From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- .../java/awt/image/AffineTransformOp.java | 608 +++++++++++++++++++++ 1 file changed, 608 insertions(+) create mode 100644 libjava/classpath/java/awt/image/AffineTransformOp.java (limited to 'libjava/classpath/java/awt/image/AffineTransformOp.java') diff --git a/libjava/classpath/java/awt/image/AffineTransformOp.java b/libjava/classpath/java/awt/image/AffineTransformOp.java new file mode 100644 index 000000000..460804f90 --- /dev/null +++ b/libjava/classpath/java/awt/image/AffineTransformOp.java @@ -0,0 +1,608 @@ +/* AffineTransformOp.java -- This class performs affine + transformation between two images or rasters in 2 dimensions. + Copyright (C) 2004, 2006 Free Software Foundation + +This file is part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; see the file COPYING. If not, write to the +Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301 USA. + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + +package java.awt.image; + +import java.awt.Graphics2D; +import java.awt.Point; +import java.awt.Rectangle; +import java.awt.RenderingHints; +import java.awt.geom.AffineTransform; +import java.awt.geom.NoninvertibleTransformException; +import java.awt.geom.Point2D; +import java.awt.geom.Rectangle2D; +import java.util.Arrays; + +/** + * AffineTransformOp performs matrix-based transformations (translations, + * scales, flips, rotations, and shears). + * + * If interpolation is required, nearest neighbour, bilinear, and bicubic + * methods are available. + * + * @author Olga Rodimina (rodimina@redhat.com) + * @author Francis Kung (fkung@redhat.com) + */ +public class AffineTransformOp implements BufferedImageOp, RasterOp +{ + public static final int TYPE_NEAREST_NEIGHBOR = 1; + + public static final int TYPE_BILINEAR = 2; + + /** + * @since 1.5.0 + */ + public static final int TYPE_BICUBIC = 3; + + private AffineTransform transform; + private RenderingHints hints; + + /** + * Construct AffineTransformOp with the given xform and interpolationType. + * Interpolation type can be TYPE_BILINEAR, TYPE_BICUBIC or + * TYPE_NEAREST_NEIGHBOR. + * + * @param xform AffineTransform that will applied to the source image + * @param interpolationType type of interpolation used + * @throws ImagingOpException if the transform matrix is noninvertible + */ + public AffineTransformOp (AffineTransform xform, int interpolationType) + { + this.transform = xform; + if (xform.getDeterminant() == 0) + throw new ImagingOpException(null); + + switch (interpolationType) + { + case TYPE_BILINEAR: + hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION, + RenderingHints.VALUE_INTERPOLATION_BILINEAR); + break; + case TYPE_BICUBIC: + hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION, + RenderingHints.VALUE_INTERPOLATION_BICUBIC); + break; + default: + hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION, + RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR); + } + } + + /** + * Construct AffineTransformOp with the given xform and rendering hints. + * + * @param xform AffineTransform that will applied to the source image + * @param hints rendering hints that will be used during transformation + * @throws ImagingOpException if the transform matrix is noninvertible + */ + public AffineTransformOp (AffineTransform xform, RenderingHints hints) + { + this.transform = xform; + this.hints = hints; + if (xform.getDeterminant() == 0) + throw new ImagingOpException(null); + } + + /** + * Creates a new BufferedImage with the size equal to that of the + * transformed image and the correct number of bands. The newly created + * image is created with the specified ColorModel. + * If a ColorModel is not specified, an appropriate ColorModel is used. + * + * @param src the source image. + * @param destCM color model for the destination image (can be null). + * @return a new compatible destination image. + */ + public BufferedImage createCompatibleDestImage (BufferedImage src, + ColorModel destCM) + { + if (destCM != null) + return new BufferedImage(destCM, + createCompatibleDestRaster(src.getRaster()), + src.isAlphaPremultiplied(), null); + + // This behaviour was determined by Mauve testcases, and is compatible + // with the reference implementation + if (src.getType() == BufferedImage.TYPE_INT_ARGB_PRE + || src.getType() == BufferedImage.TYPE_4BYTE_ABGR + || src.getType() == BufferedImage.TYPE_4BYTE_ABGR_PRE) + return