From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- gcc/tree-predcom.c | 2591 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2591 insertions(+) create mode 100644 gcc/tree-predcom.c (limited to 'gcc/tree-predcom.c') diff --git a/gcc/tree-predcom.c b/gcc/tree-predcom.c new file mode 100644 index 000000000..e9e20f9d3 --- /dev/null +++ b/gcc/tree-predcom.c @@ -0,0 +1,2591 @@ +/* Predictive commoning. + Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +/* This file implements the predictive commoning optimization. Predictive + commoning can be viewed as CSE around a loop, and with some improvements, + as generalized strength reduction-- i.e., reusing values computed in + earlier iterations of a loop in the later ones. So far, the pass only + handles the most useful case, that is, reusing values of memory references. + If you think this is all just a special case of PRE, you are sort of right; + however, concentrating on loops is simpler, and makes it possible to + incorporate data dependence analysis to detect the opportunities, perform + loop unrolling to avoid copies together with renaming immediately, + and if needed, we could also take register pressure into account. + + Let us demonstrate what is done on an example: + + for (i = 0; i < 100; i++) + { + a[i+2] = a[i] + a[i+1]; + b[10] = b[10] + i; + c[i] = c[99 - i]; + d[i] = d[i + 1]; + } + + 1) We find data references in the loop, and split them to mutually + independent groups (i.e., we find components of a data dependence + graph). We ignore read-read dependences whose distance is not constant. + (TODO -- we could also ignore antidependences). In this example, we + find the following groups: + + a[i]{read}, a[i+1]{read}, a[i+2]{write} + b[10]{read}, b[10]{write} + c[99 - i]{read}, c[i]{write} + d[i + 1]{read}, d[i]{write} + + 2) Inside each of the group, we verify several conditions: + a) all the references must differ in indices only, and the indices + must all have the same step + b) the references must dominate loop latch (and thus, they must be + ordered by dominance relation). + c) the distance of the indices must be a small multiple of the step + We are then able to compute the difference of the references (# of + iterations before they point to the same place as the first of them). + Also, in case there are writes in the loop, we split the groups into + chains whose head is the write whose values are used by the reads in + the same chain. The chains are then processed independently, + making the further transformations simpler. Also, the shorter chains + need the same number of registers, but may require lower unrolling + factor in order to get rid of the copies on the loop latch. + + In our example, we get the following chains (the chain for c is invalid). + + a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2} + b[10]{read,+0}, b[10]{write,+0} + d[i + 1]{read,+0}, d[i]{write,+1} + + 3) For each read, we determine the read or write whose value it reuses, + together with the distance of this reuse. I.e. we take the last + reference before it with distance 0, or the last of the references + with the smallest positive distance to the read. Then, we remove + the references that are not used in any of these chains, discard the + empty groups, and propagate all the links so that they point to the + single root reference of the chain (adjusting their distance + appropriately). Some extra care needs to be taken for references with + step 0. In our example (the numbers indicate the distance of the + reuse), + + a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*) + b[10] --> (*) 1, b[10] (*) + + 4) The chains are combined together if possible. If the corresponding + elements of two chains are always combined together with the same + operator, we remember just the result of this combination, instead + of remembering the values separately. We may need to perform + reassociation to enable combining, for example + + e[i] + f[i+1] + e[i+1] + f[i] + + can be reassociated as + + (e[i] + f[i]) + (e[i+1] + f[i+1]) + + and we can combine the chains for e and f into one chain. + + 5) For each root reference (end of the chain) R, let N be maximum distance + of a reference reusing its value. Variables R0 upto RN are created, + together with phi nodes that transfer values from R1 .. RN to + R0 .. R(N-1). + Initial values are loaded to R0..R(N-1) (in case not all references + must necessarily be accessed and they may trap, we may fail here; + TODO sometimes, the loads could be guarded by a check for the number + of iterations). Values loaded/stored in roots are also copied to + RN. Other reads are replaced with the appropriate variable Ri. + Everything is put to SSA form. + + As a small improvement, if R0 is dead after the root (i.e., all uses of + the value with the maximum distance dominate the root), we can avoid + creating RN and use R0 instead of it. + + In our example, we get (only the parts concerning a and b are shown): + for (i = 0; i < 100; i++) + { + f = phi (a[0], s); + s = phi (a[1], f); + x = phi (b[10], x); + + f = f + s; + a[i+2] = f; + x = x + i; + b[10] = x; + } + + 6) Factor F for unrolling is determined as the smallest common multiple of + (N + 1) for each root reference (N for references for that we avoided + creating RN). If F and the loop is small enough, loop is unrolled F + times. The stores to RN (R0) in the copies of the loop body are + periodically replaced with R0, R1, ... (R1, R2, ...), so that they can + be coalesced and the copies can be eliminated. + + TODO -- copy propagation and other optimizations may change the live + ranges of the temporary registers and prevent them from being coalesced; + this may increase the register pressure. + + In our case, F = 2 and the (main loop of the) result is + + for (i = 0; i < ...; i += 2) + { + f = phi (a[0], f); + s = phi (a[1], s); + x = phi (b[10], x); + + f = f + s; + a[i+2] = f; + x = x + i; + b[10] = x; + + s = s + f; + a[i+3] = s; + x = x + i; + b[10] = x; + } + + TODO -- stores killing other stores can be taken into account, e.g., + for (i = 0; i < n; i++) + { + a[i] = 1; + a[i+2] = 2; + } + + can be replaced with + + t0 = a[0]; + t1 = a[1]; + for (i = 0; i < n; i++) + { + a[i] = 1; + t2 = 2; + t0 = t1; + t1 = t2; + } + a[n] = t0; + a[n+1] = t1; + + The interesting part is that this would generalize store motion; still, since + sm is performed elsewhere, it does not seem that important. + + Predictive commoning can be generalized for arbitrary computations (not + just memory loads), and also nontrivial transfer functions (e.g., replacing + i * i with ii_last + 2 * i + 1), to generalize strength reduction. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "tm_p.h" +#include "cfgloop.h" +#include "tree-flow.h" +#include "ggc.h" +#include "tree-data-ref.h" +#include "tree-scalar-evolution.h" +#include "tree-chrec.h" +#include "params.h" +#include "tree-pretty-print.h" +#include "gimple-pretty-print.h" +#include "tree-pass.h" +#include "tree-affine.h" +#include "tree-inline.h" + +/* The maximum number of iterations between the considered memory + references. */ + +#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8) + +/* Data references (or phi nodes that carry data reference values across + loop iterations). */ + +typedef struct dref_d +{ + /* The reference itself. */ + struct data_reference *ref; + + /* The statement in that the reference appears. */ + gimple stmt; + + /* In case that STMT is a phi node, this field is set to the SSA name + defined by it in replace_phis_by_defined_names (in order to avoid + pointing to phi node that got reallocated in the meantime). */ + tree name_defined_by_phi; + + /* Distance of the reference from the root of the chain (in number of + iterations of the loop). */ + unsigned distance; + + /* Number of iterations offset from the first reference in the component. */ + double_int offset; + + /* Number of the reference in a component, in dominance ordering. */ + unsigned pos; + + /* True if the memory reference is always accessed when the loop is + entered. */ + unsigned always_accessed : 1; +} *dref; + +DEF_VEC_P (dref); +DEF_VEC_ALLOC_P (dref, heap); + +/* Type of the chain of the references. */ + +enum chain_type +{ + /* The addresses of the references in the chain are constant. */ + CT_INVARIANT, + + /* There are only loads in the chain. */ + CT_LOAD, + + /* Root of the chain is store, the rest are loads. */ + CT_STORE_LOAD, + + /* A combination of two chains. */ + CT_COMBINATION +}; + +/* Chains of data references. */ + +typedef struct chain +{ + /* Type of the chain. */ + enum chain_type type; + + /* For combination chains, the operator and the two chains that are + combined, and the type of the result. */ + enum tree_code op; + tree rslt_type; + struct chain *ch1, *ch2; + + /* The references in the chain. */ + VEC(dref,heap) *refs; + + /* The maximum distance of the reference in the chain from the root. */ + unsigned length; + + /* The variables used to copy the value throughout iterations. */ + VEC(tree,heap) *vars; + + /* Initializers for the variables. */ + VEC(tree,heap) *inits; + + /* True if there is a use of a variable with the maximal distance + that comes after the root in the loop. */ + unsigned has_max_use_after : 1; + + /* True if all the memory references in the chain are always accessed. */ + unsigned all_always_accessed : 1; + + /* True if this chain was combined together with some other chain. */ + unsigned combined : 1; +} *chain_p; + +DEF_VEC_P (chain_p); +DEF_VEC_ALLOC_P (chain_p, heap); + +/* Describes the knowledge about the step of the memory references in + the component. */ + +enum ref_step_type +{ + /* The step is zero. */ + RS_INVARIANT, + + /* The step is nonzero. */ + RS_NONZERO, + + /* The step may or may not be nonzero. */ + RS_ANY +}; + +/* Components of the data dependence graph. */ + +struct component +{ + /* The references in the component. */ + VEC(dref,heap) *refs; + + /* What we know about the step of the references in the component. */ + enum ref_step_type comp_step; + + /* Next component in the list. */ + struct component *next; +}; + +/* Bitmap of ssa names defined by looparound phi nodes covered by chains. */ + +static bitmap looparound_phis; + +/* Cache used by tree_to_aff_combination_expand. */ + +static struct pointer_map_t *name_expansions; + +/* Dumps data reference REF to FILE. */ + +extern void dump_dref (FILE *, dref); +void +dump_dref (FILE *file, dref ref) +{ + if (ref->ref) + { + fprintf (file, " "); + print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM); + fprintf (file, " (id %u%s)\n", ref->pos, + DR_IS_READ (ref->ref) ? "" : ", write"); + + fprintf (file, " offset "); + dump_double_int (file, ref->offset, false); + fprintf (file, "\n"); + + fprintf (file, " distance %u\n", ref->distance); + } + else + { + if (gimple_code (ref->stmt) == GIMPLE_PHI) + fprintf (file, " looparound ref\n"); + else + fprintf (file, " combination ref\n"); + fprintf (file, " in statement "); + print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM); + fprintf (file, "\n"); + fprintf (file, " distance %u\n", ref->distance); + } + +} + +/* Dumps CHAIN to FILE. */ + +extern void dump_chain (FILE *, chain_p); +void +dump_chain (FILE *file, chain_p chain) +{ + dref a; + const char *chain_type; + unsigned i; + tree var; + + switch (chain->type) + { + case CT_INVARIANT: + chain_type = "Load motion"; + break; + + case CT_LOAD: + chain_type = "Loads-only"; + break; + + case CT_STORE_LOAD: + chain_type = "Store-loads"; + break; + + case CT_COMBINATION: + chain_type = "Combination"; + break; + + default: + gcc_unreachable (); + } + + fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain, + chain->combined ? " (combined)" : ""); + if (chain->type != CT_INVARIANT) + fprintf (file, " max distance %u%s\n", chain->length, + chain->has_max_use_after ? "" : ", may reuse first"); + + if (chain->type == CT_COMBINATION) + { + fprintf (file, " equal to %p %s %p in type ", + (void *) chain->ch1, op_symbol_code (chain->op), + (void *) chain->ch2); + print_generic_expr (file, chain->rslt_type, TDF_SLIM); + fprintf (file, "\n"); + } + + if (chain->vars) + { + fprintf (file, " vars"); + FOR_EACH_VEC_ELT (tree, chain->vars, i, var) + { + fprintf (file, " "); + print_generic_expr (file, var, TDF_SLIM); + } + fprintf (file, "\n"); + } + + if (chain->inits) + { + fprintf (file, " inits"); + FOR_EACH_VEC_ELT (tree, chain->inits, i, var) + { + fprintf (file, " "); + print_generic_expr (file, var, TDF_SLIM); + } + fprintf (file, "\n"); + } + + fprintf (file, " references:\n"); + FOR_EACH_VEC_ELT (dref, chain->refs, i, a) + dump_dref (file, a); + + fprintf (file, "\n"); +} + +/* Dumps CHAINS to FILE. */ + +extern void dump_chains (FILE *, VEC (chain_p, heap) *); +void +dump_chains (FILE *file, VEC (chain_p, heap) *chains) +{ + chain_p chain; + unsigned i; + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + dump_chain (file, chain); +} + +/* Dumps COMP to FILE. */ + +extern void dump_component (FILE *, struct component *); +void +dump_component (FILE *file, struct component *comp) +{ + dref a; + unsigned i; + + fprintf (file, "Component%s:\n", + comp->comp_step == RS_INVARIANT ? " (invariant)" : ""); + FOR_EACH_VEC_ELT (dref, comp->refs, i, a) + dump_dref (file, a); + fprintf (file, "\n"); +} + +/* Dumps COMPS to FILE. */ + +extern void dump_components (FILE *, struct component *); +void +dump_components (FILE *file, struct component *comps) +{ + struct component *comp; + + for (comp = comps; comp; comp = comp->next) + dump_component (file, comp); +} + +/* Frees a chain CHAIN. */ + +static void +release_chain (chain_p chain) +{ + dref ref; + unsigned i; + + if (chain == NULL) + return; + + FOR_EACH_VEC_ELT (dref, chain->refs, i, ref) + free (ref); + + VEC_free (dref, heap, chain->refs); + VEC_free (tree, heap, chain->vars); + VEC_free (tree, heap, chain->inits); + + free (chain); +} + +/* Frees CHAINS. */ + +static void +release_chains (VEC (chain_p, heap) *chains) +{ + unsigned i; + chain_p chain; + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + release_chain (chain); + VEC_free (chain_p, heap, chains); +} + +/* Frees a component COMP. */ + +static void +release_component (struct component *comp) +{ + VEC_free (dref, heap, comp->refs); + free (comp); +} + +/* Frees list of components COMPS. */ + +static void +release_components (struct component *comps) +{ + struct component *act, *next; + + for (act = comps; act; act = next) + { + next = act->next; + release_component (act); + } +} + +/* Finds a root of tree given by FATHERS containing A, and performs path + shortening. */ + +static unsigned +component_of (unsigned fathers[], unsigned a) +{ + unsigned root, n; + + for (root = a; root != fathers[root]; root = fathers[root]) + continue; + + for (; a != root; a = n) + { + n = fathers[a]; + fathers[a] = root; + } + + return root; +} + +/* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the + components, A and B are components to merge. */ + +static void +merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b) +{ + unsigned ca = component_of (fathers, a); + unsigned cb = component_of (fathers, b); + + if (ca == cb) + return; + + if (sizes[ca] < sizes[cb]) + { + sizes[cb] += sizes[ca]; + fathers[ca] = cb; + } + else + { + sizes[ca] += sizes[cb]; + fathers[cb] = ca; + } +} + +/* Returns true if A is a reference that is suitable for predictive commoning + in the innermost loop that contains it. REF_STEP is set according to the + step of the reference A. */ + +static bool +suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step) +{ + tree ref = DR_REF (a), step = DR_STEP (a); + + if (!step + || !is_gimple_reg_type (TREE_TYPE (ref)) + || tree_could_throw_p (ref)) + return false; + + if (integer_zerop (step)) + *ref_step = RS_INVARIANT; + else if (integer_nonzerop (step)) + *ref_step = RS_NONZERO; + else + *ref_step = RS_ANY; + + return true; +} + +/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */ + +static void +aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset) +{ + aff_tree delta; + + tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset, + &name_expansions); + aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr))); + aff_combination_add (offset, &delta); +} + +/* Determines number of iterations of the innermost enclosing loop before B + refers to exactly the same location as A and stores it to OFF. If A and + B do not have the same step, they never meet, or anything else fails, + returns false, otherwise returns true. Both A and B are assumed to + satisfy suitable_reference_p. */ + +static bool +determine_offset (struct data_reference *a, struct data_reference *b, + double_int *off) +{ + aff_tree diff, baseb, step; + tree typea, typeb; + + /* Check that both the references access the location in the same type. */ + typea = TREE_TYPE (DR_REF (a)); + typeb = TREE_TYPE (DR_REF (b)); + if (!useless_type_conversion_p (typeb, typea)) + return false; + + /* Check whether the base address and the step of both references is the + same. */ + if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0) + || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0)) + return false; + + if (integer_zerop (DR_STEP (a))) + { + /* If the references have loop invariant address, check that they access + exactly the same location. */ + *off = double_int_zero; + return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0) + && operand_equal_p (DR_INIT (a), DR_INIT (b), 0)); + } + + /* Compare the offsets of the addresses, and check whether the difference + is a multiple of step. */ + aff_combination_dr_offset (a, &diff); + aff_combination_dr_offset (b, &baseb); + aff_combination_scale (&baseb, double_int_minus_one); + aff_combination_add (&diff, &baseb); + + tree_to_aff_combination_expand (DR_STEP (a), sizetype, + &step, &name_expansions); + return aff_combination_constant_multiple_p (&diff, &step, off); +} + +/* Returns the last basic block in LOOP for that we are sure that + it is executed whenever the loop is entered. */ + +static basic_block +last_always_executed_block (struct loop *loop) +{ + unsigned i; + VEC (edge, heap) *exits = get_loop_exit_edges (loop); + edge ex; + basic_block last = loop->latch; + + FOR_EACH_VEC_ELT (edge, exits, i, ex) + last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src); + VEC_free (edge, heap, exits); + + return last; +} + +/* Splits dependence graph on DATAREFS described by DEPENDS to components. */ + +static struct component * +split_data_refs_to_components (struct loop *loop, + VEC (data_reference_p, heap) *datarefs, + VEC (ddr_p, heap) *depends) +{ + unsigned i, n = VEC_length (data_reference_p, datarefs); + unsigned ca, ia, ib, bad; + unsigned *comp_father = XNEWVEC (unsigned, n + 1); + unsigned *comp_size = XNEWVEC (unsigned, n + 1); + struct component **comps; + struct data_reference *dr, *dra, *drb; + struct data_dependence_relation *ddr; + struct component *comp_list = NULL, *comp; + dref dataref; + basic_block last_always_executed = last_always_executed_block (loop); + + FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr) + { + if (!DR_REF (dr)) + { + /* A fake reference for call or asm_expr that may clobber memory; + just fail. */ + goto end; + } + dr->aux = (void *) (size_t) i; + comp_father[i] = i; + comp_size[i] = 1; + } + + /* A component reserved for the "bad" data references. */ + comp_father[n] = n; + comp_size[n] = 1; + + FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr) + { + enum ref_step_type dummy; + + if (!suitable_reference_p (dr, &dummy)) + { + ia = (unsigned) (size_t) dr->aux; + merge_comps (comp_father, comp_size, n, ia); + } + } + + FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr) + { + double_int dummy_off; + + if (DDR_ARE_DEPENDENT (ddr) == chrec_known) + continue; + + dra = DDR_A (ddr); + drb = DDR_B (ddr); + ia = component_of (comp_father, (unsigned) (size_t) dra->aux); + ib = component_of (comp_father, (unsigned) (size_t) drb->aux); + if (ia == ib) + continue; + + bad = component_of (comp_father, n); + + /* If both A and B are reads, we may ignore unsuitable dependences. */ + if (DR_IS_READ (dra) && DR_IS_READ (drb) + && (ia == bad || ib == bad + || !determine_offset (dra, drb, &dummy_off))) + continue; + + merge_comps (comp_father, comp_size, ia, ib); + } + + comps = XCNEWVEC (struct component *, n); + bad = component_of (comp_father, n); + FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr) + { + ia = (unsigned) (size_t) dr->aux; + ca = component_of (comp_father, ia); + if (ca == bad) + continue; + + comp = comps[ca]; + if (!comp) + { + comp = XCNEW (struct component); + comp->refs = VEC_alloc (dref, heap, comp_size[ca]); + comps[ca] = comp; + } + + dataref = XCNEW (struct dref_d); + dataref->ref = dr; + dataref->stmt = DR_STMT (dr); + dataref->offset = double_int_zero; + dataref->distance = 0; + + dataref->always_accessed + = dominated_by_p (CDI_DOMINATORS, last_always_executed, + gimple_bb (dataref->stmt)); + dataref->pos = VEC_length (dref, comp->refs); + VEC_quick_push (dref, comp->refs, dataref); + } + + for (i = 0; i < n; i++) + { + comp = comps[i]; + if (comp) + { + comp->next = comp_list; + comp_list = comp; + } + } + free (comps); + +end: + free (comp_father); + free (comp_size); + return comp_list; +} + +/* Returns true if the component COMP satisfies the conditions + described in 2) at the beginning of this file. LOOP is the current + loop. */ + +static bool +suitable_component_p (struct loop *loop, struct component *comp) +{ + unsigned i; + dref a, first; + basic_block ba, bp = loop->header; + bool ok, has_write = false; + + FOR_EACH_VEC_ELT (dref, comp->refs, i, a) + { + ba = gimple_bb (a->stmt); + + if (!just_once_each_iteration_p (loop, ba)) + return false; + + gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp)); + bp = ba; + + if (DR_IS_WRITE (a->ref)) + has_write = true; + } + + first = VEC_index (dref, comp->refs, 0); + ok = suitable_reference_p (first->ref, &comp->comp_step); + gcc_assert (ok); + first->offset = double_int_zero; + + for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++) + { + if (!determine_offset (first->ref, a->ref, &a->offset)) + return false; + +#ifdef ENABLE_CHECKING + { + enum ref_step_type a_step; + ok = suitable_reference_p (a->ref, &a_step); + gcc_assert (ok && a_step == comp->comp_step); + } +#endif + } + + /* If there is a write inside the component, we must know whether the + step is nonzero or not -- we would not otherwise be able to recognize + whether the value accessed by reads comes from the OFFSET-th iteration + or the previous one. */ + if (has_write && comp->comp_step == RS_ANY) + return false; + + return true; +} + +/* Check the conditions on references inside each of components COMPS, + and remove the unsuitable components from the list. The new list + of components is returned. The conditions are described in 2) at + the beginning of this file. LOOP is the current loop. */ + +static struct component * +filter_suitable_components (struct loop *loop, struct component *comps) +{ + struct component **comp, *act; + + for (comp = &comps; *comp; ) + { + act = *comp; + if (suitable_component_p (loop, act)) + comp = &act->next; + else + { + dref ref; + unsigned i; + + *comp = act->next; + FOR_EACH_VEC_ELT (dref, act->refs, i, ref) + free (ref); + release_component (act); + } + } + + return comps; +} + +/* Compares two drefs A and B by their offset and position. Callback for + qsort. */ + +static int +order_drefs (const void *a, const void *b) +{ + const dref *const da = (const dref *) a; + const dref *const db = (const dref *) b; + int offcmp = double_int_scmp ((*da)->offset, (*db)->offset); + + if (offcmp != 0) + return offcmp; + + return (*da)->pos - (*db)->pos; +} + +/* Returns root of the CHAIN. */ + +static inline dref +get_chain_root (chain_p chain) +{ + return VEC_index (dref, chain->refs, 0); +} + +/* Adds REF to the chain CHAIN. */ + +static void +add_ref_to_chain (chain_p chain, dref ref) +{ + dref root = get_chain_root (chain); + double_int dist; + + gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0); + dist = double_int_sub (ref->offset, root->offset); + if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0) + { + free (ref); + return; + } + gcc_assert (double_int_fits_in_uhwi_p (dist)); + + VEC_safe_push (dref, heap, chain->refs, ref); + + ref->distance = double_int_to_uhwi (dist); + + if (ref->distance >= chain->length) + { + chain->length = ref->distance; + chain->has_max_use_after = false; + } + + if (ref->distance == chain->length + && ref->pos > root->pos) + chain->has_max_use_after = true; + + chain->all_always_accessed &= ref->always_accessed; +} + +/* Returns the chain for invariant component COMP. */ + +static chain_p +make_invariant_chain (struct component *comp) +{ + chain_p chain = XCNEW (struct chain); + unsigned i; + dref ref; + + chain->type = CT_INVARIANT; + + chain->all_always_accessed = true; + + FOR_EACH_VEC_ELT (dref, comp->refs, i, ref) + { + VEC_safe_push (dref, heap, chain->refs, ref); + chain->all_always_accessed &= ref->always_accessed; + } + + return chain; +} + +/* Make a new chain rooted at REF. */ + +static chain_p +make_rooted_chain (dref ref) +{ + chain_p chain = XCNEW (struct chain); + + chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD; + + VEC_safe_push (dref, heap, chain->refs, ref); + chain->all_always_accessed = ref->always_accessed; + + ref->distance = 0; + + return chain; +} + +/* Returns true if CHAIN is not trivial. */ + +static bool +nontrivial_chain_p (chain_p chain) +{ + return chain != NULL && VEC_length (dref, chain->refs) > 1; +} + +/* Returns the ssa name that contains the value of REF, or NULL_TREE if there + is no such name. */ + +static tree +name_for_ref (dref ref) +{ + tree name; + + if (is_gimple_assign (ref->stmt)) + { + if (!ref->ref || DR_IS_READ (ref->ref)) + name = gimple_assign_lhs (ref->stmt); + else + name = gimple_assign_rhs1 (ref->stmt); + } + else + name = PHI_RESULT (ref->stmt); + + return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE); +} + +/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in + iterations of the innermost enclosing loop). */ + +static bool +valid_initializer_p (struct data_reference *ref, + unsigned distance, struct data_reference *root) +{ + aff_tree diff, base, step; + double_int off; + + /* Both REF and ROOT must be accessing the same object. */ + if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0)) + return false; + + /* The initializer is defined outside of loop, hence its address must be + invariant inside the loop. */ + gcc_assert (integer_zerop (DR_STEP (ref))); + + /* If the address of the reference is invariant, initializer must access + exactly the same location. */ + if (integer_zerop (DR_STEP (root))) + return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0) + && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0)); + + /* Verify that this index of REF is equal to the root's index at + -DISTANCE-th iteration. */ + aff_combination_dr_offset (root, &diff); + aff_combination_dr_offset (ref, &base); + aff_combination_scale (&base, double_int_minus_one); + aff_combination_add (&diff, &base); + + tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step, + &name_expansions); + if (!aff_combination_constant_multiple_p (&diff, &step, &off)) + return false; + + if (!double_int_equal_p (off, uhwi_to_double_int (distance))) + return false; + + return true; +} + +/* Finds looparound phi node of LOOP that copies the value of REF, and if its + initial value is correct (equal to initial value of REF shifted by one + iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT + is the root of the current chain. */ + +static gimple +find_looparound_phi (struct loop *loop, dref ref, dref root) +{ + tree name, init, init_ref; + gimple phi = NULL, init_stmt; + edge latch = loop_latch_edge (loop); + struct data_reference init_dr; + gimple_stmt_iterator psi; + + if (is_gimple_assign (ref->stmt)) + { + if (DR_IS_READ (ref->ref)) + name = gimple_assign_lhs (ref->stmt); + else + name = gimple_assign_rhs1 (ref->stmt); + } + else + name = PHI_RESULT (ref->stmt); + if (!name) + return NULL; + + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = gsi_stmt (psi); + if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name) + break; + } + + if (gsi_end_p (psi)) + return NULL; + + init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); + if (TREE_CODE (init) != SSA_NAME) + return NULL; + init_stmt = SSA_NAME_DEF_STMT (init); + if (gimple_code (init_stmt) != GIMPLE_ASSIGN) + return NULL; + gcc_assert (gimple_assign_lhs (init_stmt) == init); + + init_ref = gimple_assign_rhs1 (init_stmt); + if (!REFERENCE_CLASS_P (init_ref) + && !DECL_P (init_ref)) + return NULL; + + /* Analyze the behavior of INIT_REF with respect to LOOP (innermost + loop enclosing PHI). */ + memset (&init_dr, 0, sizeof (struct data_reference)); + DR_REF (&init_dr) = init_ref; + DR_STMT (&init_dr) = phi; + if (!dr_analyze_innermost (&init_dr)) + return NULL; + + if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref)) + return NULL; + + return phi; +} + +/* Adds a reference for the looparound copy of REF in PHI to CHAIN. */ + +static void +insert_looparound_copy (chain_p chain, dref ref, gimple phi) +{ + dref nw = XCNEW (struct dref_d), aref; + unsigned i; + + nw->stmt = phi; + nw->distance = ref->distance + 1; + nw->always_accessed = 1; + + FOR_EACH_VEC_ELT (dref, chain->refs, i, aref) + if (aref->distance >= nw->distance) + break; + VEC_safe_insert (dref, heap, chain->refs, i, nw); + + if (nw->distance > chain->length) + { + chain->length = nw->distance; + chain->has_max_use_after = false; + } +} + +/* For references in CHAIN that are copied around the LOOP (created previously + by PRE, or by user), add the results of such copies to the chain. This + enables us to remove the copies by unrolling, and may need less registers + (also, it may allow us to combine chains together). */ + +static void +add_looparound_copies (struct loop *loop, chain_p chain) +{ + unsigned i; + dref ref, root = get_chain_root (chain); + gimple phi; + + FOR_EACH_VEC_ELT (dref, chain->refs, i, ref) + { + phi = find_looparound_phi (loop, ref, root); + if (!phi) + continue; + + bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi))); + insert_looparound_copy (chain, ref, phi); + } +} + +/* Find roots of the values and determine distances in the component COMP. + The references are redistributed into CHAINS. LOOP is the current + loop. */ + +static void +determine_roots_comp (struct loop *loop, + struct component *comp, + VEC (chain_p, heap) **chains) +{ + unsigned i; + dref a; + chain_p chain = NULL; + double_int last_ofs = double_int_zero; + + /* Invariants are handled specially. */ + if (comp->comp_step == RS_INVARIANT) + { + chain = make_invariant_chain (comp); + VEC_safe_push (chain_p, heap, *chains, chain); + return; + } + + VEC_qsort (dref, comp->refs, order_drefs); + + FOR_EACH_VEC_ELT (dref, comp->refs, i, a) + { + if (!chain || DR_IS_WRITE (a->ref) + || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), + double_int_sub (a->offset, last_ofs)) <= 0) + { + if (nontrivial_chain_p (chain)) + { + add_looparound_copies (loop, chain); + VEC_safe_push (chain_p, heap, *chains, chain); + } + else + release_chain (chain); + chain = make_rooted_chain (a); + last_ofs = a->offset; + continue; + } + + add_ref_to_chain (chain, a); + } + + if (nontrivial_chain_p (chain)) + { + add_looparound_copies (loop, chain); + VEC_safe_push (chain_p, heap, *chains, chain); + } + else + release_chain (chain); +} + +/* Find roots of the values and determine distances in components COMPS, and + separates the references to CHAINS. LOOP is the current loop. */ + +static void +determine_roots (struct loop *loop, + struct component *comps, VEC (chain_p, heap) **chains) +{ + struct component *comp; + + for (comp = comps; comp; comp = comp->next) + determine_roots_comp (loop, comp, chains); +} + +/* Replace the reference in statement STMT with temporary variable + NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of + the reference in the statement. IN_LHS is true if the reference + is in the lhs of STMT, false if it is in rhs. */ + +static void +replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs) +{ + tree val; + gimple new_stmt; + gimple_stmt_iterator bsi, psi; + + if (gimple_code (stmt) == GIMPLE_PHI) + { + gcc_assert (!in_lhs && !set); + + val = PHI_RESULT (stmt); + bsi = gsi_after_labels (gimple_bb (stmt)); + psi = gsi_for_stmt (stmt); + remove_phi_node (&psi, false); + + /* Turn the phi node into GIMPLE_ASSIGN. */ + new_stmt = gimple_build_assign (val, new_tree); + gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT); + return; + } + + /* Since the reference is of gimple_reg type, it should only + appear as lhs or rhs of modify statement. */ + gcc_assert (is_gimple_assign (stmt)); + + bsi = gsi_for_stmt (stmt); + + /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */ + if (!set) + { + gcc_assert (!in_lhs); + gimple_assign_set_rhs_from_tree (&bsi, new_tree); + stmt = gsi_stmt (bsi); + update_stmt (stmt); + return; + } + + if (in_lhs) + { + /* We have statement + + OLD = VAL + + If OLD is a memory reference, then VAL is gimple_val, and