From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/tree-if-conv.c | 1781 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1781 insertions(+) create mode 100644 gcc/tree-if-conv.c (limited to 'gcc/tree-if-conv.c') diff --git a/gcc/tree-if-conv.c b/gcc/tree-if-conv.c new file mode 100644 index 000000000..a77186a1b --- /dev/null +++ b/gcc/tree-if-conv.c @@ -0,0 +1,1781 @@ +/* If-conversion for vectorizer. + Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Devang Patel + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +/* This pass implements a tree level if-conversion of loops. Its + initial goal is to help the vectorizer to vectorize loops with + conditions. + + A short description of if-conversion: + + o Decide if a loop is if-convertible or not. + o Walk all loop basic blocks in breadth first order (BFS order). + o Remove conditional statements (at the end of basic block) + and propagate condition into destination basic blocks' + predicate list. + o Replace modify expression with conditional modify expression + using current basic block's condition. + o Merge all basic blocks + o Replace phi nodes with conditional modify expr + o Merge all basic blocks into header + + Sample transformation: + + INPUT + ----- + + # i_23 = PHI <0(0), i_18(10)>; + :; + j_15 = A[i_23]; + if (j_15 > 41) goto ; else goto ; + + :; + goto (); + + :; + + # iftmp.2_4 = PHI <0(8), 42(2)>; + :; + A[i_23] = iftmp.2_4; + i_18 = i_23 + 1; + if (i_18 <= 15) goto ; else goto ; + + :; + goto (); + + :; + + OUTPUT + ------ + + # i_23 = PHI <0(0), i_18(10)>; + :; + j_15 = A[i_23]; + + :; + iftmp.2_4 = j_15 > 41 ? 42 : 0; + A[i_23] = iftmp.2_4; + i_18 = i_23 + 1; + if (i_18 <= 15) goto ; else goto ; + + :; + goto (); + + :; +*/ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "flags.h" +#include "timevar.h" +#include "basic-block.h" +#include "tree-pretty-print.h" +#include "gimple-pretty-print.h" +#include "tree-flow.h" +#include "tree-dump.h" +#include "cfgloop.h" +#include "tree-chrec.h" +#include "tree-data-ref.h" +#include "tree-scalar-evolution.h" +#include "tree-pass.h" +#include "dbgcnt.h" + +/* List of basic blocks in if-conversion-suitable order. */ +static basic_block *ifc_bbs; + +/* Structure used to predicate basic blocks. This is attached to the + ->aux field of the BBs in the loop to be if-converted. */ +typedef struct bb_predicate_s { + + /* The condition under which this basic block is executed. */ + tree predicate; + + /* PREDICATE is gimplified, and the sequence of statements is + recorded here, in order to avoid the duplication of computations + that occur in previous conditions. See PR44483. */ + gimple_seq predicate_gimplified_stmts; +} *bb_predicate_p; + +/* Returns true when the basic block BB has a predicate. */ + +static inline bool +bb_has_predicate (basic_block bb) +{ + return bb->aux != NULL; +} + +/* Returns the gimplified predicate for basic block BB. */ + +static inline tree +bb_predicate (basic_block bb) +{ + return ((bb_predicate_p) bb->aux)->predicate; +} + +/* Sets the gimplified predicate COND for basic block BB. */ + +static inline void +set_bb_predicate (basic_block bb, tree cond) +{ + ((bb_predicate_p) bb->aux)->predicate = cond; +} + +/* Returns the sequence of statements of the gimplification of the + predicate for basic block BB. */ + +static inline gimple_seq +bb_predicate_gimplified_stmts (basic_block bb) +{ + return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts; +} + +/* Sets the sequence of statements STMTS of the gimplification of the + predicate for basic block BB. */ + +static inline void +set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) +{ + ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts; +} + +/* Adds the sequence of statements STMTS to the sequence of statements + of the predicate for basic block BB. */ + +static inline void +add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) +{ + gimple_seq_add_seq + (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts); +} + +/* Initializes to TRUE the predicate of basic block BB. */ + +static inline void +init_bb_predicate (basic_block bb) +{ + bb->aux = XNEW (struct bb_predicate_s); + set_bb_predicate_gimplified_stmts (bb, NULL); + set_bb_predicate (bb, boolean_true_node); +} + +/* Free the predicate of basic block BB. */ + +static inline void +free_bb_predicate (basic_block bb) +{ + gimple_seq stmts; + + if (!bb_has_predicate (bb)) + return; + + /* Release the SSA_NAMEs created for the gimplification of the + predicate. */ + stmts = bb_predicate_gimplified_stmts (bb); + if (stmts) + { + gimple_stmt_iterator i; + + for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) + free_stmt_operands (gsi_stmt (i)); + } + + free (bb->aux); + bb->aux = NULL; +} + +/* Free the predicate of BB and reinitialize it with the true + predicate. */ + +static inline void +reset_bb_predicate (basic_block bb) +{ + free_bb_predicate (bb); + init_bb_predicate (bb); +} + +/* Returns a new SSA_NAME of type TYPE that is assigned the value of + the expression EXPR. Inserts the statement created for this + computation before GSI and leaves the iterator GSI at the same + statement. */ + +static tree +ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi) +{ + const char *name = "_ifc_"; + tree var, new_name; + gimple stmt; + + /* Create new temporary variable. */ + var = create_tmp_var (type, name); + add_referenced_var (var); + + /* Build new statement to assign EXPR to new variable. */ + stmt = gimple_build_assign (var, expr); + + /* Get SSA name for the new variable and set make new statement + its definition statement. */ + new_name = make_ssa_name (var, stmt); + gimple_assign_set_lhs (stmt, new_name); + SSA_NAME_DEF_STMT (new_name) = stmt; + update_stmt (stmt); + + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + return gimple_assign_lhs (stmt); +} + +/* Return true when COND is a true predicate. */ + +static inline bool +is_true_predicate (tree cond) +{ + return (cond == NULL_TREE + || cond == boolean_true_node + || integer_onep (cond)); +} + +/* Returns true when BB has a predicate that is not trivial: true or + NULL_TREE. */ + +static inline bool +is_predicated (basic_block bb) +{ + return !is_true_predicate (bb_predicate (bb)); +} + +/* Parses the predicate COND and returns its comparison code and + operands OP0 and OP1. */ + +static enum tree_code +parse_predicate (tree cond, tree *op0, tree *op1) +{ + gimple s; + + if (TREE_CODE (cond) == SSA_NAME + && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond))) + { + if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) + { + *op0 = gimple_assign_rhs1 (s); + *op1 = gimple_assign_rhs2 (s); + return gimple_assign_rhs_code (s); + } + + else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR) + { + tree op = gimple_assign_rhs1 (s); + tree type = TREE_TYPE (op); + enum tree_code code = parse_predicate (op, op0, op1); + + return code == ERROR_MARK ? ERROR_MARK + : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type))); + } + + return ERROR_MARK; + } + + if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison) + { + *op0 = TREE_OPERAND (cond, 0); + *op1 = TREE_OPERAND (cond, 1); + return TREE_CODE (cond); + } + + return ERROR_MARK; +} + +/* Returns the fold of predicate C1 OR C2 at location LOC. */ + +static tree +fold_or_predicates (location_t loc, tree c1, tree c2) +{ + tree op1a, op1b, op2a, op2b; + enum tree_code code1 = parse_predicate (c1, &op1a, &op1b); + enum tree_code code2 = parse_predicate (c2, &op2a, &op2b); + + if (code1 != ERROR_MARK && code2 != ERROR_MARK) + { + tree t = maybe_fold_or_comparisons (code1, op1a, op1b, + code2, op2a, op2b); + if (t) + return t; + } + + return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2); +} + +/* Add condition NC to the predicate list of basic block BB. */ + +static inline void +add_to_predicate_list (basic_block bb, tree nc) +{ + tree bc; + + if (is_true_predicate (nc)) + return; + + if (!is_predicated (bb)) + bc = nc; + else + { + bc = bb_predicate (bb); + bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc); + } + + if (!is_gimple_condexpr (bc)) + { + gimple_seq stmts; + bc = force_gimple_operand (bc, &stmts, true, NULL_TREE); + add_bb_predicate_gimplified_stmts (bb, stmts); + } + + if (is_true_predicate (bc)) + reset_bb_predicate (bb); + else + set_bb_predicate (bb, bc); +} + +/* Add the condition COND to the previous condition PREV_COND, and add + this to the predicate list of the destination of edge E. LOOP is + the loop to be if-converted. */ + +static void +add_to_dst_predicate_list (struct loop *loop, edge e, + tree prev_cond, tree cond) +{ + if (!flow_bb_inside_loop_p (loop, e->dest)) + return; + + if (!is_true_predicate (prev_cond)) + cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, + prev_cond, cond); + + add_to_predicate_list (e->dest, cond); +} + +/* Return true if one of the successor edges of BB exits LOOP. */ + +static bool +bb_with_exit_edge_p (struct loop *loop, basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (loop_exit_edge_p (loop, e)) + return true; + + return false; +} + +/* Return true when PHI is if-convertible. PHI is part of loop LOOP + and it belongs to basic block BB. + + PHI is not if-convertible if: + - it has more than 2 arguments. + + When the flag_tree_loop_if_convert_stores is not set, PHI is not + if-convertible if: + - a virtual PHI is immediately used in another PHI node, + - there is a virtual PHI in a BB other than the loop->header. */ + +static bool +if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "-------------------------\n"); + print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); + } + + if (bb != loop->header && gimple_phi_num_args (phi) != 2) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "More than two phi node args.\n"); + return false; + } + + if (flag_tree_loop_if_convert_stores) + return true; + + /* When the flag_tree_loop_if_convert_stores is not set, check + that there are no memory writes in the branches of the loop to be + if-converted. */ + if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi)))) + { + imm_use_iterator imm_iter; + use_operand_p use_p; + + if (bb != loop->header) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Virtual phi not on loop->header.\n"); + return false; + } + + FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi)) + { + if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Difficult to handle this virtual phi.