From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/modulo-sched.c | 2907 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2907 insertions(+) create mode 100644 gcc/modulo-sched.c (limited to 'gcc/modulo-sched.c') diff --git a/gcc/modulo-sched.c b/gcc/modulo-sched.c new file mode 100644 index 000000000..2ae267c81 --- /dev/null +++ b/gcc/modulo-sched.c @@ -0,0 +1,2907 @@ +/* Swing Modulo Scheduling implementation. + Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Ayal Zaks and Mustafa Hagog + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "diagnostic-core.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "regs.h" +#include "function.h" +#include "flags.h" +#include "insn-config.h" +#include "insn-attr.h" +#include "except.h" +#include "recog.h" +#include "sched-int.h" +#include "target.h" +#include "cfglayout.h" +#include "cfgloop.h" +#include "cfghooks.h" +#include "expr.h" +#include "params.h" +#include "gcov-io.h" +#include "ddg.h" +#include "timevar.h" +#include "tree-pass.h" +#include "dbgcnt.h" +#include "df.h" + +#ifdef INSN_SCHEDULING + +/* This file contains the implementation of the Swing Modulo Scheduler, + described in the following references: + [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt. + Lifetime--sensitive modulo scheduling in a production environment. + IEEE Trans. on Comps., 50(3), March 2001 + [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. + Swing Modulo Scheduling: A Lifetime Sensitive Approach. + PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA). + + The basic structure is: + 1. Build a data-dependence graph (DDG) for each loop. + 2. Use the DDG to order the insns of a loop (not in topological order + necessarily, but rather) trying to place each insn after all its + predecessors _or_ after all its successors. + 3. Compute MII: a lower bound on the number of cycles to schedule the loop. + 4. Use the ordering to perform list-scheduling of the loop: + 1. Set II = MII. We will try to schedule the loop within II cycles. + 2. Try to schedule the insns one by one according to the ordering. + For each insn compute an interval of cycles by considering already- + scheduled preds and succs (and associated latencies); try to place + the insn in the cycles of this window checking for potential + resource conflicts (using the DFA interface). + Note: this is different from the cycle-scheduling of schedule_insns; + here the insns are not scheduled monotonically top-down (nor bottom- + up). + 3. If failed in scheduling all insns - bump II++ and try again, unless + II reaches an upper bound MaxII, in which case report failure. + 5. If we succeeded in scheduling the loop within II cycles, we now + generate prolog and epilog, decrease the counter of the loop, and + perform modulo variable expansion for live ranges that span more than + II cycles (i.e. use register copies to prevent a def from overwriting + itself before reaching the use). + + SMS works with countable loops (1) whose control part can be easily + decoupled from the rest of the loop and (2) whose loop count can + be easily adjusted. This is because we peel a constant number of + iterations into a prologue and epilogue for which we want to avoid + emitting the control part, and a kernel which is to iterate that + constant number of iterations less than the original loop. So the + control part should be a set of insns clearly identified and having + its own iv, not otherwise used in the loop (at-least for now), which + initializes a register before the loop to the number of iterations. + Currently SMS relies on the do-loop pattern to recognize such loops, + where (1) the control part comprises of all insns defining and/or + using a certain 'count' register and (2) the loop count can be + adjusted by modifying this register prior to the loop. + TODO: Rely on cfgloop analysis instead. */ + +/* This page defines partial-schedule structures and functions for + modulo scheduling. */ + +typedef struct partial_schedule *partial_schedule_ptr; +typedef struct ps_insn *ps_insn_ptr; + +/* The minimum (absolute) cycle that a node of ps was scheduled in. */ +#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle) + +/* The maximum (absolute) cycle that a node of ps was scheduled in. */ +#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle) + +/* Perform signed modulo, always returning a non-negative value. */ +#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y)) + +/* The number of different iterations the nodes in ps span, assuming + the stage boundaries are placed efficiently. */ +#define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \ + + 1 + (ps)->ii - 1) / (ps)->ii) + +/* A single instruction in the partial schedule. */ +struct ps_insn +{ + /* The corresponding DDG_NODE. */ + ddg_node_ptr node; + + /* The (absolute) cycle in which the PS instruction is scheduled. + Same as SCHED_TIME (node). */ + int cycle; + + /* The next/prev PS_INSN in the same row. */ + ps_insn_ptr next_in_row, + prev_in_row; + + /* The number of nodes in the same row that come after this node. */ + int row_rest_count; +}; + +/* Holds the partial schedule as an array of II rows. Each entry of the + array points to a linked list of PS_INSNs, which represents the + instructions that are scheduled for that row. */ +struct partial_schedule +{ + int ii; /* Number of rows in the partial schedule. */ + int history; /* Threshold for conflict checking using DFA. */ + + /* rows[i] points to linked list of insns scheduled in row i (0<=iaux.info)->asap) +#define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time) +#define SCHED_FIRST_REG_MOVE(x) \ + (((node_sched_params_ptr)(x)->aux.info)->first_reg_move) +#define SCHED_NREG_MOVES(x) \ + (((node_sched_params_ptr)(x)->aux.info)->nreg_moves) +#define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row) +#define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage) +#define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column) + +/* The scheduling parameters held for each node. */ +typedef struct node_sched_params +{ + int asap; /* A lower-bound on the absolute scheduling cycle. */ + int time; /* The absolute scheduling cycle (time >= asap). */ + + /* The following field (first_reg_move) is a pointer to the first + register-move instruction added to handle the modulo-variable-expansion + of the register defined by this node. This register-move copies the + original register defined by the node. */ + rtx first_reg_move; + + /* The number of register-move instructions added, immediately preceding + first_reg_move. */ + int nreg_moves; + + int row; /* Holds time % ii. */ + int stage; /* Holds time / ii. */ + + /* The column of a node inside the ps. If nodes u, v are on the same row, + u will precede v if column (u) < column (v). */ + int column; +} *node_sched_params_ptr; + + +/* The following three functions are copied from the current scheduler + code in order to use sched_analyze() for computing the dependencies. + They are used when initializing the sched_info structure. */ +static const char * +sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED) +{ + static char tmp[80]; + + sprintf (tmp, "i%4d", INSN_UID (insn)); + return tmp; +} + +static void +compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED, + regset cond_exec ATTRIBUTE_UNUSED, + regset used ATTRIBUTE_UNUSED, + regset set ATTRIBUTE_UNUSED) +{ +} + +static struct common_sched_info_def sms_common_sched_info; + +static struct sched_deps_info_def sms_sched_deps_info = + { + compute_jump_reg_dependencies, + NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, + NULL, + 0, 0, 0 + }; + +static struct haifa_sched_info sms_sched_info = +{ + NULL, + NULL, + NULL, + NULL, + NULL, + sms_print_insn, + NULL, + NULL, /* insn_finishes_block_p */ + NULL, NULL, + NULL, NULL, + 0, 0, + + NULL, NULL, NULL, + 0 +}; + +/* Given HEAD and TAIL which are the first and last insns in a loop; + return the register which controls the loop. Return zero if it has + more than one occurrence in the loop besides the control part or the + do-loop pattern is not of the form we expect. */ +static rtx +doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED) +{ +#ifdef HAVE_doloop_end + rtx reg, condition, insn, first_insn_not_to_check; + + if (!JUMP_P (tail)) + return NULL_RTX; + + /* TODO: Free SMS's dependence on doloop_condition_get. */ + condition = doloop_condition_get (tail); + if (! condition) + return NULL_RTX; + + if (REG_P (XEXP (condition, 0))) + reg = XEXP (condition, 0); + else if (GET_CODE (XEXP (condition, 0)) == PLUS + && REG_P (XEXP (XEXP (condition, 0), 0))) + reg = XEXP (XEXP (condition, 0), 0); + else + gcc_unreachable (); + + /* Check that the COUNT_REG has no other occurrences in the loop + until the decrement. We assume the control part consists of + either a single (parallel) branch-on-count or a (non-parallel) + branch immediately preceded by a single (decrement) insn. */ + first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail + : PREV_INSN (tail)); + + for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn)) + if (reg_mentioned_p (reg, insn)) + { + if (dump_file) + { + fprintf (dump_file, "SMS count_reg found "); + print_rtl_single (dump_file, reg); + fprintf (dump_file, " outside control in insn:\n"); + print_rtl_single (dump_file, insn); + } + + return NULL_RTX; + } + + return reg; +#else + return NULL_RTX; +#endif +} + +/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so + that the number of iterations is a compile-time constant. If so, + return the rtx that sets COUNT_REG to a constant, and set COUNT to + this constant. Otherwise return 0. */ +static rtx +const_iteration_count (rtx count_reg, basic_block pre_header, + HOST_WIDEST_INT * count) +{ + rtx insn; + rtx head, tail; + + if (! pre_header) + return