From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/testsuite/ada/acats/tests/cxg/cxg2008.a | 948 ++++++++++++++++++++++++++++ 1 file changed, 948 insertions(+) create mode 100644 gcc/testsuite/ada/acats/tests/cxg/cxg2008.a (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2008.a') diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a new file mode 100644 index 000000000..58cf367f6 --- /dev/null +++ b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a @@ -0,0 +1,948 @@ +-- CXG2008.A +-- +-- Grant of Unlimited Rights +-- +-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687, +-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained +-- unlimited rights in the software and documentation contained herein. +-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making +-- this public release, the Government intends to confer upon all +-- recipients unlimited rights equal to those held by the Government. +-- These rights include rights to use, duplicate, release or disclose the +-- released technical data and computer software in whole or in part, in +-- any manner and for any purpose whatsoever, and to have or permit others +-- to do so. +-- +-- DISCLAIMER +-- +-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR +-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED +-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE +-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE +-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A +-- PARTICULAR PURPOSE OF SAID MATERIAL. +--* +-- +-- OBJECTIVE: +-- Check that the complex multiplication and division +-- operations return results that are within the allowed +-- error bound. +-- Check that all the required pure Numerics packages are pure. +-- +-- TEST DESCRIPTION: +-- This test contains three test packages that are almost +-- identical. The first two packages differ only in the +-- floating point type that is being tested. The first +-- and third package differ only in whether the generic +-- complex types package or the pre-instantiated +-- package is used. +-- The test package is not generic so that the arguments +-- and expected results for some of the test values +-- can be expressed as universal real instead of being +-- computed at runtime. +-- +-- SPECIAL REQUIREMENTS +-- The Strict Mode for the numerical accuracy must be +-- selected. The method by which this mode is selected +-- is implementation dependent. +-- +-- APPLICABILITY CRITERIA: +-- This test applies only to implementations supporting the +-- Numerics Annex. +-- This test only applies to the Strict Mode for numerical +-- accuracy. +-- +-- +-- CHANGE HISTORY: +-- 24 FEB 96 SAIC Initial release for 2.1 +-- 03 JUN 98 EDS Correct the test program's incorrect assumption +-- that Constraint_Error must be raised by complex +-- division by zero, which is contrary to the +-- allowance given by the Ada 95 standard G.1.1(40). +-- 13 MAR 01 RLB Replaced commented out Pure check on non-generic +-- packages, as required by Defect Report +-- 8652/0020 and as reflected in Technical +-- Corrigendum 1. +--! + +------------------------------------------------------------------------------ +-- Check that the required pure packages are pure by withing them from a +-- pure package. The non-generic versions of those packages are required to +-- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and +-- G.1.1(25/1)]. +with Ada.Numerics.Generic_Elementary_Functions; +with Ada.Numerics.Elementary_Functions; +with Ada.Numerics.Generic_Complex_Types; +with Ada.Numerics.Complex_Types; +with Ada.Numerics.Generic_Complex_Elementary_Functions; +with Ada.Numerics.Complex_Elementary_Functions; +package CXG2008_0 is + pragma Pure; + -- CRC Standard Mathematical Tables; 23rd Edition; pg 738 + Sqrt2 : constant := + 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695; + Sqrt3 : constant := + 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039; +end CXG2008_0; + +------------------------------------------------------------------------------ + +with System; +with Report; +with Ada.Numerics.Generic_Complex_Types; +with Ada.Numerics.Complex_Types; +with CXG2008_0; use CXG2008_0; +procedure CXG2008 is + Verbose : constant Boolean := False; + + package Float_Check is + subtype Real is Float; + procedure Do_Test; + end Float_Check; + + package body Float_Check is + package Complex_Types is new + Ada.Numerics.Generic_Complex_Types (Real); + use Complex_Types; + + -- keep track if an accuracy failure