From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- libgcc/config/libbid/bid64_compare.c | 3172 ++++++++++++++++++++++++++++++++++ 1 file changed, 3172 insertions(+) create mode 100644 libgcc/config/libbid/bid64_compare.c (limited to 'libgcc/config/libbid/bid64_compare.c') diff --git a/libgcc/config/libbid/bid64_compare.c b/libgcc/config/libbid/bid64_compare.c new file mode 100644 index 000000000..a1118df9f --- /dev/null +++ b/libgcc/config/libbid/bid64_compare.c @@ -0,0 +1,3172 @@ +/* Copyright (C) 2007, 2009 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +#include "bid_internal.h" + +static const UINT64 mult_factor[16] = { + 1ull, 10ull, 100ull, 1000ull, + 10000ull, 100000ull, 1000000ull, 10000000ull, + 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, + 1000000000000ull, 10000000000000ull, + 100000000000000ull, 1000000000000000ull +}; + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y, exp_t; + UINT64 sig_x, sig_y, sig_t; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equivalent. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { + res = (((x ^ y) & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // ONE INFINITY (CASE3') + if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { + res = 0; + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { + res = 0; + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ => not equal : return 0 + if ((x ^ y) & MASK_SIGN) { + res = 0; + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + if (exp_x > exp_y) { // to simplify the loop below, + SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, + SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x + } + if (exp_y - exp_x > 15) { + res = 0; // difference cannot be greater than 10^15 + BID_RETURN (res); + } + for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { + // recalculate y's significand upwards + sig_y = sig_y * 10; + if (sig_y > 9999999999999999ull) { + res = 0; + BID_RETURN (res); + } + } + res = (sig_y == sig_x); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_greater (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_greater (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, rather than equal : + // return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (not Greater). + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, there is no way it is greater than y, return 0 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 0; + BID_RETURN (res); + } else { + // x is pos infinity, it is greater, unless y is positive + // infinity => return y!=pos_infinity + res = (((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 0 + // if y is negative infinity, then x is greater, return 1 + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the + // exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, neither is greater => return NOTGREATERTHAN + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } else if (x_is_zero) { + // is x is zero, it is greater if Y is negative + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // is y is zero, X is greater if it is positive + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is greater if y is negative + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller, + // it is clear what needs to be done + if (sig_x > sig_y && exp_x > exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x < exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15 + if (x & MASK_SIGN) // if both are negative + res = 0; + else // if both are positive + res = 1; + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + if (x & MASK_SIGN) // if both are negative + res = 1; + else // if both are positive + res = 0; + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // if postitive, return whichever significand is larger (converse if neg.) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + res = (((sig_n_prime.w[1] > 0) + || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + res = (((sig_n_prime.w[1] == 0) + && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_greater_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_greater_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 1 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) { + // x is -inf, so it is less than y unless y is -inf + res = (((y & MASK_INF) == MASK_INF) + && (y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else { // x is pos_inf, no way for it to be less than y + res = 1; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + if (x_is_zero && y_is_zero) { + // if both numbers are zero, they are equal + res = 1; + BID_RETURN (res); + } else if (x_is_zero) { + // if x is zero, it is lessthan if Y is positive + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // if y is zero, X is less if it is negative + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + // difference cannot be greater than 10^15 + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_greater_unordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_greater_unordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM + _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, rather than equal : + // return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (not Greater). + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, there is no way it is greater than y, return 0 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 0; + BID_RETURN (res); + } else { + // x is pos infinity, it is greater, unless y is positive infinity => + // return y!=pos_infinity + res = (((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 0 + // if y is negative infinity, then x is greater, return 1 + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, neither is greater => return NOTGREATERTHAN + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } else if (x_is_zero) { + // is x is zero, it is greater if Y is negative + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // is y is zero, X is greater if it is positive + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is greater if y is negative + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + // difference cannot be greater than 10^15 + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + res = (((sig_n_prime.w[1] > 0) + || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // if postitive, return whichever significand is larger (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + res = (((sig_n_prime.w[1] == 0) + && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_less (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) +{ + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_less (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) { + // x is -inf, so it is less than y unless y is -inf + res = (((y & MASK_INF) != MASK_INF) + || (y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else { + // x is pos_inf, no way for it to be less than y + res = 0; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + if (x_is_zero && y_is_zero) { + // if both numbers are zero, they are equal + res = 0; + BID_RETURN (res); + } else if (x_is_zero) { + // if x is zero, it is lessthan if Y is positive + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // if y is zero, X is less if it is negative + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller, + // it is clear what needs to be done + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + // difference cannot be greater than 10^15 + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_less_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_less_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, rather than equal : + // return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (LESSEQUAL). + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + if (((x & MASK_SIGN) == MASK_SIGN)) { + // if x is neg infinity, it must be lessthan or equal to y return 1 + res = 1; + BID_RETURN (res); + } else { + // x is pos infinity, it is greater, unless y is positive infinity => + // return y==pos_infinity + res = !