From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- .../classpath/gnu/java/security/sig/rsa/RSA.java | 324 +++++++++++++++++++++ 1 file changed, 324 insertions(+) create mode 100644 libjava/classpath/gnu/java/security/sig/rsa/RSA.java (limited to 'libjava/classpath/gnu/java/security/sig/rsa/RSA.java') diff --git a/libjava/classpath/gnu/java/security/sig/rsa/RSA.java b/libjava/classpath/gnu/java/security/sig/rsa/RSA.java new file mode 100644 index 000000000..343b2cf65 --- /dev/null +++ b/libjava/classpath/gnu/java/security/sig/rsa/RSA.java @@ -0,0 +1,324 @@ +/* RSA.java -- + Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. + +This file is a part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or (at +your option) any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 +USA + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + + +package gnu.java.security.sig.rsa; + +import gnu.java.security.Properties; +import gnu.java.security.util.PRNG; + +import java.math.BigInteger; +import java.security.PrivateKey; +import java.security.PublicKey; +import java.security.interfaces.RSAPrivateCrtKey; +import java.security.interfaces.RSAPrivateKey; +import java.security.interfaces.RSAPublicKey; + +/** + * Utility methods related to the RSA algorithm. + *

+ * References: + *

    + *
  1. + * RSA-PSS Signature Scheme with Appendix, part B.
    + * Primitive specification and supporting documentation.
    + * Jakob Jonsson and Burt Kaliski.
  2. + *
  3. Public-Key Cryptography + * Standards (PKCS) #1:
    + * RSA Cryptography Specifications Version 2.1.
    + * Jakob Jonsson and Burt Kaliski.
  4. + *
  5. + * Remote timing attacks are practical
    + * D. Boneh and D. Brumley.
  6. + *
+ */ +public class RSA +{ + private static final BigInteger ZERO = BigInteger.ZERO; + + private static final BigInteger ONE = BigInteger.ONE; + + /** Our default source of randomness. */ + private static final PRNG prng = PRNG.getInstance(); + + /** Trivial private constructor to enforce Singleton pattern. */ + private RSA() + { + super(); + } + + /** + * An implementation of the RSASP method: Assuming that the designated + * RSA private key is a valid one, this method computes a signature + * representative for a designated message representative signed + * by the holder of the designated RSA private key. + * + * @param K the RSA private key. + * @param m the message representative: an integer between + * 0 and n - 1, where n + * is the RSA modulus. + * @return the signature representative, an integer between + * 0 and n - 1, where n + * is the RSA modulus. + * @throws ClassCastException if K is not an RSA one. + * @throws IllegalArgumentException if m (the message + * representative) is out of range. + */ + public static final BigInteger sign(final PrivateKey K, final BigInteger m) + { + try + { + return RSADP((RSAPrivateKey) K, m); + } + catch (IllegalArgumentException x) + { + throw new IllegalArgumentException("message representative out of range"); + } + } + + /** + * An implementation of the RSAVP method: Assuming that the designated + * RSA public key is a valid one, this method computes a message + * representative for the designated signature representative + * generated by an RSA private key, for a message intended for the holder of + * the designated RSA public key. + * + * @param K the RSA public key. + * @param s the signature representative, an integer between + * 0 and n - 1, where n + * is the RSA modulus. + * @return a message representative: an integer between 0 + * and n - 1, where n is the RSA + * modulus. + * @throws ClassCastException if K is not an RSA one. + * @throws IllegalArgumentException if s (the signature + * representative) is out of range. + */ + public static final BigInteger verify(final PublicKey K, final BigInteger s) + { + try + { + return RSAEP((RSAPublicKey) K, s); + } + catch (IllegalArgumentException x) + { + throw new IllegalArgumentException("signature representative out of range"); + } + } + + /** + * An implementation of the RSAEP algorithm. + * + * @param K the recipient's RSA public key. + * @param m the message representative as an MPI. + * @return the resulting MPI --an MPI between 0 and + * n - 1 (n being the public shared + * modulus)-- that will eventually be padded with an appropriate + * framing/padding scheme. + * @throws ClassCastException if K is not an RSA one. + * @throws IllegalArgumentException if m, the message + * representative is not between 0 and + * n - 1 (n being the public shared + * modulus). + */ + public static final BigInteger encrypt(final PublicKey K, final BigInteger m) + { + try + { + return RSAEP((RSAPublicKey) K, m); + } + catch (IllegalArgumentException x) + { + throw new IllegalArgumentException("message representative out of range"); + } + } + + /** + * An implementation of the RSADP algorithm. + * + * @param K the recipient's RSA private key. + * @param c the ciphertext representative as an MPI. + * @return