NULL_RTX; + + get_ebb_head_tail (pre_header, pre_header, &head, &tail); + + for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn)) + if (NONDEBUG_INSN_P (insn) && single_set (insn) && + rtx_equal_p (count_reg, SET_DEST (single_set (insn)))) + { + rtx pat = single_set (insn); + + if (CONST_INT_P (SET_SRC (pat))) + { + *count = INTVAL (SET_SRC (pat)); + return insn; + } + + return NULL_RTX; + } + + return NULL_RTX; +} + +/* A very simple resource-based lower bound on the initiation interval. + ??? Improve the accuracy of this bound by considering the + utilization of various units. */ +static int +res_MII (ddg_ptr g) +{ + if (targetm.sched.sms_res_mii) + return targetm.sched.sms_res_mii (g); + + return ((g->num_nodes - g->num_debug) / issue_rate); +} + + +/* Points to the array that contains the sched data for each node. */ +static node_sched_params_ptr node_sched_params; + +/* Allocate sched_params for each node and initialize it. Assumes that + the aux field of each node contain the asap bound (computed earlier), + and copies it into the sched_params field. */ +static void +set_node_sched_params (ddg_ptr g) +{ + int i; + + /* Allocate for each node in the DDG a place to hold the "sched_data". */ + /* Initialize ASAP/ALAP/HIGHT to zero. */ + node_sched_params = (node_sched_params_ptr) + xcalloc (g->num_nodes, + sizeof (struct node_sched_params)); + + /* Set the pointer of the general data of the node to point to the + appropriate sched_params structure. */ + for (i = 0; i < g->num_nodes; i++) + { + /* Watch out for aliasing problems? */ + node_sched_params[i].asap = g->nodes[i].aux.count; + g->nodes[i].aux.info = &node_sched_params[i]; + } +} + +static void +print_node_sched_params (FILE *file, int num_nodes, ddg_ptr g) +{ + int i; + + if (! file) + return; + for (i = 0; i < num_nodes; i++) + { + node_sched_params_ptr nsp = &node_sched_params[i]; + rtx reg_move = nsp->first_reg_move; + int j; + + fprintf (file, "Node = %d; INSN = %d\n", i, + (INSN_UID (g->nodes[i].insn))); + fprintf (file, " asap = %d:\n", nsp->asap); + fprintf (file, " time = %d:\n", nsp->time); + fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves); + for (j = 0; j < nsp->nreg_moves; j++) + { + fprintf (file, " reg_move = "); + print_rtl_single (file, reg_move); + reg_move = PREV_INSN (reg_move); + } + } +} + +/* + Breaking intra-loop register anti-dependences: + Each intra-loop register anti-dependence implies a cross-iteration true + dependence of distance 1. Therefore, we can remove such false dependencies + and figure out if the partial schedule broke them by checking if (for a + true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and + if so generate a register move. The number of such moves is equal to: + SCHED_TIME (use) - SCHED_TIME (def) { 0 broken + nreg_moves = ----------------------------------- + 1 - { dependence. + ii { 1 if not. +*/ +static struct undo_replace_buff_elem * +generate_reg_moves (partial_schedule_ptr ps, bool rescan) +{ + ddg_ptr g = ps->g; + int ii = ps->ii; + int i; + struct undo_replace_buff_elem *reg_move_replaces = NULL; + + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr u = &g->nodes[i]; + ddg_edge_ptr e; + int nreg_moves = 0, i_reg_move; + sbitmap *uses_of_defs; + rtx last_reg_move; + rtx prev_reg, old_reg; + + /* Compute the number of reg_moves needed for u, by looking at life + ranges started at u (excluding self-loops). */ + for (e = u->out; e; e = e->next_out) + if (e->type == TRUE_DEP && e->dest != e->src) + { + int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii; + + if (e->distance == 1) + nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii; + + /* If dest precedes src in the schedule of the kernel, then dest + will read before src writes and we can save one reg_copy. */ + if (SCHED_ROW (e->dest) == SCHED_ROW (e->src) + && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src)) + nreg_moves4e--; + + nreg_moves = MAX (nreg_moves, nreg_moves4e); + } + + if (nreg_moves == 0) + continue; + + /* Every use of the register defined by node may require a different + copy of this register, depending on the time the use is scheduled. + Set a bitmap vector, telling which nodes use each copy of this + register. */ + uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes); + sbitmap_vector_zero (uses_of_defs, nreg_moves); + for (e = u->out; e; e = e->next_out) + if (e->type == TRUE_DEP && e->dest != e->src) + { + int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii; + + if (e->distance == 1) + dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii; + + if (SCHED_ROW (e->dest) == SCHED_ROW (e->src) + && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src)) + dest_copy--; + + if (dest_copy) + SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid); + } + + /* Now generate the reg_moves, attaching relevant uses to them. */ + SCHED_NREG_MOVES (u) = nreg_moves; + old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn))); + /* Insert the reg-moves right before the notes which precede + the insn they relates to. */ + last_reg_move = u->first_note; + + for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) + { + unsigned int i_use = 0; + rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg)); + rtx reg_move = gen_move_insn (new_reg, prev_reg); + sbitmap_iterator sbi; + + add_insn_before (reg_move, last_reg_move, NULL); + last_reg_move = reg_move; + + if (!SCHED_FIRST_REG_MOVE (u)) + SCHED_FIRST_REG_MOVE (u) = reg_move; + + EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi) + { + struct undo_replace_buff_elem *rep; + + rep = (struct undo_replace_buff_elem *) + xcalloc (1, sizeof (struct undo_replace_buff_elem)); + rep->insn = g->nodes[i_use].insn; + rep->orig_reg = old_reg; + rep->new_reg = new_reg; + + if (! reg_move_replaces) + reg_move_replaces = rep; + else + { + rep->next = reg_move_replaces; + reg_move_replaces = rep; + } + + replace_rtx (g->nodes[i_use].insn, old_reg, new_reg); + if (rescan) + df_insn_rescan (g->nodes[i_use].insn); + } + + prev_reg = new_reg; + } + sbitmap_vector_free (uses_of_defs); + } + return reg_move_replaces; +} + +/* Free memory allocated for the undo buffer. */ +static void +free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces) +{ + + while (reg_move_replaces) + { + struct undo_replace_buff_elem *rep = reg_move_replaces; + + reg_move_replaces = reg_move_replaces->next; + free (rep); + } +} + +/* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values + of SCHED_ROW and SCHED_STAGE. */ +static void +normalize_sched_times (partial_schedule_ptr ps) +{ + int row; + int amount = PS_MIN_CYCLE (ps); + int ii = ps->ii; + ps_insn_ptr crr_insn; + + for (row = 0; row < ii; row++) + for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) + { + ddg_node_ptr u = crr_insn->node; + int normalized_time = SCHED_TIME (u) - amount; + + if (dump_file) + fprintf (dump_file, "crr_insn->node=%d, crr_insn->cycle=%d,\ + min_cycle=%d\n", crr_insn->node->cuid, SCHED_TIME + (u), ps->min_cycle); + gcc_assert (SCHED_TIME (u) >= ps->min_cycle); + gcc_assert (SCHED_TIME (u) <= ps->max_cycle); + SCHED_TIME (u) = normalized_time; + SCHED_ROW (u) = normalized_time % ii; + SCHED_STAGE (u) = normalized_time / ii; + } +} + +/* Set SCHED_COLUMN of each node according to its position in PS. */ +static void +set_columns_for_ps (partial_schedule_ptr ps) +{ + int row; + + for (row = 0; row < ps->ii; row++) + { + ps_insn_ptr cur_insn = ps->rows[row]; + int column = 0; + + for (; cur_insn; cur_insn = cur_insn->next_in_row) + SCHED_COLUMN (cur_insn->node) = column++; + } +} + +/* Permute the insns according to their order in PS, from row 0 to + row ii-1, and position them right before LAST. This schedules + the insns of the loop kernel. */ +static void +permute_partial_schedule (partial_schedule_ptr ps, rtx last) +{ + int ii = ps->ii; + int row; + ps_insn_ptr ps_ij; + + for (row = 0; row < ii ; row++) + for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) + if (PREV_INSN (last) != ps_ij->node->insn) + reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn, + PREV_INSN (last)); +} + +static void +duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage, + int to_stage, int for_prolog, rtx count_reg) +{ + int row; + ps_insn_ptr ps_ij; + + for (row = 0; row < ps->ii; row++) + for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) + { + ddg_node_ptr u_node = ps_ij->node; + int j, i_reg_moves; + rtx reg_move = NULL_RTX; + + /* Do not duplicate any insn which refers to count_reg as it + belongs to the control part. + TODO: This should be done by analyzing the control part of + the loop. */ + if (reg_mentioned_p (count_reg, u_node->insn)) + continue; + + if (for_prolog) + { + /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing + number of reg_moves starting with the second occurrence of + u_node, which is generated if its SCHED_STAGE <= to_stage. */ + i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1; + i_reg_moves = MAX (i_reg_moves, 0); + i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node)); + + /* The reg_moves start from the *first* reg_move backwards. */ + if (i_reg_moves) + { + reg_move = SCHED_FIRST_REG_MOVE (u_node); + for (j = 1; j < i_reg_moves; j++) + reg_move = PREV_INSN (reg_move); + } + } + else /* It's for the epilog. */ + { + /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves, + starting to decrease one stage after u_node no longer occurs; + that is, generate all reg_moves until + SCHED_STAGE (u_node) == from_stage - 1. */ + i_reg_moves = SCHED_NREG_MOVES (u_node) + - (from_stage - SCHED_STAGE (u_node) - 1); + i_reg_moves = MAX (i_reg_moves, 0); + i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node)); + + /* The reg_moves start from the *last* reg_move forwards. */ + if (i_reg_moves) + { + reg_move = SCHED_FIRST_REG_MOVE (u_node); + for (j = 1; j < SCHED_NREG_MOVES (u_node); j++) + reg_move = PREV_INSN (reg_move); + } + } + + for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move)) + emit_insn (copy_rtx (PATTERN (reg_move))); + if (SCHED_STAGE (u_node) >= from_stage + && SCHED_STAGE (u_node) <= to_stage) + duplicate_insn_chain (u_node->first_note, u_node->insn); + } +} + + +/* Generate the instructions (including reg_moves) for prolog & epilog. */ +static void +generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop, + rtx count_reg, rtx count_init) +{ + int i; + int last_stage = PS_STAGE_COUNT (ps) - 1; + edge e; + + /* Generate the prolog, inserting its insns on the loop-entry edge. */ + start_sequence (); + + if (!count_init) + { + /* Generate instructions at the beginning of the prolog to + adjust the loop count by STAGE_COUNT. If loop count is constant + (count_init), this constant is adjusted by STAGE_COUNT in + generate_prolog_epilog function. */ + rtx sub_reg = NULL_RTX; + + sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, + count_reg, GEN_INT (last_stage), + count_reg, 1, OPTAB_DIRECT); + gcc_assert (REG_P (sub_reg)); + if (REGNO (sub_reg) != REGNO (count_reg)) + emit_move_insn (count_reg, sub_reg); + } + + for (i = 0; i < last_stage; i++) + duplicate_insns_of_cycles (ps, 0, i, 1, count_reg); + + /* Put the prolog on the entry edge. */ + e = loop_preheader_edge (loop); + split_edge_and_insert (e, get_insns ()); + + end_sequence (); + + /* Generate the epilog, inserting its insns on the loop-exit edge. */ + start_sequence (); + + for (i = 0; i < last_stage; i++) + duplicate_insns_of_cycles (ps, i + 1, last_stage, 0, count_reg); + + /* Put the epilogue on the exit edge. */ + gcc_assert (single_exit (loop)); + e = single_exit (loop); + split_edge_and_insert (e, get_insns ()); + end_sequence (); +} + +/* Return true if all the BBs of the loop are empty except the + loop header. */ +static bool +loop_single_full_bb_p (struct loop *loop) +{ + unsigned i; + basic_block *bbs = get_loop_body (loop); + + for (i = 0; i < loop->num_nodes ; i++) + { + rtx head, tail; + bool empty_bb = true; + + if (bbs[i] == loop->header) + continue; + + /* Make sure that basic blocks other than the header + have only notes labels or jumps. */ + get_ebb_head_tail (bbs[i], bbs[i], &head, &tail); + for (; head != NEXT_INSN (tail); head = NEXT_INSN (head)) + { + if (NOTE_P (head) || LABEL_P (head) + || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head)))) + continue; + empty_bb = false; + break; + } + + if (! empty_bb) + { + free (bbs); + return false; + } + } + free (bbs); + return true; +} + +/* A simple loop from SMS point of view; it is a loop that is composed of + either a single basic block or two BBs - a header and a latch. */ +#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \ + && (EDGE_COUNT (loop->latch->preds) == 1) \ + && (EDGE_COUNT (loop->latch->succs) == 1)) + +/* Return true if the loop is in its canonical form and false if not. + i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */ +static bool +loop_canon_p (struct loop *loop) +{ + + if (loop->inner || !loop_outer (loop)) + { + if (dump_file) + fprintf (dump_file, "SMS loop inner or !loop_outer\n"); + return false; + } + + if (!single_exit (loop)) + { + if (dump_file) + { + rtx insn = BB_END (loop->header); + + fprintf (dump_file, "SMS loop many exits "); + fprintf (dump_file, " %s %d (file, line)\n", + insn_file (insn), insn_line (insn)); + } + return false; + } + + if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop)) + { + if (dump_file) + { + rtx insn = BB_END (loop->header); + + fprintf (dump_file, "SMS loop many BBs. "); + fprintf (dump_file, " %s %d (file, line)\n", + insn_file (insn), insn_line (insn)); + } + return false; + } + + return true; +} + +/* If there are more than one entry for the loop, + make it one by splitting the first entry edge and + redirecting the others to the new BB. */ +static void +canon_loop (struct loop *loop) +{ + edge e; + edge_iterator i; + + /* Avoid annoying special cases of edges going to exit + block. */ + FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds) + if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1)) + split_edge (e); + + if (loop->latch == loop->header + || EDGE_COUNT (loop->latch->succs) > 1) + { + FOR_EACH_EDGE (e, i, loop->header->preds) + if (e->src == loop->latch) + break; + split_edge (e); + } +} + +/* Setup infos. */ +static void +setup_sched_infos (void) +{ + memcpy (&sms_common_sched_info, &haifa_common_sched_info, + sizeof (sms_common_sched_info)); + sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS; + common_sched_info = &sms_common_sched_info; + + sched_deps_info = &sms_sched_deps_info; + current_sched_info = &sms_sched_info; +} + +/* Probability in % that the sms-ed loop rolls enough so that optimized + version may be entered. Just a guess. */ +#define PROB_SMS_ENOUGH_ITERATIONS 80 + +/* Used to calculate the upper bound of ii. */ +#define MAXII_FACTOR 2 + +/* Main entry point, perform SMS scheduling on the loops of the function + that consist of single basic blocks. */ +static void +sms_schedule (void) +{ + rtx insn; + ddg_ptr *g_arr, g; + int * node_order; + int maxii, max_asap; + loop_iterator li; + partial_schedule_ptr ps; + basic_block bb = NULL; + struct loop *loop; + basic_block condition_bb = NULL; + edge latch_edge; + gcov_type trip_count = 0; + + loop_optimizer_init (LOOPS_HAVE_PREHEADERS + | LOOPS_HAVE_RECORDED_EXITS); + if (number_of_loops () <= 1) + { + loop_optimizer_finalize (); + return; /* There are no loops to schedule. */ + } + + /* Initialize issue_rate. */ + if (targetm.sched.issue_rate) + { + int temp = reload_completed; + + reload_completed = 1; + issue_rate = targetm.sched.issue_rate (); + reload_completed = temp; + } + else + issue_rate = 1; + + /* Initialize the scheduler. */ + setup_sched_infos (); + haifa_sched_init (); + + /* Allocate memory to hold the DDG array one entry for each loop. + We use loop->num as index into this array. */ + g_arr = XCNEWVEC (ddg_ptr, number_of_loops ()); + + if (dump_file) + { + fprintf (dump_file, "\n\nSMS analysis phase\n"); + fprintf (dump_file, "===================\n\n"); + } + + /* Build DDGs for all the relevant loops and hold them in G_ARR + indexed by the loop index. */ + FOR_EACH_LOOP (li, loop, 0) + { + rtx head, tail; + rtx count_reg; + + /* For debugging. */ + if (dbg_cnt (sms_sched_loop) == false) + { + if (dump_file) + fprintf (dump_file, "SMS reached max limit... \n"); + + break; + } + + if (dump_file) + { + rtx insn = BB_END (loop->header); + + fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n", + loop->num, insn_file (insn), insn_line (insn)); + + } + + if (! loop_canon_p (loop)) + continue; + + if (! loop_single_full_bb_p (loop)) + { + if (dump_file) + fprintf (dump_file, "SMS not loop_single_full_bb_p\n"); + continue; + } + + bb = loop->header; + + get_ebb_head_tail (bb, bb, &head, &tail); + latch_edge = loop_latch_edge (loop); + gcc_assert (single_exit (loop)); + if (single_exit (loop)->count) + trip_count = latch_edge->count / single_exit (loop)->count; + + /* Perform SMS only on loops that their average count is above threshold. */ + + if ( latch_edge->count + && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD)) + { + if (dump_file) + { + fprintf (dump_file, " %s %d (file, line)\n", + insn_file (tail), insn_line (tail)); + fprintf (dump_file, "SMS single-bb-loop\n"); + if (profile_info && flag_branch_probabilities) + { + fprintf (dump_file, "SMS loop-count "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) bb->count); + fprintf (dump_file, "\n"); + fprintf (dump_file, "SMS trip-count "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) trip_count); + fprintf (dump_file, "\n"); + fprintf (dump_file, "SMS profile-sum-max "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) profile_info->sum_max); + fprintf (dump_file, "\n"); + } + } + continue; + } + + /* Make sure this is a doloop. */ + if ( !(count_reg = doloop_register_get (head, tail))) + { + if (dump_file) + fprintf (dump_file, "SMS doloop_register_get failed\n"); + continue; + } + + /* Don't handle BBs with calls or barriers, or !single_set insns, + or auto-increment insns (to avoid creating invalid reg-moves + for the auto-increment insns). + ??? Should handle auto-increment insns. + ??? Should handle insns defining subregs. */ + for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn)) + { + rtx set; + + if (CALL_P (insn) + || BARRIER_P (insn) + || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn) + && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE) + || (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0) + || (INSN_P (insn) && (set = single_set (insn)) + && GET_CODE (SET_DEST (set)) == SUBREG)) + break; + } + + if (insn != NEXT_INSN (tail)) + { + if (dump_file) + { + if (CALL_P (insn)) + fprintf (dump_file, "SMS loop-with-call\n"); + else if (BARRIER_P (insn)) + fprintf (dump_file, "SMS loop-with-barrier\n"); + else if (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0) + fprintf (dump_file, "SMS reg inc\n"); + else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn) + && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE)) + fprintf (dump_file, "SMS loop-with-not-single-set\n"); + else + fprintf (dump_file, "SMS loop with subreg in lhs\n"); + print_rtl_single (dump_file, insn); + } + + continue; + } + + if (! (g = create_ddg (bb, 0))) + { + if (dump_file) + fprintf (dump_file, "SMS create_ddg failed\n"); + continue; + } + + g_arr[loop->num] = g; + if (dump_file) + fprintf (dump_file, "...OK\n"); + + } + if (dump_file) + { + fprintf (dump_file, "\nSMS transformation phase\n"); + fprintf (dump_file, "=========================\n\n"); + } + + /* We don't want to perform SMS on new loops - created by versioning. */ + FOR_EACH_LOOP (li, loop, 0) + { + rtx