From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- .../gnu/javax/crypto/cipher/Rijndael.java | 704 +++++++++++++++++++++ 1 file changed, 704 insertions(+) create mode 100644 libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java (limited to 'libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java') diff --git a/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java b/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java new file mode 100644 index 000000000..0463fe51d --- /dev/null +++ b/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java @@ -0,0 +1,704 @@ +/* Rijndael.java -- + Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. + +This file is a part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or (at +your option) any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 +USA + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + + +package gnu.javax.crypto.cipher; + +import gnu.java.security.Configuration; +import gnu.java.security.Registry; +import gnu.java.security.util.Util; + +import java.security.InvalidKeyException; +import java.util.ArrayList; +import java.util.Collections; +import java.util.Iterator; +import java.util.logging.Logger; + +/** + * Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size + * (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit) + * symmetric key block cipher. + *

+ * References: + *

    + *
  1. The Rijndael + * Block Cipher - AES Proposal.
    + * Vincent Rijmen and + * Joan Daemen.
  2. + *
+ */ +public final class Rijndael + extends BaseCipher +{ + private static final Logger log = Logger.getLogger(Rijndael.class.getName()); + private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes + private static final int DEFAULT_KEY_SIZE = 16; // in bytes + private static final String SS = + "\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76" + + "\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0" + + "\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115" + + "\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275" + + "\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84" + + "\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF" + + "\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8" + + "\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2" + + "\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973" + + "\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB" + + "\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479" + + "\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08" + + "\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A" + + "\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E" + + "\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF" + + "\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16"; + private static final byte[] S = new byte[256]; + private static final byte[] Si = new byte[256]; + private static final int[] T1 = new int[256]; + private static final int[] T2 = new int[256]; + private static final int[] T3 = new int[256]; + private static final int[] T4 = new int[256]; + private static final int[] T5 = new int[256]; + private static final int[] T6 = new int[256]; + private static final int[] T7 = new int[256]; + private static final int[] T8 = new int[256]; + private static final int[] U1 = new int[256]; + private static final int[] U2 = new int[256]; + private static final int[] U3 = new int[256]; + private static final int[] U4 = new int[256]; + private static final byte[] rcon = new byte[30]; + private static final int[][][] shifts = new int[][][] { + { { 0, 0 }, { 1, 3 }, { 2, 2 }, { 3, 1 } }, + { { 0, 0 }, { 1, 5 }, { 2, 4 }, { 3, 3 } }, + { { 0, 0 }, { 1, 7 }, { 3, 5 }, { 4, 4 } } }; + /** + * KAT vector (from ecb_vk): I=96 + * KEY=0000000000000000000000010000000000000000000000000000000000000000 + * CT=E44429474D6FC3084EB2A6B8B46AF754 + */ + private static final byte[] KAT_KEY = Util.toBytesFromString( + "0000000000000000000000010000000000000000000000000000000000000000"); + private static final byte[] KAT_CT = Util.toBytesFromString( + "E44429474D6FC3084EB2A6B8B46AF754"); + /** caches the result of the correctness test, once executed. */ + private static Boolean valid; + + static + { + long time = System.currentTimeMillis(); + int ROOT = 0x11B; + int i, j = 0; + // S-box, inverse S-box, T-boxes, U-boxes + int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t; + char c; + for (i = 0; i < 256; i++) + { + c = SS.charAt(i >>> 1); + S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF); + s = S[i] & 0xFF; + Si[s] = (byte) i; + s2 = s << 1; + if (s2 >= 0x100) + s2 ^= ROOT; + s3 = s2 ^ s; + i2 = i << 1; + if (i2 >= 0x100) + i2 ^= ROOT; + i4 = i2 << 1; + if (i4 >= 0x100) + i4 ^= ROOT; + i8 = i4 << 1; + if (i8 >= 0x100) + i8 ^= ROOT; + i9 = i8 ^ i; + ib = i9 ^ i2; + id = i9 ^ i4; + ie = i8 ^ i4 ^ i2; + T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3; + T2[i] = (t >>> 8) | (t << 24); + T3[i] = (t >>> 16) | (t << 16); + T4[i] = (t >>> 24) | (t << 8); + T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib; + T6[s] = U2[i] = (t >>> 8) | (t << 24); + T7[s] = U3[i] = (t >>> 16) | (t << 16); + T8[s] = U4[i] = (t >>> 24) | (t << 8); + } + // round constants + int r = 1; + rcon[0] = 1; + for (i = 1; i < 30; i++) + { + r <<= 1; + if (r >= 0x100) + r ^= ROOT; + rcon[i] = (byte) r; + } + time = System.currentTimeMillis() - time; + if (Configuration.DEBUG) + { + log.fine("Static Data"); + log.fine("S[]:"); + StringBuilder sb; + for (i = 0; i < 16; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 16; j++) + sb.append("0x").append(Util.toString(S[i * 16 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("Si[]:"); + for (i = 0; i < 16; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 16; j++) + sb.append("0x").append(Util.toString(Si[i * 16 + j])).append(", "); + log.fine(sb.toString()); + } + + log.fine("T1[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T1[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T2[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T2[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T3[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T3[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T4[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T4[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T5[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T5[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T6[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T6[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T7[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T7[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("T8[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(T8[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + + log.fine("U1[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(U1[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("U2[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(U2[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("U3[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(U3[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("U4[]:"); + for (i = 0; i < 64; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 4; j++) + sb.append("0x").append(Util.toString(U4[i * 4 + j])).append(", "); + log.fine(sb.toString()); + } + + log.fine("rcon[]:"); + for (i = 0; i < 5; i++) + { + sb = new StringBuilder(); + for (j = 0; j < 6; j++) + sb.append("0x").append(Util.toString(rcon[i * 6 + j])).append(", "); + log.fine(sb.toString()); + } + log.fine("Total initialization time: " + time + " ms."); + } + } + + /** Trivial 0-arguments constructor. */ + public Rijndael() + { + super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); + } + + /** + * Returns the number of rounds for a given Rijndael's key and block sizes. + * + * @param ks the size of the user key material in bytes. + * @param bs the desired block size in bytes. + * @return the number of rounds for a given Rijndael's key and block sizes. + */ + public static int getRounds(int ks, int bs) + { + switch (ks) + { + case 16: + return bs == 16 ? 