has occurred so the test + -- can be short-circuited to avoid thousands of error messages. + Failure_Detected : Boolean := False; + + Mult_MBE : constant Real := 5.0; + Divide_MBE : constant Real := 13.0; + + + procedure Check (Actual, Expected : Complex; + Test_Name : String; + MBE : Real) is + Rel_Error : Real; + Abs_Error : Real; + Max_Error : Real; + begin + -- In the case where the expected result is very small or 0 + -- we compute the maximum error as a multiple of Model_Epsilon instead + -- of Model_Epsilon and Expected. + Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; + Abs_Error := MBE * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + + if abs (Actual.Re - Expected.Re) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.re: " & Real'Image (Actual.Re) & + " expected.re: " & Real'Image (Expected.Re) & + " difference.re " & + Real'Image (Actual.Re - Expected.Re) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for real part"); + else + Report.Comment (Test_Name & " passed for real part"); + end if; + end if; + + Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + if abs (Actual.Im - Expected.Im) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.im: " & Real'Image (Actual.Im) & + " expected.im: " & Real'Image (Expected.Im) & + " difference.im " & + Real'Image (Actual.Im - Expected.Im) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for imaginary part"); + else + Report.Comment (Test_Name & " passed for imaginary part"); + end if; + end if; + end Check; + + + procedure Special_Values is + begin + + --- test 1 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + Expected : Complex := (0.0, 0.0); + X : Complex := (0.0, 0.0); + Y : Complex := (Big, Big); + Z : Complex; + begin + Z := X * Y; + Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", + Mult_MBE); + Z := Y * X; + Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 1"); + when others => + Report.Failed ("exception in test 1"); + end; + + --- test 2 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Expected : Complex := (0.0, 0.0); + Z : Complex; + begin + Z := U * X; + Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 2"); + when others => + Report.Failed ("exception in test 2"); + end; + + --- test 3 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + B : Complex := (Big, Big); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := B / X; + Report.Failed ("test 3 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 3"); + end; + + --- test 4 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := U / X; + Report.Failed ("test 4 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 4"); + end; + + + --- test 5 --- + declare + X : Complex := (Sqrt2, Sqrt2); + Z : Complex; + Expected : constant Complex := (0.0, 4.0); + begin + Z := X * X; + Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 5"); + when others => + Report.Failed ("exception in test 5"); + end; + + --- test 6 --- + declare + X : Complex := Sqrt3 - Sqrt3 * i; + Z : Complex; + Expected : constant Complex := (0.0, -6.0); + begin + Z := X * X; + Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 6"); + when others => + Report.Failed ("exception in test 6"); + end; + + --- test 7 --- + declare + X : Complex := Sqrt2 + Sqrt2 * i; + Y : Complex := Sqrt2 - Sqrt2 * i; + Z : Complex; + Expected : constant Complex := 0.0 + i; + begin + Z := X / Y; + Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 7"); + when others => + Report.Failed ("exception in test 7"); + end; + end Special_Values; + + + procedure Do_Mult_Div (X, Y : Complex) is + Z : Complex; + Args : constant String := + "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & + "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; + begin + Z := (X * X) / X; + Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / X; + Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / Y; + Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); + when others => + Report.Failed ("exception in Do_Mult_Div for " & Args); + end Do_Mult_Div; + + -- select complex values X and Y where the real and imaginary + -- parts are selected from the ranges (1/radix..1) and + -- (1..radix). This translates into quite a few combinations. + procedure Mult_Div_Check is + Samples : constant := 17; + Radix : constant Real := Real(Real'Machine_Radix); + Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); + Low_Sample : Real; -- (1/radix .. 