From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- libgo/go/image/png/writer.go | 437 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 437 insertions(+) create mode 100644 libgo/go/image/png/writer.go (limited to 'libgo/go/image/png/writer.go') diff --git a/libgo/go/image/png/writer.go b/libgo/go/image/png/writer.go new file mode 100644 index 000000000..081d06bf5 --- /dev/null +++ b/libgo/go/image/png/writer.go @@ -0,0 +1,437 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package png + +import ( + "bufio" + "compress/zlib" + "hash/crc32" + "image" + "io" + "os" + "strconv" +) + +type encoder struct { + w io.Writer + m image.Image + cb int + err os.Error + header [8]byte + footer [4]byte + tmp [3 * 256]byte +} + +// Big-endian. +func writeUint32(b []uint8, u uint32) { + b[0] = uint8(u >> 24) + b[1] = uint8(u >> 16) + b[2] = uint8(u >> 8) + b[3] = uint8(u >> 0) +} + +type opaquer interface { + Opaque() bool +} + +// Returns whether or not the image is fully opaque. +func opaque(m image.Image) bool { + if o, ok := m.(opaquer); ok { + return o.Opaque() + } + b := m.Bounds() + for y := b.Min.Y; y < b.Max.Y; y++ { + for x := b.Min.X; x < b.Max.X; x++ { + _, _, _, a := m.At(x, y).RGBA() + if a != 0xffff { + return false + } + } + } + return true +} + +// The absolute value of a byte interpreted as a signed int8. +func abs8(d uint8) int { + if d < 128 { + return int(d) + } + return 256 - int(d) +} + +func (e *encoder) writeChunk(b []byte, name string) { + if e.err != nil { + return + } + n := uint32(len(b)) + if int(n) != len(b) { + e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))) + return + } + writeUint32(e.header[0:4], n) + e.header[4] = name[0] + e.header[5] = name[1] + e.header[6] = name[2] + e.header[7] = name[3] + crc := crc32.NewIEEE() + crc.Write(e.header[4:8]) + crc.Write(b) + writeUint32(e.footer[0:4], crc.Sum32()) + + _, e.err = e.w.Write(e.header[0:8]) + if e.err != nil { + return + } + _, e.err = e.w.Write(b) + if e.err != nil { + return + } + _, e.err = e.w.Write(e.footer[0:4]) +} + +func (e *encoder) writeIHDR() { + b := e.m.Bounds() + writeUint32(e.tmp[0:4], uint32(b.Dx())) + writeUint32(e.tmp[4:8], uint32(b.Dy())) + // Set bit depth and color type. + switch e.cb { + case cbG8: + e.tmp[8] = 8 + e.tmp[9] = ctGrayscale + case cbTC8: + e.tmp[8] = 8 + e.tmp[9] = ctTrueColor + case cbP8: + e.tmp[8] = 8 + e.tmp[9] = ctPaletted + case cbTCA8: + e.tmp[8] = 8 + e.tmp[9] = ctTrueColorAlpha + case cbG16: + e.tmp[8] = 16 + e.tmp[9] = ctGrayscale + case cbTC16: + e.tmp[8] = 16 + e.tmp[9] = ctTrueColor + case cbTCA16: + e.tmp[8] = 16 + e.tmp[9] = ctTrueColorAlpha + } + e.tmp[10] = 0 // default compression method + e.tmp[11] = 0 // default filter method + e.tmp[12] = 0 // non-interlaced + e.writeChunk(e.tmp[0:13], "IHDR") +} + +func (e *encoder) writePLTE(p image.PalettedColorModel) { + if len(p) < 1 || len(p) > 256 { + e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))) + return + } + for i := 0; i < len(p); i++ { + r, g, b, a := p[i].RGBA() + if a != 0xffff { + e.err = UnsupportedError("non-opaque palette color") + return + } + e.tmp[3*i+0] = uint8(r >> 8) + e.tmp[3*i+1] = uint8(g >> 8) + e.tmp[3*i+2] = uint8(b >> 8) + } + e.writeChunk(e.tmp[0:3*len(p)], "PLTE") +} + +// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, +// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls +// should be relatively infrequent, since writeIDATs uses a bufio.Writer. +// +// This method should only be called from writeIDATs (via writeImage). +// No other code should