From 554fd8c5195424bdbcabf5de30fdc183aba391bd Mon Sep 17 00:00:00 2001 From: upstream source tree Date: Sun, 15 Mar 2015 20:14:05 -0400 Subject: obtained gcc-4.6.4.tar.bz2 from upstream website; verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository. --- libstdc++-v3/doc/html/manual/ext_allocators.html | 397 +++++++++++++++++++++++ 1 file changed, 397 insertions(+) create mode 100644 libstdc++-v3/doc/html/manual/ext_allocators.html (limited to 'libstdc++-v3/doc/html/manual/ext_allocators.html') diff --git a/libstdc++-v3/doc/html/manual/ext_allocators.html b/libstdc++-v3/doc/html/manual/ext_allocators.html new file mode 100644 index 000000000..bd283b75c --- /dev/null +++ b/libstdc++-v3/doc/html/manual/ext_allocators.html @@ -0,0 +1,397 @@ + + +Chapter 20. Allocators

+

There are three general components to the allocator: a datum +describing the characteristics of the memory pool, a policy class +containing this pool that links instantiation types to common or +individual pools, and a class inheriting from the policy class that is +the actual allocator. +

The datum describing pools characteristics is +

+  template<bool _Thread>
+    class __pool
+

This class is parametrized on thread support, and is explicitly +specialized for both multiple threads (with bool==true) +and single threads (via bool==false.) It is possible to +use a custom pool datum instead of the default class that is provided. +

There are two distinct policy classes, each of which can be used +with either type of underlying pool datum. +

+  template<bool _Thread>
+    struct __common_pool_policy
+
+  template<typename _Tp, bool _Thread>
+    struct __per_type_pool_policy
+

The first policy, __common_pool_policy, implements a +common pool. This means that allocators that are instantiated with +different types, say char and long will both +use the same pool. This is the default policy. +

The second policy, __per_type_pool_policy, implements +a separate pool for each instantiating type. Thus, char +and long will use separate pools. This allows per-type +tuning, for instance. +

Putting this all together, the actual allocator class is +

+  template<typename _Tp, typename _Poolp = __default_policy>
+    class __mt_alloc : public __mt_alloc_base<_Tp>,  _Poolp
+

This class has the interface required for standard library allocator +classes, namely member functions allocate and +deallocate, plus others. +

+The static variables (pointers to freelists, tuning parameters etc) +are initialized as above, or are set to the global defaults. +

+The very first allocate() call will always call the +_S_initialize_once() function. In order to make sure that this +function is called exactly once we make use of a __gthread_once call +in MT applications and check a static bool (_S_init) in ST +applications. +

+The _S_initialize() function: +- If the GLIBCXX_FORCE_NEW environment variable is set, it sets the bool + _S_force_new to true and then returns. This will cause subsequent calls to + allocate() to return memory directly from a new() call, and deallocate will + only do a delete() call. +

+- If the GLIBCXX_FORCE_NEW environment variable is not set, both ST and MT + applications will: + - Calculate the number of bins needed. A bin is a specific power of two size + of bytes. I.e., by default the allocator will deal with requests of up to + 128 bytes (or whatever the value of _S_max_bytes is when _S_init() is + called). This means that there will be bins of the following sizes + (in bytes): 1, 2, 4, 8, 16, 32, 64, 128. + + - Create the _S_binmap array. All requests are rounded up to the next + "large enough" bin. I.e., a request for 29 bytes will cause a block from + the "32 byte bin" to be returned to the application. The purpose of + _S_binmap is to speed up the process of finding out which bin to use. + I.e., the value of _S_binmap[ 29 ] is initialized to 5 (bin 5 = 32 bytes). +

+ - Create the _S_bin array. This array consists of bin_records. There will be + as many bin_records in this array as the number of bins that we calculated + earlier. I.e., if _S_max_bytes = 128 there will be 8 entries. + Each bin_record is then initialized: + - bin_record->first = An array of pointers to block_records. There will be + as many block_records pointers as there are maximum number of threads + (in a ST application there is only 1 thread, in a MT application there + are _S_max_threads). + This holds the pointer to the first free block for each thread in this + bin. I.e., if we would like to know where the first free block of size 32 + for thread number 3 is we would look this up by: _S_bin[ 5 ].first[ 3 ] + + The above created block_record pointers members are now initialized to + their initial values. I.e. _S_bin[ n ].first[ n ] = NULL; +

