From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/testsuite/gfortran.dg/g77/980310-4.f | 348 +++++++++++++++++++++++++++++++ 1 file changed, 348 insertions(+) create mode 100644 gcc/testsuite/gfortran.dg/g77/980310-4.f (limited to 'gcc/testsuite/gfortran.dg/g77/980310-4.f') diff --git a/gcc/testsuite/gfortran.dg/g77/980310-4.f b/gcc/testsuite/gfortran.dg/g77/980310-4.f new file mode 100644 index 000000000..ee50bc6b4 --- /dev/null +++ b/gcc/testsuite/gfortran.dg/g77/980310-4.f @@ -0,0 +1,348 @@ +c { dg-do compile } +C To: egcs-bugs@cygnus.com +C Subject: -fPIC problem showing up with fortran on x86 +C From: Dave Love +C Date: 19 Dec 1997 19:31:41 +0000 +C +C +C This illustrates a long-standing problem noted at the end of the g77 +C `Actual Bugs' info node and thought to be in the back end. Although +C the report is against gcc 2.7 I can reproduce it (specifically on +C redhat 4.2) with the 971216 egcs snapshot. +C +C g77 version 0.5.21 +C gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone +C -lf2c -lm +C + +C ------------ + subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr, + * neval,ier,alist,blist,rlist,elist,iord,last) +C -------------------------------------------------- +C +C Modified Feb 1989 by Barry W. Brown to eliminate key +C as argument (use key=1) and to eliminate all Fortran +C output. +C +C Purpose: to make this routine usable from within S. +C +C -------------------------------------------------- +c***begin prologue dqage +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a1 +c***keywords automatic integrator, general-purpose, +c integrand examinator, globally adaptive, +c gauss-kronrod +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose the routine calculates an approximation result to a given +c definite integral i = integral of f over (a,b), +c hopefully satisfying following claim for accuracy +c abs(i-reslt).le.max(epsabs,epsrel*abs(i)). +c***description +c +c computation of a definite integral +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c epsabs - double precision +c absolute accuracy requested +c epsrel - double precision +c relative accuracy requested +c if epsabs.le.0 +c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +c the routine will end with ier = 6. +c +c key - integer +c key for choice of local integration rule +c a gauss-kronrod pair is used with +c 7 - 15 points if key.lt.2, +c 10 - 21 points if key = 2, +c 15 - 31 points if key = 3, +c 20 - 41 points if key = 4, +c 25 - 51 points if key = 5, +c 30 - 61 points if key.gt.5. +c +c limit - integer +c gives an upperbound on the number of subintervals +c in the partition of (a,b), limit.ge.1. +c +c on return +c result - double precision +c approximation to the integral +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should equal or exceed abs(i-result) +c +c neval - integer +c number of integrand evaluations +c +c ier - integer +c ier = 0 normal and reliable termination of the +c routine. it is assumed that the requested +c accuracy has been achieved. +c ier.gt.0 abnormal termination of the routine +c the estimates for result and error are +c less reliable. it is assumed that the +c requested accuracy has not been achieved. +c error messages +c ier = 1 maximum number of subdivisions allowed +c has been achieved. one can allow more +c subdivisions by increasing the value +c of limit. +c however, if this yields no improvement it +c is rather advised to analyze the integrand +c in order to determine the integration +c difficulties. if the position of a local +c difficulty can be determined(e.g. +c singularity, discontinuity within the +c interval) one will probably gain from +c splitting up the interval at this point +c and calling the integrator on the +c subranges. if possible, an appropriate +c special-purpose integrator should be used +c which is designed for handling the type of +c difficulty involved. +c = 2 the occurrence of roundoff error is +c detected, which prevents the requested +c tolerance from being achieved. +c = 3 extremely bad integrand behavior occurs +c at some points of the integration +c interval. +c = 6 the input is invalid, because +c (epsabs.le.0 and +c epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +c result, abserr, neval, last, rlist(1) , +c elist(1) and iord(1) are set to zero. +c alist(1) and blist(1) are set to a and b +c respectively. +c +c alist - double precision +c vector of dimension at least limit, the first +c last elements of which are the left +c end points of the subintervals in the partition +c of the given integration range (a,b) +c +c blist - double precision +c vector of dimension at least limit, the first +c last elements of which are the right +c end points of the subintervals in the partition +c of the given integration range (a,b) +c +c rlist - double precision +c vector of dimension at least limit, the first +c last elements of which are the +c integral approximations on the subintervals +c +c elist - double precision +c vector of dimension at least limit, the first +c last elements of which are the moduli of the +c absolute error estimates on the subintervals +c +c iord - integer +c vector of dimension at least limit, the first k +c elements of which are pointers to the +c error estimates over the subintervals, +c such that elist(iord(1)), ..., +c elist(iord(k)) form a decreasing sequence, +c with k = last if last.le.