(((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 1 + // if y is negative infinity, then x is greater, return 0 + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + if (x_is_zero && y_is_zero) { + // if both numbers are zero, they are equal -> return 1 + res = 1; + BID_RETURN (res); + } else if (x_is_zero) { + // if x is zero, it is lessthan if Y is positive + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // if y is zero, X is less if it is negative + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + // difference cannot be greater than 10^15 + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_less_unordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_less_unordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) { + // x is -inf, so it is less than y unless y is -inf + res = (((y & MASK_INF) != MASK_INF) + || (y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else { + // x is pos_inf, no way for it to be less than y + res = 0; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + if (x_is_zero && y_is_zero) { + // if both numbers are zero, they are equal + res = 0; + BID_RETURN (res); + } else if (x_is_zero) { + // if x is zero, it is lessthan if Y is positive + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else if (y_is_zero) { + // if y is zero, X is less if it is negative + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + // difference cannot be greater than 10^15 + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_not_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_not_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y, exp_t; + UINT64 sig_x, sig_y, sig_t; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 1 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equivalent. + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { + res = (((x ^ y) & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // ONE INFINITY (CASE3') + if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { + res = 1; + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { + res = 1; + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ => not equal : return 1 + if ((x ^ y) & MASK_SIGN) { + res = 1; + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + if (exp_x > exp_y) { // to simplify the loop below, + SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, + SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x + } + + if (exp_y - exp_x > 15) { + res = 1; + BID_RETURN (res); + } + // difference cannot be greater than 10^16 + + for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { + + // recalculate y's significand upwards + sig_y = sig_y * 10; + if (sig_y > 9999999999999999ull) { + res = 1; + BID_RETURN (res); + } + } + + { + res = sig_y != sig_x; + BID_RETURN (res); + } + +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_not_greater (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_not_greater (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (LESSEQUAL). + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, it must be lessthan or equal to y return 1 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 1; + BID_RETURN (res); + } + // x is pos infinity, it is greater, unless y is positive + // infinity => return y==pos_infinity + else { + res = !(((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 1 + // if y is negative infinity, then x is greater, return 0 + { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither + // number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal -> return 1 + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_not_less (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_not_less (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 1 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) + // x is -inf, so it is less than y unless y is -inf + { + res = (((y & MASK_INF) == MASK_INF) + && (y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else + // x is pos_inf, no way for it to be less than y + { + res = 1; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither + // number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_ordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_ordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + + // NaN (CASE1) + // if either number is NAN, the comparison is ordered, rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 0; + BID_RETURN (res); + } else { + res = 1; + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_quiet_unordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_quiet_unordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { + *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN + } + res = 1; + BID_RETURN (res); + } else { + res = 0; + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_greater (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_greater (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (not Greater). + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, there is no way it is greater than y, return 0 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 0; + BID_RETURN (res); + } + // x is pos infinity, it is greater, + // unless y is positive infinity => return y!=pos_infinity + else { + res = (((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 0 + // if y is negative infinity, then x is greater, return 1 + { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, neither is greater => return NOTGREATERTHAN + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } + // is x is zero, it is greater if Y is negative + else if (x_is_zero) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // is y is zero, X is greater if it is positive + else if (y_is_zero) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is greater if y is negative + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + + { + res = (((sig_n_prime.w[1] > 0) + || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + { + res = (((sig_n_prime.w[1] == 0) + && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_greater_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_greater_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM + _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 1 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) + // x is -inf, so it is less than y unless y is -inf + { + res = (((y & MASK_INF) == MASK_INF) + && (y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else + // x is pos_inf, no way for it to be less than y + { + res = 1; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_greater_unordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_greater_unordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM + _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (not Greater). + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, there is no way it is greater than y, return 0 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 0; + BID_RETURN (res); + } + // x is pos infinity, it is greater, + // unless y is positive infinity => return y!