From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/ira-build.c | 3074 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3074 insertions(+) create mode 100644 gcc/ira-build.c (limited to 'gcc/ira-build.c') diff --git a/gcc/ira-build.c b/gcc/ira-build.c new file mode 100644 index 000000000..b3c1e14f8 --- /dev/null +++ b/gcc/ira-build.c @@ -0,0 +1,3074 @@ +/* Building internal representation for IRA. + Copyright (C) 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Vladimir Makarov . + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "tm_p.h" +#include "target.h" +#include "regs.h" +#include "flags.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "insn-config.h" +#include "recog.h" +#include "diagnostic-core.h" +#include "params.h" +#include "df.h" +#include "output.h" +#include "reload.h" +#include "sparseset.h" +#include "ira-int.h" +#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */ + +static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx, + ira_loop_tree_node_t); + +/* The root of the loop tree corresponding to the all function. */ +ira_loop_tree_node_t ira_loop_tree_root; + +/* Height of the loop tree. */ +int ira_loop_tree_height; + +/* All nodes representing basic blocks are referred through the + following array. We can not use basic block member `aux' for this + because it is used for insertion of insns on edges. */ +ira_loop_tree_node_t ira_bb_nodes; + +/* All nodes representing loops are referred through the following + array. */ +ira_loop_tree_node_t ira_loop_nodes; + +/* Map regno -> allocnos with given regno (see comments for + allocno member `next_regno_allocno'). */ +ira_allocno_t *ira_regno_allocno_map; + +/* Array of references to all allocnos. The order number of the + allocno corresponds to the index in the array. Removed allocnos + have NULL element value. */ +ira_allocno_t *ira_allocnos; + +/* Sizes of the previous array. */ +int ira_allocnos_num; + +/* Count of conflict record structures we've created, used when creating + a new conflict id. */ +int ira_objects_num; + +/* Map a conflict id to its conflict record. */ +ira_object_t *ira_object_id_map; + +/* Array of references to all copies. The order number of the copy + corresponds to the index in the array. Removed copies have NULL + element value. */ +ira_copy_t *ira_copies; + +/* Size of the previous array. */ +int ira_copies_num; + + + +/* LAST_BASIC_BLOCK before generating additional insns because of live + range splitting. Emitting insns on a critical edge creates a new + basic block. */ +static int last_basic_block_before_change; + +/* The following function allocates the loop tree nodes. If LOOPS_P + is FALSE, the nodes corresponding to the loops (except the root + which corresponds the all function) will be not allocated but nodes + will still be allocated for basic blocks. */ +static void +create_loop_tree_nodes (bool loops_p) +{ + unsigned int i, j; + int max_regno; + bool skip_p; + edge_iterator ei; + edge e; + VEC (edge, heap) *edges; + loop_p loop; + + ira_bb_nodes + = ((struct ira_loop_tree_node *) + ira_allocate (sizeof (struct ira_loop_tree_node) * last_basic_block)); + last_basic_block_before_change = last_basic_block; + for (i = 0; i < (unsigned int) last_basic_block; i++) + { + ira_bb_nodes[i].regno_allocno_map = NULL; + memset (ira_bb_nodes[i].reg_pressure, 0, + sizeof (ira_bb_nodes[i].reg_pressure)); + ira_bb_nodes[i].all_allocnos = NULL; + ira_bb_nodes[i].modified_regnos = NULL; + ira_bb_nodes[i].border_allocnos = NULL; + ira_bb_nodes[i].local_copies = NULL; + } + ira_loop_nodes = ((struct ira_loop_tree_node *) + ira_allocate (sizeof (struct ira_loop_tree_node) + * VEC_length (loop_p, ira_loops.larray))); + max_regno = max_reg_num (); + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop) + { + if (loop != ira_loops.tree_root) + { + ira_loop_nodes[i].regno_allocno_map = NULL; + if (! loops_p) + continue; + skip_p = false; + FOR_EACH_EDGE (e, ei, loop->header->preds) + if (e->src != loop->latch + && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) + { + skip_p = true; + break; + } + if (skip_p) + continue; + edges = get_loop_exit_edges (loop); + FOR_EACH_VEC_ELT (edge, edges, j, e) + if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)) + { + skip_p = true; + break; + } + VEC_free (edge, heap, edges); + if (skip_p) + continue; + } + ira_loop_nodes[i].regno_allocno_map + = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno); + memset (ira_loop_nodes[i].regno_allocno_map, 0, + sizeof (ira_allocno_t) * max_regno); + memset (ira_loop_nodes[i].reg_pressure, 0, + sizeof (ira_loop_nodes[i].reg_pressure)); + ira_loop_nodes[i].all_allocnos = ira_allocate_bitmap (); + ira_loop_nodes[i].modified_regnos = ira_allocate_bitmap (); + ira_loop_nodes[i].border_allocnos = ira_allocate_bitmap (); + ira_loop_nodes[i].local_copies = ira_allocate_bitmap (); + } +} + +/* The function returns TRUE if there are more one allocation + region. */ +static bool +more_one_region_p (void) +{ + unsigned int i; + loop_p loop; + + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop) + if (ira_loop_nodes[i].regno_allocno_map != NULL + && ira_loop_tree_root != &ira_loop_nodes[i]) + return true; + return false; +} + +/* Free the loop tree node of a loop. */ +static void +finish_loop_tree_node (ira_loop_tree_node_t loop) +{ + if (loop->regno_allocno_map != NULL) + { + ira_assert (loop->bb == NULL); + ira_free_bitmap (loop->local_copies); + ira_free_bitmap (loop->border_allocnos); + ira_free_bitmap (loop->modified_regnos); + ira_free_bitmap (loop->all_allocnos); + ira_free (loop->regno_allocno_map); + loop->regno_allocno_map = NULL; + } +} + +/* Free the loop tree nodes. */ +static void +finish_loop_tree_nodes (void) +{ + unsigned int i; + loop_p loop; + + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop) + finish_loop_tree_node (&ira_loop_nodes[i]); + ira_free (ira_loop_nodes); + for (i = 0; i < (unsigned int) last_basic_block_before_change; i++) + { + if (ira_bb_nodes[i].local_copies != NULL) + ira_free_bitmap (ira_bb_nodes[i].local_copies); + if (ira_bb_nodes[i].border_allocnos != NULL) + ira_free_bitmap (ira_bb_nodes[i].border_allocnos); + if (ira_bb_nodes[i].modified_regnos != NULL) + ira_free_bitmap (ira_bb_nodes[i].modified_regnos); + if (ira_bb_nodes[i].all_allocnos != NULL) + ira_free_bitmap (ira_bb_nodes[i].all_allocnos); + if (ira_bb_nodes[i].regno_allocno_map != NULL) + ira_free (ira_bb_nodes[i].regno_allocno_map); + } + ira_free (ira_bb_nodes); +} + + + +/* The following recursive function adds LOOP to the loop tree + hierarchy. LOOP is added only once. */ +static void +add_loop_to_tree (struct loop *loop) +{ + struct loop *parent; + ira_loop_tree_node_t loop_node, parent_node; + + /* We can not use loop node access macros here because of potential + checking and because the nodes are not initialized enough + yet. */ + if (loop_outer (loop) != NULL) + add_loop_to_tree (loop_outer (loop)); + if (ira_loop_nodes[loop->num].regno_allocno_map != NULL + && ira_loop_nodes[loop->num].children == NULL) + { + /* We have not added loop node to the tree yet. */ + loop_node = &ira_loop_nodes[loop->num]; + loop_node->loop = loop; + loop_node->bb = NULL; + for (parent = loop_outer (loop); + parent != NULL; + parent = loop_outer (parent)) + if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) + break; + if (parent == NULL) + { + loop_node->next = NULL; + loop_node->subloop_next = NULL; + loop_node->parent = NULL; + } + else + { + parent_node = &ira_loop_nodes[parent->num]; + loop_node->next = parent_node->children; + parent_node->children = loop_node; + loop_node->subloop_next = parent_node->subloops; + parent_node->subloops = loop_node; + loop_node->parent = parent_node; + } + } +} + +/* The following recursive function sets up levels of nodes of the + tree given its root LOOP_NODE. The enumeration starts with LEVEL. + The function returns maximal value of level in the tree + 1. */ +static int +setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level) +{ + int height, max_height; + ira_loop_tree_node_t subloop_node; + + ira_assert (loop_node->bb == NULL); + loop_node->level = level; + max_height = level + 1; + for (subloop_node = loop_node->subloops; + subloop_node != NULL; + subloop_node = subloop_node->subloop_next) + { + ira_assert (subloop_node->bb == NULL); + height = setup_loop_tree_level (subloop_node, level + 1); + if (height > max_height) + max_height = height; + } + return max_height; +} + +/* Create the loop tree. The algorithm is designed to provide correct + order of loops (they are ordered by their last loop BB) and basic + blocks in the chain formed by member next. */ +static void +form_loop_tree (void) +{ + unsigned int i; + basic_block bb; + struct loop *parent; + ira_loop_tree_node_t bb_node, loop_node; + loop_p loop; + + /* We can not use loop/bb node access macros because of potential + checking and because the nodes are not initialized enough + yet. */ + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop) + if (ira_loop_nodes[i].regno_allocno_map != NULL) + { + ira_loop_nodes[i].children = NULL; + ira_loop_nodes[i].subloops = NULL; + } + FOR_EACH_BB (bb) + { + bb_node = &ira_bb_nodes[bb->index]; + bb_node->bb = bb; + bb_node->loop = NULL; + bb_node->subloops = NULL; + bb_node->children = NULL; + bb_node->subloop_next = NULL; + bb_node->next = NULL; + for (parent = bb->loop_father; + parent != NULL; + parent = loop_outer (parent)) + if (ira_loop_nodes[parent->num].regno_allocno_map != NULL) + break; + add_loop_to_tree (parent); + loop_node = &ira_loop_nodes[parent->num]; + bb_node->next = loop_node->children; + bb_node->parent = loop_node; + loop_node->children = bb_node; + } + ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (ira_loops.tree_root->num); + ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0); + ira_assert (ira_loop_tree_root->regno_allocno_map != NULL); +} + + + +/* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop + tree nodes. */ +static void +rebuild_regno_allocno_maps (void) +{ + unsigned int l; + int max_regno, regno; + ira_allocno_t a; + ira_loop_tree_node_t loop_tree_node; + loop_p loop; + ira_allocno_iterator ai; + + max_regno = max_reg_num (); + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, l, loop) + if (ira_loop_nodes[l].regno_allocno_map != NULL) + { + ira_free (ira_loop_nodes[l].regno_allocno_map); + ira_loop_nodes[l].regno_allocno_map + = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) + * max_regno); + memset (ira_loop_nodes[l].regno_allocno_map, 0, + sizeof (ira_allocno_t) * max_regno); + } + ira_free (ira_regno_allocno_map); + ira_regno_allocno_map + = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t)); + memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t)); + FOR_EACH_ALLOCNO (a, ai) + { + if (ALLOCNO_CAP_MEMBER (a) != NULL) + /* Caps are not in the regno allocno maps. */ + continue; + regno = ALLOCNO_REGNO (a); + loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); + ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; + ira_regno_allocno_map[regno] = a; + if (loop_tree_node->regno_allocno_map[regno] == NULL) + /* Remember that we can create temporary allocnos to break + cycles in register shuffle. */ + loop_tree_node->regno_allocno_map[regno] = a; + } +} + + +/* Pools for allocnos, allocno