// types.cc -- Go frontend types. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go-system.h" #include #ifndef ENABLE_BUILD_WITH_CXX extern "C" { #endif #include "toplev.h" #include "intl.h" #include "tree.h" #include "gimple.h" #include "real.h" #include "convert.h" #ifndef ENABLE_BUILD_WITH_CXX } #endif #include "go-c.h" #include "gogo.h" #include "operator.h" #include "expressions.h" #include "statements.h" #include "export.h" #include "import.h" #include "types.h" // Class Type. Type::Type(Type_classification classification) : classification_(classification), tree_(NULL_TREE), type_descriptor_decl_(NULL_TREE) { } Type::~Type() { } // Get the base type for a type--skip names and forward declarations. Type* Type::base() { switch (this->classification_) { case TYPE_NAMED: return this->named_type()->named_base(); case TYPE_FORWARD: return this->forward_declaration_type()->real_type()->base(); default: return this; } } const Type* Type::base() const { switch (this->classification_) { case TYPE_NAMED: return this->named_type()->named_base(); case TYPE_FORWARD: return this->forward_declaration_type()->real_type()->base(); default: return this; } } // Skip defined forward declarations. Type* Type::forwarded() { Type* t = this; Forward_declaration_type* ftype = t->forward_declaration_type(); while (ftype != NULL && ftype->is_defined()) { t = ftype->real_type(); ftype = t->forward_declaration_type(); } return t; } const Type* Type::forwarded() const { const Type* t = this; const Forward_declaration_type* ftype = t->forward_declaration_type(); while (ftype != NULL && ftype->is_defined()) { t = ftype->real_type(); ftype = t->forward_declaration_type(); } return t; } // If this is a named type, return it. Otherwise, return NULL. Named_type* Type::named_type() { return this->forwarded()->convert_no_base(); } const Named_type* Type::named_type() const { return this->forwarded()->convert_no_base(); } // Return true if this type is not defined. bool Type::is_undefined() const { return this->forwarded()->forward_declaration_type() != NULL; } // Return true if this is a basic type: a type which is not composed // of other types, and is not void. bool Type::is_basic_type() const { switch (this->classification_) { case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_BOOLEAN: case TYPE_STRING: case TYPE_NIL: return true; case TYPE_ERROR: case TYPE_VOID: case TYPE_FUNCTION: case TYPE_POINTER: case TYPE_STRUCT: case TYPE_ARRAY: case TYPE_MAP: case TYPE_CHANNEL: case TYPE_INTERFACE: return false; case TYPE_NAMED: case TYPE_FORWARD: return this->base()->is_basic_type(); default: gcc_unreachable(); } } // Return true if this is an abstract type. bool Type::is_abstract() const { switch (this->classification()) { case TYPE_INTEGER: return this->integer_type()->is_abstract(); case TYPE_FLOAT: return this->float_type()->is_abstract(); case TYPE_COMPLEX: return this->complex_type()->is_abstract(); case TYPE_STRING: return this->is_abstract_string_type(); case TYPE_BOOLEAN: return this->is_abstract_boolean_type(); default: return false; } } // Return a non-abstract version of an abstract type. Type* Type::make_non_abstract_type() { gcc_assert(this->is_abstract()); switch (this->classification()) { case TYPE_INTEGER: return Type::lookup_integer_type("int"); case TYPE_FLOAT: return Type::lookup_float_type("float64"); case TYPE_COMPLEX: return Type::lookup_complex_type("complex128"); case TYPE_STRING: return Type::lookup_string_type(); case TYPE_BOOLEAN: return Type::lookup_bool_type(); default: gcc_unreachable(); } } // Return true if this is an error type. Don't give an error if we // try to dereference an undefined forwarding type, as this is called // in the parser when the type may legitimately be undefined. bool Type::is_error_type() const { const Type* t = this->forwarded(); // Note that we return false for an undefined forward type. switch (t->classification_) { case TYPE_ERROR: return true; case TYPE_NAMED: return t->named_type()->is_named_error_type(); default: return false; } } // If this is a pointer type, return the type to which it points. // Otherwise, return NULL. Type* Type::points_to() const { const Pointer_type* ptype = this->convert(); return ptype == NULL ? NULL : ptype->points_to(); } // Return whether this is an open array type. bool Type::is_open_array_type() const { return this->array_type() != NULL && this->array_type()->length() == NULL; } // Return whether this is the predeclared constant nil being used as a // type. bool Type::is_nil_constant_as_type() const { const Type* t = this->forwarded(); if (t->forward_declaration_type() != NULL) { const Named_object* no = t->forward_declaration_type()->named_object(); if (no->is_unknown()) no = no->unknown_value()->real_named_object(); if (no != NULL && no->is_const() && no->const_value()->expr()->is_nil_expression()) return true; } return false; } // Traverse a type. int Type::traverse(Type* type, Traverse* traverse) { gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0 || (traverse->traverse_mask() & Traverse::traverse_expressions) != 0); if (traverse->remember_type(type)) { // We have already traversed this type. return