\n"); + return false; + } + } + } + + return true; +} + +/* Records the status of a data reference. This struct is attached to + each DR->aux field. */ + +struct ifc_dr { + /* -1 when not initialized, 0 when false, 1 when true. */ + int written_at_least_once; + + /* -1 when not initialized, 0 when false, 1 when true. */ + int rw_unconditionally; +}; + +#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux) +#define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once) +#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally) + +/* Returns true when the memory references of STMT are read or written + unconditionally. In other words, this function returns true when + for every data reference A in STMT there exist other accesses to + the same data reference with predicates that add up (OR-up) to the + true predicate: this ensures that the data reference A is touched + (read or written) on every iteration of the if-converted loop. */ + +static bool +memrefs_read_or_written_unconditionally (gimple stmt, + VEC (data_reference_p, heap) *drs) +{ + int i, j; + data_reference_p a, b; + tree ca = bb_predicate (gimple_bb (stmt)); + + for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++) + if (DR_STMT (a) == stmt) + { + bool found = false; + int x = DR_RW_UNCONDITIONALLY (a); + + if (x == 0) + return false; + + if (x == 1) + continue; + + for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++) + if (DR_STMT (b) != stmt + && same_data_refs (a, b)) + { + tree cb = bb_predicate (gimple_bb (DR_STMT (b))); + + if (DR_RW_UNCONDITIONALLY (b) == 1 + || is_true_predicate (cb) + || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb), + ca, cb))) + { + DR_RW_UNCONDITIONALLY (a) = 1; + DR_RW_UNCONDITIONALLY (b) = 1; + found = true; + break; + } + } + + if (!found) + { + DR_RW_UNCONDITIONALLY (a) = 0; + return false; + } + } + + return true; +} + +/* Returns true when the memory references of STMT are unconditionally + written. In other words, this function returns true when for every + data reference A written in STMT, there exist other writes to the + same data reference with predicates that add up (OR-up) to the true + predicate: this ensures that the data reference A is written on + every iteration of the if-converted loop. */ + +static bool +write_memrefs_written_at_least_once (gimple stmt, + VEC (data_reference_p, heap) *drs) +{ + int i, j; + data_reference_p a, b; + tree ca = bb_predicate (gimple_bb (stmt)); + + for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++) + if (DR_STMT (a) == stmt + && DR_IS_WRITE (a)) + { + bool found = false; + int x = DR_WRITTEN_AT_LEAST_ONCE (a); + + if (x == 0) + return false; + + if (x == 1) + continue; + + for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++) + if (DR_STMT (b) != stmt + && DR_IS_WRITE (b) + && same_data_refs_base_objects (a, b)) + { + tree cb = bb_predicate (gimple_bb (DR_STMT (b))); + + if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1 + || is_true_predicate (cb) + || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb), + ca, cb))) + { + DR_WRITTEN_AT_LEAST_ONCE (a) = 1; + DR_WRITTEN_AT_LEAST_ONCE (b) = 1; + found = true; + break; + } + } + + if (!found) + { + DR_WRITTEN_AT_LEAST_ONCE (a) = 0; + return false; + } + } + + return true; +} + +/* Return true when the memory references of STMT won't trap in the + if-converted code. There are two things that we have to check for: + + - writes to memory occur to writable memory: if-conversion of + memory writes transforms the conditional memory writes into + unconditional writes, i.e. "if (cond) A[i] = foo" is transformed + into "A[i] = cond ? foo : A[i]", and as the write to memory may not + be executed at all in the original code, it may be a readonly + memory. To check that A is not const-qualified, we check that + there exists at least an unconditional write to A in the current + function. + + - reads or writes to memory are valid memory accesses for every + iteration. To check that the memory accesses are correctly formed + and that we are allowed to read and write in these locations, we + check that the memory accesses to be if-converted occur at every + iteration unconditionally. */ + +static bool +ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs) +{ + return write_memrefs_written_at_least_once (stmt, refs) + && memrefs_read_or_written_unconditionally (stmt, refs); +} + +/* Wrapper around gimple_could_trap_p refined for the needs of the + if-conversion. Try to prove that the memory accesses of STMT could + not trap in the innermost loop containing STMT. */ + +static bool +ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs) +{ + if (gimple_vuse (stmt) + && !gimple_could_trap_p_1 (stmt, false, false) + && ifcvt_memrefs_wont_trap (stmt, refs)) + return false; + + return gimple_could_trap_p (stmt); +} + +/* Return true when STMT is if-convertible. + + GIMPLE_ASSIGN statement is not if-convertible if, + - it is not movable, + - it could trap, + - LHS is not var decl. */ + +static bool +if_convertible_gimple_assign_stmt_p (gimple stmt, + VEC (data_reference_p, heap) *refs) +{ + tree lhs = gimple_assign_lhs (stmt); + basic_block bb; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "-------------------------\n"); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + + if (!is_gimple_reg_type (TREE_TYPE (lhs))) + return false; + + /* Some of these constrains might be too conservative. */ + if (stmt_ends_bb_p (stmt) + || gimple_has_volatile_ops (stmt) + || (TREE_CODE (lhs) == SSA_NAME + && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + || gimple_has_side_effects (stmt)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "stmt not suitable for ifcvt\n"); + return false; + } + + if (flag_tree_loop_if_convert_stores) + { + if (ifcvt_could_trap_p (stmt, refs)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "tree could trap...