From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/tree-flow-inline.h | 1230 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1230 insertions(+) create mode 100644 gcc/tree-flow-inline.h (limited to 'gcc/tree-flow-inline.h') diff --git a/gcc/tree-flow-inline.h b/gcc/tree-flow-inline.h new file mode 100644 index 000000000..86566101e --- /dev/null +++ b/gcc/tree-flow-inline.h @@ -0,0 +1,1230 @@ +/* Inline functions for tree-flow.h + Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010 + Free Software Foundation, Inc. + Contributed by Diego Novillo + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef _TREE_FLOW_INLINE_H +#define _TREE_FLOW_INLINE_H 1 + +/* Inline functions for manipulating various data structures defined in + tree-flow.h. See tree-flow.h for documentation. */ + +/* Return true when gimple SSA form was built. + gimple_in_ssa_p is queried by gimplifier in various early stages before SSA + infrastructure is initialized. Check for presence of the datastructures + at first place. */ +static inline bool +gimple_in_ssa_p (const struct function *fun) +{ + return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; +} + +/* Array of all variables referenced in the function. */ +static inline htab_t +gimple_referenced_vars (const struct function *fun) +{ + if (!fun->gimple_df) + return NULL; + return fun->gimple_df->referenced_vars; +} + +/* Artificial variable used for the virtual operand FUD chain. */ +static inline tree +gimple_vop (const struct function *fun) +{ + gcc_checking_assert (fun && fun->gimple_df); + return fun->gimple_df->vop; +} + +/* Initialize the hashtable iterator HTI to point to hashtable TABLE */ + +static inline void * +first_htab_element (htab_iterator *hti, htab_t table) +{ + hti->htab = table; + hti->slot = table->entries; + hti->limit = hti->slot + htab_size (table); + do + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + break; + } while (++(hti->slot) < hti->limit); + + if (hti->slot < hti->limit) + return *(hti->slot); + return NULL; +} + +/* Return current non-empty/deleted slot of the hashtable pointed to by HTI, + or NULL if we have reached the end. */ + +static inline bool +end_htab_p (const htab_iterator *hti) +{ + if (hti->slot >= hti->limit) + return true; + return false; +} + +/* Advance the hashtable iterator pointed to by HTI to the next element of the + hashtable. */ + +static inline void * +next_htab_element (htab_iterator *hti) +{ + while (++(hti->slot) < hti->limit) + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + return x; + }; + return NULL; +} + +/* Get the variable with uid UID from the list of referenced vars. */ + +static inline tree +referenced_var (unsigned int uid) +{ + tree var = referenced_var_lookup (cfun, uid); + gcc_assert (var || uid == 0); + return var; +} + +/* Initialize ITER to point to the first referenced variable in the + referenced_vars hashtable, and return that variable. */ + +static inline tree +first_referenced_var (struct function *fn, referenced_var_iterator *iter) +{ + return (tree) first_htab_element (&iter->hti, + gimple_referenced_vars (fn)); +} + +/* Return true if we have hit the end of the referenced variables ITER is + iterating through. */ + +static inline bool +end_referenced_vars_p (const referenced_var_iterator *iter) +{ + return end_htab_p (&iter->hti); +} + +/* Make ITER point to the next referenced_var in the referenced_var hashtable, + and return that variable. */ + +static inline tree +next_referenced_var (referenced_var_iterator *iter) +{ + return (tree) next_htab_element (&iter->hti); +} + +/* Return the variable annotation for T, which must be a _DECL node. + Return NULL if the variable annotation doesn't already exist. */ +static inline var_ann_t +var_ann (const_tree t) +{ + const var_ann_t *p = DECL_VAR_ANN_PTR (t); + return p ? *p : NULL; +} + +/* Return the variable annotation for T, which must be a _DECL node. + Create the variable annotation if it doesn't exist. */ +static inline var_ann_t +get_var_ann (tree var) +{ + var_ann_t *p = DECL_VAR_ANN_PTR (var); + gcc_checking_assert (p); + return *p ? *p : create_var_ann (var); +} + +/* Get the number of the next statement