we transform + this to + + OLD = VAL + NEW = VAL + + Otherwise, we are replacing a combination chain, + VAL is the expression that performs the combination, and OLD is an + SSA name. In this case, we transform the assignment to + + OLD = VAL + NEW = OLD + + */ + + val = gimple_assign_lhs (stmt); + if (TREE_CODE (val) != SSA_NAME) + { + gcc_assert (gimple_assign_copy_p (stmt)); + val = gimple_assign_rhs1 (stmt); + } + } + else + { + /* VAL = OLD + + is transformed to + + VAL = OLD + NEW = VAL */ + + val = gimple_assign_lhs (stmt); + } + + new_stmt = gimple_build_assign (new_tree, unshare_expr (val)); + gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT); +} + +/* Returns the reference to the address of REF in the ITER-th iteration of + LOOP, or NULL if we fail to determine it (ITER may be negative). We + try to preserve the original shape of the reference (not rewrite it + as an indirect ref to the address), to make tree_could_trap_p in + prepare_initializers_chain return false more often. */ + +static tree +ref_at_iteration (struct loop *loop, tree ref, int iter) +{ + tree idx, *idx_p, type, val, op0 = NULL_TREE, ret; + affine_iv iv; + bool ok; + + if (handled_component_p (ref)) + { + op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter); + if (!op0) + return NULL_TREE; + } + else if (!INDIRECT_REF_P (ref) + && TREE_CODE (ref) != MEM_REF) + return unshare_expr (ref); + + if (TREE_CODE (ref) == MEM_REF) + { + ret = unshare_expr (ref); + idx = TREE_OPERAND (ref, 0); + idx_p = &TREE_OPERAND (ret, 0); + } + else if (TREE_CODE (ref) == COMPONENT_REF) + { + /* Check that the offset is loop invariant. */ + if (TREE_OPERAND (ref, 2) + && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2))) + return NULL_TREE; + + return build3 (COMPONENT_REF, TREE_TYPE (ref), op0, + unshare_expr (TREE_OPERAND (ref, 1)), + unshare_expr (TREE_OPERAND (ref, 2))); + } + else if (TREE_CODE (ref) == ARRAY_REF) + { + /* Check that the lower bound and the step are loop invariant. */ + if (TREE_OPERAND (ref, 2) + && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2))) + return NULL_TREE; + if (TREE_OPERAND (ref, 3) + && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3))) + return NULL_TREE; + + ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE, + unshare_expr (TREE_OPERAND (ref, 2)), + unshare_expr (TREE_OPERAND (ref, 3))); + idx = TREE_OPERAND (ref, 1); + idx_p = &TREE_OPERAND (ret, 1); + } + else + return NULL_TREE; + + ok = simple_iv (loop, loop, idx, &iv, true); + if (!ok) + return NULL_TREE; + iv.base = expand_simple_operations (iv.base); + if (integer_zerop (iv.step)) + *idx_p = unshare_expr (iv.base); + else + { + type = TREE_TYPE (iv.base); + if (POINTER_TYPE_P (type)) + { + val = fold_build2 (MULT_EXPR, sizetype, iv.step, + size_int (iter)); + val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val); + } + else + { + val = fold_build2 (MULT_EXPR, type, iv.step, + build_int_cst_type (type, iter)); + val = fold_build2 (PLUS_EXPR, type, iv.base, val); + } + *idx_p = unshare_expr (val); + } + + return ret; +} + +/* Get the initialization expression for the INDEX-th temporary variable + of CHAIN. */ + +static tree +get_init_expr (chain_p chain, unsigned index) +{ + if (chain->type == CT_COMBINATION) + { + tree e1 = get_init_expr (chain->ch1, index); + tree e2 = get_init_expr (chain->ch2, index); + + return fold_build2 (chain->op, chain->rslt_type, e1, e2); + } + else + return VEC_index (tree, chain->inits, index); +} + +/* Marks all virtual operands of statement STMT for renaming. */ + +void +mark_virtual_ops_for_renaming (gimple stmt) +{ + tree var; + + if (gimple_code (stmt) == GIMPLE_PHI) + { + var = PHI_RESULT (stmt); + if (is_gimple_reg (var)) + return; + + if (TREE_CODE (var) == SSA_NAME) + var = SSA_NAME_VAR (var); + mark_sym_for_renaming (var); + return; + } + + update_stmt (stmt); + if (gimple_vuse (stmt)) + mark_sym_for_renaming (gimple_vop (cfun)); +} + +/* Returns a new temporary variable used for the I-th variable carrying + value of REF. The variable's uid is marked in TMP_VARS. */ + +static tree +predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars) +{ + tree type = TREE_TYPE (ref); + /* We never access the components of the temporary variable in predictive + commoning. */ + tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i)); + + add_referenced_var (var); + bitmap_set_bit (tmp_vars, DECL_UID (var)); + return var; +} + +/* Creates the variables for CHAIN, as well as phi nodes for them and + initialization on entry to LOOP. Uids of the newly created + temporary variables are marked in TMP_VARS. */ + +static void +initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars) +{ + unsigned i; + unsigned n = chain->length; + dref root = get_chain_root (chain); + bool reuse_first = !chain->has_max_use_after; + tree ref, init, var, next; + gimple phi; + gimple_seq stmts; + edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop); + + /* If N == 0, then all the references are within the single iteration. And + since this is an nonempty chain, reuse_first cannot be true. */ + gcc_assert (n > 0 || !reuse_first); + + chain->vars = VEC_alloc (tree, heap, n + 1); + + if (chain->type == CT_COMBINATION) + ref = gimple_assign_lhs (root->stmt); + else + ref = DR_REF (root->ref); + + for (i = 0; i < n + (reuse_first ? 0 : 1); i++) + { + var = predcom_tmp_var (ref, i, tmp_vars); + VEC_quick_push (tree, chain->vars, var); + } + if (reuse_first) + VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0)); + + FOR_EACH_VEC_ELT (tree, chain->vars, i, var) + VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL)); + + for (i = 0; i < n; i++) + { + var = VEC_index (tree, chain->vars, i); + next = VEC_index (tree, chain->vars, i + 1); + init = get_init_expr (chain, i); + + init = force_gimple_operand (init, &stmts, true, NULL_TREE); + if (stmts) + gsi_insert_seq_on_edge_immediate (entry, stmts); + + phi = create_phi_node (var, loop->header); + SSA_NAME_DEF_STMT (var) = phi; + add_phi_arg (phi, init, entry, UNKNOWN_LOCATION); + add_phi_arg (phi, next, latch, UNKNOWN_LOCATION); + } +} + +/* Create the variables and initialization statement for root of chain + CHAIN. Uids of the newly created temporary variables are marked + in TMP_VARS. */ + +static void +initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars) +{ + dref root = get_chain_root (chain); + bool in_lhs = (chain->type == CT_STORE_LOAD + || chain->type == CT_COMBINATION); + + initialize_root_vars (loop, chain, tmp_vars); + replace_ref_with (root->stmt, + VEC_index (tree, chain->vars, chain->length), + true, in_lhs); +} + +/* Initializes a variable for load motion for ROOT and prepares phi nodes and + initialization on entry to LOOP if necessary. The ssa name for the variable + is stored in VARS. If WRITTEN is true, also a phi node to copy its value + around the loop is created. Uid of the newly created temporary variable + is marked in TMP_VARS. INITS is the list containing the (single) + initializer. */ + +static void +initialize_root_vars_lm (struct loop *loop, dref root, bool written, + VEC(tree, heap) **vars, VEC(tree, heap) *inits, + bitmap tmp_vars) +{ + unsigned i; + tree ref = DR_REF (root->ref), init, var, next; + gimple_seq stmts; + gimple phi; + edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop); + + /* Find the initializer for the variable, and check that it cannot + trap. */ + init = VEC_index (tree, inits, 0); + + *vars = VEC_alloc (tree, heap, written ? 