\n"); + return false; + } + return true; + } + + if (gimple_assign_rhs_could_trap_p (stmt)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "tree could trap...\n"); + return false; + } + + bb = gimple_bb (stmt); + + if (TREE_CODE (lhs) != SSA_NAME + && bb != bb->loop_father->header + && !bb_with_exit_edge_p (bb->loop_father, bb)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "LHS is not var\n"); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + return false; + } + + return true; +} + +/* Return true when STMT is if-convertible. + + A statement is if-convertible if: + - it is an if-convertible GIMPLE_ASSGIN, + - it is a GIMPLE_LABEL or a GIMPLE_COND. */ + +static bool +if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_LABEL: + case GIMPLE_DEBUG: + case GIMPLE_COND: + return true; + + case GIMPLE_ASSIGN: + return if_convertible_gimple_assign_stmt_p (stmt, refs); + + default: + /* Don't know what to do with 'em so don't do anything. */ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "don't know what to do\n"); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + return false; + break; + } + + return true; +} + +/* Return true when BB post-dominates all its predecessors. */ + +static bool +bb_postdominates_preds (basic_block bb) +{ + unsigned i; + + for (i = 0; i < EDGE_COUNT (bb->preds); i++) + if (!dominated_by_p (CDI_POST_DOMINATORS, EDGE_PRED (bb, i)->src, bb)) + return false; + + return true; +} + +/* Return true when BB is if-convertible. This routine does not check + basic block's statements and phis. + + A basic block is not if-convertible if: + - it is non-empty and it is after the exit block (in BFS order), + - it is after the exit block but before the latch, + - its edges are not normal. + + EXIT_BB is the basic block containing the exit of the LOOP. BB is + inside LOOP. */ + +static bool +if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb) +{ + edge e; + edge_iterator ei; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "----------[%d]-------------\n", bb->index); + + if (EDGE_COUNT (bb->preds) > 2 + || EDGE_COUNT (bb->succs) > 2) + return false; + + if (exit_bb) + { + if (bb != loop->latch) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "basic block after exit bb but before latch\n"); + return false; + } + else if (!empty_block_p (bb)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "non empty basic block after exit bb\n"); + return false; + } + else if (bb == loop->latch + && bb != exit_bb + && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "latch is not dominated by exit_block\n"); + return false; + } + } + + /* Be less adventurous and handle only normal edges. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & + (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Difficult to handle edges\n"); + return false; + } + + if (EDGE_COUNT (bb->preds) == 2 + && bb != loop->header + && !bb_postdominates_preds (bb)) + return false; + + return true; +} + +/* Return true when all predecessor blocks of BB are visited. The + VISITED bitmap keeps track of the visited blocks. */ + +static bool +pred_blocks_visited_p (basic_block bb, bitmap *visited) +{ + edge e; + edge_iterator ei; + FOR_EACH_EDGE (e, ei, bb->preds) + if (!bitmap_bit_p (*visited, e->src->index)) + return false; + + return true; +} + +/* Get body of a LOOP in suitable order for if-conversion. It is + caller's responsibility to deallocate basic block list. + If-conversion suitable order is, breadth first sort (BFS) order + with an additional constraint: select a block only if all its + predecessors are already selected. */ + +static basic_block * +get_loop_body_in_if_conv_order (const struct loop *loop) +{ + basic_block *blocks, *blocks_in_bfs_order; + basic_block bb; + bitmap visited; + unsigned int index = 0; + unsigned int visited_count = 0; + + gcc_assert (loop->num_nodes); + gcc_assert (loop->latch != EXIT_BLOCK_PTR); + + blocks = XCNEWVEC (basic_block, loop->num_nodes); + visited = BITMAP_ALLOC (NULL); + + blocks_in_bfs_order = get_loop_body_in_bfs_order (loop); + + index = 0; + while (index < loop->num_nodes) + { + bb = blocks_in_bfs_order [index]; + + if (bb->flags & BB_IRREDUCIBLE_LOOP) + { + free (blocks_in_bfs_order); + BITMAP_FREE (visited); + free (blocks); + return NULL; + } + + if (!bitmap_bit_p (visited, bb->index)) + { + if (pred_blocks_visited_p (bb, &visited) + || bb == loop->header) + { + /* This block is now visited. */ + bitmap_set_bit (visited, bb->index); + blocks[visited_count++] = bb; + } + } + + index++; + + if (index == loop->num_nodes + && visited_count != loop->num_nodes) + /* Not done yet. */ + index = 0; + } + free (blocks_in_bfs_order); + BITMAP_FREE (visited); + return blocks; +} + +/* Returns true when the analysis of the predicates for all the basic + blocks in LOOP succeeded. + + predicate_bbs first allocates the predicates of the basic blocks. + These fields are then initialized with the tree expressions + representing the predicates under which a basic block is executed + in the LOOP. As the loop->header is executed at each iteration, it + has the "true" predicate. Other statements executed under a + condition are predicated with that condition, for example + + | if (x) + | S1; + | else + | S2; + + S1 will be predicated with "x", and + S2 will be predicated with "!x". */ + +static bool +predicate_bbs (loop_p loop) +{ + unsigned int i; + + for (i = 0; i < loop->num_nodes; i++) + init_bb_predicate (ifc_bbs[i]); + + for (i = 0; i < loop->num_nodes; i++) + { + basic_block bb = ifc_bbs[i]; + tree cond; + gimple_stmt_iterator itr; + + /* The loop latch is always executed and has no extra conditions + to be processed: skip it. */ + if (bb == loop->latch) + { + reset_bb_predicate (loop->latch); + continue; + } + + cond = bb_predicate (bb); + if (cond + && bb != loop->header) + { + gimple_seq stmts; + + cond = force_gimple_operand (cond, &stmts, true, NULL_TREE); + add_bb_predicate_gimplified_stmts (bb, stmts); + } + + for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) + { + gimple stmt = gsi_stmt (itr); + + switch (gimple_code (stmt)) + { + case GIMPLE_LABEL: + case GIMPLE_ASSIGN: + case GIMPLE_CALL: + case GIMPLE_DEBUG: + break; + + case GIMPLE_COND: + { + tree c2, tem; + edge true_edge, false_edge; + location_t loc = gimple_location (stmt); + tree c = fold_build2_loc (loc, gimple_cond_code (stmt), + boolean_type_node, + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt)); + + /* Add new condition into destination's predicate list. */ + extract_true_false_edges_from_block (gimple_bb (stmt), + &true_edge, &false_edge); + + /* If C is true, then TRUE_EDGE is taken. */ + add_to_dst_predicate_list (loop, true_edge, cond, unshare_expr (c)); + + /* If C is false, then FALSE_EDGE is taken. */ + c2 = invert_truthvalue_loc (loc, unshare_expr (c)); + tem = canonicalize_cond_expr_cond (c2); + if (tem) + c2 = tem; + add_to_dst_predicate_list (loop, false_edge, cond, c2); + + cond = NULL_TREE; + break; + } + + default: + /* Not handled yet in if-conversion. */ + return false; + } + } + + /* If current bb has only one successor, then consider it as an + unconditional goto. */ + if (single_succ_p (bb)) + { + basic_block bb_n = single_succ (bb); + + /* The successor bb inherits the predicate of its + predecessor. If there is no predicate in the predecessor + bb, then consider the successor bb as always executed. */ + if (cond == NULL_TREE) + cond = boolean_true_node; + + add_to_predicate_list (bb_n, cond); + } + } + + /* The loop header is always executed. */ + reset_bb_predicate (loop->header); + gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL + && bb_predicate_gimplified_stmts (loop->latch) == NULL); + + return true; +} + +/* Return true when LOOP is if-convertible. This is a helper function + for if_convertible_loop_p. REFS and DDRS are initialized and freed + in if_convertible_loop_p. */ + +static bool +if_convertible_loop_p_1 (struct loop *loop, + VEC (loop_p, heap) **loop_nest, + VEC (data_reference_p, heap) **refs, + VEC (ddr_p, heap) **ddrs) +{ + bool res; + unsigned int i; + basic_block exit_bb = NULL; + + /* Don't if-convert the loop when the data dependences cannot be + computed: the loop won't be vectorized in that case. */ + res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs); + if (!res) + return false; + + calculate_dominance_info (CDI_DOMINATORS); + calculate_dominance_info (CDI_POST_DOMINATORS); + + /* Allow statements that can be handled during if-conversion. */ + ifc_bbs = get_loop_body_in_if_conv_order (loop); + if (!ifc_bbs) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Irreducible loop\n"); + return false; + } + + for (i = 0; i < loop->num_nodes; i++) + { + basic_block bb = ifc_bbs[i]; + + if (!if_convertible_bb_p (loop, bb, exit_bb)) + return false; + + if (bb_with_exit_edge_p (loop, bb)) + exit_bb = bb; + } + + res = predicate_bbs (loop); + if (!res) + return false; + + if (flag_tree_loop_if_convert_stores) + { + data_reference_p dr; + + for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++) + { + dr->aux = XNEW (struct ifc_dr); + DR_WRITTEN_AT_LEAST_ONCE (dr) = -1; + DR_RW_UNCONDITIONALLY (dr) = -1; + } + } + + for (i = 0; i < loop->num_nodes; i++) + { + basic_block bb = ifc_bbs[i]; + gimple_stmt_iterator itr; + + for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr)) + if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr))) + return false; + + /* Check the if-convertibility of statements in predicated BBs. */ + if (is_predicated (bb)) + for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) + if (!if_convertible_stmt_p (gsi_stmt (itr), *refs)) + return false; + } + + if (dump_file) + fprintf (dump_file, "Applying if-conversion\n"); + + return true; +} + +/* Return true when LOOP is if-convertible. + LOOP is if-convertible if: + - it is innermost, + - it has two or more basic blocks, + - it has only one exit, + - loop header is not the