From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- libgo/go/image/image.go | 506 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 506 insertions(+) create mode 100644 libgo/go/image/image.go (limited to 'libgo/go/image/image.go') diff --git a/libgo/go/image/image.go b/libgo/go/image/image.go new file mode 100644 index 000000000..c0e96e1f7 --- /dev/null +++ b/libgo/go/image/image.go @@ -0,0 +1,506 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// The image package implements a basic 2-D image library. +package image + +// A Config consists of an image's color model and dimensions. +type Config struct { + ColorModel ColorModel + Width, Height int +} + +// An Image is a finite rectangular grid of Colors drawn from a ColorModel. +type Image interface { + // ColorModel returns the Image's ColorModel. + ColorModel() ColorModel + // Bounds returns the domain for which At can return non-zero color. + // The bounds do not necessarily contain the point (0, 0). + Bounds() Rectangle + // At returns the color of the pixel at (x, y). + // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. + // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. + At(x, y int) Color +} + +// An RGBA is an in-memory image of RGBAColor values. +type RGBA struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []RGBAColor + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } + +func (p *RGBA) Bounds() Rectangle { return p.Rect } + +func (p *RGBA) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return RGBAColor{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *RGBA) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toRGBAColor(c).(RGBAColor) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *RGBA) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewRGBA returns a new RGBA with the given width and height. +func NewRGBA(w, h int) *RGBA { + buf := make([]RGBAColor, w*h) + return &RGBA{buf, w, Rectangle{ZP, Point{w, h}}} +} + +// An RGBA64 is an in-memory image of RGBA64Color values. +type RGBA64 struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []RGBA64Color + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } + +func (p *RGBA64) Bounds() Rectangle { return p.Rect } + +func (p *RGBA64) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return RGBA64Color{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *RGBA64) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toRGBA64Color(c).(RGBA64Color) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *RGBA64) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewRGBA64 returns a new RGBA64 with the given width and height. +func NewRGBA64(w, h int) *RGBA64 { + pix := make([]RGBA64Color, w*h) + return &RGBA64{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// An NRGBA is an in-memory image of NRGBAColor values. +type NRGBA struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []NRGBAColor + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } + +func (p *NRGBA) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return NRGBAColor{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *NRGBA) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toNRGBAColor(c).(NRGBAColor) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *NRGBA) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewNRGBA returns a new NRGBA with the given width and height. +func NewNRGBA(w, h int) *NRGBA { + pix := make([]NRGBAColor, w*h) + return &NRGBA{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// An NRGBA64 is an in-memory image of NRGBA64Color values. +type NRGBA64 struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []NRGBA64Color + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } + +func (p *NRGBA64) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA64) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return NRGBA64Color{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *NRGBA64) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toNRGBA64Color(c).(NRGBA64Color) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *NRGBA64) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewNRGBA64 returns a new NRGBA64 with the given width and height. +func NewNRGBA64(w, h int) *NRGBA64 { + pix := make([]NRGBA64Color, w*h) + return &NRGBA64{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// An Alpha is an in-memory image of AlphaColor values. +type Alpha struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []AlphaColor + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel } + +func (p *Alpha) Bounds() Rectangle { return p.Rect } + +func (p *Alpha) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return AlphaColor{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *Alpha) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toAlphaColor(c).