uid to be allocated. */ +static inline unsigned int +gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline void +set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid) +{ + fn->last_stmt_uid = maxid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline unsigned int +inc_gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid++; +} + +/* Return the line number for EXPR, or return -1 if we have no line + number information for it. */ +static inline int +get_lineno (const_gimple stmt) +{ + location_t loc; + + if (!stmt) + return -1; + + loc = gimple_location (stmt); + if (loc == UNKNOWN_LOCATION) + return -1; + + return LOCATION_LINE (loc); +} + +/* Delink an immediate_uses node from its chain. */ +static inline void +delink_imm_use (ssa_use_operand_t *linknode) +{ + /* Return if this node is not in a list. */ + if (linknode->prev == NULL) + return; + + linknode->prev->next = linknode->next; + linknode->next->prev = linknode->prev; + linknode->prev = NULL; + linknode->next = NULL; +} + +/* Link ssa_imm_use node LINKNODE into the chain for LIST. */ +static inline void +link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) +{ + /* Link the new node at the head of the list. If we are in the process of + traversing the list, we won't visit any new nodes added to it. */ + linknode->prev = list; + linknode->next = list->next; + list->next->prev = linknode; + list->next = linknode; +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF. */ +static inline void +link_imm_use (ssa_use_operand_t *linknode, tree def) +{ + ssa_use_operand_t *root; + + if (!def || TREE_CODE (def) != SSA_NAME) + linknode->prev = NULL; + else + { + root = &(SSA_NAME_IMM_USE_NODE (def)); + if (linknode->use) + gcc_checking_assert (*(linknode->use) == def); + link_imm_use_to_list (linknode, root); + } +} + +/* Set the value of a use pointed to by USE to VAL. */ +static inline void +set_ssa_use_from_ptr (use_operand_p use, tree val) +{ + delink_imm_use (use); + *(use->use) = val; + link_imm_use (use, val); +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring + in STMT. */ +static inline void +link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt) +{ + if (stmt) + link_imm_use (linknode, def); + else + link_imm_use (linknode, NULL); + linknode->loc.stmt = stmt; +} + +/* Relink a new node in place of an old node in the list. */ +static inline void +relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) +{ + /* The node one had better be in the same list. */ + gcc_checking_assert (*(old->use) == *(node->use)); + node->prev = old->prev; + node->next = old->next; + if (old->prev) + { + old->prev->next = node; + old->next->prev = node; + /* Remove the old node from the list. */ + old->prev = NULL; + } +} + +/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring + in STMT. */ +static inline void +relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, + gimple stmt) +{ + if (stmt) + relink_imm_use (linknode, old); + else + link_imm_use (linknode, NULL); + linknode->loc.stmt = stmt; +} + + +/* Return true is IMM has reached the end of the immediate use list. */ +static inline bool +end_readonly_imm_use_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Initialize iterator IMM to process the list for VAR. */ +static inline use_operand_p +first_readonly_imm_use (imm_use_iterator *imm, tree var) +{ + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; +#ifdef ENABLE_CHECKING + imm->iter_node.next = imm->imm_use->next; +#endif + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; +} + +/* Bump IMM to the next use in the list. */ +static inline use_operand_p +next_readonly_imm_use (imm_use_iterator *imm) +{ + use_operand_p old = imm->imm_use; + +#ifdef ENABLE_CHECKING + /* If this assertion fails, it indicates the 'next' pointer has changed + since the last bump. This indicates that the list is being modified + via stmt changes, or SET_USE, or somesuch thing, and you need to be + using the SAFE version of the iterator. */ + gcc_assert (imm->iter_node.next == old->next); + imm->iter_node.next = old->next->next; +#endif + + imm->imm_use = old->next; + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; +} + +/* tree-cfg.c */ +extern bool has_zero_uses_1 (const ssa_use_operand_t *head); +extern bool single_imm_use_1 (const ssa_use_operand_t *head, + use_operand_p *use_p, gimple *stmt); + +/* Return true if VAR has no nondebug uses. */ +static inline bool +has_zero_uses (const_tree var) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + + /* A single use_operand means there is no items in the list. */ + if (ptr == ptr->next) + return true; + + /* If there are debug stmts, we have to look at each use and see + whether there are any nondebug uses. */ + if (!MAY_HAVE_DEBUG_STMTS) + return false; + + return has_zero_uses_1 (ptr); +} + +/* Return true if VAR has a single nondebug use. */ +static inline bool +has_single_use (const_tree var) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + + /* If there aren't any uses whatsoever, we're done. */ + if (ptr == ptr->next) + return false; + + /* If there's a single use, check that it's not a debug stmt. */ + if (ptr == ptr->next->next) + return !is_gimple_debug (USE_STMT (ptr->next)); + + /* If there are debug stmts, we have to look at each of them. */ + if (!MAY_HAVE_DEBUG_STMTS) + return false; + + return single_imm_use_1 (ptr, NULL, NULL); +} + + +/* If VAR has only a single immediate nondebug use, return true, and + set USE_P and STMT to the use pointer and stmt of occurrence. */ +static inline bool +single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + + /* If there aren't any uses whatsoever, we're done. */ + if (ptr == ptr->next) + { + return_false: + *use_p = NULL_USE_OPERAND_P; + *stmt = NULL; + return false; + } + + /* If there's a single use, check that it's not a debug stmt. */ + if (ptr == ptr->next->next) + { + if (!is_gimple_debug (USE_STMT (ptr->next))) + { + *use_p = ptr->next; + *stmt = ptr->next->loc.stmt; + return true; + } + else + goto return_false; + } + + /* If there are debug stmts, we have to look at each of them. */ + if (!MAY_HAVE_DEBUG_STMTS) + goto return_false; + + return single_imm_use_1 (ptr, use_p, stmt); +} + +/* Return the number of nondebug immediate uses of VAR. */ +static inline unsigned int +num_imm_uses (const_tree var) +{ + const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *ptr; + unsigned int num = 0; + + if (!MAY_HAVE_DEBUG_STMTS) + for (ptr = start->next; ptr != start; ptr = ptr->next) + num++; + else + for (ptr = start->next; ptr != start; ptr = ptr->next) + if (!is_gimple_debug (USE_STMT (ptr))) + num++; + + return num; +} + +/* Return the tree pointed-to by USE. */ +static inline tree +get_use_from_ptr (use_operand_p use) +{ + return *(use->use); +} + +/* Return the tree pointed-to by DEF. */ +static inline tree +get_def_from_ptr (def_operand_p def) +{ + return *def; +} + +/* Return a use_operand_p pointer for argument I of PHI node GS. */ + +static inline use_operand_p +gimple_phi_arg_imm_use_ptr (gimple gs, int i) +{ + return &gimple_phi_arg (gs, i)->imm_use; +} + +/* Return the tree operand for argument I of PHI node GS. */ + +static inline tree +gimple_phi_arg_def (gimple gs, size_t index) +{ + struct phi_arg_d *pd = gimple_phi_arg (gs, index); + return get_use_from_ptr (&pd->imm_use); +} + +/* Return a pointer to the tree operand for argument I of PHI node GS. */ + +static inline tree * +gimple_phi_arg_def_ptr (gimple gs, size_t index) +{ + return &gimple_phi_arg (gs, index)->def; +} + +/* Return the edge associated with argument I of phi node GS. */ + +static inline edge +gimple_phi_arg_edge (gimple gs, size_t i) +{ + return EDGE_PRED (gimple_bb (gs), i); +} + +/* Return the source location of gimple argument I of phi node GS. */ + +static inline source_location +gimple_phi_arg_location (gimple gs, size_t i) +{ + return gimple_phi_arg (gs, i)->locus; +} + +/* Return the source location of the argument on edge E of phi node GS. */ + +static inline source_location +gimple_phi_arg_location_from_edge (gimple gs, edge e) +{ + return gimple_phi_arg (gs, e->dest_idx)->locus; +} + +/* Set the source location of gimple argument I of phi node GS to LOC. */ + +static inline void +gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc) +{ + gimple_phi_arg (gs, i)->locus = loc; +} + +/* Return TRUE if argument I of phi node GS has a location record. */ + +static inline bool +gimple_phi_arg_has_location (gimple gs, size_t i) +{ + return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION; +} + + +/* Return the PHI nodes for basic block BB, or NULL if there are no + PHI nodes. */ +static inline gimple_seq +phi_nodes (const_basic_block bb) +{ + gcc_checking_assert (!