+- Additionally a MT application will: + - Create a list of free thread id's. The pointer to the first entry + is stored in _S_thread_freelist_first. The reason for this approach is + that the __gthread_self() call will not return a value that corresponds to + the maximum number of threads allowed but rather a process id number or + something else. So what we do is that we create a list of thread_records. + This list is _S_max_threads long and each entry holds a size_t thread_id + which is initialized to 1, 2, 3, 4, 5 and so on up to _S_max_threads. + Each time a thread calls allocate() or deallocate() we call + _S_get_thread_id() which looks at the value of _S_thread_key which is a + thread local storage pointer. If this is NULL we know that this is a newly + created thread and we pop the first entry from this list and saves the + pointer to this record in the _S_thread_key variable. The next time + we will get the pointer to the thread_record back and we use the + thread_record->thread_id as identification. I.e., the first thread that + calls allocate will get the first record in this list and thus be thread + number 1 and will then find the pointer to its first free 32 byte block + in _S_bin[ 5 ].first[ 1 ] + When we create the _S_thread_key we also define a destructor + (_S_thread_key_destr) which means that when the thread dies, this + thread_record is returned to the front of this list and the thread id + can then be reused if a new thread is created. + This list is protected by a mutex (_S_thread_freelist_mutex) which is only + locked when records are removed or added to the list. +

+ - Initialize the free and used counters of each bin_record: + - bin_record->free = An array of size_t. This keeps track of the number + of blocks on a specific thread's freelist in each bin. I.e., if a thread + has 12 32-byte blocks on it's freelists and allocates one of these, this + counter would be decreased to 11. + + - bin_record->used = An array of size_t. This keeps track of the number + of blocks currently in use of this size by this thread. I.e., if a thread + has made 678 requests (and no deallocations...) of 32-byte blocks this + counter will read 678. + + The above created arrays are now initialized with their initial values. + I.e. _S_bin[ n ].free[ n ] = 0; +

+ - Initialize the mutex of each bin_record: The bin_record->mutex + is used to protect the global freelist. This concept of a global + freelist is explained in more detail in the section "A multi + threaded example", but basically this mutex is locked whenever a + block of memory is retrieved or returned to the global freelist + for this specific bin. This only occurs when a number of blocks + are grabbed from the global list to a thread specific list or when + a thread decides to return some blocks to the global freelist. +

+Let's start by describing how the data on a freelist is laid out in memory. +This is the first two blocks in freelist for thread id 3 in bin 3 (8 bytes): +

++----------------+
+| next* ---------|--+  (_S_bin[ 3 ].first[ 3 ] points here)
+|                |  |
+|                |  |
+|                |  |
++----------------+  |
+| thread_id = 3  |  |
+|                |  |
+|                |  |
+|                |  |
++----------------+  |
+| DATA           |  |  (A pointer to here is what is returned to the
+|                |  |   the application when needed)
+|                |  |
+|                |  |
+|                |  |
+|                |  |
+|                |  |
+|                |  |
++----------------+  |
++----------------+  |
+| next*          |<-+  (If next == NULL it's the last one on the list)
+|                |
+|                |
+|                |
++----------------+
+| thread_id = 3  |
+|                |
+|                |
+|                |
++----------------+
+| DATA           |
+|                |
+|                |
+|                |
+|                |
+|                |
+|                |
+|                |
++----------------+
+

+With this in mind we simplify things a bit for a while and say that there is +only one thread (a ST application). In this case all operations are made to +what is referred to as the global pool - thread id 0 (No thread may be +assigned this id since they span from 1 to _S_max_threads in a MT application). +

+When the application requests memory (calling allocate()) we first look at the +requested size and if this is > _S_max_bytes we call new() directly and return. +

+If the requested size is within limits we start by finding out from which +bin we should serve this request by looking in _S_binmap. +

+A quick look at _S_bin[ bin ].first[ 0 ] tells us if there are any blocks of +this size on the freelist (0). If this is not NULL - fine, just remove the +block that _S_bin[ bin ].first[ 0 ] points to from the list, +update _S_bin[ bin ].first[ 0 ] and return a pointer to that blocks data. +

+If the freelist is empty (the pointer is NULL) we must get memory from the +system and build us a freelist within this memory. All requests for new memory +is made in chunks of _S_chunk_size. Knowing the size of a block_record and +the bytes that this bin stores we then calculate how many blocks we can create +within this chunk, build the list, remove the first block, update the pointer +(_S_bin[ bin ].first[ 0 ]) and return a pointer to that blocks data. +

+Deallocation is equally simple; the pointer is casted back to a block_record +pointer, lookup which bin to use based on the size, add the block to the front +of the global freelist and update the pointer as needed +(_S_bin[ bin ].first[ 0 ]). +

