From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/tree-outof-ssa.c | 1150 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1150 insertions(+) create mode 100644 gcc/tree-outof-ssa.c (limited to 'gcc/tree-outof-ssa.c') diff --git a/gcc/tree-outof-ssa.c b/gcc/tree-outof-ssa.c new file mode 100644 index 000000000..e912d4583 --- /dev/null +++ b/gcc/tree-outof-ssa.c @@ -0,0 +1,1150 @@ +/* Convert a program in SSA form into Normal form. + Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Andrew Macleod + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "ggc.h" +#include "basic-block.h" +#include "tree-pretty-print.h" +#include "gimple-pretty-print.h" +#include "bitmap.h" +#include "tree-flow.h" +#include "timevar.h" +#include "tree-dump.h" +#include "tree-pass.h" +#include "diagnostic-core.h" +#include "ssaexpand.h" + +/* FIXME: A lot of code here deals with expanding to RTL. All that code + should be in cfgexpand.c. */ +#include "expr.h" + + +DEF_VEC_I(source_location); +DEF_VEC_ALLOC_I(source_location,heap); + +/* Used to hold all the components required to do SSA PHI elimination. + The node and pred/succ list is a simple linear list of nodes and + edges represented as pairs of nodes. + + The predecessor and successor list: Nodes are entered in pairs, where + [0] ->PRED, [1]->SUCC. All the even indexes in the array represent + predecessors, all the odd elements are successors. + + Rationale: + When implemented as bitmaps, very large programs SSA->Normal times were + being dominated by clearing the interference graph. + + Typically this list of edges is extremely small since it only includes + PHI results and uses from a single edge which have not coalesced with + each other. This means that no virtual PHI nodes are included, and + empirical evidence suggests that the number of edges rarely exceed + 3, and in a bootstrap of GCC, the maximum size encountered was 7. + This also limits the number of possible nodes that are involved to + rarely more than 6, and in the bootstrap of gcc, the maximum number + of nodes encountered was 12. */ + +typedef struct _elim_graph { + /* Size of the elimination vectors. */ + int size; + + /* List of nodes in the elimination graph. */ + VEC(int,heap) *nodes; + + /* The predecessor and successor edge list. */ + VEC(int,heap) *edge_list; + + /* Source locus on each edge */ + VEC(source_location,heap) *edge_locus; + + /* Visited vector. */ + sbitmap visited; + + /* Stack for visited nodes. */ + VEC(int,heap) *stack; + + /* The variable partition map. */ + var_map map; + + /* Edge being eliminated by this graph. */ + edge e; + + /* List of constant copies to emit. These are pushed on in pairs. */ + VEC(int,heap) *const_dests; + VEC(tree,heap) *const_copies; + + /* Source locations for any constant copies. */ + VEC(source_location,heap) *copy_locus; +} *elim_graph; + + +/* For an edge E find out a good source location to associate with + instructions inserted on edge E. If E has an implicit goto set, + use its location. Otherwise search instructions in predecessors + of E for a location, and use that one. That makes sense because + we insert on edges for PHI nodes, and effects of PHIs happen on + the end of the predecessor conceptually. */ + +static void +set_location_for_edge (edge e) +{ + if (e->goto_locus) + { + set_curr_insn_source_location (e->goto_locus); + set_curr_insn_block (e->goto_block); + } + else + { + basic_block bb = e->src; + gimple_stmt_iterator gsi; + + do + { + for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + if (is_gimple_debug (stmt)) + continue; + if (gimple_has_location (stmt) || gimple_block (stmt)) + { + set_curr_insn_source_location (gimple_location (stmt)); + set_curr_insn_block (gimple_block (stmt)); + return; + } + } + /* Nothing found in this basic block. Make a half-assed attempt + to continue with another block. */ + if (single_pred_p (bb)) + bb = single_pred (bb); + else + bb = e->src; + } + while (bb != e->src); + } +} + +/* Emit insns to copy SRC into DEST converting SRC if necessary. As + SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from + which we deduce the size to copy in that case. */ + +static inline