(bb->flags & BB_RTL)); + if (!bb->il.gimple) + return NULL; + return bb->il.gimple->phi_nodes; +} + +/* Set PHI nodes of a basic block BB to SEQ. */ + +static inline void +set_phi_nodes (basic_block bb, gimple_seq seq) +{ + gimple_stmt_iterator i; + + gcc_checking_assert (!(bb->flags & BB_RTL)); + bb->il.gimple->phi_nodes = seq; + if (seq) + for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) + gimple_set_bb (gsi_stmt (i), bb); +} + +/* Return the phi argument which contains the specified use. */ + +static inline int +phi_arg_index_from_use (use_operand_p use) +{ + struct phi_arg_d *element, *root; + size_t index; + gimple phi; + + /* Since the use is the first thing in a PHI argument element, we can + calculate its index based on casting it to an argument, and performing + pointer arithmetic. */ + + phi = USE_STMT (use); + + element = (struct phi_arg_d *)use; + root = gimple_phi_arg (phi, 0); + index = element - root; + + /* Make sure the calculation doesn't have any leftover bytes. If it does, + then imm_use is likely not the first element in phi_arg_d. */ + gcc_checking_assert ((((char *)element - (char *)root) + % sizeof (struct phi_arg_d)) == 0 + && index < gimple_phi_capacity (phi)); + + return index; +} + +/* Mark VAR as used, so that it'll be preserved during rtl expansion. */ + +static inline void +set_is_used (tree var) +{ + var_ann_t ann = get_var_ann (var); + ann->used = true; +} + +/* Clear VAR's used flag. */ + +static inline void +clear_is_used (tree var) +{ + var_ann_t ann = var_ann (var); + ann->used = false; +} + +/* Return true if VAR is marked as used. */ + +static inline bool +is_used_p (tree var) +{ + var_ann_t ann = var_ann (var); + return ann->used; +} + +/* Return true if T (assumed to be a DECL) is a global variable. + A variable is considered global if its storage is not automatic. */ + +static inline bool +is_global_var (const_tree t) +{ + return (TREE_STATIC (t) || DECL_EXTERNAL (t)); +} + + +/* Return true if VAR may be aliased. A variable is considered as + maybe aliased if it has its address taken by the local TU + or possibly by another TU and might be modified through a pointer. */ + +static inline bool +may_be_aliased (const_tree var) +{ + return (TREE_CODE (var) != CONST_DECL + && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var)) + && TREE_READONLY (var) + && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var))) + && (TREE_PUBLIC (var) + || DECL_EXTERNAL (var) + || TREE_ADDRESSABLE (var))); +} + + +/* PHI nodes should contain only ssa_names and invariants. A test + for ssa_name is definitely simpler; don't let invalid contents + slip in in the meantime. */ + +static inline bool +phi_ssa_name_p (const_tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + return true; + gcc_checking_assert (is_gimple_min_invariant (t)); + return false; +} + + +/* Returns the loop of the statement STMT. */ + +static inline struct loop * +loop_containing_stmt (gimple stmt) +{ + basic_block bb = gimple_bb (stmt); + if (!bb) + return NULL; + + return bb->loop_father; +} + + +/* ----------------------------------------------------------------------- */ + +/* The following set of routines are used to iterator over various type of + SSA operands. */ + +/* Return true if PTR is finished iterating. */ +static inline bool +op_iter_done (const ssa_op_iter *ptr) +{ + return ptr->done; +} + +/* Get the next iterator use value for PTR. */ +static inline use_operand_p +op_iter_next_use (ssa_op_iter *ptr) +{ + use_operand_p use_p; + gcc_checking_assert (ptr->iter_type == ssa_op_iter_use); + if (ptr->uses) + { + use_p = USE_OP_PTR (ptr->uses); + ptr->uses = ptr->uses->next; + return use_p; + } + if (ptr->phi_i < ptr->num_phi) + { + return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); + } + ptr->done = true; + return NULL_USE_OPERAND_P; +} + +/* Get the next iterator def value for PTR. */ +static inline def_operand_p +op_iter_next_def (ssa_op_iter *ptr) +{ + def_operand_p def_p; + gcc_checking_assert (ptr->iter_type == ssa_op_iter_def); + if (ptr->defs) + { + def_p = DEF_OP_PTR (ptr->defs); + ptr->defs = ptr->defs->next; + return def_p; + } + ptr->done = true; + return NULL_DEF_OPERAND_P; +} + +/* Get the next iterator tree value for PTR. */ +static inline tree +op_iter_next_tree (ssa_op_iter *ptr) +{ + tree val; + gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree); + if (ptr->uses) + { + val = USE_OP (ptr->uses); + ptr->uses = ptr->uses->next; + return val; + } + if (ptr->defs) + { + val = DEF_OP (ptr->defs); + ptr->defs = ptr->defs->next; + return val; + } + + ptr->done = true; + return NULL_TREE; + +} + + +/* This functions clears the iterator PTR, and marks it done. This is normally + used to prevent warnings in the compile about might be uninitialized + components. */ + +static inline void +clear_and_done_ssa_iter (ssa_op_iter *ptr) +{ + ptr->defs = NULL; + ptr->uses = NULL; + ptr->iter_type = ssa_op_iter_none; + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL; + ptr->done = true; +} + +/* Initialize the iterator PTR to the virtual defs in STMT. */ +static inline void +op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags) +{ + /* We do not support iterating over virtual defs or uses without + iterating over defs or uses at the same time. */ + gcc_checking_assert ((!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF)) + && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE))); + ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL; + if (!(flags & SSA_OP_VDEF) + && ptr->defs + && gimple_vdef (stmt) != NULL_TREE) + ptr->defs = ptr->defs->next; + ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL; + if (!(flags & SSA_OP_VUSE) + && ptr->uses + && gimple_vuse (stmt) != NULL_TREE) + ptr->uses = ptr->uses->next; + ptr->done = false; + + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL; +} + +/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return + the first use. */ +static inline use_operand_p +op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags) +{ + gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0 + && (flags & SSA_OP_USE)); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + +/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return + the first def. */ +static inline def_operand_p +op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags) +{ + gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0 + && (flags & SSA_OP_DEF)); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_def; + return op_iter_next_def (ptr); +} + +/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return + the first operand as a tree. */ +static inline tree +op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags) +{ + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_tree; + return op_iter_next_tree (ptr); +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline tree +single_ssa_tree_operand (gimple stmt, int flags) +{ + tree var; + ssa_op_iter iter; + + var = op_iter_init_tree (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_TREE; + op_iter_next_tree (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_TREE; +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline use_operand_p +single_ssa_use_operand (gimple stmt, int flags) +{ + use_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_use (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_USE_OPERAND_P; + op_iter_next_use (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_USE_OPERAND_P; +} + + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline def_operand_p +single_ssa_def_operand (gimple stmt, int flags) +{ + def_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_def (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_DEF_OPERAND_P; + op_iter_next_def (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_DEF_OPERAND_P; +} + + +/* Return true if there are zero operands in STMT matching the type + given in FLAGS. */ +static inline bool +zero_ssa_operands (gimple stmt, int flags) +{ + ssa_op_iter iter; + + op_iter_init_tree (&iter, stmt, flags); + return op_iter_done (&iter); +} + + +/* Return the number of operands matching FLAGS in STMT. */ +static inline int +num_ssa_operands (gimple stmt, int flags) +{ + ssa_op_iter iter; + tree t; + int num = 0; + + FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) + num++; + return num; +} + + +/* Delink all immediate_use information for STMT. */ +static inline void +delink_stmt_imm_use (gimple stmt) +{ + ssa_op_iter iter; + use_operand_p use_p; + + if (ssa_operands_active ()) + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) + delink_imm_use (use_p); +} + + +/* If there is a single DEF in the PHI node which matches FLAG, return it. + Otherwise return NULL_DEF_OPERAND_P. */ +static inline tree +single_phi_def (gimple stmt, int flags) +{ + tree def = PHI_RESULT (stmt); + if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) + return def; + if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) + return def; + return NULL_TREE; +} + +/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should + be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ +static inline use_operand_p +op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags) +{ + tree phi_def = gimple_phi_result (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->phi_stmt = phi; + ptr->num_phi = gimple_phi_num_args (phi); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + + +/* Start an iterator for a PHI definition. */ + +static inline def_operand_p +op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); + + /* If the PHI node doesn't have the operand type we care about, + we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_DEF_OPERAND_P; + } + + ptr->iter_type = ssa_op_iter_def; + /* The first call to op_iter_next_def will terminate the iterator since + all the fields are NULL. Simply return the result here as the first and + therefore only result. */ + return PHI_RESULT_PTR (phi); +} + +/* Return true is IMM has reached the end of the immediate use stmt list. */ + +static inline bool +end_imm_use_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Finished the traverse of an immediate use stmt list IMM by removing the + placeholder node from the list. */ + +static inline void +end_imm_use_stmt_traverse (imm_use_iterator *imm) +{ + delink_imm_use (&(imm->iter_node)); +} + +/* Immediate use traversal of uses within a stmt require that all the + uses on a stmt be sequentially listed. This routine is used to build up + this sequential list by adding USE_P to the end of the current list + currently delimited by HEAD and LAST_P. The new LAST_P value is + returned. */ + +static inline use_operand_p +move_use_after_head (use_operand_p use_p, use_operand_p head, + use_operand_p last_p) +{ + gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); + /* Skip head when we find it. */ + if (use_p != head) + { + /* If use_p is already linked in after last_p, continue. */ + if (last_p->next == use_p) + last_p = use_p; + else + { + /* Delink from current location, and link in at last_p. */ + delink_imm_use (use_p); + link_imm_use_to_list (use_p, last_p); + last_p = use_p; + } + } + return last_p; +} + + +/* This routine will relink all uses with the same stmt as HEAD into the list + immediately following HEAD for iterator IMM. */ + +static inline void +link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) +{ + use_operand_p use_p; + use_operand_p last_p = head; + gimple head_stmt = USE_STMT (head); + tree use = USE_FROM_PTR (head); + ssa_op_iter op_iter; + int flag; + + /* Only look at virtual or real uses, depending on the type of HEAD. */ + flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + if (gimple_code (head_stmt) == GIMPLE_PHI) + { + FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + else + { + if (flag == SSA_OP_USE) + { + FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P) + { + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + } + /* Link iter node in after last_p. */ + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + link_imm_use_to_list (&(imm->iter_node), last_p); +} + +/* Initialize