------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- SYSTEM.MACHINE_STATE_OPERATIONS --
-- --
-- B o d y --
-- (Version for IRIX/MIPS) --
-- --
-- Copyright (C) 1999-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- . --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This version of Ada.Exceptions.Machine_State_Operations is for use on
-- SGI Irix systems. By means of compile time conditional calculations, it
-- can handle both n32/n64 and o32 modes.
with System.Machine_Code; use System.Machine_Code;
with System.Memory;
with System.Soft_Links; use System.Soft_Links;
with Ada.Unchecked_Conversion;
package body System.Machine_State_Operations is
use System.Storage_Elements;
-- The exc_unwind function in libexc operates on a Sigcontext
-- Type sigcontext_t is defined in /usr/include/sys/signal.h.
-- We define an equivalent Ada type here. From the comments in
-- signal.h:
-- sigcontext is not part of the ABI - so this version is used to
-- handle 32 and 64 bit applications - it is a constant size regardless
-- of compilation mode, and always returns 64 bit register values
type Uns32 is mod 2 ** 32;
type Uns64 is mod 2 ** 64;
type Uns32_Ptr is access all Uns32;
type Uns64_Array is array (Integer range <>) of Uns64;
type Reg_Array is array (0 .. 31) of Uns64;
type Sigcontext is record
SC_Regmask : Uns32; -- 0
SC_Status : Uns32; -- 4
SC_PC : Uns64; -- 8
SC_Regs : Reg_Array; -- 16
SC_Fpregs : Reg_Array; -- 272
SC_Ownedfp : Uns32; -- 528
SC_Fpc_Csr : Uns32; -- 532
SC_Fpc_Eir : Uns32; -- 536
SC_Ssflags : Uns32; -- 540
SC_Mdhi : Uns64; -- 544
SC_Mdlo : Uns64; -- 552
SC_Cause : Uns64; -- 560
SC_Badvaddr : Uns64; -- 568
SC_Triggersave : Uns64; -- 576
SC_Sigset : Uns64; -- 584
SC_Fp_Rounded_Result : Uns64; -- 592
SC_Pancake : Uns64_Array (0 .. 5);
SC_Pad : Uns64_Array (0 .. 26);
end record;
type Sigcontext_Ptr is access all Sigcontext;
SC_Regs_Pos : constant String := "16";
SC_Fpregs_Pos : constant String := "272";
-- Byte offset of the Integer and Floating Point register save areas
-- within the Sigcontext.
function To_Sigcontext_Ptr is
new Ada.Unchecked_Conversion (Machine_State, Sigcontext_Ptr);
type Addr_Int is mod 2 ** Long_Integer'Size;
-- An unsigned integer type whose size is the same as System.Address.
-- We rely on the fact that Long_Integer'Size = System.Address'Size in
-- all ABIs. Type Addr_Int can be converted to Uns64.
function To_Code_Loc is
new Ada.Unchecked_Conversion (Addr_Int, Code_Loc);
function To_Addr_Int is
new Ada.Unchecked_Conversion (System.Address, Addr_Int);
function To_Uns32_Ptr is
new Ada.Unchecked_Conversion (Addr_Int, Uns32_Ptr);
--------------------------------
-- ABI-Dependent Declarations --
--------------------------------
o32 : constant Boolean := System.Word_Size = 32;
n32 : constant Boolean := System.Word_Size = 64;
o32n : constant Natural := Boolean'Pos (o32);
n32n : constant Natural := Boolean'Pos (n32);
-- Flags to indicate which ABI is in effect for this compilation. For the
-- purposes of this unit, the n32 and n64 ABIs are identical.
LSC : constant Character := Character'Val (o32n * Character'Pos ('w') +
n32n * Character'Pos ('d'));
-- This is 'w' for o32, and 'd' for n32/n64, used for constructing the
-- load/store instructions used to save/restore machine instructions.
Roff : constant Character := Character'Val (o32n * Character'Pos ('4') +
n32n * Character'Pos ('0'));
-- Offset from first byte of a __uint64 register save location where
-- the register value is stored. For n32/64 we store the entire 64
-- bit register into the uint64. For o32, only 32 bits are stored
-- at an offset of 4 bytes. This is used as part of expressions with
-- '+' signs on both sides, so a null offset has to be '0' and not ' '
-- to avoid assembler syntax errors on "X + + Y" in the latter case.