rtx +emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp) +{ + rtx seq; + + start_sequence (); + + if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest)) + src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp); + if (GET_MODE (src) == BLKmode) + { + gcc_assert (GET_MODE (dest) == BLKmode); + emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL); + } + else + emit_move_insn (dest, src); + + seq = get_insns (); + end_sequence (); + + return seq; +} + +/* Insert a copy instruction from partition SRC to DEST onto edge E. */ + +static void +insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus) +{ + tree var; + rtx seq; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Inserting a partition copy on edge BB%d->BB%d :" + "PART.%d = PART.%d", + e->src->index, + e->dest->index, dest, src); + fprintf (dump_file, "\n"); + } + + gcc_assert (SA.partition_to_pseudo[dest]); + gcc_assert (SA.partition_to_pseudo[src]); + + set_location_for_edge (e); + /* If a locus is provided, override the default. */ + if (locus) + set_curr_insn_source_location (locus); + + var = partition_to_var (SA.map, src); + seq = emit_partition_copy (SA.partition_to_pseudo[dest], + SA.partition_to_pseudo[src], + TYPE_UNSIGNED (TREE_TYPE (var)), + var); + + insert_insn_on_edge (seq, e); +} + +/* Insert a copy instruction from expression SRC to partition DEST + onto edge E. */ + +static void +insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus) +{ + rtx seq, x; + enum machine_mode dest_mode, src_mode; + int unsignedp; + tree var; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Inserting a value copy on edge BB%d->BB%d : PART.%d = ", + e->src->index, + e->dest->index, dest); + print_generic_expr (dump_file, src, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + gcc_assert (SA.partition_to_pseudo[dest]); + + set_location_for_edge (e); + /* If a locus is provided, override the default. */ + if (locus) + set_curr_insn_source_location (locus); + + start_sequence (); + + var = SSA_NAME_VAR (partition_to_var (SA.map, dest)); + src_mode = TYPE_MODE (TREE_TYPE (src)); + dest_mode = GET_MODE (SA.partition_to_pseudo[dest]); + gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var))); + gcc_assert (!REG_P (SA.partition_to_pseudo[dest]) + || dest_mode == promote_decl_mode (var, &unsignedp)); + + if (src_mode != dest_mode) + { + x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL); + x = convert_modes (dest_mode, src_mode, x, unsignedp); + } + else if (src_mode == BLKmode) + { + x = SA.partition_to_pseudo[dest]; + store_expr (src, x, 0, false); + } + else + x = expand_expr (src, SA.partition_to_pseudo[dest], + dest_mode, EXPAND_NORMAL); + + if (x != SA.partition_to_pseudo[dest]) + emit_move_insn (SA.partition_to_pseudo[dest], x); + seq = get_insns (); + end_sequence (); + + insert_insn_on_edge (seq, e); +} + +/* Insert a copy instruction from RTL expression SRC to partition DEST + onto edge E. */ + +static void +insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp, + source_location locus) +{ + rtx seq; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ", + e->src->index, + e->dest->index, dest); + print_simple_rtl (dump_file, src); + fprintf (dump_file, "\n"); + } + + gcc_assert (SA.partition_to_pseudo[dest]); + + set_location_for_edge (e); + /* If a locus is provided, override the default. */ + if (locus) + set_curr_insn_source_location (locus); + + /* We give the destination as sizeexp in case src/dest are BLKmode + mems. Usually we give the source. As we result from SSA names + the left and right size should be the same (and no WITH_SIZE_EXPR + involved), so it doesn't matter. */ + seq = emit_partition_copy (SA.partition_to_pseudo[dest], + src, unsignedsrcp, + partition_to_var (SA.map, dest)); + + insert_insn_on_edge (seq, e); +} + +/* Insert a copy instruction from partition SRC to RTL lvalue DEST + onto edge E. */ + +static void +insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus) +{ + tree var; + rtx seq; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Inserting a temp copy on edge BB%d->BB%d : ", + e->src->index, + e->dest->index); + print_simple_rtl (dump_file, dest); + fprintf (dump_file, "= PART.