live ranges and objects. */ +static alloc_pool allocno_pool, live_range_pool, object_pool; + +/* Vec containing references to all created allocnos. It is a + container of array allocnos. */ +static VEC(ira_allocno_t,heap) *allocno_vec; + +/* Vec containing references to all created ira_objects. It is a + container of ira_object_id_map. */ +static VEC(ira_object_t,heap) *ira_object_id_map_vec; + +/* Initialize data concerning allocnos. */ +static void +initiate_allocnos (void) +{ + live_range_pool + = create_alloc_pool ("live ranges", + sizeof (struct live_range), 100); + allocno_pool + = create_alloc_pool ("allocnos", sizeof (struct ira_allocno), 100); + object_pool + = create_alloc_pool ("objects", sizeof (struct ira_object), 100); + allocno_vec = VEC_alloc (ira_allocno_t, heap, max_reg_num () * 2); + ira_allocnos = NULL; + ira_allocnos_num = 0; + ira_objects_num = 0; + ira_object_id_map_vec + = VEC_alloc (ira_object_t, heap, max_reg_num () * 2); + ira_object_id_map = NULL; + ira_regno_allocno_map + = (ira_allocno_t *) ira_allocate (max_reg_num () * sizeof (ira_allocno_t)); + memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t)); +} + +/* Create and return an object corresponding to a new allocno A. */ +static ira_object_t +ira_create_object (ira_allocno_t a, int subword) +{ + enum reg_class cover_class = ALLOCNO_COVER_CLASS (a); + ira_object_t obj = (ira_object_t) pool_alloc (object_pool); + + OBJECT_ALLOCNO (obj) = a; + OBJECT_SUBWORD (obj) = subword; + OBJECT_CONFLICT_ID (obj) = ira_objects_num; + OBJECT_CONFLICT_VEC_P (obj) = false; + OBJECT_CONFLICT_ARRAY (obj) = NULL; + OBJECT_NUM_CONFLICTS (obj) = 0; + COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs); + COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs); + IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), + reg_class_contents[cover_class]); + IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), + reg_class_contents[cover_class]); + OBJECT_MIN (obj) = INT_MAX; + OBJECT_MAX (obj) = -1; + OBJECT_LIVE_RANGES (obj) = NULL; + + VEC_safe_push (ira_object_t, heap, ira_object_id_map_vec, obj); + ira_object_id_map + = VEC_address (ira_object_t, ira_object_id_map_vec); + ira_objects_num = VEC_length (ira_object_t, ira_object_id_map_vec); + + return obj; +} + +/* Create and return the allocno corresponding to REGNO in + LOOP_TREE_NODE. Add the allocno to the list of allocnos with the + same regno if CAP_P is FALSE. */ +ira_allocno_t +ira_create_allocno (int regno, bool cap_p, ira_loop_tree_node_t loop_tree_node) +{ + ira_allocno_t a; + + a = (ira_allocno_t) pool_alloc (allocno_pool); + ALLOCNO_REGNO (a) = regno; + ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node; + if (! cap_p) + { + ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno]; + ira_regno_allocno_map[regno] = a; + if (loop_tree_node->regno_allocno_map[regno] == NULL) + /* Remember that we can create temporary allocnos to break + cycles in register shuffle on region borders (see + ira-emit.c). */ + loop_tree_node->regno_allocno_map[regno] = a; + } + ALLOCNO_CAP (a) = NULL; + ALLOCNO_CAP_MEMBER (a) = NULL; + ALLOCNO_NUM (a) = ira_allocnos_num; + bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a)); + ALLOCNO_NREFS (a) = 0; + ALLOCNO_FREQ (a) = 0; + ALLOCNO_HARD_REGNO (a) = -1; + ALLOCNO_CALL_FREQ (a) = 0; + ALLOCNO_CALLS_CROSSED_NUM (a) = 0; +#ifdef STACK_REGS + ALLOCNO_NO_STACK_REG_P (a) = false; + ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false; +#endif + ALLOCNO_MEM_OPTIMIZED_DEST (a) = NULL; + ALLOCNO_MEM_OPTIMIZED_DEST_P (a) = false; + ALLOCNO_SOMEWHERE_RENAMED_P (a) = false; + ALLOCNO_CHILD_RENAMED_P (a) = false; + ALLOCNO_DONT_REASSIGN_P (a) = false; + ALLOCNO_BAD_SPILL_P (a) = false; + ALLOCNO_IN_GRAPH_P (a) = false; + ALLOCNO_ASSIGNED_P (a) = false; + ALLOCNO_MAY_BE_SPILLED_P (a) = false; + ALLOCNO_SPLAY_REMOVED_P (a) = false; + ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno)); + ALLOCNO_COPIES (a) = NULL; + ALLOCNO_HARD_REG_COSTS (a) = NULL; + ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL; + ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; + ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; + ALLOCNO_LEFT_CONFLICTS_SIZE (a) = -1; + ALLOCNO_COVER_CLASS (a) = NO_REGS; + ALLOCNO_UPDATED_COVER_CLASS_COST (a) = 0; + ALLOCNO_COVER_CLASS_COST (a) = 0; + ALLOCNO_MEMORY_COST (a) = 0; + ALLOCNO_UPDATED_MEMORY_COST (a) = 0; + ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0; + ALLOCNO_NEXT_BUCKET_ALLOCNO (a) = NULL; + ALLOCNO_PREV_BUCKET_ALLOCNO (a) = NULL; + ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = a; + ALLOCNO_NEXT_COALESCED_ALLOCNO (a) = a; + ALLOCNO_NUM_OBJECTS (a) = 0; + + VEC_safe_push (ira_allocno_t, heap, allocno_vec, a); + ira_allocnos = VEC_address (ira_allocno_t, allocno_vec); + ira_allocnos_num = VEC_length (ira_allocno_t, allocno_vec); + + return a; +} + +/* Set up cover class for A and update its conflict hard registers. */ +void +ira_set_allocno_cover_class (ira_allocno_t a, enum reg_class cover_class) +{ + ALLOCNO_COVER_CLASS (a) = cover_class; +} + +/* Determine the number of objects we should associate with allocno A + and allocate them. */ +void +ira_create_allocno_objects (ira_allocno_t a) +{ + enum machine_mode mode = ALLOCNO_MODE (a); + enum reg_class cover_class = ALLOCNO_COVER_CLASS (a); + int n = ira_reg_class_nregs[cover_class][mode]; + int i; + + if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2) + n = 1; + + ALLOCNO_NUM_OBJECTS (a) = n; + for (i = 0; i < n; i++) + ALLOCNO_OBJECT (a, i) = ira_create_object (a, i); +} + +/* For each allocno, set ALLOCNO_NUM_OBJECTS and create the + ALLOCNO_OBJECT structures. This must be called after the cover + classes are known. */ +static void +create_allocno_objects (void) +{ + ira_allocno_t a; + ira_allocno_iterator ai; + + FOR_EACH_ALLOCNO (a, ai) + ira_create_allocno_objects (a); +} + +/* Merge hard register conflict information for all objects associated with + allocno TO into the corresponding objects associated with FROM. + If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */ +static void +merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to, + bool total_only) +{ + int i; + gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from)); + for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++) + { + ira_object_t from_obj = ALLOCNO_OBJECT (from, i); + ira_object_t to_obj = ALLOCNO_OBJECT (to, i); + if (!total_only) + IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj), + OBJECT_CONFLICT_HARD_REGS (from_obj)); + IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj), + OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj)); + } +#ifdef STACK_REGS + if (!total_only && ALLOCNO_NO_STACK_REG_P (from)) + ALLOCNO_NO_STACK_REG_P (to) = true; + if (ALLOCNO_TOTAL_NO_STACK_REG_P (from)) + ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true; +#endif +} + +/* Update hard register conflict information for all objects associated with + A to include the regs in SET. */ +void +ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set) +{ + ira_allocno_object_iterator i; + ira_object_t obj; + FOR_EACH_ALLOCNO_OBJECT (a, obj, i) + { + IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set); + IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set); + } +} + +/* Return TRUE if a conflict vector with NUM elements is more + profitable than a conflict bit vector for OBJ. */ +bool +ira_conflict_vector_profitable_p (ira_object_t obj, int num) +{ + int nw; + int max = OBJECT_MAX (obj); + int min = OBJECT_MIN (obj); + + if (max < min) + /* We prefer a bit vector in such case because it does not result + in allocation. */ + return false; + + nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS; + return (2 * sizeof (ira_object_t) * (num + 1) + < 3 * nw * sizeof (IRA_INT_TYPE)); +} + +/* Allocates and initialize the conflict vector of OBJ for NUM + conflicting objects. */ +void +ira_allocate_conflict_vec (ira_object_t obj, int num) +{ + int size; + ira_object_t *vec; + + ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); + num++; /* for NULL end marker */ + size = sizeof (ira_object_t) * num; + OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); + vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj); + vec[0] = NULL; + OBJECT_NUM_CONFLICTS (obj) = 0; + OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; + OBJECT_CONFLICT_VEC_P (obj) = true; +} + +/* Allocate and initialize the conflict bit vector of OBJ. */ +static void +allocate_conflict_bit_vec (ira_object_t obj) +{ + unsigned int size; + + ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL); + size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS) + / IRA_INT_BITS * sizeof (IRA_INT_TYPE)); + OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size); + memset (OBJECT_CONFLICT_ARRAY (obj), 0, size); + OBJECT_CONFLICT_ARRAY_SIZE (obj) = size; + OBJECT_CONFLICT_VEC_P (obj) = false; +} + +/* Allocate and initialize the conflict vector or conflict bit vector + of OBJ for NUM conflicting allocnos whatever is more profitable. */ +void +ira_allocate_object_conflicts (ira_object_t obj, int num) +{ + if (ira_conflict_vector_profitable_p (obj, num)) + ira_allocate_conflict_vec (obj, num); + else + allocate_conflict_bit_vec (obj); +} + +/* Add OBJ2 to the conflicts of OBJ1. */ +static void +add_to_conflicts (ira_object_t obj1, ira_object_t obj2) +{ + int num; + unsigned int size; + + if (OBJECT_CONFLICT_VEC_P (obj1)) + { + ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1); + int curr_num = OBJECT_NUM_CONFLICTS (obj1); + num = curr_num + 2; + if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t)) + { + ira_object_t *newvec; + size = (3 * num / 2 + 1) * sizeof (ira_allocno_t); + newvec = (ira_object_t *) ira_allocate (size); + memcpy (newvec, vec, curr_num * sizeof (ira_object_t)); + ira_free (vec); + vec = newvec; + OBJECT_CONFLICT_ARRAY (obj1) = vec; + OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; + } + vec[num - 2] = obj2; + vec[num - 1] = NULL; + OBJECT_NUM_CONFLICTS (obj1)++; + } + else + { + int nw, added_head_nw, id; + IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1); + + id = OBJECT_CONFLICT_ID (obj2); + if (OBJECT_MIN (obj1) > id) + { + /* Expand head of the bit vector. */ + added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1; + nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; + size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE); + if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size) + { + memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), + vec, nw * sizeof (IRA_INT_TYPE)); + memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE)); + } + else + { + size + = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE); + vec = (IRA_INT_TYPE *) ira_allocate (size); + memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE), + OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE)); + memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE)); + memset ((char *) vec + + (nw + added_head_nw) * sizeof (IRA_INT_TYPE), + 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE)); + ira_free (OBJECT_CONFLICT_ARRAY (obj1)); + OBJECT_CONFLICT_ARRAY (obj1) = vec; + OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; + } + OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS; + } + else