head, tail; + rtx count_reg, count_init; + int mii, rec_mii; + unsigned stage_count = 0; + HOST_WIDEST_INT loop_count = 0; + + if (! (g = g_arr[loop->num])) + continue; + + if (dump_file) + { + rtx insn = BB_END (loop->header); + + fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n", + loop->num, insn_file (insn), insn_line (insn)); + + print_ddg (dump_file, g); + } + + get_ebb_head_tail (loop->header, loop->header, &head, &tail); + + latch_edge = loop_latch_edge (loop); + gcc_assert (single_exit (loop)); + if (single_exit (loop)->count) + trip_count = latch_edge->count / single_exit (loop)->count; + + if (dump_file) + { + fprintf (dump_file, " %s %d (file, line)\n", + insn_file (tail), insn_line (tail)); + fprintf (dump_file, "SMS single-bb-loop\n"); + if (profile_info && flag_branch_probabilities) + { + fprintf (dump_file, "SMS loop-count "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) bb->count); + fprintf (dump_file, "\n"); + fprintf (dump_file, "SMS profile-sum-max "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) profile_info->sum_max); + fprintf (dump_file, "\n"); + } + fprintf (dump_file, "SMS doloop\n"); + fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes); + fprintf (dump_file, "SMS num-loads %d\n", g->num_loads); + fprintf (dump_file, "SMS num-stores %d\n", g->num_stores); + } + + + /* In case of th loop have doloop register it gets special + handling. */ + count_init = NULL_RTX; + if ((count_reg = doloop_register_get (head, tail))) + { + basic_block pre_header; + + pre_header = loop_preheader_edge (loop)->src; + count_init = const_iteration_count (count_reg, pre_header, + &loop_count); + } + gcc_assert (count_reg); + + if (dump_file && count_init) + { + fprintf (dump_file, "SMS const-doloop "); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, + loop_count); + fprintf (dump_file, "\n"); + } + + node_order = XNEWVEC (int, g->num_nodes); + + mii = 1; /* Need to pass some estimate of mii. */ + rec_mii = sms_order_nodes (g, mii, node_order, &max_asap); + mii = MAX (res_MII (g), rec_mii); + maxii = MAX (max_asap, MAXII_FACTOR * mii); + + if (dump_file) + fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n", + rec_mii, mii, maxii); + + /* After sms_order_nodes and before sms_schedule_by_order, to copy over + ASAP. */ + set_node_sched_params (g); + + ps = sms_schedule_by_order (g, mii, maxii, node_order); + + if (ps){ + stage_count = PS_STAGE_COUNT (ps); + gcc_assert(stage_count >= 1); + } + + /* Stage count of 1 means that there is no interleaving between + iterations, let the scheduling passes do the job. */ + if (stage_count <= 1 + || (count_init && (loop_count <= stage_count)) + || (flag_branch_probabilities && (trip_count <= stage_count))) + { + if (dump_file) + { + fprintf (dump_file, "SMS failed... \n"); + fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count); + fprintf (dump_file, ", trip-count="); + fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count); + fprintf (dump_file, ")\n"); + } + continue; + } + else + { + struct undo_replace_buff_elem *reg_move_replaces; + + if (dump_file) + { + fprintf (dump_file, + "SMS succeeded %d %d (with ii, sc)\n", ps->ii, + stage_count); + print_partial_schedule (ps, dump_file); + fprintf (dump_file, + "SMS Branch (%d) will later be scheduled at cycle %d.\n", + g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1); + } + + /* Set the stage boundaries. If the DDG is built with closing_branch_deps, + the closing_branch was scheduled and should appear in the last (ii-1) + row. Otherwise, we are free to schedule the branch, and we let nodes + that were scheduled at the first PS_MIN_CYCLE cycle appear in the first + row; this should reduce stage_count to minimum. + TODO: Revisit the issue of scheduling the insns of the + control part relative to the branch when the control part + has more than one insn. */ + normalize_sched_times (ps); + rotate_partial_schedule (ps, PS_MIN_CYCLE (ps)); + set_columns_for_ps (ps); + + canon_loop (loop); + + /* case the BCT count is not known , Do loop-versioning */ + if (count_reg && ! count_init) + { + rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg, + GEN_INT(stage_count)); + unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS + * REG_BR_PROB_BASE) / 100; + + loop_version (loop, comp_rtx, &condition_bb, + prob, prob, REG_BR_PROB_BASE - prob, + true); + } + + /* Set new iteration count of loop kernel. */ + if (count_reg && count_init) + SET_SRC (single_set (count_init)) = GEN_INT (loop_count + - stage_count + 1); + + /* Now apply the scheduled kernel to the RTL of the loop. */ + permute_partial_schedule (ps, g->closing_branch->first_note); + + /* Mark this loop as software pipelined so the later + scheduling passes doesn't touch it. */ + if (! flag_resched_modulo_sched) + g->bb->flags |= BB_DISABLE_SCHEDULE; + /* The life-info is not valid any more. */ + df_set_bb_dirty (g->bb); + + reg_move_replaces = generate_reg_moves (ps, true); + if (dump_file) + print_node_sched_params (dump_file, g->num_nodes, g); + /* Generate prolog and epilog. */ + generate_prolog_epilog (ps, loop, count_reg, count_init); + + free_undo_replace_buff (reg_move_replaces); + } + + free_partial_schedule (ps); + free (node_sched_params); + free (node_order); + free_ddg (g); + } + + free (g_arr); + + /* Release scheduler data, needed until now because of DFA. */ + haifa_sched_finish (); + loop_optimizer_finalize (); +} + +/* The SMS scheduling algorithm itself + ----------------------------------- + Input: 'O' an ordered list of insns of a loop. + Output: A scheduling of the loop - kernel, prolog, and epilogue. + + 'Q' is the empty Set + 'PS' is the partial schedule; it holds the currently scheduled nodes with + their cycle/slot. + 'PSP' previously scheduled predecessors. + 'PSS' previously scheduled successors. + 't(u)' the cycle where u is scheduled. + 'l(u)' is the latency of u. + 'd(v,u)' is the dependence distance from v to u. + 'ASAP(u)' the earliest time at which u could be scheduled as computed in + the node ordering phase. + 'check_hardware_resources_conflicts(u, PS, c)' + run a trace around cycle/slot through DFA model + to check resource conflicts involving instruction u + at cycle c given the partial schedule PS. + 'add_to_partial_schedule_at_time(u, PS, c)' + Add the node/instruction u to the partial schedule + PS at time c. + 'calculate_register_pressure(PS)' + Given a schedule of instructions, calculate the register + pressure it implies. One implementation could be the + maximum number of overlapping live ranges. + 'maxRP' The maximum allowed register pressure, it is usually derived from the number + registers available in the hardware. + + 1. II = MII. + 2. PS = empty list + 3. for each node u in O in pre-computed order + 4. if (PSP(u) != Q && PSS(u) == Q) then + 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). + 6. start = Early_start; end = Early_start + II - 1; step = 1 + 11. else if (PSP(u) == Q && PSS(u) != Q) then + 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). + 13. start = Late_start; end = Late_start - II + 1; step = -1 + 14. else if (PSP(u) != Q && PSS(u) != Q) then + 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). + 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). + 17. start = Early_start; + 18. end = min(Early_start + II - 1 , Late_start); + 19. step = 1 + 20. else "if (PSP(u) == Q && PSS(u) == Q)" + 21. start = ASAP(u); end = start + II - 1; step = 1 + 22. endif + + 23. success = false + 24. for (c = start ; c != end ; c += step) + 25. if check_hardware_resources_conflicts(u, PS, c) then + 26. add_to_partial_schedule_at_time(u, PS, c) + 27. success = true + 28. break + 29. endif + 30. endfor + 31. if (success == false) then + 32. II = II + 1 + 33. if (II > maxII) then + 34. finish - failed to schedule + 35. endif + 36. goto 2. + 37. endif + 38. endfor + 39. if (calculate_register_pressure(PS) > maxRP) then + 40. goto 32. + 41. endif + 42. compute epilogue & prologue + 43. finish - succeeded to schedule +*/ + +/* A limit on the number of cycles that resource conflicts can span. ??? Should + be provided by DFA, and be dependent on the type of insn scheduled. Currently + set to 0 to save compile time. */ +#define DFA_HISTORY SMS_DFA_HISTORY + +/* A threshold for the number of repeated unsuccessful attempts to insert + an empty row, before we flush the partial schedule and start over. */ +#define MAX_SPLIT_NUM 10 +/* Given the partial schedule PS, this function calculates and returns the + cycles in which we can schedule the node with the given index I. + NOTE: Here we do the backtracking in SMS, in some special cases. We have + noticed that there are several cases in which we fail to SMS the loop + because the sched window of a node is empty due to tight data-deps. In + such cases we want to unschedule some of the predecessors/successors + until we get non-empty scheduling window. It returns -1 if the + scheduling window is empty and zero otherwise. */ + +static int +get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i, + sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p) +{ + int start, step, end; + ddg_edge_ptr e; + int u = nodes_order [i]; + ddg_node_ptr u_node = &ps->g->nodes[u]; + sbitmap psp = sbitmap_alloc (ps->g->num_nodes); + sbitmap pss = sbitmap_alloc (ps->g->num_nodes); + sbitmap u_node_preds = NODE_PREDECESSORS (u_node); + sbitmap u_node_succs = NODE_SUCCESSORS (u_node); + int psp_not_empty; + int pss_not_empty; + + /* 1. compute sched window for u (start, end, step). */ + sbitmap_zero (psp); + sbitmap_zero (pss); + psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes); + pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes); + + if (psp_not_empty && !pss_not_empty) + { + int early_start = INT_MIN; + + end = INT_MAX; + for (e = u_node->in; e != 0; e = e->next_in) + { + ddg_node_ptr v_node = e->src; + + if (dump_file) + { + fprintf (dump_file, "\nProcessing edge: "); + print_ddg_edge (dump_file, e); + fprintf (dump_file, + "\nScheduling %d (%d) in psp_not_empty," + " checking p %d (%d): ", u_node->cuid, + INSN_UID (u_node->insn), v_node->cuid, INSN_UID + (v_node->insn)); + } + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + int p_st = SCHED_TIME (v_node); + + early_start = + MAX (early_start, p_st + e->latency - (e->distance * ii)); + + if (dump_file) + fprintf (dump_file, + "pred st = %d; early_start = %d; latency: %d", + p_st, early_start, e->latency); + + if (e->data_type == MEM_DEP) + end = MIN (end, SCHED_TIME (v_node) + ii - 1); + } + else if (dump_file) + fprintf (dump_file, "the node is not scheduled\n"); + } + start = early_start; + end = MIN (end, early_start + ii); + /* Schedule the node close to it's predecessors. */ + step = 1; + + if (dump_file) + fprintf (dump_file, + "\nScheduling %d (%d) in a window (%d..