procedure Update_GP (Scp : Sigcontext_Ptr);
---------------
-- Update_GP --
---------------
procedure Update_GP (Scp : Sigcontext_Ptr) is
type F_op is mod 2 ** 6;
type F_reg is mod 2 ** 5;
type F_imm is new Short_Integer;
type I_Type is record
op : F_op;
rs : F_reg;
rt : F_reg;
imm : F_imm;
end record;
pragma Pack (I_Type);
for I_Type'Size use 32;
type I_Type_Ptr is access all I_Type;
LW : constant F_op := 2#100011#;
Reg_GP : constant := 28;
type Address_Int is mod 2 ** Standard'Address_Size;
function To_I_Type_Ptr is new
Ada.Unchecked_Conversion (Address_Int, I_Type_Ptr);
Ret_Ins : constant I_Type_Ptr := To_I_Type_Ptr (Address_Int (Scp.SC_PC));
GP_Ptr : Uns32_Ptr;
begin
if Ret_Ins.op = LW and then Ret_Ins.rt = Reg_GP then
GP_Ptr := To_Uns32_Ptr
(Addr_Int (Scp.SC_Regs (Integer (Ret_Ins.rs)))
+ Addr_Int (Ret_Ins.imm));
Scp.SC_Regs (Reg_GP) := Uns64 (GP_Ptr.all);
end if;
end Update_GP;
----------------------------
-- Allocate_Machine_State --
----------------------------
function Allocate_Machine_State return Machine_State is
begin
return Machine_State
(Memory.Alloc (Sigcontext'Max_Size_In_Storage_Elements));
end Allocate_Machine_State;
----------------
-- Fetch_Code --
----------------
function Fetch_Code (Loc : Code_Loc) return Code_Loc is
begin
return Loc;
end Fetch_Code;
------------------------
-- Free_Machine_State --
------------------------
procedure Free_Machine_State (M : in out Machine_State) is
begin
Memory.Free (Address (M));
M := Machine_State (Null_Address);
end Free_Machine_State;
------------------
-- Get_Code_Loc --
------------------
function Get_Code_Loc (M : Machine_State) return Code_Loc is
SC : constant Sigcontext_Ptr := To_Sigcontext_Ptr (M);
begin
return To_Code_Loc (Addr_Int (SC.SC_PC));
end Get_Code_Loc;
--------------------------
-- Machine_State_Length --
--------------------------
function Machine_State_Length return Storage_Offset is
begin
return Sigcontext'Max_Size_In_Storage_Elements;
end Machine_State_Length;
---------------
-- Pop_Frame --
---------------
procedure Pop_Frame (M : Machine_State) is
Scp : constant Sigcontext_Ptr := To_Sigcontext_Ptr (M);
procedure Exc_Unwind (Scp : Sigcontext_Ptr; Fde : Long_Integer := 0);
pragma Import (C, Exc_Unwind, "exc_unwind");
pragma Linker_Options ("-lexc");
begin
-- exc_unwind is apparently not thread-safe under IRIX, so protect it
-- against race conditions within the GNAT run time.
-- ??? Note that we might want to use a fine grained lock here since
-- Lock_Task is used in many other places.
Lock_Task.all;
Exc_Unwind (Scp);
Unlock_Task.all;
if Scp.SC_PC = 0 or else Scp.SC_PC = 1 then
-- A return value of 0 or 1 means exc_unwind couldn't find a parent
-- frame. Propagate_Exception expects a zero return address to
-- indicate TOS.
Scp.SC_PC := 0;
else
-- Set the GP to restore to the caller value (not callee value)
-- This is done only in o32 mode. In n32/n64 mode, GP is a normal
-- callee save register
if o32 then
Update_GP (Scp);
end if;
-- Adjust the return address to the call site, not the
-- instruction following the branch delay slot. This may
-- be necessary if the last instruction of a pragma No_Return
-- subprogram is a call. The first instruction following the
-- delay slot may be the start of another subprogram. We back
-- off the address by 8, which points safely into the middle
-- of the generated subprogram code, avoiding end effects.
Scp.SC_PC := Scp.SC_PC - 8;
end if;
end Pop_Frame;
-----------------------
-- Set_Machine_State --
-----------------------
procedure Set_Machine_State (M : Machine_State) is
SI : constant String (1 .. 2) := 's' & LSC;
-- This is "sw" in o32 mode, and "sd" in n32 mode
SF : constant String (1 .. 4) := 's' & LSC & "c1";
-- This is "swc1" in o32 mode and "sdc1" in n32 mode
PI : String renames SC_Regs_Pos;
PF : String renames SC_Fpregs_Pos;
Scp : Sigcontext_Ptr;
begin
-- Save the integer registers. Note that we know that $4 points
-- to M, since that is where the first parameter is passed.
-- Restore integer registers from machine state. Note that we know
-- that $4 points to M since this is the standard calling sequence
<>
Asm (SI & " $16, 16*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $17, 17*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $18, 18*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $19, 19*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $20, 20*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $21, 21*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $22, 22*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $23, 23*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $24, 24*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $25, 25*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $26, 26*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $27, 27*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $28, 28*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $29, 29*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $30, 30*8+" & Roff & "+" & PI & "($4)", Volatile => True);
Asm (SI & " $31, 31*8+" & Roff & "+" & PI & "($4)", Volatile => True);
-- Restore floating-point registers from machine state
Asm (SF & " $f16, 16*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f17, 17*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f18, 18*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f19, 19*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f20, 20*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f21, 21*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f22, 22*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f23, 23*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f24, 24*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f25, 25*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f26, 26*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f27, 27*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f28, 28*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f29, 29*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f30, 30*8+" & Roff & "+" & PF & "($4)", Volatile => True);
Asm (SF & " $f31, 31*8+" & Roff & "+" & PF & "($4)", Volatile => True);
-- Set the PC value for the context to a location after the
-- prolog has been executed.
Scp := To_Sigcontext_Ptr (M);
Scp.SC_PC := Uns64 (To_Addr_Int (Past_Prolog'Address));
-- We saved the state *inside* this routine, but what we want is
-- the state at the call site. So we need to do one pop operation.
-- This pop operation will properly set the PC value in the machine
-- state, so there is no need to save PC in the above code.
Pop_Frame (M);
end Set_Machine_State;
end System.Machine_State_Operations;