From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/real.h | 494 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 494 insertions(+) create mode 100644 gcc/real.h (limited to 'gcc/real.h') diff --git a/gcc/real.h b/gcc/real.h new file mode 100644 index 000000000..d16dc249d --- /dev/null +++ b/gcc/real.h @@ -0,0 +1,494 @@ +/* Definitions of floating-point access for GNU compiler. + Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, 1999, + 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. + + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + +#ifndef GCC_REAL_H +#define GCC_REAL_H + +#include "machmode.h" + +/* An expanded form of the represented number. */ + +/* Enumerate the special cases of numbers that we encounter. */ +enum real_value_class { + rvc_zero, + rvc_normal, + rvc_inf, + rvc_nan +}; + +#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) +#define EXP_BITS (32 - 6) +#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) +#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) +#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) + +struct GTY(()) real_value { + /* Use the same underlying type for all bit-fields, so as to make + sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will + be miscomputed. */ + unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; + unsigned int decimal : 1; + unsigned int sign : 1; + unsigned int signalling : 1; + unsigned int canonical : 1; + unsigned int uexp : EXP_BITS; + unsigned long sig[SIGSZ]; +}; + +#define REAL_EXP(REAL) \ + ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ + - (1 << (EXP_BITS - 1))) +#define SET_REAL_EXP(REAL, EXP) \ + ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) + +/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it + needs to be a macro. We do need to continue to have a structure tag + so that other headers can forward declare it. */ +#define REAL_VALUE_TYPE struct real_value + +/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in + consecutive "w" slots. Moreover, we've got to compute the number of "w" + slots at preprocessor time, which means we can't use sizeof. Guess. */ + +#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) +#define REAL_WIDTH \ + (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ + + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ + +/* Verify the guess. */ +extern char test_real_width + [sizeof(REAL_VALUE_TYPE) <= REAL_WIDTH*sizeof(HOST_WIDE_INT) ? 1 : -1]; + +/* Calculate the format for CONST_DOUBLE. We need as many slots as + are necessary to overlay a REAL_VALUE_TYPE on them. This could be + as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). + + A number of places assume that there are always at least two 'w' + slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ + +#if REAL_WIDTH == 1 +# define CONST_DOUBLE_FORMAT "ww" +#else +# if REAL_WIDTH == 2 +# define CONST_DOUBLE_FORMAT "ww" +# else +# if REAL_WIDTH == 3 +# define CONST_DOUBLE_FORMAT "www" +# else +# if REAL_WIDTH == 4 +# define CONST_DOUBLE_FORMAT "wwww" +# else +# if REAL_WIDTH == 5 +# define CONST_DOUBLE_FORMAT "wwwww" +# else +# if REAL_WIDTH == 6 +# define CONST_DOUBLE_FORMAT "wwwwww" +# else + #error "REAL_WIDTH > 6 not supported" +# endif +# endif +# endif +# endif +# endif +#endif + + +/* Describes the properties of the specific target format in use. */ +struct real_format +{ + /* Move to and from the target bytes. */ + void (*encode) (const struct real_format *, long *, + const REAL_VALUE_TYPE *); + void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, + const long *); + + /* The radix of the exponent and digits of the significand. */ + int b; + + /* Size of the significand in digits of radix B. */ + int p; + + /* Size of the significant of a NaN, in digits of radix B. */ + int pnan; + + /* The minimum negative integer, x, such that b**(x-1) is normalized. */ + int emin; + + /* The maximum integer, x, such that b**(x-1) is representable. */ + int emax; + + /* The bit position of the sign bit, for determining whether a value + is positive/negative, or -1 for a complex encoding. */ + int signbit_ro; + + /* The bit position of the sign bit, for changing the sign of a number, + or -1 for a complex encoding. */ + int signbit_rw; + + /* Default rounding mode for operations on this format. */ + bool round_towards_zero; + bool has_sign_dependent_rounding; + + /* Properties of the format. */ + bool has_nans; + bool has_inf; + bool has_denorm; + bool has_signed_zero; + bool qnan_msb_set; + bool canonical_nan_lsbs_set; +}; + + +/* The target format used for each floating point mode. + Float modes are followed by decimal float modes, with entries for + float modes indexed by (MODE - first float mode), and entries for + decimal float modes indexed by (MODE - first decimal float mode) + + the number of float modes. */ +extern const struct real_format * + real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 + + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; + +#define REAL_MODE_FORMAT(MODE) \ + (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ + ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \ + + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ + : ((MODE) - MIN_MODE_FLOAT)]) + +#define FLOAT_MODE_FORMAT(MODE) \ + (REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \ + : GET_MODE_INNER (MODE))) + +/* The following macro determines whether the floating point format is + composite, i.e. may contain non-consecutive mantissa bits, in which + case compile-time FP overflow may not model run-time overflow. */ +#define MODE_COMPOSITE_P(MODE) \ + (FLOAT_MODE_P (MODE) \ + && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p) + +/* Accessor macros for format properties. */ +#define MODE_HAS_NANS(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans) +#define MODE_HAS_INFINITIES(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf) +#define MODE_HAS_SIGNED_ZEROS(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero) +#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \ + (FLOAT_MODE_P (MODE) \ + && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding) + +/* True if the given mode has a NaN representation and the treatment of + NaN operands is important. Certain optimizations, such as folding + x * 0 into 0, are not correct for NaN operands, and are normally + disabled for modes with NaNs. The user can ask for them to be + done anyway using the -funsafe-math-optimizations switch. */ +#define HONOR_NANS(MODE) \ + (MODE_HAS_NANS (MODE) && !flag_finite_math_only) + +/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */ +#define HONOR_SNANS(MODE) (flag_signaling_nans && HONOR_NANS (MODE)) + +/* As for HONOR_NANS, but true if the mode can represent infinity and + the treatment of infinite values is important. */ +#define HONOR_INFINITIES(MODE) \ + (MODE_HAS_INFINITIES (MODE) && !flag_finite_math_only) + +/* Like HONOR_NANS, but true if the given mode distinguishes between + positive and negative zero, and the sign of zero is important. */ +#define HONOR_SIGNED_ZEROS(MODE) \ + (MODE_HAS_SIGNED_ZEROS (MODE) && flag_signed_zeros) + +/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding, + and the rounding mode is important. */ +#define HONOR_SIGN_DEPENDENT_ROUNDING(MODE) \ + (MODE_HAS_SIGN_DEPENDENT_ROUNDING (MODE) && flag_rounding_math) + +/* Declare functions in real.c. */ + +/* Binary or unary arithmetic on tree_code. */ +extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, + const REAL_VALUE_TYPE *); + +/* Compare reals by tree_code. */ +extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is infinite. */ +extern bool real_isinf (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is a NaN. */ +extern bool real_isnan (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is finite. */ +extern bool real_isfinite (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is negative. */ +extern bool real_isneg (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is minus zero. */ +extern bool real_isnegzero (const REAL_VALUE_TYPE *); + +/* Compare two floating-point objects for bitwise identity. */ +extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Extend or truncate to a new mode. */ +extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Return true if truncating to NEW is exact. */ +extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *); + +/* Render R as a decimal floating point constant. */ +extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, + size_t, int); + +/* Render R as a decimal floating point constant, rounded so as to be + parsed back to the same value when interpreted in mode MODE. */ +extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t, + size_t, int, enum machine_mode); + +/* Render R as a hexadecimal floating point constant. */ +extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, + size_t, size_t, int); + +/* Render R as an integer. */ +extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); +extern void real_to_integer2 (HOST_WIDE_INT *, HOST_WIDE_INT *, + const REAL_VALUE_TYPE *); + +/* Initialize R from a decimal or hexadecimal string. Return -1 if + the value underflows, +1 if overflows, and 0 otherwise. */ +extern int real_from_string (REAL_VALUE_TYPE *, const char *); +/* Wrapper to allow different internal representation for decimal floats. */ +extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode); + +/* Initialize R from an integer pair HIGH/LOW. */ +extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode, + unsigned HOST_WIDE_INT, HOST_WIDE_INT, int); + +extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *, + const struct real_format *); +extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode); + +extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *, + const struct real_format *); +extern void real_from_target (REAL_VALUE_TYPE *, const long *, + enum machine_mode); + +extern void real_inf (REAL_VALUE_TYPE *); + +extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode); + +extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode); + +extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode); + +extern unsigned int real_hash (const REAL_VALUE_TYPE *); + + +/* Target formats defined in real.c. */ +extern const struct real_format ieee_single_format; +extern const struct real_format mips_single_format; +extern const struct real_format motorola_single_format; +extern const struct real_format spu_single_format; +extern const struct real_format ieee_double_format; +extern const struct real_format mips_double_format; +extern const struct real_format motorola_double_format; +extern const struct real_format ieee_extended_motorola_format; +extern const struct real_format ieee_extended_intel_96_format; +extern const struct real_format ieee_extended_intel_96_round_53_format; +extern const struct real_format ieee_extended_intel_128_format; +extern const struct real_format ibm_extended_format; +extern const struct real_format mips_extended_format; +extern const struct real_format ieee_quad_format; +extern const struct real_format mips_quad_format; +extern const struct real_format vax_f_format; +extern const struct real_format vax_d_format; +extern