%d\n", src); + } + + gcc_assert (SA.partition_to_pseudo[src]); + + set_location_for_edge (e); + /* If a locus is provided, override the default. */ + if (locus) + set_curr_insn_source_location (locus); + + var = partition_to_var (SA.map, src); + seq = emit_partition_copy (dest, + SA.partition_to_pseudo[src], + TYPE_UNSIGNED (TREE_TYPE (var)), + var); + + insert_insn_on_edge (seq, e); +} + + +/* Create an elimination graph with SIZE nodes and associated data + structures. */ + +static elim_graph +new_elim_graph (int size) +{ + elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph)); + + g->nodes = VEC_alloc (int, heap, 30); + g->const_dests = VEC_alloc (int, heap, 20); + g->const_copies = VEC_alloc (tree, heap, 20); + g->copy_locus = VEC_alloc (source_location, heap, 10); + g->edge_list = VEC_alloc (int, heap, 20); + g->edge_locus = VEC_alloc (source_location, heap, 10); + g->stack = VEC_alloc (int, heap, 30); + + g->visited = sbitmap_alloc (size); + + return g; +} + + +/* Empty elimination graph G. */ + +static inline void +clear_elim_graph (elim_graph g) +{ + VEC_truncate (int, g->nodes, 0); + VEC_truncate (int, g->edge_list, 0); + VEC_truncate (source_location, g->edge_locus, 0); +} + + +/* Delete elimination graph G. */ + +static inline void +delete_elim_graph (elim_graph g) +{ + sbitmap_free (g->visited); + VEC_free (int, heap, g->stack); + VEC_free (int, heap, g->edge_list); + VEC_free (tree, heap, g->const_copies); + VEC_free (int, heap, g->const_dests); + VEC_free (int, heap, g->nodes); + VEC_free (source_location, heap, g->copy_locus); + VEC_free (source_location, heap, g->edge_locus); + + free (g); +} + + +/* Return the number of nodes in graph G. */ + +static inline int +elim_graph_size (elim_graph g) +{ + return VEC_length (int, g->nodes); +} + + +/* Add NODE to graph G, if it doesn't exist already. */ + +static inline void +elim_graph_add_node (elim_graph g, int node) +{ + int x; + int t; + + FOR_EACH_VEC_ELT (int, g->nodes, x, t) + if (t == node) + return; + VEC_safe_push (int, heap, g->nodes, node); +} + + +/* Add the edge PRED->SUCC to graph G. */ + +static inline void +elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus) +{ + VEC_safe_push (int, heap, g->edge_list, pred); + VEC_safe_push (int, heap, g->edge_list, succ); + VEC_safe_push (source_location, heap, g->edge_locus, locus); +} + + +/* Remove an edge from graph G for which NODE is the predecessor, and + return the successor node. -1 is returned if there is no such edge. */ + +static inline int +elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus) +{ + int y; + unsigned x; + for (x = 0; x < VEC_length (int, g->edge_list); x += 2) + if (VEC_index (int, g->edge_list, x) == node) + { + VEC_replace (int, g->edge_list, x, -1); + y = VEC_index (int, g->edge_list, x + 1); + VEC_replace (int, g->edge_list, x + 1, -1); + *locus = VEC_index (source_location, g->edge_locus, x / 2); + VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION); + return y; + } + *locus = UNKNOWN_LOCATION; + return -1; +} + + +/* Find all the nodes in GRAPH which are successors to NODE in the + edge list. VAR will hold the partition number found. CODE is the + code fragment executed for every node found. */ + +#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \ +do { \ + unsigned x_; \ + int y_; \ + for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \ + { \ + y_ = VEC_index (int, (GRAPH)->edge_list, x_); \ + if (y_ != (NODE)) \ + continue; \ + (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \ + (void) ((LOCUS) = VEC_index (source_location, \ + (GRAPH)->edge_locus, x_ / 2)); \ + CODE; \ + } \ +} while (0) + + +/* Find all the nodes which are predecessors of NODE in the edge list for + GRAPH. VAR will hold the partition number found. CODE is the + code fragment executed for every node found. */ + +#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \ +do { \ + unsigned x_; \ + int y_; \ + for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \ + { \ + y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \ + if (y_ != (NODE)) \ + continue; \ + (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \ + (void) ((LOCUS) = VEC_index (source_location, \ + (GRAPH)->edge_locus, x_ / 2)); \ + CODE; \ + } \ +} while (0) + + +/* Add T to elimination graph G. */ + +static inline void +eliminate_name (elim_graph g, int T) +{ + elim_graph_add_node (g, T); +} + + +/* Build elimination graph G for basic block BB on incoming PHI edge + G->e. */ + +static void +eliminate_build (elim_graph g) +{ + tree Ti; + int p0, pi; + gimple_stmt_iterator gsi; + + clear_elim_graph (g); + + for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + source_location locus; + + p0 = var_to_partition (g->map, gimple_phi_result (phi)); + /* Ignore results which are not in partitions. */ + if (p0 == NO_PARTITION) + continue; + + Ti = PHI_ARG_DEF (phi, g->e->dest_idx); + locus = gimple_phi_arg_location_from_edge (phi, g->e); + + /* If this argument is a constant, or a SSA_NAME which is being + left in SSA form, just queue a copy to be emitted on this + edge. */ + if (!phi_ssa_name_p (Ti) + || (TREE_CODE (Ti) == SSA_NAME + && var_to_partition (g->map, Ti) == NO_PARTITION)) + { + /* Save constant copies until all other copies have been emitted + on this edge. */ + VEC_safe_push (int, heap, g->const_dests, p0); + VEC_safe_push (tree, heap, g->const_copies, Ti); + VEC_safe_push (source_location, heap, g->copy_locus, locus); + } + else + { + pi = var_to_partition (g->map, Ti); + if (p0 != pi) + { + eliminate_name (g, p0); + eliminate_name (g, pi); + elim_graph_add_edge (g, p0, pi, locus); + } + } + } +} + + +/* Push successors of T onto the elimination stack for G. */ + +static void +elim_forward (elim_graph g, int T) +{ + int S; + source_location locus; + + SET_BIT (g->visited, T); + FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus, + { + if (!TEST_BIT (g->visited, S)) + elim_forward (g, S); + }); + VEC_safe_push (int, heap, g->stack, T); +} + + +/* Return 1 if there unvisited predecessors of T in graph G. */ + +static int +elim_unvisited_predecessor (elim_graph g, int T) +{ + int P; + source_location locus; + + FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, + { + if (!TEST_BIT (g->visited, P)) + return 1; + }); + return 0; +} + +/* Process predecessors first, and insert a copy. */ + +static void +elim_backward (elim_graph g, int T) +{ + int P; + source_location locus; + + SET_BIT (g->visited, T); + FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, + { + if (!TEST_BIT (g->visited, P)) + { + elim_backward (g, P); + insert_partition_copy_on_edge (g->e, P, T, locus); + } + }); +} + +/* Allocate a new pseudo register usable for storing values sitting + in NAME (a decl or SSA name), i.e. with matching mode and attributes. */ + +static rtx +get_temp_reg (tree name) +{ + tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name; + tree type = TREE_TYPE (var); + int unsignedp; + enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp); + rtx x = gen_reg_rtx (reg_mode); + if (POINTER_TYPE_P (type)) + mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var)))); + return x; +} + +/* Insert required copies for T in graph G. Check for a strongly connected + region, and create a temporary to break the cycle if one is found. */ + +static void +elim_create (elim_graph g, int T) +{ + int P, S; + source_location locus; + + if (elim_unvisited_predecessor (g, T)) + { + tree var = partition_to_var (g->map, T); + rtx U = get_temp_reg (var); + int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var)); + + insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION); + FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, + { + if (!TEST_BIT (g->visited, P)) + { + elim_backward (g, P); + insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus); + } + }); + } + else + { + S = elim_graph_remove_succ_edge (g, T, &locus); + if (S != -1) + { + SET_BIT (g->visited, T); + insert_partition_copy_on_edge (g->e, T, S, locus); + } + } +} + + +/* Eliminate all the phi nodes on edge E in graph G. */ + +static void +eliminate_phi (edge e, elim_graph g) +{ + int x; + + gcc_assert (VEC_length (tree, g->const_copies) == 0); + gcc_assert (VEC_length (source_location, g->copy_locus) == 0); + + /* Abnormal edges already have everything coalesced. */ + if (e->flags & EDGE_ABNORMAL) + return; + + g->e = e; + + eliminate_build (g); + + if (elim_graph_size (g) != 0) + { + int part; + + sbitmap_zero (g->visited); + VEC_truncate (int, g->stack, 0); + + FOR_EACH_VEC_ELT (int, g->nodes, x, part) + { + if (!TEST_BIT (g->visited, part)) + elim_forward (g, part); + } + + sbitmap_zero (g->visited); + while (VEC_length (int, g->stack) > 0) + { + x = VEC_pop (int, g->stack); + if (!TEST_BIT (g->visited, x)) + elim_create (g, x); + } + } + + /* If there are any pending constant copies, issue them now. */ + while (VEC_length (tree, g->const_copies) > 0) + { + int dest; + tree src; + source_location locus; + + src = VEC_pop (tree, g->const_copies); + dest = VEC_pop (int, g->const_dests); + locus = VEC_pop (source_location, g->copy_locus); + insert_value_copy_on_edge (e, dest, src, locus); + } +} + + +/* Remove each argument from PHI. If an arg was the last use of an SSA_NAME, + check to see if this allows another PHI node to be removed. */ + +static void +remove_gimple_phi_args (gimple phi) +{ + use_operand_p arg_p; + ssa_op_iter iter; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Removing Dead PHI definition: "); + print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); + } + + FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE) + { + tree arg = USE_FROM_PTR (arg_p); + if (TREE_CODE (arg) == SSA_NAME) + { + /* Remove the reference to the existing argument. */ + SET_USE (arg_p, NULL_TREE); + if (has_zero_uses (arg)) + { + gimple stmt; + gimple_stmt_iterator gsi; + + stmt = SSA_NAME_DEF_STMT (arg); + + /* Also remove the def if it is a PHI node. */ + if (gimple_code (stmt) == GIMPLE_PHI) + { + remove_gimple_phi_args (stmt); + gsi = gsi_for_stmt (stmt); + remove_phi_node (&gsi, true); + } + + } + } + } +} + +/* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */ + +static void +eliminate_useless_phis (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + tree result; + + FOR_EACH_BB (bb) + { + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) + { + gimple phi = gsi_stmt (gsi); + result = gimple_phi_result (phi); + if (!is_gimple_reg (SSA_NAME_VAR (result))) + { +#ifdef ENABLE_CHECKING + size_t i; + /* There should be no arguments which are not virtual, or the + results will be incorrect. */ + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree arg = PHI_ARG_DEF (phi, i); + if (TREE_CODE (arg) == SSA_NAME + && is_gimple_reg (SSA_NAME_VAR (arg))) + { + fprintf (stderr, "Argument of PHI is not virtual ("); + print_generic_expr (stderr, arg, TDF_SLIM); + fprintf (stderr, "), but the result is :"); + print_gimple_stmt (stderr, phi, 0, TDF_SLIM); + internal_error ("SSA corruption"); + } + } +#endif + remove_phi_node (&gsi, true); + } + else + { + /* Also remove real PHIs with no uses. */ + if (has_zero_uses (result)) + { + remove_gimple_phi_args (phi); + remove_phi_node (&gsi, true); + } + else + gsi_next (&gsi); + } + } + } +} + + +/* This function will rewrite the current program using the variable mapping + found in MAP. If the replacement vector VALUES is provided, any + occurrences of partitions with non-null entries in the vector will be + replaced with the expression in the vector instead of its mapped + variable. */ + +static void +rewrite_trees (var_map map ATTRIBUTE_UNUSED) +{ +#ifdef ENABLE_CHECKING + basic_block bb; + /* Search for PHIs where the destination has no partition, but one + or more arguments has a partition. This should not happen and can + create incorrect code. */ + FOR_EACH_BB (bb) + { + gimple_stmt_iterator gsi; + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi)); + if (T0 == NULL_TREE) + { + size_t i; + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree arg = PHI_ARG_DEF (phi, i); + + if (TREE_CODE (arg) == SSA_NAME + && var_to_partition (map, arg) != NO_PARTITION) + { + fprintf (stderr, "Argument of PHI is in a partition :("); + print_generic_expr (stderr, arg, TDF_SLIM); + fprintf (stderr, "), but the result is not :"); + print_gimple_stmt (stderr, phi, 0, TDF_SLIM); + internal_error ("SSA corruption"); + } + } + } + } + } +#endif +} + +/* Given the out-of-ssa info object SA (with prepared