%d) with step %d\n", + u_node->cuid, INSN_UID (u_node->insn), start, end, step); + } + + else if (!psp_not_empty && pss_not_empty) + { + int late_start = INT_MAX; + + end = INT_MIN; + for (e = u_node->out; e != 0; e = e->next_out) + { + ddg_node_ptr v_node = e->dest; + + if (dump_file) + { + fprintf (dump_file, "\nProcessing edge:"); + print_ddg_edge (dump_file, e); + fprintf (dump_file, + "\nScheduling %d (%d) in pss_not_empty," + " checking s %d (%d): ", u_node->cuid, + INSN_UID (u_node->insn), v_node->cuid, INSN_UID + (v_node->insn)); + } + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + int s_st = SCHED_TIME (v_node); + + late_start = MIN (late_start, + s_st - e->latency + (e->distance * ii)); + + if (dump_file) + fprintf (dump_file, + "succ st = %d; late_start = %d; latency = %d", + s_st, late_start, e->latency); + + if (e->data_type == MEM_DEP) + end = MAX (end, SCHED_TIME (v_node) - ii + 1); + if (dump_file) + fprintf (dump_file, "end = %d\n", end); + + } + else if (dump_file) + fprintf (dump_file, "the node is not scheduled\n"); + + } + start = late_start; + end = MAX (end, late_start - ii); + /* Schedule the node close to it's successors. */ + step = -1; + + if (dump_file) + fprintf (dump_file, + "\nScheduling %d (%d) in a window (%d..%d) with step %d\n", + u_node->cuid, INSN_UID (u_node->insn), start, end, step); + + } + + else if (psp_not_empty && pss_not_empty) + { + int early_start = INT_MIN; + int late_start = INT_MAX; + int count_preds = 0; + int count_succs = 0; + + start = INT_MIN; + end = INT_MAX; + for (e = u_node->in; e != 0; e = e->next_in) + { + ddg_node_ptr v_node = e->src; + + if (dump_file) + { + fprintf (dump_file, "\nProcessing edge:"); + print_ddg_edge (dump_file, e); + fprintf (dump_file, + "\nScheduling %d (%d) in psp_pss_not_empty," + " checking p %d (%d): ", u_node->cuid, INSN_UID + (u_node->insn), v_node->cuid, INSN_UID + (v_node->insn)); + } + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + int p_st = SCHED_TIME (v_node); + + early_start = MAX (early_start, + p_st + e->latency + - (e->distance * ii)); + + if (dump_file) + fprintf (dump_file, + "pred st = %d; early_start = %d; latency = %d", + p_st, early_start, e->latency); + + if (e->type == TRUE_DEP && e->data_type == REG_DEP) + count_preds++; + + if (e->data_type == MEM_DEP) + end = MIN (end, SCHED_TIME (v_node) + ii - 1); + } + else if (dump_file) + fprintf (dump_file, "the node is not scheduled\n"); + + } + for (e = u_node->out; e != 0; e = e->next_out) + { + ddg_node_ptr v_node = e->dest; + + if (dump_file) + { + fprintf (dump_file, "\nProcessing edge:"); + print_ddg_edge (dump_file, e); + fprintf (dump_file, + "\nScheduling %d (%d) in psp_pss_not_empty," + " checking s %d (%d): ", u_node->cuid, INSN_UID + (u_node->insn), v_node->cuid, INSN_UID + (v_node->insn)); + } + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + int s_st = SCHED_TIME (v_node); + + late_start = MIN (late_start, + s_st - e->latency + + (e->distance * ii)); + + if (dump_file) + fprintf (dump_file, + "succ st = %d; late_start = %d; latency = %d", + s_st, late_start, e->latency); + + if (e->type == TRUE_DEP && e->data_type == REG_DEP) + count_succs++; + + if (e->data_type == MEM_DEP) + start = MAX (start, SCHED_TIME (v_node) - ii + 1); + } + else if (dump_file) + fprintf (dump_file, "the node is not scheduled\n"); + + } + start = MAX (start, early_start); + end = MIN (end, MIN (early_start + ii, late_start + 1)); + step = 1; + /* If there are more successors than predecessors schedule the + node close to it's successors. */ + if (count_succs >= count_preds) + { + int old_start = start; + + start = end - 1; + end = old_start - 1; + step = -1; + } + } + else /* psp is empty && pss is empty. */ + { + start = SCHED_ASAP (u_node); + end = start + ii; + step = 1; + } + + *start_p = start; + *step_p = step; + *end_p = end; + sbitmap_free (psp); + sbitmap_free (pss); + + if ((start >= end && step == 1) || (start <= end && step == -1)) + { + if (dump_file) + fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n", + start, end, step); + return -1; + } + + return 0; +} + +/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the + node currently been scheduled. At the end of the calculation + MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of + U_NODE which are (1) already scheduled in the first/last row of + U_NODE's scheduling window, (2) whose dependence inequality with U + becomes an equality when U is scheduled in this same row, and (3) + whose dependence latency is zero. + + The first and last rows are calculated using the following parameters: + START/END rows - The cycles that begins/ends the traversal on the window; + searching for an empty cycle to schedule U_NODE. + STEP - The direction in which we traverse the window. + II - The initiation interval. */ + +static void +calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end, + int step, int ii, sbitmap sched_nodes, + sbitmap must_precede, sbitmap must_follow) +{ + ddg_edge_ptr e; + int first_cycle_in_window, last_cycle_in_window; + + gcc_assert (must_precede && must_follow); + + /* Consider the following scheduling window: + {first_cycle_in_window, first_cycle_in_window+1, ..., + last_cycle_in_window}. If step is 1 then the following will be + the order we traverse the window: {start=first_cycle_in_window, + first_cycle_in_window+1, ..., end=last_cycle_in_window+1}, + or {start=last_cycle_in_window, last_cycle_in_window-1, ..., + end=first_cycle_in_window-1} if step is -1. */ + first_cycle_in_window = (step == 1) ? start : end - step; + last_cycle_in_window = (step == 1) ? end - step : start; + + sbitmap_zero (must_precede); + sbitmap_zero (must_follow); + + if (dump_file) + fprintf (dump_file, "\nmust_precede: "); + + /* Instead of checking if: + (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window) + && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) == + first_cycle_in_window) + && e->latency == 0 + we use the fact that latency is non-negative: + SCHED_TIME (e->src) - (e->distance * ii) <= + SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <= + first_cycle_in_window + and check only if + SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */ + for (e = u_node->in; e != 0; e = e->next_in) + if (TEST_BIT (sched_nodes, e->src->cuid) + && ((SCHED_TIME (e->src) - (e->distance * ii)) == + first_cycle_in_window)) + { + if (dump_file) + fprintf (dump_file, "%d ", e->src->cuid); + + SET_BIT (must_precede, e->src->cuid); + } + + if (dump_file) + fprintf (dump_file, "\nmust_follow: "); + + /* Instead of checking if: + (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window) + && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) == + last_cycle_in_window) + && e->latency == 0 + we use the fact that latency is non-negative: + SCHED_TIME (e->dest) + (e->distance * ii) >= + SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >= + last_cycle_in_window + and check only if + SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */ + for (e = u_node->out; e != 0; e = e->next_out) + if (TEST_BIT (sched_nodes, e->dest->cuid) + && ((SCHED_TIME (e->dest) + (e->distance * ii)) == + last_cycle_in_window)) + { + if (dump_file) + fprintf (dump_file, "%d ", e->dest->cuid); + + SET_BIT (must_follow, e->dest->cuid); + } + + if (dump_file) + fprintf (dump_file, "\n"); +} + +/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following + parameters to decide if that's possible: + PS - The partial schedule. + U - The serial number of U_NODE. + NUM_SPLITS - The number of row splits made so far. + MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at + the first row of the scheduling window) + MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the + last row of the scheduling window) */ + +static bool +try_scheduling_node_in_cycle (partial_schedule_ptr ps, ddg_node_ptr u_node, + int u, int cycle, sbitmap sched_nodes, + int *num_splits, sbitmap must_precede, + sbitmap must_follow) +{ + ps_insn_ptr psi; + bool success = 0; + + verify_partial_schedule (ps, sched_nodes); + psi = ps_add_node_check_conflicts (ps, u_node, cycle, + must_precede, must_follow); + if (psi) + { + SCHED_TIME (u_node) = cycle; + SET_BIT (sched_nodes, u); + success = 1; + *num_splits = 0; + if (dump_file) + fprintf (dump_file, "Scheduled w/o split in %d\n", cycle); + + } + + return success; +} + +/* This function implements the scheduling algorithm for SMS according to the + above algorithm. */ +static partial_schedule_ptr +sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order) +{ + int ii = mii; + int i, c, success, num_splits = 0; + int flush_and_start_over = true; + int num_nodes = g->num_nodes; + int start, end, step; /* Place together into one struct? */ + sbitmap sched_nodes = sbitmap_alloc (num_nodes); + sbitmap must_precede = sbitmap_alloc (num_nodes); + sbitmap