1) + High_Sample : Real; -- (1 .. radix) + Sample : array (1..2) of Real; + X, Y : Complex; + begin + for I in 1 .. Samples loop + Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + + Inv_Radix; + Sample (1) := Low_Sample; + for J in 1 .. Samples loop + High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + + Radix; + Sample (2) := High_Sample; + for K in 1 .. 2 loop + for L in 1 .. 2 loop + X := Complex'(Sample (K), Sample (L)); + Y := Complex'(Sample (L), Sample (K)); + Do_Mult_Div (X, Y); + if Failure_Detected then + return; -- minimize flood of error messages + end if; + end loop; + end loop; + end loop; -- J + end loop; -- I + end Mult_Div_Check; + + + procedure Do_Test is + begin + Special_Values; + Mult_Div_Check; + end Do_Test; + end Float_Check; + + ----------------------------------------------------------------------- + ----------------------------------------------------------------------- + -- check the floating point type with the most digits + + package A_Long_Float_Check is + type A_Long_Float is digits System.Max_Digits; + subtype Real is A_Long_Float; + procedure Do_Test; + end A_Long_Float_Check; + + package body A_Long_Float_Check is + + package Complex_Types is new + Ada.Numerics.Generic_Complex_Types (Real); + use Complex_Types; + + -- keep track if an accuracy failure has occurred so the test + -- can be short-circuited to avoid thousands of error messages. + Failure_Detected : Boolean := False; + + Mult_MBE : constant Real := 5.0; + Divide_MBE : constant Real := 13.0; + + + procedure Check (Actual, Expected : Complex; + Test_Name : String; + MBE : Real) is + Rel_Error : Real; + Abs_Error : Real; + Max_Error : Real; + begin + -- In the case where the expected result is very small or 0 + -- we compute the maximum error as a multiple of Model_Epsilon instead + -- of Model_Epsilon and Expected. + Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; + Abs_Error := MBE * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + + if abs (Actual.Re - Expected.Re) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.re: " & Real'Image (Actual.Re) & + " expected.re: " & Real'Image (Expected.Re) & + " difference.re " & + Real'Image (Actual.Re - Expected.Re) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for real part"); + else + Report.Comment (Test_Name & " passed for real part"); + end if; + end if; + + Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + if abs (Actual.Im - Expected.Im) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.im: " & Real'Image (Actual.Im) & + " expected.im: " & Real'Image (Expected.Im) & + " difference.im " & + Real'Image (Actual.Im - Expected.Im) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for imaginary part"); + else + Report.Comment (Test_Name & " passed for imaginary part"); + end if; + end if; + end Check; + + + procedure Special_Values is + begin + + --- test 1 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + Expected : Complex := (0.0, 0.0); + X : Complex := (0.0, 0.0); + Y : Complex := (Big, Big); + Z : Complex; + begin + Z := X * Y; + Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", + Mult_MBE); + Z := Y * X; + Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 1"); + when others => + Report.Failed ("exception in test 1"); + end; + + --- test 2 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Expected : Complex := (0.0, 0.0); + Z : Complex; + begin + Z := U * X; + Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 2"); + when others => + Report.Failed ("exception in test 2"); + end; + + --- test 3 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + B : Complex := (Big, Big); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := B / X; + Report.Failed ("test 3 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 3"); + end; + + --- test 4 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := U / X; + Report.Failed ("test 4 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 4"); + end; + + + --- test 5 --- + declare + X : Complex := (Sqrt2, Sqrt2); + Z : Complex; + Expected : constant Complex := (0.0, 4.0); + begin + Z := X * X; + Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 5"); + when others => + Report.Failed ("exception in test 5"); + end; + + --- test 6 --- + declare + X : Complex := Sqrt3 - Sqrt3 * i; + Z : Complex; + Expected : constant Complex := (0.0, -6.0); + begin + Z := X * X; + Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 6"); + when others => + Report.Failed ("exception in test 6"); + end; + + --- test 7 --- + declare + X : Complex := Sqrt2 + Sqrt2 * i; + Y : Complex := Sqrt2 - Sqrt2 * i; + Z : Complex; + Expected : constant Complex := 0.0 + i; + begin + Z := X / Y; + Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 7"); + when others => + Report.Failed ("exception in test 7"); + end; + end Special_Values; + + + procedure Do_Mult_Div (X, Y : Complex) is + Z : Complex; + Args : constant String := + "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & + "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; + begin + Z := (X * X) / X; + Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / X; + Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / Y; + Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); + when others => + Report.Failed ("exception in Do_Mult_Div for " & Args); + end Do_Mult_Div; + + -- select complex values X and Y where the real and imaginary + -- parts are selected from the ranges (1/radix..1) and + -- (1..radix). This translates into quite a few combinations. + procedure Mult_Div_Check is + Samples : constant := 17; + Radix : constant Real := Real(Real'Machine_Radix); + Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); + Low_Sample : Real; -- (1/radix .. 1) + High_Sample : Real; -- (1 .. radix) + Sample : array (1..2) of Real; + X, Y : Complex; + begin + for I in 1 .. Samples loop + Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + + Inv_Radix; + Sample (1) := Low_Sample; + for J in 1 .. Samples loop + High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + + Radix; + Sample (2) := High_Sample; + for K in 1 .. 2 loop + for L in 1 .. 2 loop + X := Complex'(Sample (K), Sample (L)); + Y := Complex'(Sample (L), Sample (K)); + Do_Mult_Div (X, Y); + if Failure_Detected then + return; -- minimize flood of error messages + end if; + end loop; + end loop; + end loop; -- J + end loop; -- I + end Mult_Div_Check; + + + procedure Do_Test is + begin + Special_Values; + Mult_Div_Check; + end Do_Test; + end A_Long_Float_Check; + + ----------------------------------------------------------------------- + ----------------------------------------------------------------------- + + package Non_Generic_Check is + subtype Real is Float; + procedure Do_Test; + end Non_Generic_Check; + + package body Non_Generic_Check is + + use Ada.Numerics.Complex_Types; + + -- keep track if an accuracy failure has occurred so the test + -- can be short-circuited to avoid thousands of error messages. + Failure_Detected : Boolean := False; + + Mult_MBE : constant Real := 5.0; + Divide_MBE : constant Real := 13.0; + + + procedure Check (Actual, Expected : Complex; + Test_Name : String; + MBE : Real) is + Rel_Error : Real; + Abs_Error : Real; + Max_Error : Real; + begin + -- In the case where the expected result is very small or 0 + -- we compute the maximum error as a multiple of Model_Epsilon instead + -- of Model_Epsilon and Expected. + Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; + Abs_Error := MBE * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + + if abs (Actual.Re - Expected.Re) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.re: " & Real'Image (Actual.Re) & + " expected.re: " & Real'Image (Expected.Re) & + " difference.re " & + Real'Image (Actual.Re - Expected.Re) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for real part"); + else + Report.Comment (Test_Name & " passed for real part"); + end if; + end if; + + Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; + if Rel_Error > Abs_Error then + Max_Error := Rel_Error; + else + Max_Error := Abs_Error; + end if; + if abs (Actual.Im - Expected.Im) > Max_Error then + Failure_Detected := True; + Report.Failed (Test_Name & + " actual.im: " & Real'Image (Actual.Im) & + " expected.im: " & Real'Image (Expected.Im) & + " difference.im " & + Real'Image (Actual.Im - Expected.Im) & + " mre:" & Real'Image (Max_Error) ); + elsif Verbose then + if Actual = Expected then + Report.Comment (Test_Name & " exact result for imaginary part"); + else + Report.Comment (Test_Name & " passed for imaginary part"); + end if; + end if; + end Check; + + + procedure Special_Values is + begin + + --- test 1 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + Expected : Complex := (0.0, 0.0); + X : Complex := (0.0, 0.0); + Y : Complex := (Big, Big); + Z : Complex; + begin + Z := X * Y; + Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", + Mult_MBE); + Z := Y * X; + Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 1"); + when others => + Report.Failed ("exception in test 1"); + end; + + --- test 2 