new BufferedImage(src.getWidth(), src.getHeight(), src.getType()); + + else + return new BufferedImage(src.getWidth(), src.getHeight(), + BufferedImage.TYPE_INT_ARGB); + } + + /** + * Creates a new WritableRaster with the size equal to the transformed + * source raster and correct number of bands . + * + * @param src the source raster. + * @throws RasterFormatException if resulting width or height of raster is 0. + * @return a new compatible raster. + */ + public WritableRaster createCompatibleDestRaster (Raster src) + { + Rectangle2D rect = getBounds2D(src); + + if (rect.getWidth() == 0 || rect.getHeight() == 0) + throw new RasterFormatException("width or height is 0"); + + return src.createCompatibleWritableRaster((int) rect.getWidth(), + (int) rect.getHeight()); + } + + /** + * Transforms source image using transform specified at the constructor. + * The resulting transformed image is stored in the destination image if one + * is provided; otherwise a new BufferedImage is created and returned. + * + * @param src source image + * @param dst destination image + * @throws IllegalArgumentException if the source and destination image are + * the same + * @return transformed source image. + */ + public final BufferedImage filter (BufferedImage src, BufferedImage dst) + { + if (dst == src) + throw new IllegalArgumentException("src image cannot be the same as " + + "the dst image"); + + // If the destination image is null, then use a compatible BufferedImage + if (dst == null) + dst = createCompatibleDestImage(src, null); + + Graphics2D gr = dst.createGraphics(); + gr.setRenderingHints(hints); + gr.drawImage(src, transform, null); + return dst; + } + + /** + * Transforms source raster using transform specified at the constructor. + * The resulting raster is stored in the destination raster if it is not + * null, otherwise a new raster is created and returned. + * + * @param src source raster + * @param dst destination raster + * @throws IllegalArgumentException if the source and destination are not + * compatible + * @return transformed raster. + */ + public final WritableRaster filter(Raster src, WritableRaster dst) + { + // Initial checks + if (dst == src) + throw new IllegalArgumentException("src image cannot be the same as" + + " the dst image"); + + if (dst == null) + dst = createCompatibleDestRaster(src); + + if (src.getNumBands() != dst.getNumBands()) + throw new IllegalArgumentException("src and dst must have same number" + + " of bands"); + + // Optimization for rasters that can be represented in the RGB colormodel: + // wrap the rasters in images, and let Cairo do the transformation + if (ColorModel.getRGBdefault().isCompatibleSampleModel(src.getSampleModel()) + && ColorModel.getRGBdefault().isCompatibleSampleModel(dst.getSampleModel())) + { + WritableRaster src2 = Raster.createWritableRaster(src.getSampleModel(), + src.getDataBuffer(), + new Point(src.getMinX(), + src.getMinY())); + BufferedImage iSrc = new BufferedImage(ColorModel.getRGBdefault(), + src2, false, null); + BufferedImage iDst = new BufferedImage(ColorModel.getRGBdefault(), dst, + false, null); + + return filter(iSrc, iDst).getRaster(); + } + + // Otherwise, we need to do the transformation in java code... + // Create arrays to hold all the points + double[] dstPts = new double[dst.getHeight() * dst.getWidth() * 2]; + double[] srcPts = new double[dst.getHeight() * dst.getWidth() * 2]; + + // Populate array with all points in the *destination* raster + int i = 0; + for (int x = 0; x < dst.getWidth(); x++) + { + for (int y = 0; y < dst.getHeight(); y++) + { + dstPts[i++] = x; + dstPts[i++] = y; + } + } + Rectangle srcbounds = src.getBounds(); + + // Use an inverse transform to map each point in the destination to + // a point in the source. Note that, while all points in the destination + // matrix are integers, this is not necessarily true for points in the + // source (hence why interpolation is required) + try + { + AffineTransform inverseTx = transform.createInverse(); + inverseTx.transform(dstPts, 0, srcPts, 0, dstPts.length / 2); + } + catch (NoninvertibleTransformException e) + { + // Shouldn't happen since the constructor traps this + throw new ImagingOpException(e.getMessage()); + } + + // Different interpolation methods... + if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR)) + filterNearest(src, dst, dstPts, srcPts); + + else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR)) + filterBilinear(src, dst, dstPts, srcPts); + + else // bicubic + filterBicubic(src, dst, dstPts, srcPts); + + return dst; + } + + /** + * Transforms source image using transform specified at the constructor and + * returns bounds of the transformed image. + * + * @param src image to be transformed + * @return bounds of the transformed image. + */ + public final Rectangle2D getBounds2D (BufferedImage src) + { + return getBounds2D (src.getRaster()); + } + + /** + * Returns bounds of the transformed raster. + * + * @param src raster to be transformed + * @return bounds of the transformed raster. + */ + public final Rectangle2D getBounds2D (Raster src) + { + return transform.createTransformedShape(src.getBounds()).getBounds2D(); + } + + /** + * Returns interpolation type used during transformations. + * + * @return interpolation type + */ + public final int getInterpolationType () + { + if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR)) + return TYPE_BILINEAR; + + else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BICUBIC)) + return TYPE_BICUBIC; + + else + return TYPE_NEAREST_NEIGHBOR; + } + + /** + * Returns location of the transformed source point. The resulting point + * is stored in the dstPt if one is specified. + * + * @param srcPt point to be transformed + * @param dstPt destination point + * @return the location of the transformed source point. + */ + public final Point2D getPoint2D (Point2D srcPt, Point2D dstPt) + { + return transform.transform (srcPt, dstPt); + } + + /** + * Returns rendering hints that are used during transformation. + * + * @return the rendering hints used in this Op. + */ + public final RenderingHints getRenderingHints () + { + return hints; + } + + /** + * Returns transform used in transformation between source and destination + * image. + * + * @return the transform used in this Op. + */ + public final AffineTransform getTransform () + { + return transform; + } + + /** + * Perform nearest-neighbour filtering + * + * @param src the source raster + * @param dst the destination raster + * @param dpts array of points on the destination raster + * @param pts array of corresponding points on the source raster + */ + private void filterNearest(Raster src, WritableRaster dst, double[] dpts, + double[] pts) + { + Rectangle srcbounds = src.getBounds(); + + // For all points on the destination raster, copy the value from the + // corrosponding (rounded) source point + for (int i = 0; i < dpts.length; i += 2) + { + int srcX = (int) Math.round(pts[i]) + src.getMinX(); + int srcY = (int) Math.round(pts[i + 1]) + src.getMinY(); + + if (srcbounds.contains(srcX, srcY)) + dst.setDataElements((int) dpts[i] + dst.getMinX(), + (int) dpts[i + 1] + dst.getMinY(), + src.getDataElements(srcX, srcY, null)); + } + } + + /** + * Perform bilinear filtering + * + * @param src the source raster + * @param dst the destination raster + * @param dpts array of points on the destination raster + * @param pts array of corresponding points on the source raster + */ + private void filterBilinear(Raster src, WritableRaster dst, double[] dpts, + double[] pts) + { + Rectangle srcbounds = src.getBounds(); + + Object xyarr = null; + Object xp1arr = null; + Object yp1arr = null; + Object xyp1arr = null; + + double xy; + double xp1; + double yp1; + double xyp1; + + double[] result = new double[src.getNumBands()]; + + // For all points in the destination raster, use bilinear interpolation + // to find the value from the corrosponding source points + for (int i = 0; i < dpts.length; i += 2) + { + int srcX = (int) Math.round(pts[i]) + src.getMinX(); + int srcY = (int) Math.round(pts[i + 1]) + src.getMinY(); + + if (srcbounds.contains(srcX, srcY)) + { + // Corner case at the bottom or right edge; use nearest neighbour + if (pts[i] >= src.getWidth() - 1 + || pts[i + 1] >= src.getHeight() - 1) + dst.setDataElements((int) dpts[i] + dst.getMinX(), + (int) dpts[i + 1] + dst.getMinY(), + src.getDataElements(srcX, srcY, null)); + + // Standard case, apply the bilinear formula + else + { + int x = (int) Math.floor(pts[i] + src.getMinX()); + int y = (int) Math.floor(pts[i + 1] + src.getMinY()); + double xdiff = pts[i] + src.getMinX() - x; + double ydiff = pts[i + 1] + src.getMinY() - y; + + // Get surrounding pixels used in interpolation... optimized + // to use the smallest datatype possible. + if (src.getTransferType() == DataBuffer.TYPE_DOUBLE + || src.getTransferType() == DataBuffer.TYPE_FLOAT) + { + xyarr = src.getPixel(x, y, (double[])xyarr); + xp1arr = src.getPixel(x+1, y, (double[])xp1arr); + yp1arr = src.getPixel(x, y+1, (double[])yp1arr); + xyp1arr = src.getPixel(x+1, y+1, (double[])xyp1arr); + } + else + { + xyarr = src.getPixel(x, y, (int[])xyarr); + xp1arr = src.getPixel(x+1, y, (int[])xp1arr); + yp1arr = src.getPixel(x, y+1, (int[])yp1arr); + xyp1arr = src.getPixel(x+1, y+1, (int[])xyp1arr); + } + // using + // array[] pixels = src.getPixels(x, y, 2, 2, pixels); + // instead of doing four individual src.getPixel() calls + // should be faster, but benchmarking shows that it's not... + + // Run interpolation for each band + for (int j = 0; j < src.getNumBands(); j++) + { + // Pull individual sample values out of array + if (src.getTransferType() == DataBuffer.TYPE_DOUBLE + || src.getTransferType() == DataBuffer.TYPE_FLOAT) + { + xy = ((double[])xyarr)[j]; + xp1 = ((double[])xp1arr)[j]; + yp1 = ((double[])yp1arr)[j]; + xyp1 = ((double[])xyp1arr)[j]; + } + else + { + xy = ((int[])xyarr)[j]; + xp1 = ((int[])xp1arr)[j]; + yp1 = ((int[])yp1arr)[j]; + xyp1 = ((int[])xyp1arr)[j]; + } + + // If all four samples are identical, there's no need to + // calculate anything + if (xy == xp1 && xy == yp1 && xy == xyp1) + result[j] = xy; + + // Run bilinear interpolation formula + else + result[j] = (xy * (1-xdiff) + xp1 * xdiff) + * (1-ydiff) + + (yp1 * (1-xdiff) + xyp1 * xdiff) + * ydiff; + } + + dst.setPixel((int)dpts[i] + dst.getMinX(), + (int)dpts[i+1] + dst.getMinY(), + result); + } + } + } + } + + /** + * Perform bicubic filtering + * based on http://local.wasp.uwa.edu.au/~pbourke/colour/bicubic/ + * + * @param src the source raster + * @param dst the destination raster + * @param dpts array of points on the destination raster + * @param pts array of corresponding points on the source raster + */ + private void filterBicubic(Raster src, WritableRaster dst, double[] dpts, + double[] pts) + { + Rectangle srcbounds = src.getBounds(); + double[] result = new double[src.getNumBands()]; + Object pixels = null; + + // For all points on the destination raster, perform bicubic interpolation + // from corrosponding source points + for (int i = 0; i < dpts.length; i += 2) + { + if (srcbounds.contains((int) Math.round(pts[i]) + src.getMinX(), + (int) Math.round(pts[i + 1]) + src.getMinY())) + { + int x = (int) Math.floor(pts[i] + src.getMinX()); + int y = (int) Math.floor(pts[i + 1] + src.getMinY()); + double dx = pts[i] + src.getMinX() - x; + double dy = pts[i + 1] + src.getMinY() - y; + Arrays.fill(result, 0); + + for (int m = - 1; m < 3; m++) + for (int n = - 1; n < 3; n++) + { + // R(x) = ( P(x+2)^3 - 4 P(x+1)^3 + 6 P(x)^3 - 4 P(x-1)^3 ) / 6 + double r1 = 0; + double r2 = 0; + + // Calculate R(m - dx) + double rx = m - dx + 2; + r1 += rx * rx * rx; + + rx = m - dx + 1; + if (rx > 0) + r1 -= 4 * rx * rx * rx; + + rx = m - dx; + if (rx > 0) + r1 += 6 * rx * rx * rx; + + rx = m - dx - 1; + if (rx > 0) + r1 -= 4 * rx * rx * rx; + + r1 /= 6; + + // Calculate R(dy - n); + rx = dy - n + 2; + if (rx > 0) + r2 += rx * rx * rx; + + rx = dy - n + 1; + if (rx > 0) + r2 -= 4 * rx * rx * rx; + + rx = dy - n; + if (rx > 0) + r2 += 6 * rx * rx * rx; + + rx = dy - n - 1; + if (rx > 0) + r2 -= 4 * rx * rx * rx; + + r2 /= 6; + + // Calculate F(i+m, j+n) R(m - dx) R(dy - n) + // Check corner cases + int srcX = x + m; + if (srcX >= src.getMinX() + src.getWidth()) + srcX = src.getMinX() + src.getWidth() - 1; + else if (srcX < src.getMinX()) + srcX = src.getMinX(); + + int srcY = y + n; + if (srcY >= src.getMinY() + src.getHeight()) + srcY = src.getMinY() + src.getHeight() - 1; + else if (srcY < src.getMinY()) + srcY = src.getMinY(); + + // Calculate once for each band, using the smallest + // datatype possible + if (src.getTransferType() == DataBuffer.TYPE_DOUBLE + || src.getTransferType() == DataBuffer.TYPE_FLOAT) + { + pixels = src.getPixel(srcX, srcY, (double[])pixels); + for (int j = 0; j < result.length; j++) + result[j] += ((double[])pixels)[j] * r1 * r2; + } + else + { + pixels = src.getPixel(srcX, srcY, (int[])pixels); + for (int j = 0; j < result.length; j++) + result[j] += ((int[])pixels)[j] * r1 * r2; + } + } + + // Put it all together + dst.setPixel((int)dpts[i] + dst.getMinX(), + (int)dpts[i+1] + dst.getMinY(), + result); + } + } + } +} -- cgit v1.2.3