treat an encoder as an io.Writer. +// +// Note that, because the zlib Reader may involve an io.Pipe, e.Write calls may +// occur on a separate go-routine than the e.writeIDATs call, and care should be +// taken that e's state (such as its tmp buffer) is not modified concurrently. +func (e *encoder) Write(b []byte) (int, os.Error) { + e.writeChunk(b, "IDAT") + if e.err != nil { + return 0, e.err + } + return len(b), nil +} + +// Chooses the filter to use for encoding the current row, and applies it. +// The return value is the index of the filter and also of the row in cr that has had it applied. +func filter(cr [][]byte, pr []byte, bpp int) int { + // We try all five filter types, and pick the one that minimizes the sum of absolute differences. + // This is the same heuristic that libpng uses, although the filters are attempted in order of + // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than + // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). + cdat0 := cr[0][1:] + cdat1 := cr[1][1:] + cdat2 := cr[2][1:] + cdat3 := cr[3][1:] + cdat4 := cr[4][1:] + pdat := pr[1:] + n := len(cdat0) + + // The up filter. + sum := 0 + for i := 0; i < n; i++ { + cdat2[i] = cdat0[i] - pdat[i] + sum += abs8(cdat2[i]) + } + best := sum + filter := ftUp + + // The Paeth filter. + sum = 0 + for i := 0; i < bpp; i++ { + cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0) + sum += abs8(cdat4[i]) + } + for i := bpp; i < n; i++ { + cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]) + sum += abs8(cdat4[i]) + if sum >= best { + break + } + } + if sum < best { + best = sum + filter = ftPaeth + } + + // The none filter. + sum = 0 + for i := 0; i < n; i++ { + sum += abs8(cdat0[i]) + if sum >= best { + break + } + } + if sum < best { + best = sum + filter = ftNone + } + + // The sub filter. + sum = 0 + for i := 0; i < bpp; i++ { + cdat1[i] = cdat0[i] + sum += abs8(cdat1[i]) + } + for i := bpp; i < n; i++ { + cdat1[i] = cdat0[i] - cdat0[i-bpp] + sum += abs8(cdat1[i]) + if sum >= best { + break + } + } + if sum < best { + best = sum + filter = ftSub + } + + // The average filter. + sum = 0 + for i := 0; i < bpp; i++ { + cdat3[i] = cdat0[i] - pdat[i]/2 + sum += abs8(cdat3[i]) + } + for i := bpp; i < n; i++ { + cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2) + sum += abs8(cdat3[i]) + if sum >= best { + break + } + } + if sum < best { + best = sum + filter = ftAverage + } + + return filter +} + +func writeImage(w io.Writer, m image.Image, cb int) os.Error { + zw, err := zlib.NewWriter(w) + if err != nil { + return err + } + defer zw.Close() + + bpp := 0 // Bytes per pixel. + var paletted *image.Paletted + switch cb { + case cbG8: + bpp = 1 + case cbTC8: + bpp = 3 + case cbP8: + bpp = 1 + paletted = m.(*image.Paletted) + case cbTCA8: + bpp = 4 + case cbTC16: + bpp = 6 + case cbTCA16: + bpp = 8 + case cbG16: + bpp = 2 + } + // cr[*] and pr are the bytes for the current and previous row. + // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). + // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the + // other PNG filter types. These buffers are allocated once and re-used for each row. + // The +1 is for the per-row filter type, which is at cr[*][0]. + b := m.Bounds() + var cr [nFilter][]uint8 + for i := 0; i < len(cr); i++ { + cr[i] = make([]uint8, 1+bpp*b.Dx()) + cr[i][0] = uint8(i) + } + pr := make([]uint8, 1+bpp*b.Dx()) + + for y := b.Min.Y; y < b.Max.Y; y++ { + // Convert from colors to bytes. + switch cb { + case cbG8: + for x := b.Min.X; x < b.Max.X; x++ { + c := image.GrayColorModel.Convert(m.At(x, y)).