_reg_2; + basic_block bb; + + if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2)) + return; + + cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1); + if (cc_regno_2 != INVALID_REGNUM) + cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2); + else + cc_reg_2 = NULL_RTX; + + FOR_EACH_BB (bb) + { + rtx last_insn; + rtx cc_reg; + rtx insn; + rtx cc_src_insn; + rtx cc_src; + enum machine_mode mode; + enum machine_mode orig_mode; + + /* Look for blocks which end with a conditional jump based on a + condition code register. Then look for the instruction which + sets the condition code register. Then look through the + successor blocks for instructions which set the condition + code register to the same value. There are other possible + uses of the condition code register, but these are by far the + most common and the ones which we are most likely to be able + to optimize. */ + + last_insn = BB_END (bb); + if (!JUMP_P (last_insn)) + continue; + + if (reg_referenced_p (cc_reg_1, PATTERN (last_insn))) + cc_reg = cc_reg_1; + else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn))) + cc_reg = cc_reg_2; + else + continue; + + cc_src_insn = NULL_RTX; + cc_src = NULL_RTX; + for (insn = PREV_INSN (last_insn); + insn && insn != PREV_INSN (BB_HEAD (bb)); + insn = PREV_INSN (insn)) + { + rtx set; + + if (! INSN_P (insn)) + continue; + set = single_set (insn); + if (set + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) == REGNO (cc_reg)) + { + cc_src_insn = insn; + cc_src = SET_SRC (set); + break; + } + else if (reg_set_p (cc_reg, insn)) + break; + } + + if (! cc_src_insn) + continue; + + if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn))) + continue; + + /* Now CC_REG is a condition code register used for a + conditional jump at the end of the block, and CC_SRC, in + CC_SRC_INSN, is the value to which that condition code + register is set, and CC_SRC is still meaningful at the end of + the basic block. */ + + orig_mode = GET_MODE (cc_src); + mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true); + if (mode != VOIDmode) + { + gcc_assert (mode == GET_MODE (cc_src)); + if (mode != orig_mode) + { + rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg)); + + cse_change_cc_mode_insn (cc_src_insn, newreg); + + /* Do the same in the following insns that use the + current value of CC_REG within BB. */ + cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn), + NEXT_INSN (last_insn), + newreg); + } + } + } +} + + +/* Perform common subexpression elimination. Nonzero value from + `cse_main' means that jumps were simplified and some code may now + be unreachable, so do jump optimization again. */ +static bool +gate_handle_cse (void) +{ + return optimize > 0; +} + +static unsigned int +rest_of_handle_cse (void) +{ + int tem; + + if (dump_file) + dump_flow_info (dump_file, dump_flags); + + tem = cse_main (get_insns (), max_reg_num ()); + + /* If we are not running more CSE passes, then we are no longer + expecting CSE to be run. But always rerun it in a cheap mode. */ + cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse; + + if (tem == 2) + { + timevar_push (TV_JUMP); + rebuild_jump_labels (get_insns ()); + cleanup_cfg (0); + timevar_pop (TV_JUMP); + } + else if (tem == 1 || optimize > 1) + cleanup_cfg (0); + + return 0; +} + +struct rtl_opt_pass pass_cse = +{ + { + RTL_PASS, + "cse1", /* name */ + gate_handle_cse, /* gate */ + rest_of_handle_cse, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_CSE, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_df_finish | TODO_verify_rtl_sharing | + TODO_dump_func | + TODO_ggc_collect | + TODO_verify_flow, /* todo_flags_finish */ + } +}; + + +static bool +gate_handle_cse2 (void) +{ + return optimize > 0 && flag_rerun_cse_after_loop; +} + +/* Run second CSE pass after loop optimizations. */ +static unsigned int +rest_of_handle_cse2 (void) +{ + int tem; + + if (dump_file) + dump_flow_info (dump_file, dump_flags); + + tem = cse_main (get_insns (), max_reg_num ()); + + /* Run a pass to eliminate duplicated assignments to condition code + registers. We have to run this after bypass_jumps, because it + makes it harder for that pass to determine whether a jump can be + bypassed safely. */ + cse_condition_code_reg (); + + delete_trivially_dead_insns (get_insns (), max_reg_num ()); + + if (tem == 2) + { + timevar_push (TV_JUMP); + rebuild_jump_labels (get_insns ()); + cleanup_cfg (0); + timevar_pop (TV_JUMP); + } + else if (tem == 1) + cleanup_cfg (0); + + cse_not_expected = 1; + return 0; +} + + +struct rtl_opt_pass pass_cse2 = +{ + { + RTL_PASS, + "cse2", /* name */ + gate_handle_cse2, /* gate */ + rest_of_handle_cse2, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_CSE2, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_df_finish | TODO_verify_rtl_sharing | + TODO_dump_func | + TODO_ggc_collect | + TODO_verify_flow /* todo_flags_finish */ + } +}; + +static bool +gate_handle_cse_after_global_opts (void) +{ + return optimize > 0 && flag_rerun_cse_after_global_opts; +} + +/* Run second CSE pass after loop optimizations. */ +static unsigned int +rest_of_handle_cse_after_global_opts (void) +{ + int save_cfj; + int tem; + + /* We only want to do local CSE, so don't follow jumps. */ + save_cfj = flag_cse_follow_jumps; + flag_cse_follow_jumps = 0; + + rebuild_jump_labels (get_insns ()); + tem = cse_main (get_insns (), max_reg_num ()); + purge_all_dead_edges (); + delete_trivially_dead_insns (get_insns (), max_reg_num ()); + + cse_not_expected = !flag_rerun_cse_after_loop; + + /* If cse altered any jumps, rerun jump opts to clean things up. */ + if (tem == 2) + { + timevar_push (TV_JUMP); + rebuild_jump_labels (get_insns ()); + cleanup_cfg (0); + timevar_pop (TV_JUMP); + } + else if (tem == 1) + cleanup_cfg (0); + + flag_cse_follow_jumps = save_cfj; + return 0; +} + +struct rtl_opt_pass pass_cse_after_global_opts = +{ + { + RTL_PASS, + "cse_local", /* name */ + gate_handle_cse_after_global_opts, /* gate */ + rest_of_handle_cse_after_global_opts, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_CSE, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_df_finish | TODO_verify_rtl_sharing | + TODO_dump_func | + TODO_ggc_collect | + TODO_verify_flow /* todo_flags_finish */ + } +}; -- cgit v1.2.3