From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/sese.h | 422 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 422 insertions(+) create mode 100644 gcc/sese.h (limited to 'gcc/sese.h') diff --git a/gcc/sese.h b/gcc/sese.h new file mode 100644 index 000000000..d3b8958ce --- /dev/null +++ b/gcc/sese.h @@ -0,0 +1,422 @@ +/* Single entry single exit control flow regions. + Copyright (C) 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Jan Sjodin and + Sebastian Pop . + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef GCC_SESE_H +#define GCC_SESE_H + +/* A Single Entry, Single Exit region is a part of the CFG delimited + by two edges. */ +typedef struct sese_s +{ + /* Single ENTRY and single EXIT from the SESE region. */ + edge entry, exit; + + /* Parameters used within the SCOP. */ + VEC (tree, heap) *params; + + /* Loops completely contained in the SCOP. */ + bitmap loops; + VEC (loop_p, heap) *loop_nest; + + /* Are we allowed to add more params? This is for debugging purpose. We + can only add new params before generating the bb domains, otherwise they + become invalid. */ + bool add_params; +} *sese; + +#define SESE_ENTRY(S) (S->entry) +#define SESE_ENTRY_BB(S) (S->entry->dest) +#define SESE_EXIT(S) (S->exit) +#define SESE_EXIT_BB(S) (S->exit->dest) +#define SESE_PARAMS(S) (S->params) +#define SESE_LOOPS(S) (S->loops) +#define SESE_LOOP_NEST(S) (S->loop_nest) +#define SESE_ADD_PARAMS(S) (S->add_params) + +extern sese new_sese (edge, edge); +extern void free_sese (sese); +extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge); +extern void build_sese_loop_nests (sese); +extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge, + VEC (tree, heap) *); +extern struct loop *outermost_loop_in_sese (sese, basic_block); +extern void insert_loop_close_phis (htab_t, loop_p); +extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t); +extern tree scalar_evolution_in_region (sese, loop_p, tree); + +/* Check that SESE contains LOOP. */ + +static inline bool +sese_contains_loop (sese sese, struct loop *loop) +{ + return bitmap_bit_p (SESE_LOOPS (sese), loop->num); +} + +/* The number of parameters in REGION. */ + +static inline unsigned +sese_nb_params (sese region) +{ + return VEC_length (tree, SESE_PARAMS (region)); +} + +/* Checks whether BB is contained in the region delimited by ENTRY and + EXIT blocks. */ + +static inline bool +bb_in_region (basic_block bb, basic_block entry, basic_block exit) +{ +#ifdef ENABLE_CHECKING + { + edge e; + edge_iterator ei; + + /* Check that there are no edges coming in the region: all the + predecessors of EXIT are dominated by ENTRY. */ + FOR_EACH_EDGE (e, ei, exit->preds) + dominated_by_p (CDI_DOMINATORS, e->src, entry); + } +#endif + + return dominated_by_p (CDI_DOMINATORS, bb, entry) + && !(dominated_by_p (CDI_DOMINATORS, bb, exit) + && !dominated_by_p (CDI_DOMINATORS, entry, exit)); +} + +/* Checks whether BB is contained in the region delimited by ENTRY and + EXIT blocks. */ + +static inline bool +bb_in_sese_p (basic_block bb, sese region) +{ + basic_block entry = SESE_ENTRY_BB (region); + basic_block exit = SESE_EXIT_BB (region); + + return bb_in_region (bb, entry, exit); +} + +/* Returns true when STMT is defined in REGION. */ + +static inline bool +stmt_in_sese_p (gimple stmt, sese region) +{ + basic_block bb = gimple_bb (stmt); + return bb && bb_in_sese_p (bb, region); +} + +/* Returns true when NAME is defined in REGION. */ + +static inline bool +defined_in_sese_p (tree name, sese region) +{ + gimple stmt = SSA_NAME_DEF_STMT (name); + return stmt_in_sese_p (stmt, region); +} + +/* Returns true when LOOP is in REGION. */ + +static inline bool +loop_in_sese_p (struct loop *loop, sese region) +{ + return (bb_in_sese_p (loop->header, region) + && bb_in_sese_p (loop->latch, region)); +} + +/* Returns the loop depth of LOOP in REGION. The loop depth + is the same as the normal loop depth, but limited by a region. + + Example: + + loop_0 + loop_1 + { + S0 + <- region start + S1 + + loop_2 + S2 + + S3 + <- region end + } + + loop_0 does not exist in the region -> invalid + loop_1 exists, but is not completely contained in the region -> depth 0 + loop_2 is completely contained -> depth 1 */ + +static inline unsigned int +sese_loop_depth (sese region, loop_p loop) +{ + unsigned int depth = 0; + + gcc_assert ((!loop_in_sese_p (loop, region) + && (SESE_ENTRY_BB (region)->loop_father == loop + || SESE_EXIT (region)->src->loop_father == loop)) + || loop_in_sese_p (loop, region)); + + while (loop_in_sese_p (loop, region)) + { + depth++; + loop = loop_outer (loop); + } + + return depth; +} + +/* Splits BB to make a single entry single exit region. */ + +static inline sese +split_region_for_bb (basic_block bb) +{ + edge entry, exit; + + if (single_pred_p (bb)) + entry = single_pred_edge (bb); + else + { + entry = split_block_after_labels (bb); + bb = single_succ (bb); + } + + if (single_succ_p (bb)) + exit = single_succ_edge (bb); + else + { + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gsi_prev (&gsi); + exit = split_block (bb, gsi_stmt (gsi)); + } + + return new_sese (entry, exit); +} + +/* Returns the block preceding the entry of a SESE. */ + +static inline basic_block +block_before_sese (sese sese) +{ + return SESE_ENTRY (sese)->src; +} + + + +/* A single entry single exit specialized for conditions. */ + +typedef struct ifsese_s { + sese region; + sese true_region; + sese false_region; +} *ifsese; + +extern void if_region_set_false_region (ifsese, sese); +extern ifsese move_sese_in_condition (sese); +extern edge get_true_edge_from_guard_bb (basic_block); +extern edge get_false_edge_from_guard_bb (basic_block); +extern void set_ifsese_condition (ifsese, tree); + +static inline edge +if_region_entry (ifsese if_region) +{ + return SESE_ENTRY (if_region->region); +} + +static inline edge +if_region_exit (ifsese if_region) +{ + return SESE_EXIT (if_region->region); +} + +static inline basic_block +if_region_get_condition_block (ifsese if_region) +{ + return if_region_entry (if_region)->dest; +} + +/* Structure containing the mapping between the old names and the new + names used after block copy in the new loop context. */ +typedef struct rename_map_elt_s +{ + tree old_name, expr; +} *rename_map_elt; + +DEF_VEC_P(rename_map_elt); +DEF_VEC_ALLOC_P (rename_map_elt, heap); + +extern void debug_rename_map (htab_t); +extern hashval_t rename_map_elt_info (const void *); +extern int eq_rename_map_elts (const void *, const void *); + +/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */ + +static inline rename_map_elt +new_rename_map_elt (tree old_name, tree expr) +{ + rename_map_elt res; + + res = XNEW (struct rename_map_elt_s); + res->old_name = old_name; + res->expr = expr; + + return res; +} + +/* Structure containing the mapping between the CLooG's induction + variable and the type of the old induction variable. */ +typedef struct ivtype_map_elt_s +{ + tree type; + const char *cloog_iv; +} *ivtype_map_elt; + +extern void debug_ivtype_map (htab_t); +extern hashval_t ivtype_map_elt_info (const void *); +extern int eq_ivtype_map_elts (const void *, const void *); + +/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */ + +static inline ivtype_map_elt +new_ivtype_map_elt (const char *cloog_iv, tree type) +{ + ivtype_map_elt res; + + res = XNEW (struct ivtype_map_elt_s); + res->cloog_iv = cloog_iv; + res->type = type; + + return res; +} + +/* Free and compute again all the dominators information. */ + +static inline void +recompute_all_dominators (void) +{ + mark_irreducible_loops (); + free_dominance_info (CDI_DOMINATORS); + calculate_dominance_info (CDI_DOMINATORS); +} + +typedef struct gimple_bb +{ + basic_block bb; + struct poly_bb *pbb; + + /* Lists containing the restrictions of the conditional statements + dominating this bb. This bb can only be executed, if all conditions + are true. + + Example: + + for (i = 0; i <= 20; i++) + { + A + + if (2i <= 8) + B + } + + So for B there is an additional condition (2i <= 8). + + List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the + corresponding element in CONDITION_CASES is not NULL_TREE. For a + SWITCH_EXPR the corresponding element in CONDITION_CASES is a + CASE_LABEL_EXPR. */ + VEC (gimple, heap) *conditions; + VEC (gimple, heap) *condition_cases; + VEC (data_reference_p, heap) *data_refs; +} *gimple_bb_p; + +#define GBB_BB(GBB) (GBB)->bb +#define GBB_PBB(GBB) (GBB)->pbb +#define GBB_DATA_REFS(GBB) (GBB)->data_refs +#define GBB_CONDITIONS(GBB) (GBB)->conditions +#define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases + +/* Return the innermost loop that contains the basic block GBB. */ + +static inline struct loop * +gbb_loop (struct gimple_bb *gbb) +{ + return GBB_BB (gbb)->loop_father; +} + +/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX. + If there is no corresponding gimple loop, we return NULL. */ + +static inline loop_p +gbb_loop_at_index (gimple_bb_p gbb, sese region, int index) +{ + loop_p loop = gbb_loop (gbb); + int depth = sese_loop_depth (region, loop); + + while (--depth > index) + loop = loop_outer (loop); + + gcc_assert (sese_contains_loop (region, loop)); + + return loop; +} + +/* The number of common loops in REGION for GBB1 and GBB2. */ + +static inline int +nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2) +{ + loop_p l1 = gbb_loop (gbb1); + loop_p l2 = gbb_loop (gbb2); + loop_p common = find_common_loop (l1, l2); + + return sese_loop_depth (region, common); +} + +/* Return true when DEF can be analyzed in REGION by the scalar + evolution analyzer. */ + +static inline bool +scev_analyzable_p (tree def, sese region) +{ + loop_p loop; + tree scev; + tree type = TREE_TYPE (def); + + /* When Graphite generates code for a scev, the code generator + expresses the scev in function of a single induction variable. + This is unsafe for floating point computations, as it may replace + a floating point sum reduction with a multiplication. The + following test returns false for non integer types to avoid such + problems. */ + if (!INTEGRAL_TYPE_P (type) + && !POINTER_TYPE_P (type)) + return false; + + loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def)); + scev = scalar_evolution_in_region (region, loop, def); + + return !chrec_contains_undetermined (scev) + && (TREE_CODE (scev) != SSA_NAME + || !defined_in_sese_p (scev, region)) + && (tree_does_not_contain_chrecs (scev) + || evolution_function_is_affine_p (scev)); +} + +#endif -- cgit v1.2.3