10 : (bs == 24 ? 12 : 14); + case 24: + return bs != 32 ? 12 : 14; + default: // 32 bytes = 256 bits + return 14; + } + } + + private static void rijndaelEncrypt(byte[] in, int inOffset, byte[] out, + int outOffset, Object sessionKey, int bs) + { + Object[] sKey = (Object[]) sessionKey; // extract encryption round keys + int[][] Ke = (int[][]) sKey[0]; + int BC = bs / 4; + int ROUNDS = Ke.length - 1; + int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); + int s1 = shifts[SC][1][0]; + int s2 = shifts[SC][2][0]; + int s3 = shifts[SC][3][0]; + int[] a = new int[BC]; + int[] t = new int[BC]; // temporary work array + int i, tt; + for (i = 0; i < BC; i++) // plaintext to ints + key + t[i] = (in[inOffset++] << 24 + | (in[inOffset++] & 0xFF) << 16 + | (in[inOffset++] & 0xFF) << 8 + | (in[inOffset++] & 0xFF) ) ^ Ke[0][i]; + for (int r = 1; r < ROUNDS; r++) // apply round transforms + { + for (i = 0; i < BC; i++) + a[i] = (T1[(t[ i ] >>> 24) ] + ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF] + ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF] + ^ T4[ t[(i + s3) % BC] & 0xFF]) ^ Ke[r][i]; + System.arraycopy(a, 0, t, 0, BC); + if (Configuration.DEBUG) + log.fine("CT" + r + "=" + Util.toString(t)); + } + for (i = 0; i < BC; i++) // last round is special + { + tt = Ke[ROUNDS][i]; + out[outOffset++] = (byte)(S[(t[ i ] >>> 24) ] ^ (tt >>> 24)); + out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); + out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); + out[outOffset++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt ); + } + if (Configuration.DEBUG) + log.fine("CT=" + Util.toString(out, outOffset - bs, bs)); + } + + private static void rijndaelDecrypt(byte[] in, int inOffset, byte[] out, + int outOffset, Object sessionKey, int bs) + { + Object[] sKey = (Object[]) sessionKey; // extract decryption round keys + int[][] Kd = (int[][]) sKey[1]; + int BC = bs / 4; + int ROUNDS = Kd.length - 1; + int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); + int s1 = shifts[SC][1][1]; + int s2 = shifts[SC][2][1]; + int s3 = shifts[SC][3][1]; + int[] a = new int[BC]; + int[] t = new int[BC]; // temporary work array + int i, tt; + for (i = 0; i < BC; i++) // ciphertext to ints + key + t[i] = (in[inOffset++] << 24 + | (in[inOffset++] & 0xFF) << 16 + | (in[inOffset++] & 0xFF) << 8 + | (in[inOffset++] & 0xFF) ) ^ Kd[0][i]; + for (int r = 1; r < ROUNDS; r++) // apply round transforms + { + for (i = 0; i < BC; i++) + a[i] = (T5[(t[ i ] >>> 24) ] + ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF] + ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF] + ^ T8[ t[(i + s3) % BC] & 0xFF]) ^ Kd[r][i]; + System.arraycopy(a, 0, t, 0, BC); + if (Configuration.DEBUG) + log.fine("PT" + r + "=" + Util.toString(t)); + } + for (i = 0; i < BC; i++) // last round is special + { + tt = Kd[ROUNDS][i]; + out[outOffset++] = (byte)(Si[(t[ i ] >>> 24) ] ^ (tt >>> 24)); + out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); + out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); + out[outOffset++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt ); + } + if (Configuration.DEBUG) + log.fine("PT=" + Util.toString(out, outOffset - bs, bs)); + } + + private static void aesEncrypt(byte[] in, int i, byte[] out, int j, Object key) + { + int[][] Ke = (int[][])((Object[]) key)[0]; // extract encryption