exit edge, + - if its basic blocks and phi nodes are if convertible. */ + +static bool +if_convertible_loop_p (struct loop *loop) +{ + edge e; + edge_iterator ei; + bool res = false; + VEC (data_reference_p, heap) *refs; + VEC (ddr_p, heap) *ddrs; + VEC (loop_p, heap) *loop_nest; + + /* Handle only innermost loop. */ + if (!loop || loop->inner) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "not innermost loop\n"); + return false; + } + + /* If only one block, no need for if-conversion. */ + if (loop->num_nodes <= 2) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "less than 2 basic blocks\n"); + return false; + } + + /* More than one loop exit is too much to handle. */ + if (!single_exit (loop)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "multiple exits\n"); + return false; + } + + /* If one of the loop header's edge is an exit edge then do not + apply if-conversion. */ + FOR_EACH_EDGE (e, ei, loop->header->succs) + if (loop_exit_edge_p (loop, e)) + return false; + + refs = VEC_alloc (data_reference_p, heap, 5); + ddrs = VEC_alloc (ddr_p, heap, 25); + loop_nest = VEC_alloc (loop_p, heap, 3); + res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs); + + if (flag_tree_loop_if_convert_stores) + { + data_reference_p dr; + unsigned int i; + + for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++) + free (dr->aux); + } + + VEC_free (loop_p, heap, loop_nest); + free_data_refs (refs); + free_dependence_relations (ddrs); + return res; +} + +/* Basic block BB has two predecessors. Using predecessor's bb + predicate, set an appropriate condition COND for the PHI node + replacement. Return the true block whose phi arguments are + selected when cond is true. LOOP is the loop containing the + if-converted region, GSI is the place to insert the code for the + if-conversion. */ + +static basic_block +find_phi_replacement_condition (struct loop *loop, + basic_block bb, tree *cond, + gimple_stmt_iterator *gsi) +{ + edge first_edge, second_edge; + tree tmp_cond; + + gcc_assert (EDGE_COUNT (bb->preds) == 2); + first_edge = EDGE_PRED (bb, 0); + second_edge = EDGE_PRED (bb, 1); + + /* Use condition based on following criteria: + 1) + S1: x = !c ? a : b; + + S2: x = c ? b : a; + + S2 is preferred over S1. Make 'b' first_bb and use its condition. + + 2) Do not make loop header first_bb. + + 3) + S1: x = !(c == d)? a : b; + + S21: t1 = c == d; + S22: x = t1 ? b : a; + + S3: x = (c == d) ? b : a; + + S3 is preferred over S1 and S2*, Make 'b' first_bb and use + its condition. + + 4) If pred B is dominated by pred A then use pred B's condition. + See PR23115. */ + + /* Select condition that is not TRUTH_NOT_EXPR. */ + tmp_cond = bb_predicate (first_edge->src); + gcc_assert (tmp_cond); + + if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR) + { + edge tmp_edge; + + tmp_edge = first_edge; + first_edge = second_edge; + second_edge = tmp_edge; + } + + /* Check if FIRST_BB is loop header or not and make sure that + FIRST_BB does not dominate SECOND_BB. */ + if (first_edge->src == loop->header + || dominated_by_p (CDI_DOMINATORS, + second_edge->src, first_edge->src)) + { + *cond = bb_predicate (second_edge->src); + + if (TREE_CODE (*cond) == TRUTH_NOT_EXPR) + *cond = invert_truthvalue (*cond); + else + /* Select non loop header bb. */ + first_edge = second_edge; + } + else + *cond = bb_predicate (first_edge->src); + + /* Gimplify the condition: the vectorizer prefers to have gimple + values as conditions. Various targets use different means to + communicate conditions in vector compare operations. Using a + gimple value allows the compiler to emit vector compare and + select RTL without exposing compare's result. */ + *cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond), + false, NULL_TREE, + true, GSI_SAME_STMT); + if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond)) + *cond = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond), gsi); + + gcc_assert (*cond); + + return first_edge->src; +} + +/* Replace a scalar PHI node with a COND_EXPR using COND as condition. + This routine does not handle PHI nodes with more than two + arguments. + + For example, + S1: A = PHI loop_father, + res)) + && !chrec_contains_undetermined (scev) + && scev != res + && (arg = gimple_phi_arg_def (phi, 0)))) + rhs = arg; + else + { + tree arg_0, arg_1; + /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */ + if (EDGE_PRED (bb, 1)->src == true_bb) + { + arg_0 = gimple_phi_arg_def (phi, 1); + arg_1 = gimple_phi_arg_def (phi, 0); + } + else + { + arg_0 = gimple_phi_arg_def (phi, 0); + arg_1 = gimple_phi_arg_def (phi, 1); + } + + gcc_checking_assert (bb == bb->loop_father->header + || bb_postdominates_preds (bb)); + + /* Build new RHS using selected condition and arguments. */ + rhs = build3 (COND_EXPR, TREE_TYPE (res), + unshare_expr (cond), arg_0, arg_1); + } + + new_stmt = gimple_build_assign (res, rhs); + SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt; + gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); + update_stmt (new_stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "new phi replacement stmt\n"); + print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); + } +} + +/* Replaces in LOOP all the scalar phi nodes other than those