2 : 1); + var = predcom_tmp_var (ref, 0, tmp_vars); + VEC_quick_push (tree, *vars, var); + if (written) + VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0)); + + FOR_EACH_VEC_ELT (tree, *vars, i, var) + VEC_replace (tree, *vars, i, make_ssa_name (var, NULL)); + + var = VEC_index (tree, *vars, 0); + + init = force_gimple_operand (init, &stmts, written, NULL_TREE); + if (stmts) + gsi_insert_seq_on_edge_immediate (entry, stmts); + + if (written) + { + next = VEC_index (tree, *vars, 1); + phi = create_phi_node (var, loop->header); + SSA_NAME_DEF_STMT (var) = phi; + add_phi_arg (phi, init, entry, UNKNOWN_LOCATION); + add_phi_arg (phi, next, latch, UNKNOWN_LOCATION); + } + else + { + gimple init_stmt = gimple_build_assign (var, init); + mark_virtual_ops_for_renaming (init_stmt); + gsi_insert_on_edge_immediate (entry, init_stmt); + } +} + + +/* Execute load motion for references in chain CHAIN. Uids of the newly + created temporary variables are marked in TMP_VARS. */ + +static void +execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars) +{ + VEC (tree, heap) *vars; + dref a; + unsigned n_writes = 0, ridx, i; + tree var; + + gcc_assert (chain->type == CT_INVARIANT); + gcc_assert (!chain->combined); + FOR_EACH_VEC_ELT (dref, chain->refs, i, a) + if (DR_IS_WRITE (a->ref)) + n_writes++; + + /* If there are no reads in the loop, there is nothing to do. */ + if (n_writes == VEC_length (dref, chain->refs)) + return; + + initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0, + &vars, chain->inits, tmp_vars); + + ridx = 0; + FOR_EACH_VEC_ELT (dref, chain->refs, i, a) + { + bool is_read = DR_IS_READ (a->ref); + mark_virtual_ops_for_renaming (a->stmt); + + if (DR_IS_WRITE (a->ref)) + { + n_writes--; + if (n_writes) + { + var = VEC_index (tree, vars, 0); + var = make_ssa_name (SSA_NAME_VAR (var), NULL); + VEC_replace (tree, vars, 0, var); + } + else + ridx = 1; + } + + replace_ref_with (a->stmt, VEC_index (tree, vars, ridx), + !is_read, !is_read); + } + + VEC_free (tree, heap, vars); +} + +/* Returns the single statement in that NAME is used, excepting + the looparound phi nodes contained in one of the chains. If there is no + such statement, or more statements, NULL is returned. */ + +static gimple +single_nonlooparound_use (tree name) +{ + use_operand_p use; + imm_use_iterator it; + gimple stmt, ret = NULL; + + FOR_EACH_IMM_USE_FAST (use, it, name) + { + stmt = USE_STMT (use); + + if (gimple_code (stmt) == GIMPLE_PHI) + { + /* Ignore uses in looparound phi nodes. Uses in other phi nodes + could not be processed anyway, so just fail for them. */ + if (bitmap_bit_p (looparound_phis, + SSA_NAME_VERSION (PHI_RESULT (stmt)))) + continue; + + return NULL; + } + else if (is_gimple_debug (stmt)) + continue; + else if (ret != NULL) + return NULL; + else + ret = stmt; + } + + return ret; +} + +/* Remove statement STMT, as well as the chain of assignments in that it is + used. */ + +static void +remove_stmt (gimple stmt) +{ + tree name; + gimple next; + gimple_stmt_iterator psi; + + if (gimple_code (stmt) == GIMPLE_PHI) + { + name = PHI_RESULT (stmt); + next = single_nonlooparound_use (name); + reset_debug_uses (stmt); + psi = gsi_for_stmt (stmt); + remove_phi_node (&psi, true); + + if (!next + || !gimple_assign_ssa_name_copy_p (next) + || gimple_assign_rhs1 (next) != name) + return; + + stmt = next; + } + + while (1) + { + gimple_stmt_iterator bsi; + + bsi = gsi_for_stmt (stmt); + + name = gimple_assign_lhs (stmt); + gcc_assert (TREE_CODE (name) == SSA_NAME); + + next = single_nonlooparound_use (name); + reset_debug_uses (stmt); + + mark_virtual_ops_for_renaming (stmt); + gsi_remove (&bsi, true); + release_defs (stmt); + + if (!next + || !gimple_assign_ssa_name_copy_p (next) + || gimple_assign_rhs1 (next) != name) + return; + + stmt = next; + } +} + +/* Perform the predictive commoning optimization for a chain CHAIN. + Uids of the newly created temporary variables are marked in TMP_VARS.*/ + +static void +execute_pred_commoning_chain (struct loop *loop, chain_p chain, + bitmap tmp_vars) +{ + unsigned i; + dref a, root; + tree var; + + if (chain->combined) + { + /* For combined chains, just remove the statements that are used to + compute the values of the expression (except for the root one). */ + for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++) + remove_stmt (a->stmt); + } + else + { + /* For non-combined chains, set up the variables that hold its value, + and replace the uses of the original references by these + variables. */ + root = get_chain_root (chain); + mark_virtual_ops_for_renaming (root->stmt); + + initialize_root (loop, chain, tmp_vars); + for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++) + { + mark_virtual_ops_for_renaming (a->stmt); + var = VEC_index (tree, chain->vars, chain->length - a->distance); + replace_ref_with (a->stmt, var, false, false); + } + } +} + +/* Determines the unroll factor necessary to remove as many temporary variable + copies as possible. CHAINS is the list of chains that will be + optimized. */ + +static unsigned +determine_unroll_factor (VEC (chain_p, heap) *chains) +{ + chain_p chain; + unsigned factor = 1, af, nfactor, i; + unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES); + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + { + if (chain->type == CT_INVARIANT || chain->combined) + continue; + + /* The best unroll factor for this chain is equal to the number of + temporary variables that we create for it. */ + af = chain->length; + if (chain->has_max_use_after) + af++; + + nfactor = factor * af / gcd (factor, af); + if (nfactor <= max) + factor = nfactor; + } + + return factor; +} + +/* Perform the predictive commoning optimization for CHAINS. + Uids of the newly created temporary variables are marked in TMP_VARS. */ + +static void +execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains, + bitmap tmp_vars) +{ + chain_p chain; + unsigned i; + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + { + if (chain->type == CT_INVARIANT) + execute_load_motion (loop, chain, tmp_vars); + else + execute_pred_commoning_chain (loop, chain, tmp_vars); + } + + update_ssa (TODO_update_ssa_only_virtuals); +} + +/* For each reference in CHAINS, if its defining statement is + phi node, record the ssa name that is defined by it. */ + +static void +replace_phis_by_defined_names (VEC (chain_p, heap) *chains) +{ + chain_p chain; + dref a; + unsigned i, j; + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + FOR_EACH_VEC_ELT (dref, chain->refs, j, a) + { + if (gimple_code (a->stmt) == GIMPLE_PHI) + { + a->name_defined_by_phi = PHI_RESULT (a->stmt); + a->stmt = NULL; + } + } +} + +/* For each reference in CHAINS, if name_defined_by_phi is not + NULL, use it to set the stmt field. */ + +static void +replace_names_by_phis (VEC (chain_p, heap) *chains) +{ + chain_p chain; + dref a; + unsigned i, j; + + FOR_EACH_VEC_ELT (chain_p, chains, i, chain) + FOR_EACH_VEC_ELT (dref, chain->refs, j, a) + if (a->stmt == NULL) + { + a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi); + gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI); + a->name_defined_by_phi = NULL_TREE; + } +} + +/* Wrapper over execute_pred_commoning, to pass it as a callback + to tree_transform_and_unroll_loop. */ + +struct epcc_data +{ + VEC (chain_p, heap) *chains; + bitmap tmp_vars; +}; + +static void +execute_pred_commoning_cbck (struct loop *loop, void *data) +{ + struct epcc_data *const dta = (struct epcc_data *) data; + + /* Restore phi nodes that were replaced by ssa names before + tree_transform_and_unroll_loop (see detailed description in + tree_predictive_commoning_loop). */ + replace_names_by_phis (dta->chains); + execute_pred_commoning (loop, dta->chains, dta->tmp_vars); +} + +/* Base NAME and all the names in the chain of phi nodes that use it + on variable VAR. The phi nodes are recognized by being in the copies of + the header of the LOOP. */ + +static void +base_names_in_chain_on (struct loop *loop, tree name, tree var) +{ + gimple stmt, phi; + imm_use_iterator iter; + + SSA_NAME_VAR (name) = var; + + while (1) + { + phi = NULL; + FOR_EACH_IMM_USE_STMT (stmt, iter, name) + { + if (gimple_code (stmt) == GIMPLE_PHI + && flow_bb_inside_loop_p (loop, gimple_bb (stmt))) + { + phi = stmt; + BREAK_FROM_IMM_USE_STMT (iter); + } + } + if (!phi) + return; + + name = PHI_RESULT (phi); + SSA_NAME_VAR (name) = var; + } +} + +/* Given an unrolled LOOP after predictive commoning, remove the + register copies arising from phi nodes by changing the base + variables of SSA names. TMP_VARS is the set of the temporary variables + for those we want to perform this. */ + +static void +eliminate_temp_copies (struct loop *loop, bitmap tmp_vars) +{ + edge e; + gimple phi, stmt; + tree name, use, var; + gimple_stmt_iterator psi; + + e = loop_latch_edge (loop); + for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) + { + phi = gsi_stmt (psi); + name = PHI_RESULT (phi); + var = SSA_NAME_VAR (name); + if (!bitmap_bit_p (tmp_vars, DECL_UID (var))) + continue; + use = PHI_ARG_DEF_FROM_EDGE (phi, e); + gcc_assert (TREE_CODE (use) == SSA_NAME); + + /* Base all the ssa names in