From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- libgfortran/generated/unpack_r8.c | 331 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 331 insertions(+) create mode 100644 libgfortran/generated/unpack_r8.c (limited to 'libgfortran/generated/unpack_r8.c') diff --git a/libgfortran/generated/unpack_r8.c b/libgfortran/generated/unpack_r8.c new file mode 100644 index 000000000..dc9b4d398 --- /dev/null +++ b/libgfortran/generated/unpack_r8.c @@ -0,0 +1,331 @@ +/* Specific implementation of the UNPACK intrinsic + Copyright 2008, 2009 Free Software Foundation, Inc. + Contributed by Thomas Koenig , based on + unpack_generic.c by Paul Brook . + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +#include "libgfortran.h" +#include +#include +#include + + +#if defined (HAVE_GFC_REAL_8) + +void +unpack0_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, + const gfc_array_l1 *mask, const GFC_REAL_8 *fptr) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_8 * restrict rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_8 *vptr; + /* Value for field, this is constant. */ + const GFC_REAL_8 fval = *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + GFC_DIMENSION_SET(ret->dim[n], 0, + GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); + extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); + empty = empty || extent[n] <= 0; + rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); + empty = empty || extent[n] <= 0; + rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = fval; + } + /* Advance to the next element. */ + rptr += rstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + mptr += mstride[n]; + } + } + } +} + +void +unpack1_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, + const gfc_array_l1 *mask, const gfc_array_r8 *field) +{ + /* r.* indicates the return array. */ + index_type rstride[GFC_MAX_DIMENSIONS]; + index_type rstride0; + index_type rs; + GFC_REAL_8 * restrict rptr; + /* v.* indicates the vector array. */ + index_type vstride0; + GFC_REAL_8 *vptr; + /* f.* indicates the field array. */ + index_type fstride[GFC_MAX_DIMENSIONS]; + index_type fstride0; + const GFC_REAL_8 *fptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + + int empty; + int mask_kind; + + empty = 0; + + mptr = mask->data; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Do not convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + if (ret->data == NULL) + { + /* The front end has signalled that we need to populate the + return array descriptor. */ + dim = GFC_DESCRIPTOR_RANK (mask); + rs = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + GFC_DIMENSION_SET(ret->dim[n], 0, + GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); + extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); + empty = empty || extent[n] <= 0; + rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); + fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + rs *= extent[n]; + } + ret->offset = 0; + ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8)); + } + else + { + dim = GFC_DESCRIPTOR_RANK (ret); + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); + empty = empty || extent[n] <= 0; + rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); + fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + } + if (rstride[0] == 0) + rstride[0] = 1; + } + + if (empty) + return; + + if (fstride[0] == 0) + fstride[0] = 1; + if (mstride[0] == 0) + mstride[0] = 1; + + vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); + if (vstride0 == 0) + vstride0 = 1; + rstride0 = rstride[0]; + fstride0 = fstride[0]; + mstride0 = mstride[0]; + rptr = ret->data; + fptr = field->data; + vptr = vector->data; + + while (rptr) + { + if (*mptr) + { + /* From vector. */ + *rptr = *vptr; + vptr += vstride0; + } + else + { + /* From field. */ + *rptr = *fptr; + } + /* Advance to the next element. */ + rptr += rstride0; + fptr += fstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + rptr -= rstride[n] * extent[n]; + fptr -= fstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + rptr = NULL; + break; + } + else + { + count[n]++; + rptr += rstride[n]; + fptr += fstride[n]; + mptr += mstride[n]; + } + } + } +} + +#endif + -- cgit v1.2.3