must_follow = sbitmap_alloc (num_nodes); + sbitmap tobe_scheduled = sbitmap_alloc (num_nodes); + + partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY); + + sbitmap_ones (tobe_scheduled); + sbitmap_zero (sched_nodes); + + while (flush_and_start_over && (ii < maxii)) + { + + if (dump_file) + fprintf (dump_file, "Starting with ii=%d\n", ii); + flush_and_start_over = false; + sbitmap_zero (sched_nodes); + + for (i = 0; i < num_nodes; i++) + { + int u = nodes_order[i]; + ddg_node_ptr u_node = &ps->g->nodes[u]; + rtx insn = u_node->insn; + + if (!NONDEBUG_INSN_P (insn)) + { + RESET_BIT (tobe_scheduled, u); + continue; + } + + if (JUMP_P (insn)) /* Closing branch handled later. */ + { + RESET_BIT (tobe_scheduled, u); + continue; + } + + if (TEST_BIT (sched_nodes, u)) + continue; + + /* Try to get non-empty scheduling window. */ + success = 0; + if (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start, + &step, &end) == 0) + { + if (dump_file) + fprintf (dump_file, "\nTrying to schedule node %d \ + INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID + (g->nodes[u].insn)), start, end, step); + + gcc_assert ((step > 0 && start < end) + || (step < 0 && start > end)); + + calculate_must_precede_follow (u_node, start, end, step, ii, + sched_nodes, must_precede, + must_follow); + + for (c = start; c != end; c += step) + { + sbitmap tmp_precede = NULL; + sbitmap tmp_follow = NULL; + + if (c == start) + { + if (step == 1) + tmp_precede = must_precede; + else /* step == -1. */ + tmp_follow = must_follow; + } + if (c == end - step) + { + if (step == 1) + tmp_follow = must_follow; + else /* step == -1. */ + tmp_precede = must_precede; + } + + success = + try_scheduling_node_in_cycle (ps, u_node, u, c, + sched_nodes, + &num_splits, tmp_precede, + tmp_follow); + if (success) + break; + } + + verify_partial_schedule (ps, sched_nodes); + } + if (!success) + { + int split_row; + + if (ii++ == maxii) + break; + + if (num_splits >= MAX_SPLIT_NUM) + { + num_splits = 0; + flush_and_start_over = true; + verify_partial_schedule (ps, sched_nodes); + reset_partial_schedule (ps, ii); + verify_partial_schedule (ps, sched_nodes); + break; + } + + num_splits++; + /* The scheduling window is exclusive of 'end' + whereas compute_split_window() expects an inclusive, + ordered range. */ + if (step == 1) + split_row = compute_split_row (sched_nodes, start, end - 1, + ps->ii, u_node); + else + split_row = compute_split_row (sched_nodes, end + 1, start, + ps->ii, u_node); + + ps_insert_empty_row (ps, split_row, sched_nodes); + i--; /* Go back and retry node i. */ + + if (dump_file) + fprintf (dump_file, "num_splits=%d\n", num_splits); + } + + /* ??? If (success), check register pressure estimates. */ + } /* Continue with next node. */ + } /* While flush_and_start_over. */ + if (ii >= maxii) + { + free_partial_schedule (ps); + ps = NULL; + } + else + gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes)); + + sbitmap_free (sched_nodes); + sbitmap_free (must_precede); + sbitmap_free (must_follow); + sbitmap_free (tobe_scheduled); + + return ps; +} + +/* This function inserts a new empty row into PS at the position + according to SPLITROW, keeping all already scheduled instructions + intact and updating their SCHED_TIME and cycle accordingly. */ +static void +ps_insert_empty_row (partial_schedule_ptr ps, int split_row, + sbitmap sched_nodes) +{ + ps_insn_ptr crr_insn; + ps_insn_ptr *rows_new; + int ii = ps->ii; + int new_ii = ii + 1; + int row; + + verify_partial_schedule (ps, sched_nodes); + + /* We normalize sched_time and rotate ps to have only non-negative sched + times, for simplicity of updating cycles after inserting new row. */ + split_row -= ps->min_cycle; + split_row = SMODULO (split_row, ii); + if (dump_file) + fprintf (dump_file, "split_row=%d\n", split_row); + + normalize_sched_times (ps); + rotate_partial_schedule (ps, ps->min_cycle); + + rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr)); + for (row = 0; row < split_row; row++) + { + rows_new[row] = ps->rows[row]; + ps->rows[row] = NULL; + for (crr_insn = rows_new[row]; + crr_insn; crr_insn = crr_insn->next_in_row) + { + ddg_node_ptr u = crr_insn->node; + int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii); + + SCHED_TIME (u) = new_time; + crr_insn->cycle = new_time; + SCHED_ROW (u) = new_time % new_ii; + SCHED_STAGE (u) = new_time / new_ii; + } + + } + + rows_new[split_row] = NULL; + + for (row = split_row; row < ii; row++) + { + rows_new[row + 1] = ps->rows[row]; + ps->rows[row] = NULL; + for (crr_insn = rows_new[row + 1]; + crr_insn; crr_insn = crr_insn->next_in_row) + { + ddg_node_ptr u = crr_insn->node; + int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1; + + SCHED_TIME (u) = new_time; + crr_insn->cycle = new_time; + SCHED_ROW (u) = new_time % new_ii; + SCHED_STAGE (u) = new_time / new_ii; + } + } + + /* Updating ps. */ + ps->min_cycle = ps->min_cycle + ps->min_cycle / ii + + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0); + ps->max_cycle = ps->max_cycle + ps->max_cycle / ii + + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0); + free (ps->rows); + ps->rows = rows_new; + ps->ii = new_ii; + gcc_assert (ps->min_cycle >= 0); + + verify_partial_schedule (ps, sched_nodes); + + if (dump_file) + fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle, + ps->max_cycle); +} + +/* Given U_NODE which is the node that failed to be scheduled; LOW and + UP which are the boundaries of it's scheduling window; compute using + SCHED_NODES and II a row in the partial schedule that can be split + which will separate a critical predecessor from a critical successor + thereby expanding the window, and return it. */ +static int +compute_split_row (sbitmap sched_nodes, int low, int up, int ii, + ddg_node_ptr u_node) +{ + ddg_edge_ptr e; + int lower = INT_MIN, upper = INT_MAX; + ddg_node_ptr crit_pred = NULL; + ddg_node_ptr crit_succ = NULL; + int crit_cycle; + + for (e = u_node->in; e != 0; e = e->next_in) + { + ddg_node_ptr v_node = e->src; + + if (TEST_BIT (sched_nodes, v_node->cuid) + && (low == SCHED_TIME (v_node) + e->latency - (e->distance * ii))) + if (SCHED_TIME (v_node) > lower) + { + crit_pred = v_node; + lower = SCHED_TIME (v_node); + } + } + + if (crit_pred != NULL) + { + crit_cycle = SCHED_TIME (crit_pred) + 1; + return SMODULO (crit_cycle, ii); + } + + for (e = u_node->out; e != 0; e = e->next_out) + { + ddg_node_ptr v_node = e->dest; + if (TEST_BIT (sched_nodes, v_node->cuid) + && (up == SCHED_TIME (v_node) - e->latency + (e->distance * ii))) + if (SCHED_TIME (v_node) < upper) + { + crit_succ = v_node; + upper = SCHED_TIME (v_node); + } + } + + if (crit_succ != NULL) + { + crit_cycle = SCHED_TIME (crit_succ); + return SMODULO (crit_cycle, ii); + } + + if (dump_file) + fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n"); + + return SMODULO ((low + up + 1) / 2, ii); +} + +static void +verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes) +{ + int row; + ps_insn_ptr crr_insn; + + for (row = 0; row < ps->ii; row++) + for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) + { + ddg_node_ptr u = crr_insn->node; + + gcc_assert (TEST_BIT (sched_nodes, u->cuid)); + /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by + popcount (sched_nodes) == number of insns in ps. */ + gcc_assert (SCHED_TIME (u) >= ps->min_cycle); + gcc_assert (SCHED_TIME (u) <= ps->max_cycle); + } +} + + +/* This page implements the algorithm for ordering the nodes of a DDG + for modulo scheduling, activated through the + "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */ + +#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info) +#define ASAP(x) (ORDER_PARAMS ((x))->asap) +#define ALAP(x) (ORDER_PARAMS ((x))->alap) +#define HEIGHT(x) (ORDER_PARAMS ((x))->height) +#define MOB(x) (ALAP ((x)) - ASAP ((x))) +#define DEPTH(x) (ASAP ((x))) + +typedef struct node_order_params * nopa; + +static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result); +static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int); +static nopa calculate_order_params (ddg_ptr, int, int *); +static int find_max_asap (ddg_ptr, sbitmap); +static int find_max_hv_min_mob (ddg_ptr, sbitmap); +static int find_max_dv_min_mob (ddg_ptr, sbitmap); + +enum sms_direction {BOTTOMUP, TOPDOWN}; + +struct node_order_params +{ + int asap; + int alap; + int height; +}; + +/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */ +static void +check_nodes_order (int *node_order, int num_nodes) +{ + int i; + sbitmap tmp = sbitmap_alloc (num_nodes); + + sbitmap_zero (tmp); + + if (dump_file) + fprintf (dump_file, "SMS final nodes order: \n"); + + for (i = 0; i < num_nodes; i++) + { + int u = node_order[i]; + + if (dump_file) + fprintf (dump_file, "%d ", u); + gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u)); + + SET_BIT (tmp, u); + } + + if (dump_file) + fprintf (dump_file, "\n"); + + sbitmap_free (tmp); +} + +/* Order the nodes of G for scheduling and pass the result in + NODE_ORDER. Also set aux.count of each node to ASAP. + Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */ +static int +sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap) +{ + int i; + int rec_mii = 0; + ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g); + + nopa nops = calculate_order_params (g, mii, pmax_asap); + + if (dump_file) + print_sccs (dump_file, sccs, g); + + order_nodes_of_sccs (sccs, node_order); + + if (sccs->num_sccs > 0) + /* First SCC has the largest recurrence_length. */ + rec_mii = sccs->sccs[0]->recurrence_length; + + /* Save ASAP before destroying node_order_params. */ + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr v = &g->nodes[i]; + v->aux.count = ASAP (v); + } + + free (nops); + free_ddg_all_sccs (sccs); + check_nodes_order (node_order, g->num_nodes); + + return rec_mii; +} + +static void +order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order) +{ + int i, pos = 0; + ddg_ptr g = all_sccs->ddg; + int num_nodes = g->num_nodes; + sbitmap prev_sccs = sbitmap_alloc (num_nodes); + sbitmap on_path = sbitmap_alloc (num_nodes); + sbitmap tmp = sbitmap_alloc (num_nodes); + sbitmap ones = sbitmap_alloc (num_nodes); + + sbitmap_zero (prev_sccs); + sbitmap_ones (ones); + + /* Perform the node ordering starting from the SCC with the highest recMII. + For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */ + for (i = 0; i < all_sccs->num_sccs; i++) + { + ddg_scc_ptr scc = all_sccs->sccs[i]; + + /* Add nodes on paths from previous SCCs to the current SCC. */ + find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes); + sbitmap_a_or_b (tmp, scc->nodes, on_path); + + /* Add nodes on paths from the current SCC to previous SCCs. */ + find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs); + sbitmap_a_or_b (tmp, tmp, on_path); + + /* Remove nodes of previous SCCs from current extended SCC. */ + sbitmap_difference (tmp, tmp, prev_sccs); + + pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); + /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */ + } + + /* Handle the remaining nodes that do not belong to any scc. Each call + to order_nodes_in_scc handles a single connected component. */ + while (pos < g->num_nodes) + { + sbitmap_difference (tmp, ones, prev_sccs); + pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); + } + sbitmap_free (prev_sccs); + sbitmap_free (on_path); + sbitmap_free (tmp); + sbitmap_free (ones); +} + +/* MII is needed if we consider backarcs (that do not close recursive cycles). */ +static struct node_order_params * +calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap) +{ + int u; + int max_asap; + int num_nodes = g->num_nodes; + ddg_edge_ptr e; + /* Allocate a place to hold ordering params for each node in the DDG. */ + nopa node_order_params_arr; + + /* Initialize of ASAP/ALAP/HEIGHT to zero. */ + node_order_params_arr = (nopa) xcalloc (num_nodes, + sizeof (struct node_order_params)); + + /* Set the aux pointer of each node to point to its order_params structure. */ + for (u = 0; u < num_nodes; u++) + g->nodes[u].aux.info = &node_order_params_arr[u]; + + /* Disregarding a backarc from each recursive cycle to obtain a DAG, + calculate ASAP, ALAP, mobility, distance, and height for each node + in the dependence (direct acyclic) graph. */ + + /* We assume that the nodes in the array are in topological order. */ + + max_asap = 0; + for (u = 0; u < num_nodes; u++) + { + ddg_node_ptr u_node = &g->nodes[u]; + + ASAP (u_node) = 0; + for (e = u_node->in; e; e = e->next_in) + if (e->distance == 0) + ASAP (u_node) = MAX (ASAP (u_node), + ASAP (e->src) + e->latency); + max_asap = MAX (max_asap, ASAP (u_node)); + } + + for (u = num_nodes - 1; u > -1; u--) + { + ddg_node_ptr u_node = &g->nodes[u]; + + ALAP (u_node) = max_asap; + HEIGHT (u_node) = 0; + for (e = u_node->out; e; e = e->next_out) + if (e->distance == 0) + { + ALAP (u_node) = MIN (ALAP (u_node), + ALAP (e->dest) - e->latency); + HEIGHT (u_node) = MAX (HEIGHT (u_node), + HEIGHT (e->dest) + e->latency); + } + } + if (dump_file) + { + fprintf (dump_file, "\nOrder params\n"); + for (u = 0; u < num_nodes; u++) + { + ddg_node_ptr u_node = &g->nodes[u]; + + fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u, + ASAP (u_node), ALAP (u_node), HEIGHT (u_node)); + } + } + + *pmax_asap = max_asap; + return node_order_params_arr; +} + +static int +find_max_asap (ddg_ptr g, sbitmap nodes) +{ + unsigned int u = 0; + int max_asap = -1; + int result = -1; + sbitmap_iterator sbi; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi) + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_asap < ASAP (u_node)) + { + max_asap = ASAP (u_node); + result = u; + } + } + return result; +} + +static int +find_max_hv_min_mob (ddg_ptr g, sbitmap nodes) +{ + unsigned int u = 0; + int max_hv = -1; + int min_mob = INT_MAX; + int result = -1; + sbitmap_iterator sbi; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi) + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_hv < HEIGHT (u_node)) + { + max_hv = HEIGHT (u_node); + min_mob = MOB (u_node); + result = u; + } + else if ((max_hv == HEIGHT (u_node)) + && (min_mob > MOB (u_node))) + { + min_mob = MOB (u_node); + result = u; + } + } + return result; +} + +static int +find_max_dv_min_mob (ddg_ptr g, sbitmap nodes) +{ + unsigned int u = 0; + int max_dv = -1; + int min_mob = INT_MAX; + int result = -1; + sbitmap_iterator sbi; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi) + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_dv < DEPTH (u_node)) + { + max_dv = DEPTH (u_node); + min_mob = MOB (u_node); + result = u; + } + else if ((max_dv == DEPTH (u_node)) + && (min_mob > MOB (u_node))) + { + min_mob = MOB (u_node); + result = u; + } + } + return result; +} + +/* Places the nodes of SCC into the NODE_ORDER array starting + at position POS, according to the SMS ordering algorithm. + NODES_ORDERED (in&out parameter) holds the bitset of all nodes in + the NODE_ORDER array, starting from position zero. */ +static int +order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc, + int * node_order, int pos) +{ + enum sms_direction dir; + int num_nodes = g->num_nodes; + sbitmap workset = sbitmap_alloc (num_nodes); + sbitmap tmp = sbitmap_alloc (num_nodes); + sbitmap zero_bitmap = sbitmap_alloc (num_nodes); + sbitmap predecessors = sbitmap_alloc (num_nodes); + sbitmap successors = sbitmap_alloc (num_nodes); + + sbitmap_zero (predecessors); + find_predecessors (predecessors, g, nodes_ordered); + + sbitmap_zero (successors); + find_successors (successors, g, nodes_ordered); + + sbitmap_zero (tmp); + if (sbitmap_a_and_b_cg (tmp, predecessors, scc)) + { + sbitmap_copy (workset, tmp); + dir = BOTTOMUP; + } + else if (sbitmap_a_and_b_cg (tmp, successors, scc)) + { + sbitmap_copy (workset, tmp); + dir = TOPDOWN; + } + else + { + int u; + + sbitmap_zero (workset); + if ((u = find_max_asap (g, scc)) >= 0) + SET_BIT (workset, u); + dir = BOTTOMUP; + } + + sbitmap_zero (zero_bitmap); + while (!sbitmap_equal (workset, zero_bitmap)) + { + int v; + ddg_node_ptr v_node; + sbitmap v_node_preds; + sbitmap v_node_succs; + + if (dir == TOPDOWN) + { + while (!sbitmap_equal (workset, zero_bitmap)) + { + v = find_max_hv_min_mob (g, workset); + v_node = &g->nodes[v]; + node_order[pos++] = v; + v_node_succs = NODE_SUCCESSORS (v_node); + sbitmap_a_and_b (tmp, v_node_succs, scc); + + /* Don't consider the already ordered successors again. */ + sbitmap_difference (tmp, tmp, nodes_ordered); + sbitmap_a_or_b (workset, workset, tmp); + RESET_BIT (workset, v); + SET_BIT (nodes_ordered, v); + } + dir = BOTTOMUP; + sbitmap_zero (predecessors); + find_predecessors (predecessors, g, nodes_ordered); + sbitmap_a_and_b (workset, predecessors, scc); + } + else + { + while (!sbitmap_equal (workset, zero_bitmap)) + { + v = find_max_dv_min_mob (g, workset); + v_node = &g->nodes[v]; + node_order[pos++] = v; + v_node_preds = NODE_PREDECESSORS (v_node); + sbitmap_a_and_b (tmp, v_node_preds, scc); + + /* Don't consider the already ordered predecessors again. */ + sbitmap_difference (tmp, tmp, nodes_ordered); + sbitmap_a_or_b (workset, workset, tmp); + RESET_BIT (workset, v); + SET_BIT (nodes_ordered, v); + } + dir = TOPDOWN; + sbitmap_zero (successors); + find_successors (successors, g, nodes_ordered); + sbitmap_a_and_b (workset, successors, scc); + } + } + sbitmap_free (tmp); + sbitmap_free (workset); + sbitmap_free (zero_bitmap); + sbitmap_free (predecessors); + sbitmap_free (successors); + return pos; +} + + +/* This page contains functions for manipulating partial-schedules during + modulo scheduling. */ + +/* Create a partial schedule and allocate a memory to hold II rows. */ + +static partial_schedule_ptr +create_partial_schedule (int ii, ddg_ptr g, int history) +{ + partial_schedule_ptr ps = XNEW (struct partial_schedule); + ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr)); + ps->ii = ii; + ps->history = history; + ps->min_cycle = INT_MAX; + ps->max_cycle = INT_MIN; + ps->g = g; + + return ps; +} + +/* Free the PS_INSNs in rows array of the given partial schedule. + ??? Consider caching the PS_INSN's. */ +static void +free_ps_insns (partial_schedule_ptr ps) +{ + int i; + + for (i = 0; i < ps->ii; i++) + { + while (ps->rows[i]) + { + ps_insn_ptr ps_insn = ps->rows[i]->next_in_row; + + free (ps->rows[i]); + ps->rows[i] = ps_insn; + } + ps->rows[i] = NULL; + } +} + +/* Free all the memory allocated to the partial schedule. */ + +static void +free_partial_schedule (partial_schedule_ptr ps) +{ + if (!ps) + return; + free_ps_insns (ps); + free (ps->rows); + free (ps); +} + +/* Clear the rows array with its PS_INSNs, and create a new one with + NEW_II rows. */ + +static void +reset_partial_schedule (partial_schedule_ptr ps, int new_ii) +{ + if (!ps) + return; + free_ps_insns (ps); + if (new_ii == ps->ii) + return; + ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii + * sizeof (ps_insn_ptr)); + memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr)); + ps->ii = new_ii; + ps->min_cycle = INT_MAX; + ps->max_cycle = INT_MIN; +} + +/* Prints the partial schedule as an ii rows array, for each rows + print the ids of the insns in it. */ +void +print_partial_schedule (partial_schedule_ptr ps, FILE *dump) +{ + int i; + + for (i = 0; i < ps->ii; i++) + { + ps_insn_ptr ps_i = ps->rows[i]; + + fprintf (dump, "\n[ROW %d ]: ", i); + while (ps_i) + { + fprintf (dump, "%d, ", + INSN_UID (ps_i->node->insn)); + ps_i = ps_i->next_in_row; + } + } +} + +/* Creates an object of PS_INSN and initializes it to the given parameters. */ +static ps_insn_ptr +create_ps_insn (ddg_node_ptr node, int rest_count, int cycle) +{ + ps_insn_ptr ps_i = XNEW (struct ps_insn); + + ps_i->node = node; + ps_i->next_in_row = NULL; + ps_i->prev_in_row = NULL; + ps_i->row_rest_count = rest_count; + ps_i->cycle = cycle; + + return ps_i; +} + + +/* Removes the given PS_INSN from the partial schedule. Returns false if the + node is not found in the partial schedule, else returns true. */ +static bool +remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i) +{ + int row; + + if (!ps || !ps_i) + return false; + + row = SMODULO (ps_i->cycle, ps->ii); + if (! ps_i->prev_in_row) + { + if (ps_i != ps->rows[row]) + return false; + + ps->rows[row] = ps_i->next_in_row; + if (ps->rows[row]) + ps->rows[row]->prev_in_row = NULL; + } + else + { + ps_i->prev_in_row->next_in_row = ps_i->next_in_row; + if (ps_i->next_in_row) + ps_i->next_in_row->prev_in_row = ps_i->prev_in_row; + } + free (ps_i); + return true; +} + +/* Unlike what literature describes for modulo scheduling (which focuses + on VLIW machines) the order of the instructions inside a cycle is + important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know + where the current instruction should go relative to the already + scheduled instructions in the given cycle. Go over these + instructions and find the first possible column to put it in. */ +static bool +ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, + sbitmap must_precede, sbitmap must_follow) +{ + ps_insn_ptr next_ps_i; + ps_insn_ptr first_must_follow = NULL; + ps_insn_ptr last_must_precede = NULL; + int row; + + if (! ps_i) + return false; + + row = SMODULO (ps_i->cycle, ps->ii); + + /* Find the first must follow and the last must precede + and insert the node immediately after the must precede + but make sure that it there is no must follow after it. */ + for (next_ps_i = ps->rows[row]; + next_ps_i; + next_ps_i = next_ps_i->next_in_row) + { + if (must_follow && TEST_BIT (must_follow, next_ps_i->node->cuid) + && ! first_must_follow) + first_must_follow = next_ps_i; + if (must_precede && TEST_BIT (must_precede, next_ps_i->node->cuid)) + { + /* If we have already met a node that must follow, then + there is no possible column. */ + if (first_must_follow) + return false; + else + last_must_precede = next_ps_i; + } + } + + /* Now insert the node after INSERT_AFTER_PSI. */ + + if (! last_must_precede) + { + ps_i->next_in_row = ps->rows[row]; + ps_i->prev_in_row = NULL; + if (ps_i->next_in_row) + ps_i->next_in_row->prev_in_row = ps_i; + ps->rows[row] = ps_i; + } + else + { + ps_i->next_in_row = last_must_precede->next_in_row; + last_must_precede->next_in_row = ps_i; + ps_i->prev_in_row = last_must_precede; + if (ps_i->next_in_row) + ps_i->next_in_row->prev_in_row = ps_i; + } + + return true; +} + +/* Advances the PS_INSN one column in its current row; returns false + in failure and true in success. Bit N is set in MUST_FOLLOW if + the node with cuid N must be come after the node pointed to by + PS_I when scheduled in the same cycle. */ +static int +ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, + sbitmap must_follow) +{ + ps_insn_ptr prev, next; + int row; + ddg_node_ptr next_node; + + if (!ps || !ps_i) + return false; + + row = SMODULO (ps_i->cycle, ps->ii); + + if (! ps_i->next_in_row) + return false; + + next_node = ps_i->next_in_row->node; + + /* Check if next_in_row is dependent on ps_i, both having same sched + times (typically ANTI_DEP). If so, ps_i cannot skip over it. */ + if (must_follow && TEST_BIT (must_follow, next_node->cuid)) + return false; + + /* Advance PS_I over its next_in_row in the doubly linked list. */ + prev = ps_i->prev_in_row; + next = ps_i->next_in_row; + + if (ps_i == ps->rows[row]) + ps->rows[row] = next; + + ps_i->next_in_row = next->next_in_row; + + if (next->next_in_row) + next->next_in_row->prev_in_row = ps_i; + + next->next_in_row = ps_i; + ps_i->prev_in_row = next; + + next->prev_in_row = prev; + if (prev) + prev->next_in_row = next; + + return true; +} + +/* Inserts a DDG_NODE to the given partial schedule at the given cycle. + Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is + set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come + before/after (respectively) the node pointed to by PS_I when scheduled + in the same cycle. */ +static ps_insn_ptr +add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle, + sbitmap must_precede, sbitmap must_follow) +{ + ps_insn_ptr ps_i; + int rest_count = 1; + int row = SMODULO (cycle, ps->ii); + + if (ps->rows[row] + && ps->rows[row]->row_rest_count >= issue_rate) + return NULL; + + if (ps->rows[row]) + rest_count += ps->rows[row]->row_rest_count; + + ps_i = create_ps_insn (node, rest_count, cycle); + + /* Finds and inserts PS_I according to MUST_FOLLOW and + MUST_PRECEDE. */ + if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow)) + { + free (ps_i); + return NULL; + } + + return ps_i; +} + +/* Advance time one cycle. Assumes DFA is being used. */ +static void +advance_one_cycle (void) +{ + if (targetm.sched.dfa_pre_cycle_insn) + state_transition (curr_state, + targetm.sched.dfa_pre_cycle_insn ()); + + state_transition (curr_state, NULL); + + if (targetm.sched.dfa_post_cycle_insn) + state_transition (curr_state, + targetm.sched.dfa_post_cycle_insn ()); +} + + + +/* Checks if PS has resource conflicts according to DFA, starting from + FROM cycle to TO cycle; returns true if there are conflicts and false + if there are no conflicts. Assumes DFA is being used. */ +static int +ps_has_conflicts (partial_schedule_ptr ps, int from, int to) +{ + int cycle; + + state_reset (curr_state); + + for (cycle = from; cycle <= to; cycle++) + { + ps_insn_ptr crr_insn; + /* Holds the remaining issue slots in the current row. */ + int can_issue_more = issue_rate; + + /* Walk through the DFA for the current row. */ + for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)]; + crr_insn; + crr_insn = crr_insn->next_in_row) + { + rtx insn = crr_insn->node->insn; + + if (!NONDEBUG_INSN_P (insn)) + continue; + + /* Check if there is room for the current insn. */ + if (!can_issue_more || state_dead_lock_p (curr_state)) + return true; + + /* Update the DFA state and return with failure if the DFA found + resource conflicts. */ + if (state_transition (curr_state, insn) >= 0) + return true; + + if (targetm.sched.variable_issue) + can_issue_more = + targetm.sched.variable_issue (sched_dump, sched_verbose, + insn, can_issue_more); + /* A naked CLOBBER or USE generates no instruction, so don't + let them consume issue slots. */ + else if (GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER) + can_issue_more--; + } + + /* Advance the DFA to the next cycle. */ + advance_one_cycle (); + } + return false; +} + +/* Checks if the given node causes resource conflicts when added to PS at + cycle C. If not the node is added to PS and returned; otherwise zero + is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with + cuid N must be come before/after (respectively) the node pointed to by + PS_I when scheduled in the same cycle. */ +ps_insn_ptr +ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n, + int c, sbitmap must_precede, + sbitmap must_follow) +{ + int has_conflicts = 0; + ps_insn_ptr ps_i; + + /* First add the node to the PS, if this succeeds check for + conflicts, trying different issue slots in the same row. */ + if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow))) + return NULL; /* Failed to insert the node at the given cycle. */ + + has_conflicts = ps_has_conflicts (ps, c, c) + || (ps->history > 0 + && ps_has_conflicts (ps, + c - ps->history, + c + ps->history)); + + /* Try different issue slots to find one that the given node can be + scheduled in without conflicts. */ + while (has_conflicts) + { + if (! ps_insn_advance_column (ps, ps_i, must_follow)) + break; + has_conflicts = ps_has_conflicts (ps, c, c) + || (ps->history > 0 + && ps_has_conflicts (ps, + c - ps->history, + c + ps->history)); + } + + if (has_conflicts) + { + remove_node_from_ps (ps, ps_i); + return NULL; + } + + ps->min_cycle = MIN (ps->min_cycle, c); + ps->max_cycle = MAX (ps->max_cycle, c); + return ps_i; +} + +/* Rotate the rows of PS such that insns scheduled at time + START_CYCLE will appear in row 0. Updates max/min_cycles. */ +void +rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle) +{ + int i, row, backward_rotates; + int last_row = ps->ii - 1; + + if (start_cycle == 0) + return; + + backward_rotates = SMODULO (start_cycle, ps->ii); + + /* Revisit later and optimize this into a single loop. */ + for (i = 0; i < backward_rotates; i++) + { + ps_insn_ptr first_row = ps->rows[0]; + + for (row = 0; row < last_row; row++) + ps->rows[row] = ps->rows[row+1]; + + ps->rows[last_row] = first_row; + } + + ps->max_cycle -= start_cycle; + ps->min_cycle -= start_cycle; +} + +#endif /* INSN_SCHEDULING */ + +static bool +gate_handle_sms (void) +{ + return (optimize > 0 && flag_modulo_sched); +} + + +/* Run instruction scheduler. */ +/* Perform SMS module scheduling. */ +static unsigned int +rest_of_handle_sms (void) +{ +#ifdef INSN_SCHEDULING + basic_block bb; + + /* Collect loop information to be used in SMS. */ + cfg_layout_initialize (0); + sms_schedule (); + + /* Update the life information, because we add pseudos. */ + max_regno = max_reg_num (); + + /* Finalize layout changes. */ + FOR_EACH_BB (bb) + if (bb->next_bb != EXIT_BLOCK_PTR) + bb->aux = bb->next_bb; + free_dominance_info (CDI_DOMINATORS); + cfg_layout_finalize (); +#endif /* INSN_SCHEDULING */ + return 0; +} + +struct rtl_opt_pass pass_sms = +{ + { + RTL_PASS, + "sms", /* name */ + gate_handle_sms, /* gate */ + rest_of_handle_sms, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_SMS, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + TODO_dump_func, /* todo_flags_start */ + TODO_df_finish + | TODO_verify_flow + | TODO_verify_rtl_sharing + | TODO_dump_func + | TODO_ggc_collect /* todo_flags_finish */ + } +}; + -- cgit v1.2.3