(AlphaColor) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Alpha) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewAlpha returns a new Alpha with the given width and height. +func NewAlpha(w, h int) *Alpha { + pix := make([]AlphaColor, w*h) + return &Alpha{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// An Alpha16 is an in-memory image of Alpha16Color values. +type Alpha16 struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []Alpha16Color + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Alpha16) ColorModel() ColorModel { return Alpha16ColorModel } + +func (p *Alpha16) Bounds() Rectangle { return p.Rect } + +func (p *Alpha16) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return Alpha16Color{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *Alpha16) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toAlpha16Color(c).(Alpha16Color) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Alpha16) Opaque() bool { + if p.Rect.Empty() { + return true + } + base := p.Rect.Min.Y * p.Stride + i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + if c.A != 0xffff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewAlpha16 returns a new Alpha16 with the given width and height. +func NewAlpha16(w, h int) *Alpha16 { + pix := make([]Alpha16Color, w*h) + return &Alpha16{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// A Gray is an in-memory image of GrayColor values. +type Gray struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []GrayColor + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray) ColorModel() ColorModel { return GrayColorModel } + +func (p *Gray) Bounds() Rectangle { return p.Rect } + +func (p *Gray) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return GrayColor{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *Gray) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toGrayColor(c).(GrayColor) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Gray) Opaque() bool { + return true +} + +// NewGray returns a new Gray with the given width and height. +func NewGray(w, h int) *Gray { + pix := make([]GrayColor, w*h) + return &Gray{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// A Gray16 is an in-memory image of Gray16Color values. +type Gray16 struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []Gray16Color + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray16) ColorModel() ColorModel { return Gray16ColorModel } + +func (p *Gray16) Bounds() Rectangle { return p.Rect } + +func (p *Gray16) At(x, y int) Color { + if !p.Rect.Contains(Point{x, y}) { + return Gray16Color{} + } + return p.Pix[y*p.Stride+x] +} + +func (p *Gray16) Set(x, y int, c Color) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = toGray16Color(c).(Gray16Color) +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Gray16) Opaque() bool { + return true +} + +// NewGray16 returns a new Gray16 with the given width and height. +func NewGray16(w, h int) *Gray16 { + pix := make([]Gray16Color, w*h) + return &Gray16{pix, w, Rectangle{ZP, Point{w, h}}} +} + +// A PalettedColorModel represents a fixed palette of colors. +type PalettedColorModel []Color + +func diff(a, b uint32) uint32 { + if a > b { + return a - b + } + return b - a +} + +// Convert returns the palette color closest to c in Euclidean R,G,B space. +func (p PalettedColorModel) Convert(c Color) Color { + if len(p) == 0 { + return nil + } + cr, cg, cb, _ := c.RGBA() + // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference. + cr >>= 1 + cg >>= 1 + cb >>= 1 + result := Color(nil) + bestSSD := uint32(1<<32 - 1) + for _, v := range p { + vr, vg, vb, _ := v.RGBA() + vr >>= 1 + vg >>= 1 + vb >>= 1 + dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb) + ssd := (dr * dr) + (dg * dg) + (db * db) + if ssd < bestSSD { + bestSSD = ssd + result = v + } + } + return result +} + +// A Paletted is an in-memory image backed by a 2-D slice of uint8 values and a PalettedColorModel. +type Paletted struct { + // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. + Pix []uint8 + Stride int + // Rect is the image's bounds. + Rect Rectangle + // Palette is the image's palette. + Palette PalettedColorModel +} + +func (p *Paletted) ColorModel() ColorModel { return p.Palette } + +func (p *Paletted) Bounds() Rectangle { return p.Rect } + +func (p *Paletted) At(x, y int) Color { + if len(p.Palette) == 0 { + return nil + } + if !p.Rect.Contains(Point{x, y}) { + return p.Palette[0] + } + return p.Palette[p.Pix[y*p.Stride+x]] +} + +func (p *Paletted) ColorIndexAt(x, y int) uint8 { + if !p.Rect.Contains(Point{x, y}) { + return 0 + } + return p.Pix[y*p.Stride+x] +} + +func (p *Paletted) SetColorIndex(x, y int, index uint8) { + if !p.Rect.Contains(Point{x, y}) { + return + } + p.Pix[y*p.Stride+x] = index +} + +// Opaque scans the entire image and returns whether or not it is fully opaque. +func (p *Paletted) Opaque() bool { + for _, c := range p.Palette { + _, _, _, a := c.RGBA() + if a != 0xffff { + return false + } + } + return true +} + +// NewPaletted returns a new Paletted with the given width, height and palette. +func NewPaletted(w, h int, m PalettedColorModel) *Paletted { + pix := make([]uint8, w*h) + return &Paletted{pix, w, Rectangle{ZP, Point{w, h}}, m} +} -- cgit v1.2.3