the message representative, an MPI between 0 and + * n - 1 (n being the shared public + * modulus). + * @throws ClassCastException if K is not an RSA one. + * @throws IllegalArgumentException if c, the ciphertext + * representative is not between 0 and + * n - 1 (n being the shared public + * modulus). + */ + public static final BigInteger decrypt(final PrivateKey K, final BigInteger c) + { + try + { + return RSADP((RSAPrivateKey) K, c); + } + catch (IllegalArgumentException x) + { + throw new IllegalArgumentException("ciphertext representative out of range"); + } + } + + /** + * Converts a multi-precision integer (MPI) s into an + * octet sequence of length k. + * + * @param s the multi-precision integer to convert. + * @param k the length of the output. + * @return the result of the transform. + * @exception IllegalArgumentException if the length in octets of meaningful + * bytes of s is greater than k. + */ + public static final byte[] I2OSP(final BigInteger s, final int k) + { + byte[] result = s.toByteArray(); + if (result.length < k) + { + final byte[] newResult = new byte[k]; + System.arraycopy(result, 0, newResult, k - result.length, result.length); + result = newResult; + } + else if (result.length > k) + { // leftmost extra bytes should all be 0 + final int limit = result.length - k; + for (int i = 0; i < limit; i++) + { + if (result[i] != 0x00) + throw new IllegalArgumentException("integer too large"); + } + final byte[] newResult = new byte[k]; + System.arraycopy(result, limit, newResult, 0, k); + result = newResult; + } + return result; + } + + private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m) + { + // 1. If the representative m is not between 0 and n - 1, output + // "representative out of range" and stop. + final BigInteger n = K.getModulus(); + if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0) + throw new IllegalArgumentException(); + // 2. Let c = m^e mod n. + final BigInteger e = K.getPublicExponent(); + final BigInteger result = m.modPow(e, n); + // 3. Output c. + return result; + } + + private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c) + { + // 1. If the representative c is not between 0 and n - 1, output + // "representative out of range" and stop. + final BigInteger n = K.getModulus(); + if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0) + throw new IllegalArgumentException(); + // 2. The representative m is computed as follows. + BigInteger result; + if (! (K instanceof RSAPrivateCrtKey)) + { + // a. If the first form (n, d) of K is used, let m = c^d mod n. + final BigInteger d = K.getPrivateExponent(); + result = c.modPow(d, n); + } + else + { + // from [3] p.13 --see class docs: + // The RSA blinding operation calculates x = (r^e) * g mod n before + // decryption, where r is random, e is the RSA encryption exponent, and + // g is the ciphertext to be decrypted. x is then decrypted as normal, + // followed by division by r, i.e. (x^e) / r mod n. Since r is random, + // x is random and timing the decryption should not reveal information + // about the key. Note that r should be a new random number for every + // decryption. + final boolean rsaBlinding = Properties.doRSABlinding(); + BigInteger r = null; + BigInteger e = null; + if (rsaBlinding) + { // pre-decryption + r = newR(n); + e = ((RSAPrivateCrtKey) K).getPublicExponent(); + final BigInteger x = r.modPow(e, n).multiply(c).mod(n); + c = x; + } + // b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i) + // of K is used, proceed as follows: + final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP(); + final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ(); + final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP(); + final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ(); + final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient(); + // i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q. + final BigInteger m_1 = c.modPow(dP, p); + final BigInteger m_2 = c.modPow(dQ, q); + // ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u. + // iii. Let h = (m_1 - m_2) * qInv mod p. + final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p); + // iv. Let m = m_2 + q * h. + result = m_2.add(q.multiply(h)); + if (rsaBlinding) // post-decryption + result = result.multiply(r.modInverse(n)).mod(n); + } + // 3. Output m + return result; + } + + /** + * Returns a random MPI with a random bit-length of the form 8b, + * where b is in the range [32..64]. + * + * @return a random MPI whose length in bytes is between 32 and 64 inclusive. + */ + private static final BigInteger newR(final BigInteger N) + { + final int upper = (N.bitLength() + 7) / 8; + final int lower = upper / 2; + final byte[] bl = new byte[1]; + int b; + do + { + prng.nextBytes(bl); + b = bl[0] & 0xFF; + } + while (b < lower || b > upper); + final byte[] buffer = new byte[b]; // 256-bit MPI + prng.nextBytes(buffer); + return new BigInteger(1, buffer); + } +} -- cgit v1.2.3