(limit/2+2), and +c k = limit+1-last otherwise +c +c last - integer +c number of subintervals actually produced in the +c subdivision process +c +c***references (none) +c***routines called d1mach,dqk15,dqk21,dqk31, +c dqk41,dqk51,dqk61,dqpsrt +c***end prologue dqage +c + double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b, + * blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach, + * epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f, + * resabs,result,rlist,uflow + integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval, + * nrmax +c + dimension alist(limit),blist(limit),elist(limit),iord(limit), + * rlist(limit) +c + external f +c +c list of major variables +c ----------------------- +c +c alist - list of left end points of all subintervals +c considered up to now +c blist - list of right end points of all subintervals +c considered up to now +c rlist(i) - approximation to the integral over +c (alist(i),blist(i)) +c elist(i) - error estimate applying to rlist(i) +c maxerr - pointer to the interval with largest +c error estimate +c errmax - elist(maxerr) +c area - sum of the integrals over the subintervals +c errsum - sum of the errors over the subintervals +c errbnd - requested accuracy max(epsabs,epsrel* +c abs(result)) +c *****1 - variable for the left subinterval +c *****2 - variable for the right subinterval +c last - index for subdivision +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqage + epmach = d1mach(4) + uflow = d1mach(1) +c +c test on validity of parameters +c ------------------------------ +c + ier = 0 + neval = 0 + last = 0 + result = 0.0d+00 + abserr = 0.0d+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0d+00 + elist(1) = 0.0d+00 + iord(1) = 0 + if(epsabs.le.0.0d+00.and. + * epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6 + if(ier.eq.6) go to 999 +c +c first approximation to the integral +c ----------------------------------- +c + neval = 0 + call dqk15(f,a,b,result,abserr,defabs,resabs) + last = 1 + rlist(1) = result + elist(1) = abserr + iord(1) = 1 +c +c test on accuracy. +c + errbnd = dmax1(epsabs,epsrel*dabs(result)) + if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2 + if(limit.eq.1) ier = 1 + if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs) + * .or.abserr.eq.0.0d+00) go to 60 +c +c initialization +c -------------- +c +c + errmax = abserr + maxerr = 1 + area = result + errsum = abserr + nrmax = 1 + iroff1 = 0 + iroff2 = 0 +c +c main do-loop +c ------------ +c + do 30 last = 2,limit +c +c bisect the subinterval with the largest error estimate. +c + a1 = alist(maxerr) + b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + call dqk15(f,a1,b1,area1,error1,resabs,defab1) + call dqk15(f,a2,b2,area2,error2,resabs,defab2) +c +c improve previous approximations to integral +c and error and test for accuracy. +c + neval = neval+1 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if(defab1.eq.error1.or.defab2.eq.error2) go to 5 + if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12) + * .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1 + if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1 + 5 rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = dmax1(epsabs,epsrel*dabs(area)) + if(errsum.le.errbnd) go to 8 +c +c test for roundoff error and eventually set error flag. +c + if(iroff1.ge.6.or.iroff2.ge.20) ier = 2 +c +c set error flag in the case that the number of subintervals +c equals limit. +c + if(last.eq.limit) ier = 1 +c +c set error flag in the case of bad integrand behavior +c at a point of the integration range. +c + if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03* + * epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3 +c +c append the newly-created intervals to the list. +c + 8 if(error2.gt.error1) go to 10 + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + go to 20 + 10 alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 +c +c call subroutine dqpsrt to maintain the descending ordering +c in the list of error estimates and select the subinterval +c with the largest error estimate (to be bisected next). +c + 20 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) +c ***jump out of do-loop + if(ier.ne.0.or.errsum.le.errbnd) go to 40 + 30 continue +c +c compute final result. +c --------------------- +c + 40 result = 0.0d+00 + do 50 k=1,last + result = result+rlist(k) + 50 continue + abserr = errsum + 60 neval = 30*neval+15 + 999 return + end -- cgit v1.2.3