if (OBJECT_MAX (obj1) < id) + { + nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1; + size = nw * sizeof (IRA_INT_TYPE); + if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size) + { + /* Expand tail of the bit vector. */ + size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE); + vec = (IRA_INT_TYPE *) ira_allocate (size); + memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1)); + memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1), + 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1)); + ira_free (OBJECT_CONFLICT_ARRAY (obj1)); + OBJECT_CONFLICT_ARRAY (obj1) = vec; + OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size; + } + OBJECT_MAX (obj1) = id; + } + SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1)); + } +} + +/* Add OBJ1 to the conflicts of OBJ2 and vice versa. */ +static void +ira_add_conflict (ira_object_t obj1, ira_object_t obj2) +{ + add_to_conflicts (obj1, obj2); + add_to_conflicts (obj2, obj1); +} + +/* Clear all conflicts of OBJ. */ +static void +clear_conflicts (ira_object_t obj) +{ + if (OBJECT_CONFLICT_VEC_P (obj)) + { + OBJECT_NUM_CONFLICTS (obj) = 0; + OBJECT_CONFLICT_VEC (obj)[0] = NULL; + } + else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0) + { + int nw; + + nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1; + memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE)); + } +} + +/* The array used to find duplications in conflict vectors of + allocnos. */ +static int *conflict_check; + +/* The value used to mark allocation presence in conflict vector of + the current allocno. */ +static int curr_conflict_check_tick; + +/* Remove duplications in conflict vector of OBJ. */ +static void +compress_conflict_vec (ira_object_t obj) +{ + ira_object_t *vec, conflict_obj; + int i, j; + + ira_assert (OBJECT_CONFLICT_VEC_P (obj)); + vec = OBJECT_CONFLICT_VEC (obj); + curr_conflict_check_tick++; + for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++) + { + int id = OBJECT_CONFLICT_ID (conflict_obj); + if (conflict_check[id] != curr_conflict_check_tick) + { + conflict_check[id] = curr_conflict_check_tick; + vec[j++] = conflict_obj; + } + } + OBJECT_NUM_CONFLICTS (obj) = j; + vec[j] = NULL; +} + +/* Remove duplications in conflict vectors of all allocnos. */ +static void +compress_conflict_vecs (void) +{ + ira_object_t obj; + ira_object_iterator oi; + + conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num); + memset (conflict_check, 0, sizeof (int) * ira_objects_num); + curr_conflict_check_tick = 0; + FOR_EACH_OBJECT (obj, oi) + { + if (OBJECT_CONFLICT_VEC_P (obj)) + compress_conflict_vec (obj); + } + ira_free (conflict_check); +} + +/* This recursive function outputs allocno A and if it is a cap the + function outputs its members. */ +void +ira_print_expanded_allocno (ira_allocno_t a) +{ + basic_block bb; + + fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); + if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL) + fprintf (ira_dump_file, ",b%d", bb->index); + else + fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num); + if (ALLOCNO_CAP_MEMBER (a) != NULL) + { + fprintf (ira_dump_file, ":"); + ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a)); + } + fprintf (ira_dump_file, ")"); +} + +/* Create and return the cap representing allocno A in the + parent loop. */ +static ira_allocno_t +create_cap_allocno (ira_allocno_t a) +{ + ira_allocno_t cap; + ira_loop_tree_node_t parent; + enum reg_class cover_class; + + ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a + && ALLOCNO_NEXT_COALESCED_ALLOCNO (a) == a); + parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; + cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent); + ALLOCNO_MODE (cap) = ALLOCNO_MODE (a); + cover_class = ALLOCNO_COVER_CLASS (a); + ira_set_allocno_cover_class (cap, cover_class); + ira_create_allocno_objects (cap); + ALLOCNO_AVAILABLE_REGS_NUM (cap) = ALLOCNO_AVAILABLE_REGS_NUM (a); + ALLOCNO_CAP_MEMBER (cap) = a; + ALLOCNO_CAP (a) = cap; + ALLOCNO_COVER_CLASS_COST (cap) = ALLOCNO_COVER_CLASS_COST (a); + ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a); + ira_allocate_and_copy_costs + (&ALLOCNO_HARD_REG_COSTS (cap), cover_class, ALLOCNO_HARD_REG_COSTS (a)); + ira_allocate_and_copy_costs + (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), cover_class, + ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); + ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a); + ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a); + ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a); + ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a); + + merge_hard_reg_conflicts (a, cap, false); + + ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a); + if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) + { + fprintf (ira_dump_file, " Creating cap "); + ira_print_expanded_allocno (cap); + fprintf (ira_dump_file, "\n"); + } + return cap; +} + +/* Create and return a live range for OBJECT with given attributes. */ +live_range_t +ira_create_live_range (ira_object_t obj, int start, int finish, + live_range_t next) +{ + live_range_t p; + + p = (live_range_t) pool_alloc (live_range_pool); + p->object = obj; + p->start = start; + p->finish = finish; + p->next = next; + return p; +} + +/* Create a new live range for OBJECT and queue it at the head of its + live range list. */ +void +ira_add_live_range_to_object (ira_object_t object, int start, int finish) +{ + live_range_t p; + p = ira_create_live_range (object, start, finish, + OBJECT_LIVE_RANGES (object)); + OBJECT_LIVE_RANGES (object) = p; +} + +/* Copy allocno live range R and return the result. */ +static live_range_t +copy_live_range (live_range_t r) +{ + live_range_t p; + + p = (live_range_t) pool_alloc (live_range_pool); + *p = *r; + return p; +} + +/* Copy allocno live range list given by its head R and return the + result. */ +live_range_t +ira_copy_live_range_list (live_range_t r) +{ + live_range_t p, first, last; + + if (r == NULL) + return NULL; + for (first = last = NULL; r != NULL; r = r->next) + { + p = copy_live_range (r); + if (first == NULL) + first = p; + else + last->next = p; + last = p; + } + return first; +} + +/* Merge ranges R1 and R2 and returns the result. The function + maintains the order of ranges and tries to minimize number of the + result ranges. */ +live_range_t +ira_merge_live_ranges (live_range_t r1, live_range_t r2) +{ + live_range_t first, last, temp; + + if (r1 == NULL) + return r2; + if (r2 == NULL) + return r1; + for (first = last = NULL; r1 != NULL && r2 != NULL;) + { + if (r1->start < r2->start) + { + temp = r1; + r1 = r2; + r2 = temp; + } + if (r1->start <= r2->finish + 1) + { + /* Intersected ranges: merge r1 and r2 into r1. */ + r1->start = r2->start; + if (r1->finish < r2->finish) + r1->finish = r2->finish; + temp = r2; + r2 = r2->next; + ira_finish_live_range (temp); + if (r2 == NULL) + { + /* To try to merge with subsequent ranges in r1. */ + r2 = r1->next; + r1->next = NULL; + } + } + else + { + /* Add r1 to the result. */ + if (first == NULL) + first = last = r1; + else + { + last->next = r1; + last = r1; + } + r1 = r1->next; + if (r1 == NULL) + { + /* To try to merge with subsequent ranges in r2. */ + r1 = r2->next; + r2->next = NULL; + } + } + } + if (r1 != NULL) + { + if (first == NULL) + first = r1; + else + last->next = r1; + ira_assert (r1->next == NULL); + } + else if (r2 != NULL) + { + if (first == NULL) + first = r2; + else + last->next = r2; + ira_assert (r2->next == NULL); + } + else + { + ira_assert (last->next == NULL); + } + return first; +} + +/* Return TRUE if live ranges R1 and R2 intersect. */ +bool +ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2) +{ + /* Remember the live ranges are always kept ordered. */ + while (r1 != NULL && r2 != NULL) + { + if (r1->start > r2->finish) + r1 = r1->next; + else if (r2->start > r1->finish) + r2 = r2->next; + else + return true; + } + return false; +} + +/* Free allocno live range R. */ +void +ira_finish_live_range (live_range_t r) +{ + pool_free (live_range_pool, r); +} + +/* Free list of allocno live ranges starting with R. */ +void +ira_finish_live_range_list (live_range_t r) +{ + live_range_t next_r; + + for (; r != NULL; r = next_r) + { + next_r = r->next; + ira_finish_live_range (r); + } +} + +/* Free updated register costs of allocno A. */ +void +ira_free_allocno_updated_costs (ira_allocno_t a) +{ + enum reg_class cover_class; + + cover_class = ALLOCNO_COVER_CLASS (a); + if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), cover_class); + ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL; + if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), + cover_class); + ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL; +} + +/* Free the memory allocated for allocno A. */ +static void +finish_allocno (ira_allocno_t a) +{ + enum reg_class cover_class = ALLOCNO_COVER_CLASS (a); + ira_object_t obj; + ira_allocno_object_iterator oi; + + FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) + { + ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj)); + ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL; + if (OBJECT_CONFLICT_ARRAY (obj) != NULL) + ira_free (OBJECT_CONFLICT_ARRAY (obj)); + pool_free (object_pool, obj); + } + + ira_allocnos[ALLOCNO_NUM (a)] = NULL; + if (ALLOCNO_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), cover_class); + if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), cover_class); + if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), cover_class); + if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL) + ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a), + cover_class); + pool_free (allocno_pool, a); +} + +/* Free the memory allocated for all allocnos. */ +static void +finish_allocnos (void) +{ + ira_allocno_t a; + ira_allocno_iterator ai; + + FOR_EACH_ALLOCNO (a, ai) + finish_allocno (a); + ira_free (ira_regno_allocno_map); + VEC_free (ira_object_t, heap, ira_object_id_map_vec); + VEC_free (ira_allocno_t, heap, allocno_vec); + free_alloc_pool (allocno_pool); + free_alloc_pool (object_pool); + free_alloc_pool (live_range_pool); +} + + + +/* Pools for copies. */ +static alloc_pool copy_pool; + +/* Vec containing references to all created copies. It is a + container of array ira_copies. */ +static VEC(ira_copy_t,heap) *copy_vec; + +/* The function initializes data concerning allocno copies. */ +static void +initiate_copies (void) +{ + copy_pool + = create_alloc_pool ("copies", sizeof (struct ira_allocno_copy), 100); + copy_vec = VEC_alloc (ira_copy_t, heap, get_max_uid ()); + ira_copies = NULL; + ira_copies_num = 0; +} + +/* Return copy connecting A1 and A2 and originated from INSN of + LOOP_TREE_NODE if any. */ +static ira_copy_t +find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx insn, + ira_loop_tree_node_t loop_tree_node) +{ + ira_copy_t cp, next_cp; + ira_allocno_t another_a; + + for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp) + { + if (cp->first == a1) + { + next_cp = cp->next_first_allocno_copy; + another_a = cp->second; + } + else if (cp->second == a1) + { + next_cp = cp->next_second_allocno_copy; + another_a = cp->first; + } + else + gcc_unreachable (); + if (another_a == a2 && cp->insn == insn + && cp->loop_tree_node == loop_tree_node) + return