in the + LOOP->header block with conditional modify expressions. */ + +static void +predicate_all_scalar_phis (struct loop *loop) +{ + basic_block bb; + unsigned int orig_loop_num_nodes = loop->num_nodes; + unsigned int i; + + for (i = 1; i < orig_loop_num_nodes; i++) + { + gimple phi; + tree cond = NULL_TREE; + gimple_stmt_iterator gsi, phi_gsi; + basic_block true_bb = NULL; + bb = ifc_bbs[i]; + + if (bb == loop->header) + continue; + + phi_gsi = gsi_start_phis (bb); + if (gsi_end_p (phi_gsi)) + continue; + + /* BB has two predecessors. Using predecessor's aux field, set + appropriate condition for the PHI node replacement. */ + gsi = gsi_after_labels (bb); + true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi); + + while (!gsi_end_p (phi_gsi)) + { + phi = gsi_stmt (phi_gsi); + predicate_scalar_phi (phi, cond, true_bb, &gsi); + release_phi_node (phi); + gsi_next (&phi_gsi); + } + + set_phi_nodes (bb, NULL); + } +} + +/* Insert in each basic block of LOOP the statements produced by the + gimplification of the predicates. */ + +static void +insert_gimplified_predicates (loop_p loop) +{ + unsigned int i; + + for (i = 0; i < loop->num_nodes; i++) + { + basic_block bb = ifc_bbs[i]; + gimple_seq stmts; + + if (!is_predicated (bb)) + { + /* Do not insert statements for a basic block that is not + predicated. Also make sure that the predicate of the + basic block is set to true. */ + reset_bb_predicate (bb); + continue; + } + + stmts = bb_predicate_gimplified_stmts (bb); + if (stmts) + { + if (flag_tree_loop_if_convert_stores) + { + /* Insert the predicate of the BB just after the label, + as the if-conversion of memory writes will use this + predicate. */ + gimple_stmt_iterator gsi = gsi_after_labels (bb); + gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); + } + else + { + /* Insert the predicate of the BB at the end of the BB + as this would reduce the register pressure: the only + use of this predicate will be in successor BBs. */ + gimple_stmt_iterator gsi = gsi_last_bb (bb); + + if (gsi_end_p (gsi) + || stmt_ends_bb_p (gsi_stmt (gsi))) + gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); + else + gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT); + } + + /* Once the sequence is code generated, set it to NULL. */ + set_bb_predicate_gimplified_stmts (bb, NULL); + } + } +} + +/* Predicate each write to memory in LOOP. + + This function transforms control flow constructs containing memory + writes of the form: + + | for (i = 0; i < N; i++) + | if (cond) + | A[i] = expr; + + into the following form that does not contain control flow: + + | for (i = 0; i < N; i++) + | A[i] = cond ? expr : A[i]; + + The original CFG looks like this: + + | bb_0 + | i = 0 + | end_bb_0 + | + | bb_1 + | if (i < N) goto bb_5 else goto bb_2 + | end_bb_1 + | + | bb_2 + | cond = some_computation; + | if (cond) goto bb_3 else goto bb_4 + | end_bb_2 + | + | bb_3 + | A[i] = expr; + | goto bb_4 + | end_bb_3 + | + | bb_4 + | goto bb_1 + | end_bb_4 + + insert_gimplified_predicates inserts the computation of the COND + expression at the beginning of the destination basic block: + + | bb_0 + | i = 0 + | end_bb_0 + | + | bb_1 + | if (i < N) goto bb_5 else goto bb_2 + | end_bb_1 + | + | bb_2 + | cond = some_computation; + | if (cond) goto bb_3 else goto bb_4 + | end_bb_2 + | + | bb_3 + | cond = some_computation; + | A[i] = expr; + | goto bb_4 + | end_bb_3 + | + | bb_4 + | goto bb_1 + | end_bb_4 + + predicate_mem_writes is then predicating the memory write as follows: + + | bb_0 + | i = 0 + | end_bb_0 + | + | bb_1 + | if (i < N) goto bb_5 else goto bb_2 + | end_bb_1 + | + | bb_2 + | if (cond) goto bb_3 else goto bb_4 + | end_bb_2 + | + | bb_3 + | cond = some_computation; + | A[i] = cond ? expr : A[i]; + | goto bb_4 + | end_bb_3 + | + | bb_4 + | goto bb_1 + | end_bb_4 + + and finally combine_blocks removes the basic block boundaries making + the loop vectorizable: + + | bb_0 + | i = 0 + | if (i < N) goto bb_5 else goto bb_1 + | end_bb_0 + | + | bb_1 + | cond = some_computation; + | A[i] = cond ? expr : A[i]; + | if (i < N) goto bb_5 else goto bb_4 + | end_bb_1 + | + | bb_4 + | goto bb_1 + | end_bb_4 +*/ + +static void +predicate_mem_writes (loop_p loop) +{ + unsigned int i, orig_loop_num_nodes = loop->num_nodes; + + for (i = 1; i < orig_loop_num_nodes; i++) + { + gimple_stmt_iterator gsi; + basic_block bb = ifc_bbs[i]; + tree cond = bb_predicate (bb); + gimple stmt; + + if (is_true_predicate (cond)) + continue; + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + if ((stmt = gsi_stmt (gsi)) + && gimple_assign_single_p (stmt) + && gimple_vdef (stmt)) + { + tree lhs = gimple_assign_lhs (stmt); + tree rhs = gimple_assign_rhs1 (stmt); + tree type = TREE_TYPE (lhs); + + lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi); + rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi); + rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs); + gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi)); + update_stmt (stmt); + } + } +} + +/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks + other than the exit and latch of the LOOP. Also resets the + GIMPLE_DEBUG information. */ + +static void +remove_conditions_and_labels (loop_p loop) +{ + gimple_stmt_iterator