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Expected : Complex := (0.0, 0.0); + Z : Complex; + begin + Z := U * X; + Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 2"); + when others => + Report.Failed ("exception in test 2"); + end; + + --- test 3 --- + declare + T : constant := (Real'Machine_EMax - 1) / 2; + Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); + B : Complex := (Big, Big); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := B / X; + Report.Failed ("test 3 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 3"); + end; + + --- test 4 --- + declare + T : constant := Real'Model_EMin + 1; + Tiny : constant := (1.0 * Real'Machine_Radix) ** T; + U : Complex := (Tiny, Tiny); + X : Complex := (0.0, 0.0); + Z : Complex; + begin + if Real'Machine_Overflows then + Z := U / X; + Report.Failed ("test 4 - Constraint_Error not raised"); + Check (Z, Z, "not executed - optimizer thwarting", 0.0); + end if; + exception + when Constraint_Error => null; -- expected + when others => + Report.Failed ("exception in test 4"); + end; + + + --- test 5 --- + declare + X : Complex := (Sqrt2, Sqrt2); + Z : Complex; + Expected : constant Complex := (0.0, 4.0); + begin + Z := X * X; + Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 5"); + when others => + Report.Failed ("exception in test 5"); + end; + + --- test 6 --- + declare + X : Complex := Sqrt3 - Sqrt3 * i; + Z : Complex; + Expected : constant Complex := (0.0, -6.0); + begin + Z := X * X; + Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", + Mult_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 6"); + when others => + Report.Failed ("exception in test 6"); + end; + + --- test 7 --- + declare + X : Complex := Sqrt2 + Sqrt2 * i; + Y : Complex := Sqrt2 - Sqrt2 * i; + Z : Complex; + Expected : constant Complex := 0.0 + i; + begin + Z := X / Y; + Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error raised in test 7"); + when others => + Report.Failed ("exception in test 7"); + end; + end Special_Values; + + + procedure Do_Mult_Div (X, Y : Complex) is + Z : Complex; + Args : constant String := + "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & + "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; + begin + Z := (X * X) / X; + Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / X; + Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); + Z := (X * Y) / Y; + Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); + exception + when Constraint_Error => + Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); + when others => + Report.Failed ("exception in Do_Mult_Div for " & Args); + end Do_Mult_Div; + + -- select complex values X and Y where the real and imaginary + -- parts are selected from the ranges (1/radix..1) and + -- (1..radix). This translates into quite a few combinations. + procedure Mult_Div_Check is + Samples : constant := 17; + Radix : constant Real := Real(Real'Machine_Radix); + Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); + Low_Sample : Real; -- (1/radix .. 1) + High_Sample : Real; -- (1 .. radix) + Sample : array (1..2) of Real; + X, Y : Complex; + begin + for I in 1 .. Samples loop + Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + + Inv_Radix; + Sample (1) := Low_Sample; + for J in 1 .. Samples loop + High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + + Radix; + Sample (2) := High_Sample; + for K in 1 .. 2 loop + for L in 1 .. 2 loop + X := Complex'(Sample (K), Sample (L)); + Y := Complex'(Sample (L), Sample (K)); + Do_Mult_Div (X, Y); + if Failure_Detected then + return; -- minimize flood of error messages + end if; + end loop; + end loop; + end loop; -- J + end loop; -- I + end Mult_Div_Check; + + + procedure Do_Test is + begin + Special_Values; + Mult_Div_Check; + end Do_Test; + end Non_Generic_Check; + + ----------------------------------------------------------------------- + ----------------------------------------------------------------------- + +begin + Report.Test ("CXG2008", + "Check the accuracy of the complex multiplication and" & + " division operators"); + + if Verbose then + Report.Comment ("checking Standard.Float"); + end if; + + Float_Check.Do_Test; + + if Verbose then + Report.Comment ("checking a digits" & + Integer'Image (System.Max_Digits) & + " floating point type"); + end if; + + A_Long_Float_Check.Do_Test; + + if Verbose then + Report.Comment ("checking non-generic package"); + end if; + + Non_Generic_Check.Do_Test; + + Report.Result; +end CXG2008; -- cgit v1.2.3