the ud and du chain of NAME on VAR. */ + stmt = SSA_NAME_DEF_STMT (use); + while (gimple_code (stmt) == GIMPLE_PHI + /* In case we could not unroll the loop enough to eliminate + all copies, we may reach the loop header before the defining + statement (in that case, some register copies will be present + in loop latch in the final code, corresponding to the newly + created looparound phi nodes). */ + && gimple_bb (stmt) != loop->header) + { + gcc_assert (single_pred_p (gimple_bb (stmt))); + use = PHI_ARG_DEF (stmt, 0); + stmt = SSA_NAME_DEF_STMT (use); + } + + base_names_in_chain_on (loop, use, var); + } +} + +/* Returns true if CHAIN is suitable to be combined. */ + +static bool +chain_can_be_combined_p (chain_p chain) +{ + return (!chain->combined + && (chain->type == CT_LOAD || chain->type == CT_COMBINATION)); +} + +/* Returns the modify statement that uses NAME. Skips over assignment + statements, NAME is replaced with the actual name used in the returned + statement. */ + +static gimple +find_use_stmt (tree *name) +{ + gimple stmt; + tree rhs, lhs; + + /* Skip over assignments. */ + while (1) + { + stmt = single_nonlooparound_use (*name); + if (!stmt) + return NULL; + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return NULL; + + lhs = gimple_assign_lhs (stmt); + if (TREE_CODE (lhs) != SSA_NAME) + return NULL; + + if (gimple_assign_copy_p (stmt)) + { + rhs = gimple_assign_rhs1 (stmt); + if (rhs != *name) + return NULL; + + *name = lhs; + } + else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) + == GIMPLE_BINARY_RHS) + return stmt; + else + return NULL; + } +} + +/* Returns true if we may perform reassociation for operation CODE in TYPE. */ + +static bool +may_reassociate_p (tree type, enum tree_code code) +{ + if (FLOAT_TYPE_P (type) + && !flag_unsafe_math_optimizations) + return false; + + return (commutative_tree_code (code) + && associative_tree_code (code)); +} + +/* If the operation used in STMT is associative and commutative, go through the + tree of the same operations and returns its root. Distance to the root + is stored in DISTANCE. */ + +static gimple +find_associative_operation_root (gimple stmt, unsigned *distance) +{ + tree lhs; + gimple next; + enum tree_code code = gimple_assign_rhs_code (stmt); + tree type = TREE_TYPE (gimple_assign_lhs (stmt)); + unsigned dist = 0; + + if (!may_reassociate_p (type, code)) + return NULL; + + while (1) + { + lhs = gimple_assign_lhs (stmt); + gcc_assert (TREE_CODE (lhs) == SSA_NAME); + + next = find_use_stmt (&lhs); + if (!next + || gimple_assign_rhs_code (next) != code) + break; + + stmt = next; + dist++; + } + + if (distance) + *distance = dist; + return stmt; +} + +/* Returns the common statement in that NAME1 and NAME2 have a use. If there + is no such statement, returns NULL_TREE. In case the operation used on + NAME1 and NAME2 is associative and commutative, returns the root of the + tree formed by this operation instead of the statement that uses NAME1 or + NAME2. */ + +static gimple +find_common_use_stmt (tree *name1, tree *name2) +{ + gimple stmt1, stmt2; + + stmt1 = find_use_stmt (name1); + if (!stmt1) + return NULL; + + stmt2 = find_use_stmt (name2); + if (!stmt2) + return NULL; + + if (stmt1 == stmt2) + return stmt1; + + stmt1 = find_associative_operation_root (stmt1, NULL); + if (!stmt1) + return NULL; + stmt2 = find_associative_operation_root (stmt2, NULL); + if (!stmt2) + return NULL; + + return (stmt1 == stmt2 ? stmt1 : NULL); +} + +/* Checks whether R1 and R2 are combined together using CODE, with the result + in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1 + if it is true. If CODE is ERROR_MARK, set these values instead. */ + +static bool +combinable_refs_p (dref r1, dref r2, + enum tree_code *code, bool *swap, tree *rslt_type) +{ + enum tree_code acode; + bool aswap; + tree atype; + tree name1, name2; + gimple stmt; + + name1 = name_for_ref (r1); + name2 = name_for_ref (r2); + gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE); + + stmt = find_common_use_stmt (&name1, &name2); + + if (!stmt) + return false; + + acode = gimple_assign_rhs_code (stmt); + aswap = (!commutative_tree_code (acode) + && gimple_assign_rhs1 (stmt) != name1); + atype = TREE_TYPE (gimple_assign_lhs (stmt)); + + if (*code == ERROR_MARK) + { + *code = acode; + *swap = aswap; + *rslt_type = atype; + return true; + } + + return (*code == acode + && *swap == aswap + && *rslt_type == atype); +} + +/* Remove OP from the operation on rhs of STMT, and replace STMT with + an assignment of the remaining operand. */ + +static void +remove_name_from_operation (gimple stmt, tree op) +{ + tree other_op; + gimple_stmt_iterator si; + + gcc_assert (is_gimple_assign (stmt)); + + if (gimple_assign_rhs1 (stmt) == op) + other_op = gimple_assign_rhs2 (stmt); + else + other_op = gimple_assign_rhs1 (stmt); + + si = gsi_for_stmt (stmt); + gimple_assign_set_rhs_from_tree (&si, other_op); + + /* We should not have reallocated STMT. */ + gcc_assert (gsi_stmt (si) == stmt); + + update_stmt (stmt); +} + +/* Reassociates the expression in that NAME1 and NAME2 are used so that they + are combined in a single statement, and returns this statement. */ + +static gimple +reassociate_to_the_same_stmt (tree name1, tree name2) +{ + gimple stmt1, stmt2, root1, root2, s1, s2; + gimple new_stmt, tmp_stmt; + tree new_name, tmp_name, var, r1, r2; + unsigned dist1, dist2; + enum tree_code code; + tree type = TREE_TYPE (name1); + gimple_stmt_iterator bsi; + + stmt1 = find_use_stmt (&name1); + stmt2 = find_use_stmt (&name2); + root1 = find_associative_operation_root (stmt1, &dist1); + root2 = find_associative_operation_root (stmt2, &dist2); + code = gimple_assign_rhs_code (stmt1); + + gcc_assert (root1 && root2 && root1 == root2 + && code == gimple_assign_rhs_code (stmt2)); + + /* Find the root of the nearest expression in that both NAME1 and NAME2 + are used. */ + r1 = name1; + s1 = stmt1; + r2 = name2; + s2 = stmt2; + + while (dist1 > dist2) + { + s1 = find_use_stmt (&r1); + r1 = gimple_assign_lhs (s1); + dist1--; + } + while (dist2 > dist1) + { + s2 = find_use_stmt (&r2); + r2 = gimple_assign_lhs (s2); + dist2--; + } + + while (s1 != s2) + { + s1 = find_use_stmt (&r1); + r1 = gimple_assign_lhs (s1); + s2 = find_use_stmt (&r2); + r2 = gimple_assign_lhs (s2); + } + + /* Remove NAME1 and NAME2 from the statements in that they are used + currently. */ + remove_name_from_operation (stmt1, name1); + remove_name_from_operation (stmt2, name2); + + /* Insert the new statement combining NAME1 and NAME2 before S1, and + combine it with the rhs of S1. */ + var = create_tmp_reg (type, "predreastmp"); + add_referenced_var (var); + new_name = make_ssa_name (var, NULL); + new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2); + + var = create_tmp_reg (type, "predreastmp"); + add_referenced_var (var); + tmp_name = make_ssa_name (var, NULL); + + /* Rhs of S1 may now be either a binary expression with operation + CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1, + so that name1 or name2 was removed from it). */ + tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1), + tmp_name, + gimple_assign_rhs1 (s1), + gimple_assign_rhs2 (s1)); + + bsi = gsi_for_stmt (s1); + gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name); + s1 = gsi_stmt (bsi); + update_stmt (s1); + + gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT); + gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT); + + return new_stmt; +} + +/* Returns the statement that combines references R1 and R2. In case R1 + and R2 are not used in the same statement, but they are used with an + associative and commutative operation in the same expression, reassociate + the expression so that they are used in the same statement. */ + +static gimple +stmt_combining_refs (dref r1, dref r2) +{ + gimple stmt1, stmt2; + tree name1 = name_for_ref (r1); + tree name2 = name_for_ref (r2); + + stmt1 = find_use_stmt (&name1); + stmt2 = find_use_stmt (&name2); + if (stmt1 == stmt2) + return stmt1; + + return reassociate_to_the_same_stmt (name1, name2); +} + +/* Tries to combine chains CH1 and CH2 together. If this succeeds, the + description of the new chain is returned, otherwise we return NULL. */ + +static chain_p +combine_chains (chain_p ch1, chain_p ch2) +{ + dref r1, r2, nw; + enum tree_code op = ERROR_MARK; + bool swap = false; + chain_p new_chain; + unsigned i; + gimple root_stmt; + tree rslt_type = NULL_TREE; + + if (ch1 == ch2) + return NULL; + if (ch1->length != ch2->length) + return NULL; + + if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs)) + return NULL; + + for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1) + && VEC_iterate (dref, ch2->refs, i, r2)); i++) + { + if (r1->distance != r2->distance) + return NULL; + + if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type)) + return NULL; + } + + if (swap) + { + chain_p tmp = ch1; + ch1 = ch2; + ch2 = tmp; + } + + new_chain = XCNEW (struct chain); + new_chain->type = CT_COMBINATION; + new_chain->op = op; + new_chain->ch1 = ch1; + new_chain->ch2 = ch2; + new_chain->rslt_type = rslt_type; + new_chain->length = ch1->length; + + for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1) + && VEC_iterate (dref, ch2->refs, i, r2)); i++) + { + nw = XCNEW (struct dref_d); + nw->stmt = stmt_combining_refs (r1, r2); + nw->distance = r1->distance; + + VEC_safe_push (dref, heap, new_chain->refs, nw); + } + + new_chain->has_max_use_after = false; + root_stmt = get_chain_root (new_chain)->stmt; + for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++) + { + if (nw->distance == new_chain->length + && !stmt_dominates_stmt_p (nw->stmt, root_stmt)) + { + new_chain->has_max_use_after = true; + break; + } + } + + ch1->combined = true; + ch2->combined = true; + return new_chain; +} + +/* Try to combine the CHAINS. */ + +static void +try_combine_chains (VEC (chain_p, heap) **chains) +{ + unsigned i, j; + chain_p ch1, ch2, cch; + VEC (chain_p, heap) *worklist = NULL; + + FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1) + if (chain_can_be_combined_p (ch1)) + VEC_safe_push (chain_p, heap, worklist, ch1); + + while (!VEC_empty (chain_p, worklist)) + { + ch1 = VEC_pop (chain_p, worklist); + if (!chain_can_be_combined_p (ch1)) + continue; + + FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2) + { + if (!chain_can_be_combined_p (ch2)) + continue; + + cch = combine_chains (ch1, ch2); + if (cch) + { + VEC_safe_push (chain_p, heap, worklist, cch); + VEC_safe_push (chain_p, heap, *chains, cch); + break; + } + } + } +} + +/* Prepare initializers for CHAIN in LOOP. Returns false if this is + impossible because one of these initializers may trap, true otherwise. */ + +static bool +prepare_initializers_chain (struct loop *loop, chain_p chain) +{ + unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length; + struct data_reference *dr = get_chain_root (chain)->ref; + tree init; + gimple_seq stmts; + dref laref; + edge entry = loop_preheader_edge (loop); + + /* Find the initializers for the variables, and check that they cannot + trap. */ + chain->inits = VEC_alloc (tree, heap, n); + for (i = 0; i < n; i++) + VEC_quick_push (tree, chain->inits, NULL_TREE); + + /* If we have replaced some looparound phi nodes, use their initializers + instead of creating our own. */ + FOR_EACH_VEC_ELT (dref, chain->refs, i, laref) + { + if (gimple_code (laref->stmt) != GIMPLE_PHI) + continue; + + gcc_assert (laref->distance > 0); + VEC_replace (tree, chain->inits, n - laref->distance, + PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry)); + } + + for (i = 0; i < n; i++) + { + if (VEC_index (tree, chain->inits, i) != NULL_TREE) + continue; + + init = ref_at_iteration (loop, DR_REF (dr), (int) i - n); + if (!init) + return false; + + if (!chain->all_always_accessed && tree_could_trap_p (init)) + return false; + + init = force_gimple_operand (init, &stmts, false, NULL_TREE); + if (stmts) + gsi_insert_seq_on_edge_immediate (entry, stmts); + + VEC_replace (tree, chain->inits, i, init); + } + + return true; +} + +/* Prepare initializers for CHAINS in LOOP, and free chains that cannot + be used because the initializers might trap. */ + +static void +prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains) +{ + chain_p chain; + unsigned i; + + for (i = 0; i < VEC_length (chain_p, chains); ) + { + chain = VEC_index (chain_p, chains, i); + if (prepare_initializers_chain (loop, chain)) + i++; + else + { + release_chain (chain); + VEC_unordered_remove (chain_p, chains, i); + } + } +} + +/* Performs predictive commoning for LOOP. Returns true if LOOP was + unrolled. */ + +static bool +tree_predictive_commoning_loop (struct loop *loop) +{ + VEC (loop_p, heap) *loop_nest; + VEC (data_reference_p, heap) *datarefs; + VEC (ddr_p, heap) *dependences; + struct component *components; + VEC (chain_p, heap) *chains = NULL; + unsigned unroll_factor; + struct tree_niter_desc desc; + bool unroll = false; + edge exit; + bitmap tmp_vars; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Processing loop %d\n", loop->num); + + /* Find the data references and split them into components according to their + dependence relations. */ + datarefs = VEC_alloc (data_reference_p, heap, 10); + dependences = VEC_alloc (ddr_p, heap, 10); + loop_nest = VEC_alloc (loop_p, heap, 3); + compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs, + &dependences); + if (dump_file && (dump_flags & TDF_DETAILS)) + dump_data_dependence_relations (dump_file, dependences); + + components = split_data_refs_to_components (loop, datarefs, dependences); + VEC_free (loop_p, heap, loop_nest); + free_dependence_relations (dependences); + if (!components) + { + free_data_refs (datarefs); + return false; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Initial state:\n\n"); + dump_components (dump_file, components); + } + + /* Find the suitable components and split them into chains. */ + components = filter_suitable_components (loop, components); + + tmp_vars = BITMAP_ALLOC (NULL); + looparound_phis = BITMAP_ALLOC (NULL); + determine_roots (loop, components, &chains); + release_components (components); + + if (!chains) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "Predictive commoning failed: no suitable chains\n"); + goto end; + } + prepare_initializers (loop, chains); + + /* Try to combine the chains that are always worked with together. */ + try_combine_chains (&chains); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Before commoning:\n\n"); + dump_chains (dump_file, chains); + } + + /* Determine the unroll factor, and if the loop should be unrolled, ensure + that its number of iterations is divisible by the factor. */ + unroll_factor = determine_unroll_factor (chains); + scev_reset (); + unroll = (unroll_factor > 1 + && can_unroll_loop_p (loop, unroll_factor, &desc)); + exit = single_dom_exit (loop); + + /* Execute the predictive commoning transformations, and possibly unroll the + loop. */ + if (unroll) + { + struct epcc_data dta; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Unrolling %u times.\n", unroll_factor); + + dta.chains = chains; + dta.tmp_vars = tmp_vars; + + update_ssa (TODO_update_ssa_only_virtuals); + + /* Cfg manipulations performed in tree_transform_and_unroll_loop before + execute_pred_commoning_cbck is called may cause phi nodes to be + reallocated, which is a problem since CHAINS may point to these + statements. To fix this, we store the ssa names defined by the + phi nodes here instead of the phi nodes themselves, and restore + the phi nodes in execute_pred_commoning_cbck. A bit hacky. */ + replace_phis_by_defined_names (chains); + + tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc, + execute_pred_commoning_cbck, &dta); + eliminate_temp_copies (loop, tmp_vars); + } + else + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "Executing predictive commoning without unrolling.\n"); + execute_pred_commoning (loop, chains, tmp_vars); + } + +end: ; + release_chains (chains); + free_data_refs (datarefs); + BITMAP_FREE (tmp_vars); + BITMAP_FREE (looparound_phis); + + free_affine_expand_cache (&name_expansions); + + return unroll; +} + +/* Runs predictive commoning. */ + +unsigned +tree_predictive_commoning (void) +{ + bool unrolled = false; + struct loop *loop; + loop_iterator li; + unsigned ret = 0; + + initialize_original_copy_tables (); + FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST) + if (optimize_loop_for_speed_p (loop)) + { + unrolled |= tree_predictive_commoning_loop (loop); + } + + if (unrolled) + { + scev_reset (); + ret = TODO_cleanup_cfg; + } + free_original_copy_tables (); + + return ret; +} -- cgit v1.2.3