cp; + } + return NULL; +} + +/* Create and return copy with given attributes LOOP_TREE_NODE, FIRST, + SECOND, FREQ, CONSTRAINT_P, and INSN. */ +ira_copy_t +ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq, + bool constraint_p, rtx insn, + ira_loop_tree_node_t loop_tree_node) +{ + ira_copy_t cp; + + cp = (ira_copy_t) pool_alloc (copy_pool); + cp->num = ira_copies_num; + cp->first = first; + cp->second = second; + cp->freq = freq; + cp->constraint_p = constraint_p; + cp->insn = insn; + cp->loop_tree_node = loop_tree_node; + VEC_safe_push (ira_copy_t, heap, copy_vec, cp); + ira_copies = VEC_address (ira_copy_t, copy_vec); + ira_copies_num = VEC_length (ira_copy_t, copy_vec); + return cp; +} + +/* Attach a copy CP to allocnos involved into the copy. */ +void +ira_add_allocno_copy_to_list (ira_copy_t cp) +{ + ira_allocno_t first = cp->first, second = cp->second; + + cp->prev_first_allocno_copy = NULL; + cp->prev_second_allocno_copy = NULL; + cp->next_first_allocno_copy = ALLOCNO_COPIES (first); + if (cp->next_first_allocno_copy != NULL) + { + if (cp->next_first_allocno_copy->first == first) + cp->next_first_allocno_copy->prev_first_allocno_copy = cp; + else + cp->next_first_allocno_copy->prev_second_allocno_copy = cp; + } + cp->next_second_allocno_copy = ALLOCNO_COPIES (second); + if (cp->next_second_allocno_copy != NULL) + { + if (cp->next_second_allocno_copy->second == second) + cp->next_second_allocno_copy->prev_second_allocno_copy = cp; + else + cp->next_second_allocno_copy->prev_first_allocno_copy = cp; + } + ALLOCNO_COPIES (first) = cp; + ALLOCNO_COPIES (second) = cp; +} + +/* Make a copy CP a canonical copy where number of the + first allocno is less than the second one. */ +void +ira_swap_allocno_copy_ends_if_necessary (ira_copy_t cp) +{ + ira_allocno_t temp; + ira_copy_t temp_cp; + + if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second)) + return; + + temp = cp->first; + cp->first = cp->second; + cp->second = temp; + + temp_cp = cp->prev_first_allocno_copy; + cp->prev_first_allocno_copy = cp->prev_second_allocno_copy; + cp->prev_second_allocno_copy = temp_cp; + + temp_cp = cp->next_first_allocno_copy; + cp->next_first_allocno_copy = cp->next_second_allocno_copy; + cp->next_second_allocno_copy = temp_cp; +} + +/* Create (or update frequency if the copy already exists) and return + the copy of allocnos FIRST and SECOND with frequency FREQ + corresponding to move insn INSN (if any) and originated from + LOOP_TREE_NODE. */ +ira_copy_t +ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq, + bool constraint_p, rtx insn, + ira_loop_tree_node_t loop_tree_node) +{ + ira_copy_t cp; + + if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL) + { + cp->freq += freq; + return cp; + } + cp = ira_create_copy (first, second, freq, constraint_p, insn, + loop_tree_node); + ira_assert (first != NULL && second != NULL); + ira_add_allocno_copy_to_list (cp); + ira_swap_allocno_copy_ends_if_necessary (cp); + return cp; +} + +/* Print info about copy CP into file F. */ +static void +print_copy (FILE *f, ira_copy_t cp) +{ + fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num, + ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first), + ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq, + cp->insn != NULL + ? "move" : cp->constraint_p ? "constraint" : "shuffle"); +} + +/* Print info about copy CP into stderr. */ +void +ira_debug_copy (ira_copy_t cp) +{ + print_copy (stderr, cp); +} + +/* Print info about all copies into file F. */ +static void +print_copies (FILE *f) +{ + ira_copy_t cp; + ira_copy_iterator ci; + + FOR_EACH_COPY (cp, ci) + print_copy (f, cp); +} + +/* Print info about all copies into stderr. */ +void +ira_debug_copies (void) +{ + print_copies (stderr); +} + +/* Print info about copies involving allocno A into file F. */ +static void +print_allocno_copies (FILE *f, ira_allocno_t a) +{ + ira_allocno_t another_a; + ira_copy_t cp, next_cp; + + fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); + for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp) + { + if (cp->first == a) + { + next_cp = cp->next_first_allocno_copy; + another_a = cp->second; + } + else if (cp->second == a) + { + next_cp = cp->next_second_allocno_copy; + another_a = cp->first; + } + else + gcc_unreachable (); + fprintf (f, " cp%d:a%d(r%d)@%d", cp->num, + ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq); + } + fprintf (f, "\n"); +} + +/* Print info about copies involving allocno A into stderr. */ +void +ira_debug_allocno_copies (ira_allocno_t a) +{ + print_allocno_copies (stderr, a); +} + +/* The function frees memory allocated for copy CP. */ +static void +finish_copy (ira_copy_t cp) +{ + pool_free (copy_pool, cp); +} + + +/* Free memory allocated for all copies. */ +static void +finish_copies (void) +{ + ira_copy_t cp; + ira_copy_iterator ci; + + FOR_EACH_COPY (cp, ci) + finish_copy (cp); + VEC_free (ira_copy_t, heap, copy_vec); + free_alloc_pool (copy_pool); +} + + + +/* Pools for cost vectors. It is defined only for cover classes. */ +static alloc_pool cost_vector_pool[N_REG_CLASSES]; + +/* The function initiates work with hard register cost vectors. It + creates allocation pool for each cover class. */ +static void +initiate_cost_vectors (void) +{ + int i; + enum reg_class cover_class; + + for (i = 0; i < ira_reg_class_cover_size; i++) + { + cover_class = ira_reg_class_cover[i]; + cost_vector_pool[cover_class] + = create_alloc_pool ("cost vectors", + sizeof (int) + * ira_class_hard_regs_num[cover_class], + 100); + } +} + +/* Allocate and return a cost vector VEC for COVER_CLASS. */ +int * +ira_allocate_cost_vector (enum reg_class cover_class) +{ + return (int *) pool_alloc (cost_vector_pool[cover_class]); +} + +/* Free a cost vector VEC for COVER_CLASS. */ +void +ira_free_cost_vector (int *vec, enum reg_class cover_class) +{ + ira_assert (vec != NULL); + pool_free (cost_vector_pool[cover_class], vec); +} + +/* Finish work with hard register cost vectors. Release allocation + pool for each cover class. */ +static void +finish_cost_vectors (void) +{ + int i; + enum reg_class cover_class; + + for (i = 0; i < ira_reg_class_cover_size; i++) + { + cover_class = ira_reg_class_cover[i]; + free_alloc_pool (cost_vector_pool[cover_class]); + } +} + + + +/* The current loop tree node and its regno allocno map. */ +ira_loop_tree_node_t ira_curr_loop_tree_node; +ira_allocno_t *ira_curr_regno_allocno_map; + +/* This recursive function traverses loop tree with root LOOP_NODE + calling non-null functions PREORDER_FUNC and POSTORDER_FUNC + correspondingly in preorder and postorder. The function sets up + IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P, + basic block nodes of LOOP_NODE is also processed (before its + subloop nodes). */ +void +ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node, + void (*preorder_func) (ira_loop_tree_node_t), + void (*postorder_func) (ira_loop_tree_node_t)) +{ + ira_loop_tree_node_t subloop_node; + + ira_assert (loop_node->bb == NULL); + ira_curr_loop_tree_node = loop_node; + ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; + + if (preorder_func != NULL) + (*preorder_func) (loop_node); + + if (bb_p) + for (subloop_node = loop_node->children; + subloop_node != NULL; + subloop_node = subloop_node->next) + if (subloop_node->bb != NULL) + { + if (preorder_func != NULL) + (*preorder_func) (subloop_node); + + if (postorder_func != NULL) + (*postorder_func) (subloop_node); + } + + for (subloop_node = loop_node->subloops; + subloop_node != NULL; + subloop_node = subloop_node->subloop_next) + { + ira_assert (subloop_node->bb == NULL); + ira_traverse_loop_tree (bb_p, subloop_node, + preorder_func, postorder_func); + } + + ira_curr_loop_tree_node = loop_node; + ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map; + + if (postorder_func != NULL) + (*postorder_func) (loop_node); +} + + + +/* The basic block currently being processed. */ +static basic_block curr_bb; + +/* This recursive function creates allocnos corresponding to + pseudo-registers containing in X. True OUTPUT_P means that X is + a lvalue. */ +static void +create_insn_allocnos (rtx x, bool output_p) +{ + int i, j; + const char *fmt; + enum rtx_code code = GET_CODE (x); + + if (code == REG) + { + int regno; + + if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER) + { + ira_allocno_t a; + + if ((a = ira_curr_regno_allocno_map[regno]) == NULL) + a = ira_create_allocno (regno, false, ira_curr_loop_tree_node); + + ALLOCNO_NREFS (a)++; + ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb); + if (output_p) + bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno); + } + return; + } + else if (code == SET) + { + create_insn_allocnos (SET_DEST (x), true); + create_insn_allocnos (SET_SRC (x), false); + return; + } + else if (code == CLOBBER) + { + create_insn_allocnos (XEXP (x, 0), true); + return; + } + else if (code == MEM) + { + create_insn_allocnos (XEXP (x, 0), false); + return; + } + else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC || + code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY) + { + create_insn_allocnos (XEXP (x, 0), true); + create_insn_allocnos (XEXP (x, 0), false); + return; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + create_insn_allocnos (XEXP (x, i), output_p); + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + create_insn_allocnos (XVECEXP (x, i, j), output_p); + } +} + +/* Create allocnos corresponding to pseudo-registers living in the + basic block represented by the corresponding loop tree node + BB_NODE. */ +static void +create_bb_allocnos (ira_loop_tree_node_t bb_node) +{ + basic_block bb; + rtx insn; + unsigned int i; + bitmap_iterator bi; + + curr_bb = bb = bb_node->bb; + ira_assert (bb != NULL); + FOR_BB_INSNS_REVERSE (bb, insn) + if (NONDEBUG_INSN_P (insn)) + create_insn_allocnos (PATTERN (insn), false); + /* It might be a allocno living through from one subloop to + another. */ + EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (bb), FIRST_PSEUDO_REGISTER, i, bi) + if (ira_curr_regno_allocno_map[i] == NULL) + ira_create_allocno (i, false, ira_curr_loop_tree_node); +} + +/* Create allocnos corresponding to pseudo-registers living on edge E + (a loop entry or exit). Also mark the allocnos as living on the + loop border. */ +static void +create_loop_allocnos (edge e) +{ + unsigned int i; + bitmap live_in_regs, border_allocnos; + bitmap_iterator bi; + ira_loop_tree_node_t parent; + + live_in_regs = DF_LR_IN (e->dest); + border_allocnos = ira_curr_loop_tree_node->border_allocnos; + EXECUTE_IF_SET_IN_REG_SET (DF_LR_OUT (e->src), + FIRST_PSEUDO_REGISTER, i, bi) + if (bitmap_bit_p (live_in_regs, i)) + { + if (ira_curr_regno_allocno_map[i] == NULL) + { + /* The order of creations is important for right + ira_regno_allocno_map. */ + if ((parent = ira_curr_loop_tree_node->parent) != NULL + && parent->regno_allocno_map[i] == NULL) + ira_create_allocno (i, false, parent); + ira_create_allocno (i, false, ira_curr_loop_tree_node); + } + bitmap_set_bit (border_allocnos, + ALLOCNO_NUM (ira_curr_regno_allocno_map[i])); + } +} + +/* Create allocnos corresponding to pseudo-registers living in loop + represented by the corresponding loop tree node LOOP_NODE. This + function is called by ira_traverse_loop_tree. */ +static void +create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node) +{ + if (loop_node->bb != NULL) + create_bb_allocnos (loop_node); + else if (loop_node != ira_loop_tree_root) + { + int i; + edge_iterator ei; + edge e; + VEC (edge, heap) *edges; + + FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds) + if (e->src != loop_node->loop->latch) + create_loop_allocnos (e); + + edges = get_loop_exit_edges (loop_node->loop); + FOR_EACH_VEC_ELT (edge, edges, i, e) + create_loop_allocnos (e); + VEC_free (edge, heap, edges); + } +} + +/* Propagate information about allocnos modified inside the loop given + by its LOOP_TREE_NODE to its parent. */ +static void +propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node) +{ + if (loop_tree_node == ira_loop_tree_root) + return; + ira_assert (loop_tree_node->bb == NULL); + bitmap_ior_into (loop_tree_node->parent->modified_regnos, + loop_tree_node->modified_regnos); +} + +/* Propagate new info about allocno A (see comments about accumulated + info in allocno definition) to the corresponding allocno on upper + loop tree level. So allocnos on upper levels accumulate + information about the corresponding allocnos in nested regions. + The new info means allocno info finally calculated in this + file. */ +static void +propagate_allocno_info (void) +{ + int i; + ira_allocno_t a, parent_a; + ira_loop_tree_node_t parent; + enum reg_class cover_class; + + if (flag_ira_region != IRA_REGION_ALL + && flag_ira_region != IRA_REGION_MIXED) + return; + for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) + for (a = ira_regno_allocno_map[i]; + a != NULL; + a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) + if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL + && (parent_a = parent->regno_allocno_map[i]) != NULL + /* There are no caps yet at this point. So use + border_allocnos to find allocnos for the propagation. */ + && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos, + ALLOCNO_NUM (a))) + { + if (! ALLOCNO_BAD_SPILL_P (a)) + ALLOCNO_BAD_SPILL_P (parent_a) = false; + ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a); + ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a); + ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); + merge_hard_reg_conflicts (a, parent_a, true); + ALLOCNO_CALLS_CROSSED_NUM (parent_a) + += ALLOCNO_CALLS_CROSSED_NUM (a); + ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) + += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); + cover_class = ALLOCNO_COVER_CLASS (a); + ira_assert (cover_class == ALLOCNO_COVER_CLASS (parent_a)); + ira_allocate_and_accumulate_costs + (&ALLOCNO_HARD_REG_COSTS (parent_a), cover_class, + ALLOCNO_HARD_REG_COSTS (a)); + ira_allocate_and_accumulate_costs + (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a), + cover_class, + ALLOCNO_CONFLICT_HARD_REG_COSTS (a)); + ALLOCNO_COVER_CLASS_COST (parent_a) + += ALLOCNO_COVER_CLASS_COST (a); + ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a); + } +} + +/* Create allocnos corresponding to pseudo-registers in the current + function. Traverse the loop tree for this. */ +static void +create_allocnos (void) +{ + /* We need to process BB first to correctly link allocnos by member + next_regno_allocno. */ + ira_traverse_loop_tree (true, ira_loop_tree_root, + create_loop_tree_node_allocnos, NULL); + if (optimize) + ira_traverse_loop_tree (false, ira_loop_tree_root, NULL, + propagate_modified_regnos); +} + + + +/* The page contains function to remove some regions from a separate + register allocation. We remove regions whose separate allocation + will hardly improve the result. As a result we speed up regional + register allocation. */ + +/* The function changes the object in range list given by R to OBJ. */ +static void +change_object_in_range_list (live_range_t r, ira_object_t obj) +{ + for (; r != NULL; r = r->next) + r->object = obj; +} + +/* Move all live ranges associated with allocno FROM to allocno TO. */ +static void +move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) +{ + int i; + int n = ALLOCNO_NUM_OBJECTS (from); + + gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); + + for (i = 0; i < n; i++) + { + ira_object_t from_obj = ALLOCNO_OBJECT (from, i); + ira_object_t to_obj = ALLOCNO_OBJECT (to, i); + live_range_t lr = OBJECT_LIVE_RANGES (from_obj); + + if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) + { + fprintf (ira_dump_file, + " Moving ranges of a%dr%d to a%dr%d: ", + ALLOCNO_NUM (from), ALLOCNO_REGNO (from), + ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); + ira_print_live_range_list (ira_dump_file, lr); + } + change_object_in_range_list (lr, to_obj); + OBJECT_LIVE_RANGES (to_obj) + = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj)); + OBJECT_LIVE_RANGES (from_obj) = NULL; + } +} + +static void +copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to) +{ + int i; + int n = ALLOCNO_NUM_OBJECTS (from); + + gcc_assert (n == ALLOCNO_NUM_OBJECTS (to)); + + for (i = 0; i < n; i++) + { + ira_object_t from_obj = ALLOCNO_OBJECT (from, i); + ira_object_t to_obj = ALLOCNO_OBJECT (to, i); + live_range_t lr = OBJECT_LIVE_RANGES (from_obj); + + if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) + { + fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ", + ALLOCNO_NUM (from), ALLOCNO_REGNO (from), + ALLOCNO_NUM (to), ALLOCNO_REGNO (to)); + ira_print_live_range_list (ira_dump_file, lr); + } + lr = ira_copy_live_range_list (lr); + change_object_in_range_list (lr, to_obj); + OBJECT_LIVE_RANGES (to_obj) + = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj)); + } +} + +/* Return TRUE if NODE represents a loop with low register + pressure. */ +static bool +low_pressure_loop_node_p (ira_loop_tree_node_t node) +{ + int i; + enum reg_class cover_class; + + if (node->bb != NULL) + return false; + + for (i = 0; i < ira_reg_class_cover_size; i++) + { + cover_class = ira_reg_class_cover[i]; + if (node->reg_pressure[cover_class] + > ira_available_class_regs[cover_class]) + return false; + } + return true; +} + +/* Sort loops for marking them for removal. We put already marked + loops first, then less frequent loops next, and then outer loops + next. */ +static int +loop_compare_func (const void *v1p, const void *v2p) +{ + int diff; + ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p; + ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p; + + ira_assert (l1->parent != NULL && l2->parent != NULL); + if (l1->to_remove_p && ! l2->to_remove_p) + return -1; + if (! l1->to_remove_p && l2->to_remove_p) + return 1; + if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0) + return diff; + if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0) + return diff; + /* Make sorting stable. */ + return l1->loop->num - l2->loop->num; +} + + +/* Mark loops which should be removed from regional allocation. We + remove a loop with low register pressure inside another loop with + register pressure. In this case a separate allocation of the loop + hardly helps (for irregular register file architecture it could + help by choosing a better hard register in the loop but we prefer + faster allocation even in this case). We also remove cheap loops + if there are more than IRA_MAX_LOOPS_NUM of them. */ +static void +mark_loops_for_removal (void) +{ + int i, n; + ira_loop_tree_node_t *sorted_loops; + loop_p loop; + + sorted_loops + = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t) + * VEC_length (loop_p, + ira_loops.larray)); + for (n = i = 0; VEC_iterate (loop_p, ira_loops.larray, i, loop); i++) + if (ira_loop_nodes[i].regno_allocno_map != NULL) + { + if (ira_loop_nodes[i].parent == NULL) + { + /* Don't remove the root. */ + ira_loop_nodes[i].to_remove_p = false; + continue; + } + sorted_loops[n++] = &ira_loop_nodes[i]; + ira_loop_nodes[i].to_remove_p + = (low_pressure_loop_node_p (ira_loop_nodes[i].parent) + && low_pressure_loop_node_p (&ira_loop_nodes[i])); + } + qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func); + for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++) + { + sorted_loops[i]->to_remove_p = true; + if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) + fprintf + (ira_dump_file, + " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n", + sorted_loops[i]->loop->num, sorted_loops[i]->loop->header->index, + sorted_loops[i]->loop->header->frequency, + loop_depth (sorted_loops[i]->loop), + low_pressure_loop_node_p (sorted_loops[i]->parent) + && low_pressure_loop_node_p (sorted_loops[i]) + ? "low pressure" : "cheap loop"); + } + ira_free (sorted_loops); +} + +/* Mark all loops but root for removing. */ +static void +mark_all_loops_for_removal (void) +{ + int i; + loop_p loop; + + FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop) + if (ira_loop_nodes[i].regno_allocno_map != NULL) + { + if (ira_loop_nodes[i].parent == NULL) + { + /* Don't remove the root. */ + ira_loop_nodes[i].to_remove_p = false; + continue; + } + ira_loop_nodes[i].to_remove_p = true; + if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) + fprintf + (ira_dump_file, + " Mark loop %d (header %d, freq %d, depth %d) for removal\n", + ira_loop_nodes[i].loop->num, + ira_loop_nodes[i].loop->header->index, + ira_loop_nodes[i].loop->header->frequency, + loop_depth (ira_loop_nodes[i].loop)); + } +} + +/* Definition of vector of loop tree nodes. */ +DEF_VEC_P(ira_loop_tree_node_t); +DEF_VEC_ALLOC_P(ira_loop_tree_node_t, heap); + +/* Vec containing references to all removed loop tree nodes. */ +static VEC(ira_loop_tree_node_t,heap) *removed_loop_vec; + +/* Vec containing references to all children of loop tree nodes. */ +static VEC(ira_loop_tree_node_t,heap) *children_vec; + +/* Remove subregions of NODE if their separate allocation will not + improve the result. */ +static void +remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node) +{ + unsigned int start; + bool remove_p; + ira_loop_tree_node_t subnode; + + remove_p = node->to_remove_p; + if (! remove_p) + VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, node); + start = VEC_length (ira_loop_tree_node_t, children_vec); + for (subnode = node->children; subnode != NULL; subnode = subnode->next) + if (subnode->bb == NULL) + remove_uneccesary_loop_nodes_from_loop_tree (subnode); + else + VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, subnode); + node->children = node->subloops = NULL; + if (remove_p) + { + VEC_safe_push (ira_loop_tree_node_t, heap, removed_loop_vec, node); + return; + } + while (VEC_length (ira_loop_tree_node_t, children_vec) > start) + { + subnode = VEC_pop (ira_loop_tree_node_t, children_vec); + subnode->parent = node; + subnode->next = node->children; + node->children = subnode; + if (subnode->bb == NULL) + { + subnode->subloop_next = node->subloops; + node->subloops = subnode; + } + } +} + +/* Return TRUE if NODE is inside PARENT. */ +static bool +loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent) +{ + for (node = node->parent; node != NULL; node = node->parent) + if (node == parent) + return true; + return false; +} + +/* Sort allocnos according to their order in regno allocno list. */ +static int +regno_allocno_order_compare_func (const void *v1p, const void *v2p) +{ + ira_allocno_t a1 = *(const ira_allocno_t *) v1p; + ira_allocno_t a2 = *(const ira_allocno_t *) v2p; + ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1); + ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2); + + if (loop_is_inside_p (n1, n2)) + return -1; + else if (loop_is_inside_p (n2, n1)) + return 1; + /* If allocnos are equally good, sort by allocno numbers, so that + the results of qsort leave nothing to chance. We put allocnos + with higher number first in the list because it is the original + order for allocnos from loops on the same levels. */ + return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1); +} + +/* This array is used to sort allocnos to restore allocno order in + the regno allocno list. */ +static ira_allocno_t *regno_allocnos; + +/* Restore allocno order for REGNO in the regno allocno list. */ +static void +ira_rebuild_regno_allocno_list (int regno) +{ + int i, n; + ira_allocno_t a; + + for (n = 0, a = ira_regno_allocno_map[regno]; + a != NULL; + a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) + regno_allocnos[n++] = a; + ira_assert (n > 0); + qsort (regno_allocnos, n, sizeof (ira_allocno_t), + regno_allocno_order_compare_func); + for (i = 1; i < n; i++) + ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i]; + ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL; + ira_regno_allocno_map[regno] = regno_allocnos[0]; + if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) + fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno); +} + +/* Propagate info from allocno FROM_A to allocno A. */ +static void +propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a) +{ + enum reg_class cover_class; + + merge_hard_reg_conflicts (from_a, a, false); + ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a); + ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a); + ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a); + ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a); + ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) + += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a); + if (! ALLOCNO_BAD_SPILL_P (from_a)) + ALLOCNO_BAD_SPILL_P (a) = false; + cover_class = ALLOCNO_COVER_CLASS (from_a); + ira_assert (cover_class == ALLOCNO_COVER_CLASS (a)); + ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), cover_class, + ALLOCNO_HARD_REG_COSTS (from_a)); + ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a), + cover_class, + ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a)); + ALLOCNO_COVER_CLASS_COST (a) += ALLOCNO_COVER_CLASS_COST (from_a); + ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a); +} + +/* Remove allocnos from loops removed from the allocation + consideration. */ +static void +remove_unnecessary_allocnos (void) +{ + int regno; + bool merged_p, rebuild_p; + ira_allocno_t a, prev_a, next_a, parent_a; + ira_loop_tree_node_t a_node, parent; + + merged_p = false; + regno_allocnos = NULL; + for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--) + { + rebuild_p = false; + for (prev_a = NULL, a = ira_regno_allocno_map[regno]; + a != NULL; + a = next_a) + { + next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a); + a_node = ALLOCNO_LOOP_TREE_NODE (a); + if (! a_node->to_remove_p) + prev_a = a; + else + { + for (parent = a_node->parent; + (parent_a = parent->regno_allocno_map[regno]) == NULL + && parent->to_remove_p; + parent = parent->parent) + ; + if (parent_a == NULL) + { + /* There are no allocnos with the same regno in + upper region -- just move the allocno to the + upper region. */ + prev_a = a; + ALLOCNO_LOOP_TREE_NODE (a) = parent; + parent->regno_allocno_map[regno] = a; + bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a)); + rebuild_p = true; + } + else + { + /* Remove the allocno and update info of allocno in + the upper region. */ + if (prev_a == NULL) + ira_regno_allocno_map[regno] = next_a; + else + ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a; + move_allocno_live_ranges (a, parent_a); + merged_p = true; + propagate_some_info_from_allocno (parent_a, a); + /* Remove it from the corresponding regno allocno + map to avoid info propagation of subsequent + allocno into this already removed allocno. */ + a_node->regno_allocno_map[regno] = NULL; + finish_allocno (a); + } + } + } + if (rebuild_p) + /* We need to restore the order in regno allocno list. */ + { + if (regno_allocnos == NULL) + regno_allocnos + = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) + * ira_allocnos_num); + ira_rebuild_regno_allocno_list (regno); + } + } + if (merged_p) + ira_rebuild_start_finish_chains (); + if (regno_allocnos != NULL) + ira_free (regno_allocnos); +} + +/* Remove allocnos from all loops but the root. */ +static void +remove_low_level_allocnos (void) +{ + int regno; + bool merged_p, propagate_p; + ira_allocno_t a, top_a; + ira_loop_tree_node_t a_node, parent; + ira_allocno_iterator ai; + + merged_p = false; + FOR_EACH_ALLOCNO (a, ai) + { + a_node = ALLOCNO_LOOP_TREE_NODE (a); + if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL) + continue; + regno = ALLOCNO_REGNO (a); + if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL) + { + ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root; + ira_loop_tree_root->regno_allocno_map[regno] = a; + continue; + } + propagate_p = a_node->parent->regno_allocno_map[regno] == NULL; + /* Remove the allocno and update info of allocno in the upper + region. */ + move_allocno_live_ranges (a, top_a); + merged_p = true; + if (propagate_p) + propagate_some_info_from_allocno (top_a, a); + } + FOR_EACH_ALLOCNO (a, ai) + { + a_node = ALLOCNO_LOOP_TREE_NODE (a); + if (a_node == ira_loop_tree_root) + continue; + parent = a_node->parent; + regno = ALLOCNO_REGNO (a); + if (ALLOCNO_CAP_MEMBER (a) != NULL) + ira_assert (ALLOCNO_CAP (a) != NULL); + else if (ALLOCNO_CAP (a) == NULL) + ira_assert (parent->regno_allocno_map[regno] != NULL); + } + FOR_EACH_ALLOCNO (a, ai) + { + regno = ALLOCNO_REGNO (a); + if (ira_loop_tree_root->regno_allocno_map[regno] == a) + { + ira_object_t obj; + ira_allocno_object_iterator oi; + + ira_regno_allocno_map[regno] = a; + ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL; + ALLOCNO_CAP_MEMBER (a) = NULL; + FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) + COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), + OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)); +#ifdef STACK_REGS + if (ALLOCNO_TOTAL_NO_STACK_REG_P (a)) + ALLOCNO_NO_STACK_REG_P (a) = true; +#endif + } + else + finish_allocno (a); + } + if (merged_p) + ira_rebuild_start_finish_chains (); +} + +/* Remove loops from consideration. We remove all loops except for + root if ALL_P or loops for which a separate allocation will not + improve the result. We have to do this after allocno creation and + their costs and cover class evaluation because only after that the + register pressure can be known and is calculated. */ +static void +remove_unnecessary_regions (bool all_p) +{ + if (all_p) + mark_all_loops_for_removal (); + else + mark_loops_for_removal (); + children_vec + = VEC_alloc (ira_loop_tree_node_t, heap, + last_basic_block + VEC_length (loop_p, ira_loops.larray)); + removed_loop_vec + = VEC_alloc (ira_loop_tree_node_t, heap, + last_basic_block + VEC_length (loop_p, ira_loops.larray)); + remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root) ; + VEC_free (ira_loop_tree_node_t, heap, children_vec); + if (all_p) + remove_low_level_allocnos (); + else + remove_unnecessary_allocnos (); + while (VEC_length (ira_loop_tree_node_t, removed_loop_vec) > 0) + finish_loop_tree_node (VEC_pop (ira_loop_tree_node_t, removed_loop_vec)); + VEC_free (ira_loop_tree_node_t, heap, removed_loop_vec); +} + + + +/* At this point true value of allocno attribute bad_spill_p means + that there is an insn where allocno occurs and where the allocno + can not be used as memory. The function updates the attribute, now + it can be true only for allocnos which can not be used as memory in + an insn and in whose live ranges there is other allocno deaths. + Spilling allocnos with true value will not improve the code because + it will not make other allocnos colorable and additional reloads + for the corresponding pseudo will be generated in reload pass for + each insn it occurs. + + This is a trick mentioned in one classic article of Chaitin etc + which is frequently omitted in other implementations of RA based on + graph coloring. */ +static void +update_bad_spill_attribute (void) +{ + int i; + ira_allocno_t a; + ira_allocno_iterator ai; + ira_allocno_object_iterator aoi; + ira_object_t obj; + live_range_t r; + enum reg_class cover_class; + bitmap_head dead_points[N_REG_CLASSES]; + + for (i = 0; i < ira_reg_class_cover_size; i++) + { + cover_class = ira_reg_class_cover[i]; + bitmap_initialize (&dead_points[cover_class], ®_obstack); + } + FOR_EACH_ALLOCNO (a, ai) + { + cover_class = ALLOCNO_COVER_CLASS (a); + if (cover_class == NO_REGS) + continue; + FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) + for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) + bitmap_set_bit (&dead_points[cover_class], r->finish); + } + FOR_EACH_ALLOCNO (a, ai) + { + cover_class = ALLOCNO_COVER_CLASS (a); + if (cover_class == NO_REGS) + continue; + if (! ALLOCNO_BAD_SPILL_P (a)) + continue; + FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi) + { + for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) + { + for (i = r->start + 1; i < r->finish; i++) + if (bitmap_bit_p (&dead_points[cover_class], i)) + break; + if (i < r->finish) + break; + } + if (r != NULL) + { + ALLOCNO_BAD_SPILL_P (a) = false; + break; + } + } + } + for (i = 0; i < ira_reg_class_cover_size; i++) + { + cover_class = ira_reg_class_cover[i]; + bitmap_clear (&dead_points[cover_class]); + } +} + + + +/* Set up minimal and maximal live range points for allocnos. */ +static void +setup_min_max_allocno_live_range_point (void) +{ + int i; + ira_allocno_t a, parent_a, cap; + ira_allocno_iterator ai; +#ifdef ENABLE_IRA_CHECKING + ira_object_iterator oi; + ira_object_t obj; +#endif + live_range_t r; + ira_loop_tree_node_t parent; + + FOR_EACH_ALLOCNO (a, ai) + { + int n = ALLOCNO_NUM_OBJECTS (a); + for (i = 0; i < n; i++) + { + ira_object_t obj = ALLOCNO_OBJECT (a, i); + r = OBJECT_LIVE_RANGES (obj); + if (r == NULL) + continue; + OBJECT_MAX (obj) = r->finish; + for (; r->next != NULL; r = r->next) + ; + OBJECT_MIN (obj) = r->start; + } + } + for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--) + for (a = ira_regno_allocno_map[i]; + a != NULL; + a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) + { + int j; + int n = ALLOCNO_NUM_OBJECTS (a); + for (j = 0; j < n; j++) + { + ira_object_t obj = ALLOCNO_OBJECT (a, j); + ira_object_t parent_obj; + + if (OBJECT_MAX (obj) < 0) + continue; + ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); + /* Accumulation of range info. */ + if (ALLOCNO_CAP (a) != NULL) + { + for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap)) + { + ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j); + if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj)) + OBJECT_MAX (cap_obj) = OBJECT_MAX (obj); + if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj)) + OBJECT_MIN (cap_obj) = OBJECT_MIN (obj); + } + continue; + } + if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL) + continue; + parent_a = parent->regno_allocno_map[i]; + parent_obj = ALLOCNO_OBJECT (parent_a, j); + if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj)) + OBJECT_MAX (parent_obj) = OBJECT_MAX (obj); + if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj)) + OBJECT_MIN (parent_obj) = OBJECT_MIN (obj); + } + } +#ifdef ENABLE_IRA_CHECKING + FOR_EACH_OBJECT (obj, oi) + { + if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point) + && (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point)) + continue; + gcc_unreachable (); + } +#endif +} + +/* Sort allocnos according to their live ranges. Allocnos with + smaller cover class are put first unless we use priority coloring. + Allocnos with the same cover class are ordered according their start + (min). Allocnos with the same start are ordered according their + finish (max). */ +static int +object_range_compare_func (const void *v1p, const void *v2p) +{ + int diff; + ira_object_t obj1 = *(const ira_object_t *) v1p; + ira_object_t obj2 = *(const ira_object_t *) v2p; + ira_allocno_t a1 = OBJECT_ALLOCNO (obj1); + ira_allocno_t a2 = OBJECT_ALLOCNO (obj2); + + if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY + && (diff = ALLOCNO_COVER_CLASS (a1) - ALLOCNO_COVER_CLASS (a2)) != 0) + return diff; + if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0) + return diff; + if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0) + return diff; + return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2); +} + +/* Sort ira_object_id_map and set up conflict id of allocnos. */ +static void +sort_conflict_id_map (void) +{ + int i, num; + ira_allocno_t a; + ira_allocno_iterator ai; + + num = 0; + FOR_EACH_ALLOCNO (a, ai) + { + ira_allocno_object_iterator oi; + ira_object_t obj; + + FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) + ira_object_id_map[num++] = obj; + } + qsort (ira_object_id_map, num, sizeof (ira_object_t), + object_range_compare_func); + for (i = 0; i < num; i++) + { + ira_object_t obj = ira_object_id_map[i]; + gcc_assert (obj != NULL); + OBJECT_CONFLICT_ID (obj) = i; + } + for (i = num; i < ira_objects_num; i++) + ira_object_id_map[i] = NULL; +} + +/* Set up minimal and maximal conflict ids of allocnos with which + given allocno can conflict. */ +static void +setup_min_max_conflict_allocno_ids (void) +{ + int cover_class; + int i, j, min, max, start, finish, first_not_finished, filled_area_start; + int *live_range_min, *last_lived; + int word0_min, word0_max; + ira_allocno_t a; + ira_allocno_iterator ai; + + live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num); + cover_class = -1; + first_not_finished = -1; + for (i = 0; i < ira_objects_num; i++) + { + ira_object_t obj = ira_object_id_map[i]; + if (obj == NULL) + continue; + + a = OBJECT_ALLOCNO (obj); + + if (cover_class < 0 + || (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY + && cover_class != (int) ALLOCNO_COVER_CLASS (a))) + { + cover_class = ALLOCNO_COVER_CLASS (a); + min = i; + first_not_finished = i; + } + else + { + start = OBJECT_MIN (obj); + /* If we skip an allocno, the allocno with smaller ids will + be also skipped because of the secondary sorting the + range finishes (see function + object_range_compare_func). */ + while (first_not_finished < i + && start > OBJECT_MAX (ira_object_id_map + [first_not_finished])) + first_not_finished++; + min = first_not_finished; + } + if (min == i) + /* We could increase min further in this case but it is good + enough. */ + min++; + live_range_min[i] = OBJECT_MIN (obj); + OBJECT_MIN (obj) = min; + } + last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point); + cover_class = -1; + filled_area_start = -1; + for (i = ira_objects_num - 1; i >= 0; i--) + { + ira_object_t obj = ira_object_id_map[i]; + if (obj == NULL) + continue; + + a = OBJECT_ALLOCNO (obj); + if (cover_class < 0 + || (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY + && cover_class != (int) ALLOCNO_COVER_CLASS (a))) + { + cover_class = ALLOCNO_COVER_CLASS (a); + for (j = 0; j < ira_max_point; j++) + last_lived[j] = -1; + filled_area_start = ira_max_point; + } + min = live_range_min[i]; + finish = OBJECT_MAX (obj); + max = last_lived[finish]; + if (max < 0) + /* We could decrease max further in this case but it is good + enough. */ + max = OBJECT_CONFLICT_ID (obj) - 1; + OBJECT_MAX (obj) = max; + /* In filling, we can go further A range finish to recognize + intersection quickly because if the finish of subsequently + processed allocno (it has smaller conflict id) range is + further A range finish than they are definitely intersected + (the reason for this is the allocnos with bigger conflict id + have their range starts not smaller than allocnos with + smaller ids. */ + for (j = min; j < filled_area_start; j++) + last_lived[j] = i; + filled_area_start = min; + } + ira_free (last_lived); + ira_free (live_range_min); + + /* For allocnos with more than one object, we may later record extra conflicts in + subobject 0 that we cannot really know about here. + For now, simply widen the min/max range of these subobjects. */ + + word0_min = INT_MAX; + word0_max = INT_MIN; + + FOR_EACH_ALLOCNO (a, ai) + { + int n = ALLOCNO_NUM_OBJECTS (a); + ira_object_t obj0; + if (n < 2) + continue; + obj0 = ALLOCNO_OBJECT (a, 0); + if (OBJECT_CONFLICT_ID (obj0) < word0_min) + word0_min = OBJECT_CONFLICT_ID (obj0); + if (OBJECT_CONFLICT_ID (obj0) > word0_max) + word0_max = OBJECT_CONFLICT_ID (obj0); + } + FOR_EACH_ALLOCNO (a, ai) + { + int n = ALLOCNO_NUM_OBJECTS (a); + ira_object_t obj0; + if (n < 2) + continue; + obj0 = ALLOCNO_OBJECT (a, 0); + if (OBJECT_MIN (obj0) > word0_min) + OBJECT_MIN (obj0) = word0_min; + if (OBJECT_MAX (obj0) < word0_max) + OBJECT_MAX (obj0) = word0_max; + } +} + + + +static void +create_caps (void) +{ + ira_allocno_t a; + ira_allocno_iterator ai; + ira_loop_tree_node_t loop_tree_node; + + FOR_EACH_ALLOCNO (a, ai) + { + if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root) + continue; + if (ALLOCNO_CAP_MEMBER (a) != NULL) + create_cap_allocno (a); + else if (ALLOCNO_CAP (a) == NULL) + { + loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); + if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a))) + create_cap_allocno (a); + } + } +} + + + +/* The page contains code transforming more one region internal + representation (IR) to one region IR which is necessary for reload. + This transformation is called IR flattening. We might just rebuild + the IR for one region but we don't do it because it takes a lot of + time. */ + +/* Map: regno -> allocnos which will finally represent the regno for + IR with one region. */ +static ira_allocno_t *regno_top_level_allocno_map; + +/* Find the allocno that corresponds to A at a level one higher up in the + loop tree. Returns NULL if A is a cap, or if it has no parent. */ +ira_allocno_t +ira_parent_allocno (ira_allocno_t a) +{ + ira_loop_tree_node_t parent; + + if (ALLOCNO_CAP (a) != NULL) + return NULL; + + parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; + if (parent == NULL) + return NULL; + + return parent->regno_allocno_map[ALLOCNO_REGNO (a)]; +} + +/* Find the allocno that corresponds to A at a level one higher up in the + loop tree. If ALLOCNO_CAP is set for A, return that. */ +ira_allocno_t +ira_parent_or_cap_allocno (ira_allocno_t a) +{ + if (ALLOCNO_CAP (a) != NULL) + return ALLOCNO_CAP (a); + + return ira_parent_allocno (a); +} + +/* Process all allocnos originated from pseudo REGNO and copy live + ranges, hard reg conflicts, and allocno stack reg attributes from + low level allocnos to final allocnos which are destinations of + removed stores at a loop exit. Return true if we copied live + ranges. */ +static bool +copy_info_to_removed_store_destinations (int regno) +{ + ira_allocno_t a; + ira_allocno_t parent_a = NULL; + ira_loop_tree_node_t parent; + bool merged_p; + + merged_p = false; + for (a = ira_regno_allocno_map[regno]; + a != NULL; + a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) + { + if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))]) + /* This allocno will be removed. */ + continue; + + /* Caps will be removed. */ + ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); + for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent; + parent != NULL; + parent = parent->parent) + if ((parent_a = parent->regno_allocno_map[regno]) == NULL + || (parent_a == regno_top_level_allocno_map[REGNO (ALLOCNO_REG + (parent_a))] + && ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a))) + break; + if (parent == NULL || parent_a == NULL) + continue; + + copy_allocno_live_ranges (a, parent_a); + merge_hard_reg_conflicts (a, parent_a, true); + + ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a); + ALLOCNO_CALLS_CROSSED_NUM (parent_a) + += ALLOCNO_CALLS_CROSSED_NUM (a); + ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) + += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); + merged_p = true; + } + return merged_p; +} + +/* Flatten the IR. In other words, this function transforms IR as if + it were built with one region (without loops). We could make it + much simpler by rebuilding IR with one region, but unfortunately it + takes a lot of time. MAX_REGNO_BEFORE_EMIT and + IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and + IRA_MAX_POINT before emitting insns on the loop borders. */ +void +ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit) +{ + int i, j; + bool keep_p; + int hard_regs_num; + bool new_pseudos_p, merged_p, mem_dest_p; + unsigned int n; + enum reg_class cover_class; + ira_allocno_t a, parent_a, first, second, node_first, node_second; + ira_copy_t cp; + ira_loop_tree_node_t node; + live_range_t r; + ira_allocno_iterator ai; + ira_copy_iterator ci; + + regno_top_level_allocno_map + = (ira_allocno_t *) ira_allocate (max_reg_num () * sizeof (ira_allocno_t)); + memset (regno_top_level_allocno_map, 0, + max_reg_num () * sizeof (ira_allocno_t)); + new_pseudos_p = merged_p = false; + FOR_EACH_ALLOCNO (a, ai) + { + ira_allocno_object_iterator oi; + ira_object_t obj; + if (ALLOCNO_CAP_MEMBER (a) != NULL) + /* Caps are not in the regno allocno maps and they are never + will be transformed into allocnos existing after IR + flattening. */ + continue; + FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) + COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), + OBJECT_CONFLICT_HARD_REGS (obj)); +#ifdef STACK_REGS + ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a); +#endif + } + /* Fix final allocno attributes. */ + for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--) + { + mem_dest_p = false; + for (a = ira_regno_allocno_map[i]; + a != NULL; + a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) + { + ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); + if (ALLOCNO_SOMEWHERE_RENAMED_P (a)) + new_pseudos_p = true; + parent_a = ira_parent_allocno (a); + if (parent_a == NULL) + { + ALLOCNO_COPIES (a) = NULL; + regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] = a; + continue; + } + ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL); + + if (ALLOCNO_MEM_OPTIMIZED_DEST (a) != NULL) + mem_dest_p = true; + if (REGNO (ALLOCNO_REG (a)) == REGNO (ALLOCNO_REG (parent_a))) + { + merge_hard_reg_conflicts (a, parent_a, true); + move_allocno_live_ranges (a, parent_a); + merged_p = true; + ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a) + = (ALLOCNO_MEM_OPTIMIZED_DEST_P (parent_a) + || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)); + continue; + } + new_pseudos_p = true; + for (;;) + { + ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a); + ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a); + ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a); + ALLOCNO_CALLS_CROSSED_NUM (parent_a) + -= ALLOCNO_CALLS_CROSSED_NUM (a); + ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a) + -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a); + ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0 + && ALLOCNO_NREFS (parent_a) >= 0 + && ALLOCNO_FREQ (parent_a) >= 0); + cover_class = ALLOCNO_COVER_CLASS (parent_a); + hard_regs_num = ira_class_hard_regs_num[cover_class]; + if (ALLOCNO_HARD_REG_COSTS (a) != NULL + && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL) + for (j = 0; j < hard_regs_num; j++) + ALLOCNO_HARD_REG_COSTS (parent_a)[j] + -= ALLOCNO_HARD_REG_COSTS (a)[j]; + if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL + && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL) + for (j = 0; j < hard_regs_num; j++) + ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j] + -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j]; + ALLOCNO_COVER_CLASS_COST (parent_a) + -= ALLOCNO_COVER_CLASS_COST (a); + ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a); + parent_a = ira_parent_allocno (parent_a); + if (parent_a == NULL) + break; + } + ALLOCNO_COPIES (a) = NULL; + regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] = a; + } + if (mem_dest_p && copy_info_to_removed_store_destinations (i)) + merged_p = true; + } + ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point); + if (merged_p || ira_max_point_before_emit != ira_max_point) + ira_rebuild_start_finish_chains (); + if (new_pseudos_p) + { + sparseset objects_live; + + /* Rebuild conflicts. */ + FOR_EACH_ALLOCNO (a, ai) + { + ira_allocno_object_iterator oi; + ira_object_t obj; + if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] + || ALLOCNO_CAP_MEMBER (a) != NULL) + continue; + FOR_EACH_ALLOCNO_OBJECT (a, obj, oi) + { + for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) + ira_assert (r->object == obj); + clear_conflicts (obj); + } + } + objects_live = sparseset_alloc (ira_objects_num); + for (i = 0; i < ira_max_point; i++) + { + for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next) + { + ira_object_t obj = r->object; + a = OBJECT_ALLOCNO (obj); + if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] + || ALLOCNO_CAP_MEMBER (a) != NULL) + continue; + + cover_class = ALLOCNO_COVER_CLASS (a); + sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj)); + EXECUTE_IF_SET_IN_SPARSESET (objects_live, n) + { + ira_object_t live_obj = ira_object_id_map[n]; + ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj); + enum reg_class live_cover = ALLOCNO_COVER_CLASS (live_a); + if (ira_reg_classes_intersect_p[cover_class][live_cover] + /* Don't set up conflict for the allocno with itself. */ + && live_a != a) + ira_add_conflict (obj, live_obj); + } + } + + for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next) + sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object)); + } + sparseset_free (objects_live); + compress_conflict_vecs (); + } + /* Mark some copies for removing and change allocnos in the rest + copies. */ + FOR_EACH_COPY (cp, ci) + { + if (ALLOCNO_CAP_MEMBER (cp->first) != NULL + || ALLOCNO_CAP_MEMBER (cp->second) != NULL) + { + if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) + fprintf + (ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n", + cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a', + ALLOCNO_NUM (cp->first), REGNO (ALLOCNO_REG (cp->first)), + ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a', + ALLOCNO_NUM (cp->second), REGNO (ALLOCNO_REG (cp->second))); + cp->loop_tree_node = NULL; + continue; + } + first = regno_top_level_allocno_map[REGNO (ALLOCNO_REG (cp->first))]; + second = regno_top_level_allocno_map[REGNO (ALLOCNO_REG (cp->second))]; + node = cp->loop_tree_node; + if (node == NULL) + keep_p = true; /* It copy generated in ira-emit.c. */ + else + { + /* Check that the copy was not propagated from level on + which we will have different pseudos. */ + node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)]; + node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)]; + keep_p = ((REGNO (ALLOCNO_REG (first)) + == REGNO (ALLOCNO_REG (node_first))) + && (REGNO (ALLOCNO_REG (second)) + == REGNO (ALLOCNO_REG (node_second)))); + } + if (keep_p) + { + cp->loop_tree_node = ira_loop_tree_root; + cp->first = first; + cp->second = second; + } + else + { + cp->loop_tree_node = NULL; + if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) + fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n", + cp->num, ALLOCNO_NUM (cp->first), + REGNO (ALLOCNO_REG (cp->first)), ALLOCNO_NUM (cp->second), + REGNO (ALLOCNO_REG (cp->second))); + } + } + /* Remove unnecessary allocnos on lower levels of the loop tree. */ + FOR_EACH_ALLOCNO (a, ai) + { + if (a != regno_top_level_allocno_map[REGNO (ALLOCNO_REG (a))] + || ALLOCNO_CAP_MEMBER (a) != NULL) + { + if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL) + fprintf (ira_dump_file, " Remove a%dr%d\n", + ALLOCNO_NUM (a), REGNO (ALLOCNO_REG (a))); + finish_allocno (a); + continue; + } + ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root; + ALLOCNO_REGNO (a) = REGNO (ALLOCNO_REG (a)); + ALLOCNO_CAP (a) = NULL; + /* Restore updated costs for assignments from reload. */ + ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a); + ALLOCNO_UPDATED_COVER_CLASS_COST (a) = ALLOCNO_COVER_CLASS_COST (a); + if (! ALLOCNO_ASSIGNED_P (a)) + ira_free_allocno_updated_costs (a); + ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL); + ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL); + } + /* Remove unnecessary copies. */ + FOR_EACH_COPY (cp, ci) + { + if (cp->loop_tree_node == NULL) + { + ira_copies[cp->num] = NULL; + finish_copy (cp); + continue; + } + ira_assert + (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root + && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root); + ira_add_allocno_copy_to_list (cp); + ira_swap_allocno_copy_ends_if_necessary (cp); + } + rebuild_regno_allocno_maps (); + if (ira_max_point != ira_max_point_before_emit) + ira_compress_allocno_live_ranges (); + ira_free (regno_top_level_allocno_map); +} + + + +#ifdef ENABLE_IRA_CHECKING +/* Check creation of all allocnos. Allocnos on lower levels should + have allocnos or caps on all upper levels. */ +static void +check_allocno_creation (void) +{ + ira_allocno_t a; + ira_allocno_iterator ai; + ira_loop_tree_node_t loop_tree_node; + + FOR_EACH_ALLOCNO (a, ai) + { + loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a); + ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos, + ALLOCNO_NUM (a))); + if (loop_tree_node == ira_loop_tree_root) + continue; + if (ALLOCNO_CAP_MEMBER (a) != NULL) + ira_assert (ALLOCNO_CAP (a) != NULL); + else if (ALLOCNO_CAP (a) == NULL) + ira_assert (loop_tree_node->parent + ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL + && bitmap_bit_p (loop_tree_node->border_allocnos, + ALLOCNO_NUM (a))); + } +} +#endif + +/* Identify allocnos which prefer a register class with a single hard register. + Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are + less likely to use the preferred singleton register. */ +static void +update_conflict_hard_reg_costs (void) +{ + ira_allocno_t a; + ira_allocno_iterator ai; + int i, index, min; + + FOR_EACH_ALLOCNO (a, ai) + { + enum reg_class cover_class = ALLOCNO_COVER_CLASS (a); + enum reg_class pref = reg_preferred_class (ALLOCNO_REGNO (a)); + + if (reg_class_size[pref] != 1) + continue; + index = (ira_class_hard_reg_index[cover_class] + [ira_class_hard_regs[pref][0]]); + if (index < 0) + continue; + if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL + || ALLOCNO_HARD_REG_COSTS (a) == NULL) + continue; + min = INT_MAX; + for (i = ira_class_hard_regs_num[cover_class] - 1; i >= 0; i--) + if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_COVER_CLASS_COST (a) + && min > ALLOCNO_HARD_REG_COSTS (a)[i]) + min = ALLOCNO_HARD_REG_COSTS (a)[i]; + if (min == INT_MAX) + continue; + ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a), + cover_class, 0); + ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index] + -= min - ALLOCNO_COVER_CLASS_COST (a); + } +} + +/* Create a internal representation (IR) for IRA (allocnos, copies, + loop tree nodes). If LOOPS_P is FALSE the nodes corresponding to + the loops (except the root which corresponds the all function) and + correspondingly allocnos for the loops will be not created. Such + parameter value is used for Chaitin-Briggs coloring. The function + returns TRUE if we generate loop structure (besides nodes + representing all function and the basic blocks) for regional + allocation. A true return means that we really need to flatten IR + before the reload. */ +bool +ira_build (bool loops_p) +{ + df_analyze (); + + initiate_cost_vectors (); + initiate_allocnos (); + initiate_copies (); + create_loop_tree_nodes (loops_p); + form_loop_tree (); + create_allocnos (); + ira_costs (); + create_allocno_objects (); + ira_create_allocno_live_ranges (); + remove_unnecessary_regions (false); + ira_compress_allocno_live_ranges (); + update_bad_spill_attribute (); + loops_p = more_one_region_p (); + if (loops_p) + { + propagate_allocno_info (); + create_caps (); + } + ira_tune_allocno_costs_and_cover_classes (); +#ifdef ENABLE_IRA_CHECKING + check_allocno_creation (); +#endif + setup_min_max_allocno_live_range_point (); + sort_conflict_id_map (); + setup_min_max_conflict_allocno_ids (); + ira_build_conflicts (); + update_conflict_hard_reg_costs (); + if (! ira_conflicts_p) + { + ira_allocno_t a; + ira_allocno_iterator ai; + + /* Remove all regions but root one. */ + if (loops_p) + { + remove_unnecessary_regions (true); + loops_p = false; + } + /* We don't save hard registers around calls for fast allocation + -- add caller clobbered registers as conflicting ones to + allocno crossing calls. */ + FOR_EACH_ALLOCNO (a, ai) + if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0) + ior_hard_reg_conflicts (a, &call_used_reg_set); + } + if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) + print_copies (ira_dump_file); + if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL) + { + int n, nr, nr_big; + ira_allocno_t a; + live_range_t r; + ira_allocno_iterator ai; + + n = 0; + nr = 0; + nr_big = 0; + FOR_EACH_ALLOCNO (a, ai) + { + int j, nobj = ALLOCNO_NUM_OBJECTS (a); + if (nobj > 1) + nr_big++; + for (j = 0; j < nobj; j++) + { + ira_object_t obj = ALLOCNO_OBJECT (a, j); + n += OBJECT_NUM_CONFLICTS (obj); + for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next) + nr++; + } + } + fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n", + VEC_length (loop_p, ira_loops.larray), n_basic_blocks, + ira_max_point); + fprintf (ira_dump_file, + " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n", + ira_allocnos_num, nr_big, ira_copies_num, n, nr); + } + return loops_p; +} + +/* Release the data created by function ira_build. */ +void +ira_destroy (void) +{ + finish_loop_tree_nodes (); + finish_copies (); + finish_allocnos (); + finish_cost_vectors (); + ira_finish_allocno_live_ranges (); +} -- cgit v1.2.3