=pos_infinity + else { + res = (((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 0 + // if y is negative infinity, then x is greater, return 1 + { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, neither is greater => return NOTGREATERTHAN + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } + // is x is zero, it is greater if Y is negative + else if (x_is_zero) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // is y is zero, X is greater if it is positive + else if (y_is_zero) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is greater if y is negative + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + + { + res = (((sig_n_prime.w[1] > 0) + || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // if postitive, return whichever significand is larger + // (converse if negative) + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + { + res = (((sig_n_prime.w[1] == 0) + && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_less (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_less (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) + // x is -inf, so it is less than y unless y is -inf + { + res = (((y & MASK_INF) != MASK_INF) + || (y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else + // x is pos_inf, no way for it to be less than y + { + res = 0; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_less_equal (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_less_equal (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 0; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (LESSEQUAL). + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, it must be lessthan or equal to y return 1 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 1; + BID_RETURN (res); + } + // x is pos infinity, it is greater, + // unless y is positive infinity => return y==pos_infinity + else { + res = !(((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 1 + // if y is negative infinity, then x is greater, return 0 + { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal -> return 1 + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_less_unordered (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_less_unordered (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM + _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 0; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) + // x is -inf, so it is less than y unless y is -inf + { + res = (((y & MASK_INF) != MASK_INF) + || (y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } else + // x is pos_inf, no way for it to be less than y + { + res = 0; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal + if (x_is_zero && y_is_zero) { + res = 0; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 0; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 0; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_not_greater (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_not_greater (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered, + // rather than equal : return 0 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal (LESSEQUAL). + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x is neg infinity, it must be lessthan or equal to y return 1 + if (((x & MASK_SIGN) == MASK_SIGN)) { + res = 1; + BID_RETURN (res); + } + // x is pos infinity, it is greater, + // unless y is positive infinity => return y==pos_infinity + else { + res = !(((y & MASK_INF) != MASK_INF) + || ((y & MASK_SIGN) == MASK_SIGN)); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so if y is positive infinity, then x is less, return 1 + // if y is negative infinity, then x is greater, return 0 + { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal -> return 1 + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 1 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN)); + BID_RETURN (res); + } +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_signaling_not_less (int *pres, UINT64 * px, + UINT64 * + py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_signaling_not_less (UINT64 x, + UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; + + // NaN (CASE1) + // if either number is NAN, the comparison is unordered : return 1 + if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { + *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } + if ((x & MASK_SIGN) == MASK_SIGN) + // x is -inf, so it is less than y unless y is -inf + { + res = (((y & MASK_INF) == MASK_INF) + && (y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else + // x is pos_inf, no way for it to be less than y + { + res = 1; + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, xy + { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull) { + non_canon_x = 1; + } else { + non_canon_x = 0; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + non_canon_x = 0; + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull) { + non_canon_y = 1; + } else { + non_canon_y = 0; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + non_canon_y = 0; + } + + // ZERO (CASE4) + // some properties: + // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater + // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => + // therefore ignore the exponent field + // (Any non-canonical # is considered 0) + if (non_canon_x || sig_x == 0) { + x_is_zero = 1; + } + if (non_canon_y || sig_y == 0) { + y_is_zero = 1; + } + // if both numbers are zero, they are equal + if (x_is_zero && y_is_zero) { + res = 1; + BID_RETURN (res); + } + // if x is zero, it is lessthan if Y is positive + else if (x_is_zero) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, X is less if it is negative + else if (y_is_zero) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // OPPOSITE SIGN (CASE5) + // now, if the sign bits differ, x is less than if y is positive + if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { + res = ((y & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, no need for compensation + if (exp_x - exp_y > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // difference cannot be greater than 10^15 + + // if exp_x is 15 less than exp_y, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down to the compensated significand + if (exp_x > exp_y) { // to simplify the loop below, + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + res = 1; + BID_RETURN (res); + } + // if postitive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // return 0 if values are equal + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = 1; + BID_RETURN (res); + } + // if positive, return whichever significand abs is smaller + // (converse if negative) + { + res = (((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != + MASK_SIGN)); + BID_RETURN (res); + } +} -- cgit v1.2.3