(image.GrayColor) + cr[0][x+1] = c.Y + } + case cbTC8: + for x := b.Min.X; x < b.Max.X; x++ { + // We have previously verified that the alpha value is fully opaque. + r, g, b, _ := m.At(x, y).RGBA() + cr[0][3*x+1] = uint8(r >> 8) + cr[0][3*x+2] = uint8(g >> 8) + cr[0][3*x+3] = uint8(b >> 8) + } + case cbP8: + rowOffset := y * paletted.Stride + copy(cr[0][b.Min.X+1:], paletted.Pix[rowOffset+b.Min.X:rowOffset+b.Max.X]) + case cbTCA8: + // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. + for x := b.Min.X; x < b.Max.X; x++ { + c := image.NRGBAColorModel.Convert(m.At(x, y)).(image.NRGBAColor) + cr[0][4*x+1] = c.R + cr[0][4*x+2] = c.G + cr[0][4*x+3] = c.B + cr[0][4*x+4] = c.A + } + case cbG16: + for x := b.Min.X; x < b.Max.X; x++ { + c := image.Gray16ColorModel.Convert(m.At(x, y)).(image.Gray16Color) + cr[0][2*x+1] = uint8(c.Y >> 8) + cr[0][2*x+2] = uint8(c.Y) + } + case cbTC16: + for x := b.Min.X; x < b.Max.X; x++ { + // We have previously verified that the alpha value is fully opaque. + r, g, b, _ := m.At(x, y).RGBA() + cr[0][6*x+1] = uint8(r >> 8) + cr[0][6*x+2] = uint8(r) + cr[0][6*x+3] = uint8(g >> 8) + cr[0][6*x+4] = uint8(g) + cr[0][6*x+5] = uint8(b >> 8) + cr[0][6*x+6] = uint8(b) + } + case cbTCA16: + // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. + for x := b.Min.X; x < b.Max.X; x++ { + c := image.NRGBA64ColorModel.Convert(m.At(x, y)).(image.NRGBA64Color) + cr[0][8*x+1] = uint8(c.R >> 8) + cr[0][8*x+2] = uint8(c.R) + cr[0][8*x+3] = uint8(c.G >> 8) + cr[0][8*x+4] = uint8(c.G) + cr[0][8*x+5] = uint8(c.B >> 8) + cr[0][8*x+6] = uint8(c.B) + cr[0][8*x+7] = uint8(c.A >> 8) + cr[0][8*x+8] = uint8(c.A) + } + } + + // Apply the filter. + f := filter(cr[0:nFilter], pr, bpp) + + // Write the compressed bytes. + _, err = zw.Write(cr[f]) + if err != nil { + return err + } + + // The current row for y is the previous row for y+1. + pr, cr[0] = cr[0], pr + } + return nil +} + +// Write the actual image data to one or more IDAT chunks. +func (e *encoder) writeIDATs() { + if e.err != nil { + return + } + var bw *bufio.Writer + bw, e.err = bufio.NewWriterSize(e, 1<<15) + if e.err != nil { + return + } + e.err = writeImage(bw, e.m, e.cb) + if e.err != nil { + return + } + e.err = bw.Flush() +} + +func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") } + +// Encode writes the Image m to w in PNG format. Any Image may be encoded, but +// images that are not image.NRGBA might be encoded lossily. +func Encode(w io.Writer, m image.Image) os.Error { + // Obviously, negative widths and heights are invalid. Furthermore, the PNG + // spec section 11.2.2 says that zero is invalid. Excessively large images are + // also rejected. + mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy()) + if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { + return FormatError("invalid image size: " + strconv.Itoa64(mw) + "x" + strconv.Itoa64(mw)) + } + + var e encoder + e.w = w + e.m = m + pal, _ := m.(*image.Paletted) + if pal != nil { + e.cb = cbP8 + } else { + switch m.ColorModel() { + case image.GrayColorModel: + e.cb = cbG8 + case image.Gray16ColorModel: + e.cb = cbG16 + case image.RGBAColorModel, image.NRGBAColorModel, image.AlphaColorModel: + if opaque(m) { + e.cb = cbTC8 + } else { + e.cb = cbTCA8 + } + default: + if opaque(m) { + e.cb = cbTC16 + } else { + e.cb = cbTCA16 + } + } + } + + _, e.err = io.WriteString(w, pngHeader) + e.writeIHDR() + if pal != nil { + e.writePLTE(pal.Palette) + } + e.writeIDATs() + e.writeIEND() + return e.err +} -- cgit v1.2.3