+The decision to add deallocated blocks to the front of the freelist was made +after a set of performance measurements that showed that this is roughly 10% +faster than maintaining a set of "last pointers" as well. +

+In the ST example we never used the thread_id variable present in each block. +Let's start by explaining the purpose of this in a MT application. +

+The concept of "ownership" was introduced since many MT applications +allocate and deallocate memory to shared containers from different +threads (such as a cache shared amongst all threads). This introduces +a problem if the allocator only returns memory to the current threads +freelist (I.e., there might be one thread doing all the allocation and +thus obtaining ever more memory from the system and another thread +that is getting a longer and longer freelist - this will in the end +consume all available memory). +

+Each time a block is moved from the global list (where ownership is +irrelevant), to a threads freelist (or when a new freelist is built +from a chunk directly onto a threads freelist or when a deallocation +occurs on a block which was not allocated by the same thread id as the +one doing the deallocation) the thread id is set to the current one. +

+What's the use? Well, when a deallocation occurs we can now look at +the thread id and find out if it was allocated by another thread id +and decrease the used counter of that thread instead, thus keeping the +free and used counters correct. And keeping the free and used counters +corrects is very important since the relationship between these two +variables decides if memory should be returned to the global pool or +not when a deallocation occurs. +

+When the application requests memory (calling allocate()) we first +look at the requested size and if this is >_S_max_bytes we call new() +directly and return. +

+If the requested size is within limits we start by finding out from which +bin we should serve this request by looking in _S_binmap. +

+A call to _S_get_thread_id() returns the thread id for the calling thread +(and if no value has been set in _S_thread_key, a new id is assigned and +returned). +

+A quick look at _S_bin[ bin ].first[ thread_id ] tells us if there are +any blocks of this size on the current threads freelist. If this is +not NULL - fine, just remove the block that _S_bin[ bin ].first[ +thread_id ] points to from the list, update _S_bin[ bin ].first[ +thread_id ], update the free and used counters and return a pointer to +that blocks data. +

+If the freelist is empty (the pointer is NULL) we start by looking at +the global freelist (0). If there are blocks available on the global +freelist we lock this bins mutex and move up to block_count (the +number of blocks of this bins size that will fit into a _S_chunk_size) +or until end of list - whatever comes first - to the current threads +freelist and at the same time change the thread_id ownership and +update the counters and pointers. When the bins mutex has been +unlocked, we remove the block that _S_bin[ bin ].first[ thread_id ] +points to from the list, update _S_bin[ bin ].first[ thread_id ], +update the free and used counters, and return a pointer to that blocks +data. +

+The reason that the number of blocks moved to the current threads +freelist is limited to block_count is to minimize the chance that a +subsequent deallocate() call will return the excess blocks to the +global freelist (based on the _S_freelist_headroom calculation, see +below). +

+However if there isn't any memory on the global pool we need to get +memory from the system - this is done in exactly the same way as in a +single threaded application with one major difference; the list built +in the newly allocated memory (of _S_chunk_size size) is added to the +current threads freelist instead of to the global. +

+The basic process of a deallocation call is simple: always add the +block to the front of the current threads freelist and update the +counters and pointers (as described earlier with the specific check of +ownership that causes the used counter of the thread that originally +allocated the block to be decreased instead of the current threads +counter). +

+And here comes the free and used counters to service. Each time a +deallocation() call is made, the length of the current threads +freelist is compared to the amount memory in use by this thread. +

+Let's go back to the example of an application that has one thread +that does all the allocations and one that deallocates. Both these +threads use say 516 32-byte blocks that was allocated during thread +creation for example. Their used counters will both say 516 at this +point. The allocation thread now grabs 1000 32-byte blocks and puts +them in a shared container. The used counter for this thread is now +1516. +

+The deallocation thread now deallocates 500 of these blocks. For each +deallocation made the used counter of the allocating thread is +decreased and the freelist of the deallocation thread gets longer and +longer. But the calculation made in deallocate() will limit the length +of the freelist in the deallocation thread to _S_freelist_headroom % +of it's used counter. In this case, when the freelist (given that the +_S_freelist_headroom is at it's default value of 10%) exceeds 52 +(516/10) blocks will be returned to the global pool where the +allocating thread may pick them up and reuse them. +

+In order to reduce lock contention (since this requires this bins +mutex to be locked) this operation is also made in chunks of blocks +(just like when chunks of blocks are moved from the global freelist to +a threads freelist mentioned above). The "formula" used can probably +be improved to further reduce the risk of blocks being "bounced back +and forth" between freelists. +

-- cgit v1.2.3