const struct real_format vax_g_format; +extern const struct real_format real_internal_format; +extern const struct real_format decimal_single_format; +extern const struct real_format decimal_double_format; +extern const struct real_format decimal_quad_format; +extern const struct real_format ieee_half_format; +extern const struct real_format arm_half_format; + + +/* ====================================================================== */ +/* Crap. */ + +#define REAL_ARITHMETIC(value, code, d1, d2) \ + real_arithmetic (&(value), code, &(d1), &(d2)) + +#define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y)) +#define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y)) +#define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y)) + +/* Determine whether a floating-point value X is infinite. */ +#define REAL_VALUE_ISINF(x) real_isinf (&(x)) + +/* Determine whether a floating-point value X is a NaN. */ +#define REAL_VALUE_ISNAN(x) real_isnan (&(x)) + +/* Determine whether a floating-point value X is negative. */ +#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) + +/* Determine whether a floating-point value X is minus zero. */ +#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) + +/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ +#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), \ + mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0)) + +/* IN is a REAL_VALUE_TYPE. OUT is a long. */ +#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0))) + +#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 0) + +#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 1) + +/* Real values to IEEE 754 decimal floats. */ + +/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ +#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0)) + +/* IN is a REAL_VALUE_TYPE. OUT is a long. */ +#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0))) + +extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode, + REAL_VALUE_TYPE); + +#define REAL_VALUE_TO_INT(plow, phigh, r) \ + real_to_integer2 (plow, phigh, &(r)) + +extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *); +extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *); + +extern int significand_size (enum machine_mode); + +extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode); + +#define REAL_VALUE_ATOF(s, m) \ + real_from_string2 (s, m) + +#define CONST_DOUBLE_ATOF(s, m) \ + CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m) + +#define REAL_VALUE_FIX(r) \ + real_to_integer (&(r)) + +/* ??? Not quite right. */ +#define REAL_VALUE_UNSIGNED_FIX(r) \ + real_to_integer (&(r)) + +/* ??? These were added for Paranoia support. */ + +/* Return floor log2(R). */ +extern int real_exponent (const REAL_VALUE_TYPE *); + +/* R = A * 2**EXP. */ +extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); + +/* **** End of software floating point emulator interface macros **** */ + +/* Constant real values 0, 1, 2, -1 and 0.5. */ + +extern REAL_VALUE_TYPE dconst0; +extern REAL_VALUE_TYPE dconst1; +extern REAL_VALUE_TYPE dconst2; +extern REAL_VALUE_TYPE dconstm1; +extern REAL_VALUE_TYPE dconsthalf; + +#define dconst_e() (*dconst_e_ptr ()) +#define dconst_third() (*dconst_third_ptr ()) +#define dconst_sqrt2() (*dconst_sqrt2_ptr ()) + +/* Function to return the real value special constant 'e'. */ +extern const REAL_VALUE_TYPE * dconst_e_ptr (void); + +/* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */ +extern const REAL_VALUE_TYPE * dconst_third_ptr (void); + +/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */ +extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void); + +/* Function to return a real value (not a tree node) + from a given integer constant. */ +REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); + +/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ +#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ + ((to) = *CONST_DOUBLE_REAL_VALUE (from)) + +/* Return a CONST_DOUBLE with value R and mode M. */ +#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \ + const_double_from_real_value (r, m) +extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode); + +/* Replace R by 1/R in the given machine mode, if the result is exact. */ +extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *); + +/* Return true if arithmetic on values in IMODE that were promoted + from values in TMODE is equivalent to direct arithmetic on values + in TMODE. */ +bool real_can_shorten_arithmetic (enum machine_mode, enum machine_mode); + +/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ +extern tree build_real (tree, REAL_VALUE_TYPE); + +/* Calculate R as the square root of X in the given machine mode. */ +extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Calculate R as X raised to the integer exponent N in mode MODE. */ +extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *, HOST_WIDE_INT); + +/* Standard round to integer value functions. */ +extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_round (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Set the sign of R to the sign of X. */ +extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Check whether the real constant value given is an integer. */ +extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode); + +/* Write into BUF the maximum representable finite floating-point + number, (1 - b**-p) * b**emax for a given FP format FMT as a hex + float string. BUF must be large enough to contain the result. */ +extern void get_max_float (const struct real_format *, char *, size_t); +#endif /* ! GCC_REAL_H */ -- cgit v1.2.3