partitions) + eliminate all phi nodes in all basic blocks. Afterwards no + basic block will have phi nodes anymore and there are possibly + some RTL instructions inserted on edges. */ + +void +expand_phi_nodes (struct ssaexpand *sa) +{ + basic_block bb; + elim_graph g = new_elim_graph (sa->map->num_partitions); + g->map = sa->map; + + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb) + if (!gimple_seq_empty_p (phi_nodes (bb))) + { + edge e; + edge_iterator ei; + FOR_EACH_EDGE (e, ei, bb->preds) + eliminate_phi (e, g); + set_phi_nodes (bb, NULL); + /* We can't redirect EH edges in RTL land, so we need to do this + here. Redirection happens only when splitting is necessary, + which it is only for critical edges, normally. For EH edges + it might also be necessary when the successor has more than + one predecessor. In that case the edge is either required to + be fallthru (which EH edges aren't), or the predecessor needs + to end with a jump (which again, isn't the case with EH edges). + Hence, split all EH edges on which we inserted instructions + and whose successor has multiple predecessors. */ + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) + { + if (e->insns.r && (e->flags & EDGE_EH) + && !single_pred_p (e->dest)) + { + rtx insns = e->insns.r; + basic_block bb; + e->insns.r = NULL_RTX; + bb = split_edge (e); + single_pred_edge (bb)->insns.r = insns; + } + else + ei_next (&ei); + } + } + + delete_elim_graph (g); +} + + +/* Remove the ssa-names in the current function and translate them into normal + compiler variables. PERFORM_TER is true if Temporary Expression Replacement + should also be used. */ + +static void +remove_ssa_form (bool perform_ter, struct ssaexpand *sa) +{ + bitmap values = NULL; + var_map map; + unsigned i; + + map = coalesce_ssa_name (); + + /* Return to viewing the variable list as just all reference variables after + coalescing has been performed. */ + partition_view_normal (map, false); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "After Coalescing:\n"); + dump_var_map (dump_file, map); + } + + if (perform_ter) + { + values = find_replaceable_exprs (map); + if (values && dump_file && (dump_flags & TDF_DETAILS)) + dump_replaceable_exprs (dump_file, values); + } + + rewrite_trees (map); + + sa->map = map; + sa->values = values; + sa->partition_has_default_def = BITMAP_ALLOC (NULL); + for (i = 1; i < num_ssa_names; i++) + { + tree t = ssa_name (i); + if (t && SSA_NAME_IS_DEFAULT_DEF (t)) + { + int p = var_to_partition (map, t); + if (p != NO_PARTITION) + bitmap_set_bit (sa->partition_has_default_def, p); + } + } +} + + +/* If not already done so for basic block BB, assign increasing uids + to each of its instructions. */ + +static void +maybe_renumber_stmts_bb (basic_block bb) +{ + unsigned i = 0; + gimple_stmt_iterator gsi; + + if (!bb->aux) + return; + bb->aux = NULL; + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + gimple_set_uid (stmt, i); + i++; + } +} + + +/* Return true if we can determine that the SSA_NAMEs RESULT (a result + of a PHI node) and ARG (one of its arguments) conflict. Return false + otherwise, also when we simply aren't sure. */ + +static bool +trivially_conflicts_p (basic_block bb, tree result, tree arg) +{ + use_operand_p use; + imm_use_iterator imm_iter; + gimple defa = SSA_NAME_DEF_STMT (arg); + + /* If ARG isn't defined in the same block it's too complicated for + our little mind. */ + if (gimple_bb (defa) != bb) + return false; + + FOR_EACH_IMM_USE_FAST (use, imm_iter, result) + { + gimple use_stmt = USE_STMT (use); + if (is_gimple_debug (use_stmt)) + continue; + /* Now, if there's a use of RESULT that lies outside this basic block, + then there surely is a conflict with ARG. */ + if (gimple_bb (use_stmt) != bb) + return true; + if (gimple_code (use_stmt) == GIMPLE_PHI) + continue; + /* The use now is in a real stmt of BB, so if ARG was defined + in a PHI node (like RESULT) both conflict. */ + if (gimple_code (defa) == GIMPLE_PHI) + return true; + maybe_renumber_stmts_bb (bb); + /* If the use of RESULT occurs after the definition of ARG, + the two conflict too. */ + if (gimple_uid (defa) < gimple_uid (use_stmt)) + return