round keys + int ROUNDS = Ke.length - 1; + int[] Ker = Ke[0]; + // plaintext to ints + key + int t0 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Ker[0]; + int t1 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Ker[1]; + int t2 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Ker[2]; + int t3 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Ker[3]; + int a0, a1, a2, a3; + for (int r = 1; r < ROUNDS; r++) // apply round transforms + { + Ker = Ke[r]; + a0 = (T1[(t0 >>> 24) ] + ^ T2[(t1 >>> 16) & 0xFF] + ^ T3[(t2 >>> 8) & 0xFF] + ^ T4[ t3 & 0xFF]) ^ Ker[0]; + a1 = (T1[(t1 >>> 24) ] + ^ T2[(t2 >>> 16) & 0xFF] + ^ T3[(t3 >>> 8) & 0xFF] + ^ T4[ t0 & 0xFF]) ^ Ker[1]; + a2 = (T1[(t2 >>> 24) ] + ^ T2[(t3 >>> 16) & 0xFF] + ^ T3[(t0 >>> 8) & 0xFF] + ^ T4[ t1 & 0xFF]) ^ Ker[2]; + a3 = (T1[(t3 >>> 24) ] + ^ T2[(t0 >>> 16) & 0xFF] + ^ T3[(t1 >>> 8) & 0xFF] + ^ T4[ t2 & 0xFF]) ^ Ker[3]; + t0 = a0; + t1 = a1; + t2 = a2; + t3 = a3; + if (Configuration.DEBUG) + log.fine("CT" + r + "=" + Util.toString(t0) + Util.toString(t1) + + Util.toString(t2) + Util.toString(t3)); + } + // last round is special + Ker = Ke[ROUNDS]; + int tt = Ker[0]; + out[j++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(S[ t3 & 0xFF] ^ tt ); + tt = Ker[1]; + out[j++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(S[ t0 & 0xFF] ^ tt ); + tt = Ker[2]; + out[j++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(S[ t1 & 0xFF] ^ tt ); + tt = Ker[3]; + out[j++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(S[ t2 & 0xFF] ^ tt ); + if (Configuration.DEBUG) + log.fine("CT=" + Util.toString(out, j - 16, 16)); + } + + private static void aesDecrypt(byte[] in, int i, byte[] out, int j, Object key) + { + int[][] Kd = (int[][])((Object[]) key)[1]; // extract decryption round keys + int ROUNDS = Kd.length - 1; + int[] Kdr = Kd[0]; + // ciphertext to ints + key + int t0 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Kdr[0]; + int t1 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Kdr[1]; + int t2 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Kdr[2]; + int t3 = (in[i++] << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ Kdr[3]; + + int a0, a1, a2, a3; + for (int r = 1; r < ROUNDS; r++) // apply round transforms + { + Kdr = Kd[r]; + a0 = (T5[(t0 >>> 24) ] + ^ T6[(t3 >>> 16) & 0xFF] + ^ T7[(t2 >>> 8) & 0xFF] + ^ T8[ t1 & 0xFF]) ^ Kdr[0]; + a1 = (T5[(t1 >>> 24) ] + ^ T6[(t0 >>> 16) & 0xFF] + ^ T7[(t3 >>> 8) & 0xFF] + ^ T8[ t2 & 0xFF]) ^ Kdr[1]; + a2 = (T5[(t2 >>> 24) ] + ^ T6[(t1 >>> 16) & 0xFF] + ^ T7[(t0 >>> 8) & 0xFF] + ^ T8[ t3 & 0xFF]) ^ Kdr[2]; + a3 = (T5[(t3 >>> 24) ] + ^ T6[(t2 >>> 16) & 0xFF] + ^ T7[(t1 >>> 8) & 0xFF] + ^ T8[ t0 & 0xFF]) ^ Kdr[3]; + t0 = a0; + t1 = a1; + t2 = a2; + t3 = a3; + if (Configuration.DEBUG) + log.fine("PT" + r + "=" + Util.toString(t0) + Util.toString(t1) + + Util.toString(t2) + Util.toString(t3)); + } + // last round is special + Kdr = Kd[ROUNDS]; + int tt = Kdr[0]; + out[j++] = (byte)(Si[(t0 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(Si[ t1 & 0xFF] ^ tt ); + tt = Kdr[1]; + out[j++] = (byte)(Si[(t1 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(Si[ t2 & 0xFF] ^ tt ); + tt = Kdr[2]; + out[j++] = (byte)(Si[(t2 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(Si[ t3 & 0xFF] ^ tt ); + tt = Kdr[3]; + out[j++] = (byte)(Si[(t3 >>> 24) ] ^ (tt >>> 24)); + out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); + out[j++] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); + out[j++] = (byte)(Si[ t0 & 0xFF] ^ tt ); + if (Configuration.DEBUG) + log.fine("PT=" + Util.toString(out, j - 16, 16)); + } + + public Object clone() + { + Rijndael result = new Rijndael(); + result.currentBlockSize = this.currentBlockSize; + + return result; + } + + public Iterator blockSizes() + { + ArrayList al = new ArrayList(); + al.add(Integer.valueOf(128 / 8)); + al.add(Integer.valueOf(192 / 8)); + al.add(Integer.valueOf(256 / 8)); + + return Collections.unmodifiableList(al).iterator(); + } + + public Iterator keySizes() + { + ArrayList al = new ArrayList(); + al.add(Integer.valueOf(128 / 8)); + al.add(Integer.valueOf(192 / 8)); + al.add(Integer.valueOf(256 / 8)); + + return Collections.unmodifiableList(al).iterator(); + } + + /** + * Expands a user-supplied key material into a session key for a designated + * block size. + * + * @param k the 128/192/256-bit user-key to use. + * @param bs the block size in bytes of this Rijndael. + * @return an Object encapsulating the session key. + * @exception IllegalArgumentException if the block size is not 16, 24 or 32. + * @exception InvalidKeyException if the key data is invalid. + */ + public Object makeKey(byte[] k, int bs) throws InvalidKeyException + { + if (k == null) + throw new InvalidKeyException("Empty key"); + if (! (k.length == 16 || k.length == 24 || k.length == 32)) + throw new InvalidKeyException("Incorrect key length"); + if (! (bs == 16 || bs == 24 || bs == 32)) + throw new IllegalArgumentException(); + int ROUNDS = getRounds(k.length, bs); + int BC = bs / 4; + int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys + int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys + int ROUND_KEY_COUNT = (ROUNDS + 1) * BC; + int KC = k.length / 4; + int[] tk = new int[KC]; + int i, j; + // copy user material bytes into temporary ints + for (i = 0, j = 0; i < KC;) + tk[i++] = k[j++] << 24 + | (k[j++] & 0xFF) << 16 + | (k[j++] & 0xFF) << 8 + | (k[j++] & 0xFF); + // copy values into round key arrays + int t = 0; + for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) + { + Ke[t / BC][t % BC] = tk[j]; + Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; + } + int tt, rconpointer = 0; + while (t < ROUND_KEY_COUNT) + { + // extrapolate using phi (the round key evolution function) + tt = tk[KC - 1]; + tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 + ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16 + ^ (S[ tt & 0xFF] & 0xFF) << 8 + ^ (S[(tt >>> 24) ] & 0xFF) ^ rcon[rconpointer++] << 24; + if (KC != 8) + for (i = 1, j = 0; i < KC;) + tk[i++] ^= tk[j++]; + else + { + for (i = 1, j = 0; i < KC / 2;) + tk[i++] ^= tk[j++]; + tt = tk[KC / 2 - 1]; + tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) + ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8 + ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 + ^ S[(tt >>> 24) & 0xFF] << 24; + for (j = KC / 2, i = j + 1; i < KC;) + tk[i++] ^= tk[j++]; + } + // copy values into round key arrays + for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) + { + Ke[t / BC][t % BC] = tk[j]; + Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; + } + } + for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed + for (j = 0; j < BC; j++) + { + tt = Kd[r][j]; + Kd[r][j] = U1[(tt >>> 24) ] + ^ U2[(tt >>> 16) & 0xFF] + ^ U3[(tt >>> 8) & 0xFF] + ^ U4[ tt & 0xFF]; + } + return new Object[] { Ke, Kd }; + } + + public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) + { + if (! (bs == 16 || bs == 24 || bs == 32)) + throw new IllegalArgumentException(); + if (bs == DEFAULT_BLOCK_SIZE) + aesEncrypt(in, i, out, j, k); + else + rijndaelEncrypt(in, i, out, j, k, bs); + } + + public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) + { + if (! (bs == 16 || bs == 24 || bs == 32)) + throw new IllegalArgumentException(); + if (bs == DEFAULT_BLOCK_SIZE) + aesDecrypt(in, i, out, j, k); + else + rijndaelDecrypt(in, i, out, j, k, bs); + } + + public boolean selfTest() + { + if (valid == null) + { + boolean result = super.selfTest(); // do symmetry tests + if (result) + result = testKat(KAT_KEY, KAT_CT); + valid = Boolean.valueOf(result); + } + return valid.booleanValue(); + } +} -- cgit v1.2.3