IMM to traverse over uses of VAR. Return the first statement. */ +static inline gimple +first_imm_use_stmt (imm_use_iterator *imm, tree var) +{ + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; + imm->next_imm_name = NULL_USE_OPERAND_P; + + /* iter_node is used as a marker within the immediate use list to indicate + where the end of the current stmt's uses are. Initialize it to NULL + stmt and use, which indicates a marker node. */ + imm->iter_node.prev = NULL_USE_OPERAND_P; + imm->iter_node.next = NULL_USE_OPERAND_P; + imm->iter_node.loc.stmt = NULL; + imm->iter_node.use = NULL; + + if (end_imm_use_stmt_p (imm)) + return NULL; + + link_use_stmts_after (imm->imm_use, imm); + + return USE_STMT (imm->imm_use); +} + +/* Bump IMM to the next stmt which has a use of var. */ + +static inline gimple +next_imm_use_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->iter_node.next; + if (end_imm_use_stmt_p (imm)) + { + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + return NULL; + } + + link_use_stmts_after (imm->imm_use, imm); + return USE_STMT (imm->imm_use); +} + +/* This routine will return the first use on the stmt IMM currently refers + to. */ + +static inline use_operand_p +first_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; +} + +/* Return TRUE if the last use on the stmt IMM refers to has been visited. */ + +static inline bool +end_imm_use_on_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == &(imm->iter_node)); +} + +/* Bump to the next use on the stmt IMM refers to, return NULL if done. */ + +static inline use_operand_p +next_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->next_imm_name; + if (end_imm_use_on_stmt_p (imm)) + return NULL_USE_OPERAND_P; + else + { + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; + } +} + +/* Return true if VAR cannot be modified by the program. */ + +static inline bool +unmodifiable_var_p (const_tree var) +{ + if (TREE_CODE (var) == SSA_NAME) + var = SSA_NAME_VAR (var); + + return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); +} + +/* Return true if REF, a handled component reference, has an ARRAY_REF + somewhere in it. */ + +static inline bool +ref_contains_array_ref (const_tree ref) +{ + gcc_checking_assert (handled_component_p (ref)); + + do { + if (TREE_CODE (ref) == ARRAY_REF) + return true; + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return false; +} + +/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */ + +static inline bool +contains_view_convert_expr_p (const_tree ref) +{ + while (handled_component_p (ref)) + { + if (TREE_CODE (ref) == VIEW_CONVERT_EXPR) + return true; + ref = TREE_OPERAND (ref, 0); + } + + return false; +} + +/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2] + overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the + range is open-ended. Otherwise return false. */ + +static inline bool +ranges_overlap_p (unsigned HOST_WIDE_INT pos1, + unsigned HOST_WIDE_INT size1, + unsigned HOST_WIDE_INT pos2, + unsigned HOST_WIDE_INT size2) +{ + if (pos1 >= pos2 + && (size2 == (unsigned HOST_WIDE_INT)-1 + || pos1 < (pos2 + size2))) + return true; + if (pos2 >= pos1 + && (size1 == (unsigned HOST_WIDE_INT)-1 + || pos2 < (pos1 + size1))) + return true; + + return false; +} + +/* Accessor to tree-ssa-operands.c caches. */ +static inline struct ssa_operands * +gimple_ssa_operands (const struct function *fun) +{ + return &fun->gimple_df->ssa_operands; +} + +/* Given an edge_var_map V, return the PHI arg definition. */ + +static inline tree +redirect_edge_var_map_def (edge_var_map *v) +{ + return v->def; +} + +/* Given an edge_var_map V, return the PHI result. */ + +static inline tree +redirect_edge_var_map_result (edge_var_map *v) +{ + return v->result; +} + +/* Given an edge_var_map V, return the PHI arg location. */ + +static inline source_location +redirect_edge_var_map_location (edge_var_map *v) +{ + return v->locus; +} + + +/* Return an SSA_NAME node for variable VAR defined in statement STMT + in function cfun. */ + +static inline tree +make_ssa_name (tree var, gimple stmt) +{ + return make_ssa_name_fn (cfun, var, stmt); +} + +#endif /* _TREE_FLOW_INLINE_H */ -- cgit v1.2.3