gsi; + unsigned int i; + + for (i = 0; i < loop->num_nodes; i++) + { + basic_block bb = ifc_bbs[i]; + + if (bb_with_exit_edge_p (loop, bb) + || bb == loop->latch) + continue; + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) + switch (gimple_code (gsi_stmt (gsi))) + { + case GIMPLE_COND: + case GIMPLE_LABEL: + gsi_remove (&gsi, true); + break; + + case GIMPLE_DEBUG: + /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */ + if (gimple_debug_bind_p (gsi_stmt (gsi))) + { + gimple_debug_bind_reset_value (gsi_stmt (gsi)); + update_stmt (gsi_stmt (gsi)); + } + gsi_next (&gsi); + break; + + default: + gsi_next (&gsi); + } + } +} + +/* Combine all the basic blocks from LOOP into one or two super basic + blocks. Replace PHI nodes with conditional modify expressions. */ + +static void +combine_blocks (struct loop *loop) +{ + basic_block bb, exit_bb, merge_target_bb; + unsigned int orig_loop_num_nodes = loop->num_nodes; + unsigned int i; + edge e; + edge_iterator ei; + + remove_conditions_and_labels (loop); + insert_gimplified_predicates (loop); + predicate_all_scalar_phis (loop); + + if (flag_tree_loop_if_convert_stores) + predicate_mem_writes (loop); + + /* Merge basic blocks: first remove all the edges in the loop, + except for those from the exit block. */ + exit_bb = NULL; + for (i = 0; i < orig_loop_num_nodes; i++) + { + bb = ifc_bbs[i]; + free_bb_predicate (bb); + if (bb_with_exit_edge_p (loop, bb)) + { + exit_bb = bb; + break; + } + } + gcc_assert (exit_bb != loop->latch); + + for (i = 1; i < orig_loop_num_nodes; i++) + { + bb = ifc_bbs[i]; + + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));) + { + if (e->src == exit_bb) + ei_next (&ei); + else + remove_edge (e); + } + } + + if (exit_bb != NULL) + { + if (exit_bb != loop->header) + { + /* Connect this node to loop header. */ + make_edge (loop->header, exit_bb, EDGE_FALLTHRU); + set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header); + } + + /* Redirect non-exit edges to loop->latch. */ + FOR_EACH_EDGE (e, ei, exit_bb->succs) + { + if (!loop_exit_edge_p (loop, e)) + redirect_edge_and_branch (e, loop->latch); + } + set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb); + } + else + { + /* If the loop does not have an exit, reconnect header and latch. */ + make_edge (loop->header, loop->latch, EDGE_FALLTHRU); + set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header); + } + + merge_target_bb = loop->header; + for (i = 1; i < orig_loop_num_nodes; i++) + { + gimple_stmt_iterator gsi; + gimple_stmt_iterator last; + + bb = ifc_bbs[i]; + + if (bb == exit_bb || bb == loop->latch) + continue; + + /* Make stmts member of loop->header. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + gimple_set_bb (gsi_stmt (gsi), merge_target_bb); + + /* Update stmt list. */ + last = gsi_last_bb (merge_target_bb); + gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT); + set_bb_seq (bb, NULL); + + delete_basic_block (bb); + } + + /* If possible, merge loop header to the block with the exit edge. + This reduces the number of basic blocks to two, to please the + vectorizer that handles only loops with two nodes. */ + if (exit_bb + && exit_bb != loop->header + && can_merge_blocks_p (loop->header, exit_bb)) + merge_blocks (loop->header, exit_bb); + + free (ifc_bbs); + ifc_bbs = NULL; +} + +/* If-convert LOOP when it is legal. For the moment this pass has no + profitability analysis. Returns true when something changed. */ + +static bool +tree_if_conversion (struct loop *loop) +{ + bool changed = false; + ifc_bbs = NULL; + + if (!if_convertible_loop_p (loop) + || !dbg_cnt (if_conversion_tree)) + goto cleanup; + + /* Now all statements are if-convertible. Combine all the basic + blocks into one huge basic block doing the if-conversion + on-the-fly. */ + combine_blocks (loop); + + if (flag_tree_loop_if_convert_stores) + mark_sym_for_renaming (gimple_vop (cfun)); + + changed = true; + + cleanup: + if (ifc_bbs) + { + unsigned int i; + + for (i = 0; i < loop->num_nodes; i++) + free_bb_predicate (ifc_bbs[i]); + + free (ifc_bbs); + ifc_bbs = NULL; + } + + return changed; +} + +/* Tree if-conversion pass management. */ + +static unsigned int +main_tree_if_conversion (void) +{ + loop_iterator li; + struct loop *loop; + bool changed = false; + unsigned todo = 0; + + if (number_of_loops () <= 1) + return 0; + + FOR_EACH_LOOP (li, loop, 0) + changed |= tree_if_conversion (loop); + + if (changed) + todo |= TODO_cleanup_cfg; + + if (changed && flag_tree_loop_if_convert_stores) + todo |= TODO_update_ssa_only_virtuals; + + free_dominance_info (CDI_POST_DOMINATORS); + + return todo; +} + +/* Returns true when the if-conversion pass is enabled. */ + +static bool +gate_tree_if_conversion (void) +{ + return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0) + || flag_tree_loop_if_convert == 1 + || flag_tree_loop_if_convert_stores == 1); +} + +struct gimple_opt_pass pass_if_conversion = +{ + { + GIMPLE_PASS, + "ifcvt", /* name */ + gate_tree_if_conversion, /* gate */ + main_tree_if_conversion, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_NONE, /* tv_id */ + PROP_cfg | PROP_ssa, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_stmts | TODO_verify_flow + /* todo_flags_finish */ + } +}; -- cgit v1.2.3