true; + } + + return false; +} + + +/* Search every PHI node for arguments associated with backedges which + we can trivially determine will need a copy (the argument is either + not an SSA_NAME or the argument has a different underlying variable + than the PHI result). + + Insert a copy from the PHI argument to a new destination at the + end of the block with the backedge to the top of the loop. Update + the PHI argument to reference this new destination. */ + +static void +insert_backedge_copies (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + + FOR_EACH_BB (bb) + { + /* Mark block as possibly needing calculation of UIDs. */ + bb->aux = &bb->aux; + + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + tree result = gimple_phi_result (phi); + tree result_var; + size_t i; + + if (!is_gimple_reg (result)) + continue; + + result_var = SSA_NAME_VAR (result); + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree arg = gimple_phi_arg_def (phi, i); + edge e = gimple_phi_arg_edge (phi, i); + + /* If the argument is not an SSA_NAME, then we will need a + constant initialization. If the argument is an SSA_NAME with + a different underlying variable then a copy statement will be + needed. */ + if ((e->flags & EDGE_DFS_BACK) + && (TREE_CODE (arg) != SSA_NAME + || SSA_NAME_VAR (arg) != result_var + || trivially_conflicts_p (bb, result, arg))) + { + tree name; + gimple stmt, last = NULL; + gimple_stmt_iterator gsi2; + + gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src); + if (!gsi_end_p (gsi2)) + last = gsi_stmt (gsi2); + + /* In theory the only way we ought to get back to the + start of a loop should be with a COND_EXPR or GOTO_EXPR. + However, better safe than sorry. + If the block ends with a control statement or + something that might throw, then we have to + insert this assignment before the last + statement. Else insert it after the last statement. */ + if (last && stmt_ends_bb_p (last)) + { + /* If the last statement in the block is the definition + site of the PHI argument, then we can't insert + anything after it. */ + if (TREE_CODE (arg) == SSA_NAME + && SSA_NAME_DEF_STMT (arg) == last) + continue; + } + + /* Create a new instance of the underlying variable of the + PHI result. */ + stmt = gimple_build_assign (result_var, + gimple_phi_arg_def (phi, i)); + name = make_ssa_name (result_var, stmt); + gimple_assign_set_lhs (stmt, name); + + /* copy location if present. */ + if (gimple_phi_arg_has_location (phi, i)) + gimple_set_location (stmt, + gimple_phi_arg_location (phi, i)); + + /* Insert the new statement into the block and update + the PHI node. */ + if (last && stmt_ends_bb_p (last)) + gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT); + else + gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT); + SET_PHI_ARG_DEF (phi, i, name); + } + } + } + + /* Unmark this block again. */ + bb->aux = NULL; + } +} + +/* Free all memory associated with going out of SSA form. SA is + the outof-SSA info object. */ + +void +finish_out_of_ssa (struct ssaexpand *sa) +{ + free (sa->partition_to_pseudo); + if (sa->values) + BITMAP_FREE (sa->values); + delete_var_map (sa->map); + BITMAP_FREE (sa->partition_has_default_def); + memset (sa, 0, sizeof *sa); +} + +/* Take the current function out of SSA form, translating PHIs as described in + R. Morgan, ``Building an Optimizing Compiler'', + Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */ + +unsigned int +rewrite_out_of_ssa (struct ssaexpand *sa) +{ + /* If elimination of a PHI requires inserting a copy on a backedge, + then we will have to split the backedge which has numerous + undesirable performance effects. + + A significant number of such cases can be handled here by inserting + copies into the loop itself. */ + insert_backedge_copies (); + + + /* Eliminate PHIs which are of no use, such as virtual or dead phis. */ + eliminate_useless_phis (); + + if (dump_file && (dump_flags & TDF_DETAILS)) + gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS); + + remove_ssa_form (flag_tree_ter, sa); + + if (dump_file && (dump_flags & TDF_DETAILS)) + gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS); + + return 0; +} -- cgit v1.2.3