TRAVERSE_CONTINUE; } if ((traverse->traverse_mask() & Traverse::traverse_types) != 0) { int t = traverse->type(type); if (t == TRAVERSE_EXIT) return TRAVERSE_EXIT; else if (t == TRAVERSE_SKIP_COMPONENTS) return TRAVERSE_CONTINUE; } // An array type has an expression which we need to traverse if // traverse_expressions is set. if (type->do_traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Default implementation for do_traverse for child class. int Type::do_traverse(Traverse*) { return TRAVERSE_CONTINUE; } // Return whether two types are identical. If ERRORS_ARE_IDENTICAL, // then return true for all erroneous types; this is used to avoid // cascading errors. If REASON is not NULL, optionally set *REASON to // the reason the types are not identical. bool Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical, std::string* reason) { if (t1 == NULL || t2 == NULL) { // Something is wrong. return errors_are_identical ? true : t1 == t2; } // Skip defined forward declarations. t1 = t1->forwarded(); t2 = t2->forwarded(); if (t1 == t2) return true; // An undefined forward declaration is an error. if (t1->forward_declaration_type() != NULL || t2->forward_declaration_type() != NULL) return errors_are_identical; // Avoid cascading errors with error types. if (t1->is_error_type() || t2->is_error_type()) { if (errors_are_identical) return true; return t1->is_error_type() && t2->is_error_type(); } // Get a good reason for the sink type. Note that the sink type on // the left hand side of an assignment is handled in are_assignable. if (t1->is_sink_type() || t2->is_sink_type()) { if (reason != NULL) *reason = "invalid use of _"; return false; } // A named type is only identical to itself. if (t1->named_type() != NULL || t2->named_type() != NULL) return false; // Check type shapes. if (t1->classification() != t2->classification()) return false; switch (t1->classification()) { case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_STRING: case TYPE_NIL: // These types are always identical. return true; case TYPE_INTEGER: return t1->integer_type()->is_identical(t2->integer_type()); case TYPE_FLOAT: return t1->float_type()->is_identical(t2->float_type()); case TYPE_COMPLEX: return t1->complex_type()->is_identical(t2->complex_type()); case TYPE_FUNCTION: return t1->function_type()->is_identical(t2->function_type(), false, errors_are_identical, reason); case TYPE_POINTER: return Type::are_identical(t1->points_to(), t2->points_to(), errors_are_identical, reason); case TYPE_STRUCT: return t1->struct_type()->is_identical(t2->struct_type(), errors_are_identical); case TYPE_ARRAY: return t1->array_type()->is_identical(t2->array_type(), errors_are_identical); case TYPE_MAP: return t1->map_type()->is_identical(t2->map_type(), errors_are_identical); case TYPE_CHANNEL: return t1->channel_type()->is_identical(t2->channel_type(), errors_are_identical); case TYPE_INTERFACE: return t1->interface_type()->is_identical(t2->interface_type(), errors_are_identical); case TYPE_CALL_MULTIPLE_RESULT: if (reason != NULL) *reason = "invalid use of multiple value function call"; return false; default: gcc_unreachable(); } } // Return true if it's OK to have a binary operation with types LHS // and RHS. This is not used for shifts or comparisons. bool Type::are_compatible_for_binop(const Type* lhs, const Type* rhs) { if (Type::are_identical(lhs, rhs, true, NULL)) return true; // A constant of abstract bool type may be mixed with any bool type. if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type()) || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type())) return true; // A constant of abstract string type may be mixed with any string // type. if ((rhs->is_abstract_string_type() && lhs->is_string_type()) || (lhs->is_abstract_string_type() && rhs->is_string_type())) return true; lhs = lhs->base(); rhs = rhs->base(); // A constant of abstract integer, float, or complex type may be // mixed with an integer, float, or complex type. if ((rhs->is_abstract() && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL) && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL)) || (lhs->is_abstract() && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL) && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL))) return true; // The nil type may be compared to a pointer, an interface type, a // slice type, a channel type, a map type, or a function type. if (lhs->is_nil_type() && (rhs->points_to() != NULL || rhs->interface_type() != NULL || rhs->is_open_array_type() || rhs->map_type() != NULL || rhs->channel_type() != NULL || rhs->function_type() != NULL)) return true; if (rhs->is_nil_type() && (lhs->points_to() != NULL || lhs->interface_type() != NULL || lhs->is_open_array_type() || lhs->map_type() != NULL || lhs->channel_type() != NULL || lhs->function_type() != NULL)) return true; return false; } // Return true if a value with type RHS may be assigned to a variable // with type LHS. If REASON is not NULL, set *REASON to the reason // the types are not assignable. bool Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason) { // Do some checks first. Make sure the types are defined. if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL && rhs->is_void_type()) { if (reason != NULL) *reason = "non-value used as value"; return false; } if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL) { // Any value may be assigned to the blank identifier. if (lhs->is_sink_type()) return true; // All fields of a struct must be exported, or the assignment // must be in the same package. if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL) { if (lhs->has_hidden_fields(NULL, reason) || rhs->has_hidden_fields(NULL, reason)) return false; } } // Identical types are assignable. if (Type::are_identical(lhs, rhs, true, reason)) return true; // The types are assignable if they have identical underlying types // and either LHS or RHS is not a named type. if (((lhs->named_type() != NULL && rhs->named_type() == NULL) || (rhs->named_type() != NULL && lhs->named_type() == NULL)) && Type::are_identical(lhs->base(), rhs->base(), true, reason)) return true; // The types are assignable if LHS is an interface type and RHS // implements the required methods. const Interface_type* lhs_interface_type = lhs->interface_type(); if (lhs_interface_type != NULL) { if (lhs_interface_type->implements_interface(rhs, reason)) return true; const Interface_type* rhs_interface_type = rhs->interface_type(); if (rhs_interface_type != NULL && lhs_interface_type->is_compatible_for_assign(rhs_interface_type, reason)) return true; } // The type are assignable if RHS is a bidirectional channel type, // LHS is a channel type, they have identical element types, and // either LHS or RHS is not a named type. if (lhs->channel_type() != NULL && rhs->channel_type() != NULL && rhs->channel_type()->may_send() && rhs->channel_type()->may_receive() && (lhs->named_type() == NULL || rhs->named_type() == NULL) && Type::are_identical(lhs->channel_type()->element_type(), rhs->channel_type()->element_type(), true, reason)) return true; // The nil type may be assigned to a pointer, function, slice, map, // channel, or interface type. if (rhs->is_nil_type() && (lhs->points_to() != NULL || lhs->function_type() != NULL || lhs->is_open_array_type() || lhs->map_type() != NULL || lhs->channel_type() != NULL || lhs->interface_type() != NULL)) return true; // An untyped numeric constant may be assigned to a numeric type if // it is representable in that type. if ((rhs->is_abstract() && (rhs->integer_type() != NULL || rhs->float_type() != NULL || rhs->complex_type() != NULL)) && (lhs->integer_type() != NULL || lhs->float_type() != NULL || lhs->complex_type() != NULL)) return true; // Give some better error messages. if (reason != NULL && reason->empty()) { if (rhs->interface_type() != NULL) reason->assign(_("need explicit conversion")); else if (rhs->is_call_multiple_result_type()) reason->assign(_("multiple value function call in " "single value context")); else if (lhs->named_type() != NULL && rhs->named_type() != NULL) { size_t len = (lhs->named_type()->name().length() + rhs->named_type()->name().length() + 100); char* buf = new char[len]; snprintf(buf, len, _("cannot use type %s as type %s"), rhs->named_type()->message_name().c_str(), lhs->named_type()->message_name().c_str()); reason->assign(buf); delete[] buf; } } return false; } // Return true if a value with type RHS may be converted to type LHS. // If REASON is not NULL, set *REASON to the reason the types are not // convertible. bool Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason) { // The types are convertible if they are assignable. if (Type::are_assignable(lhs, rhs, reason)) return true; // The types are convertible if they have identical underlying // types. if ((lhs->named_type() != NULL || rhs->named_type() != NULL) && Type::are_identical(lhs->base(), rhs->base(), true, reason)) return true; // The types are convertible if they are both unnamed pointer types // and their pointer base types have identical underlying types. if (lhs->named_type() == NULL && rhs->named_type() == NULL && lhs->points_to() != NULL && rhs->points_to() != NULL && (lhs->points_to()->named_type() != NULL || rhs->points_to()->named_type() != NULL) && Type::are_identical(lhs->points_to()->base(), rhs->points_to()->base(), true, reason)) return true; // Integer and floating point types are convertible to each other. if ((lhs->integer_type() != NULL || lhs->float_type() != NULL) && (rhs->integer_type() != NULL || rhs->float_type() != NULL)) return true; // Complex types are convertible to each other. if (lhs->complex_type() != NULL && rhs->complex_type() != NULL) return true; // An integer, or []byte, or []int, may be converted to a string. if (lhs->is_string_type()) { if (rhs->integer_type() != NULL) return true; if (rhs->is_open_array_type() && rhs->named_type() == NULL) { const Type* e = rhs->array_type()->element_type()->forwarded(); if (e->integer_type() != NULL && (e == Type::lookup_integer_type("uint8") || e == Type::lookup_integer_type("int"))) return true; } } // A string may be converted to []byte or []int. if (rhs->is_string_type() && lhs->is_open_array_type() && lhs->named_type() == NULL) { const Type* e = lhs->array_type()->element_type()->forwarded(); if (e->integer_type() != NULL && (e == Type::lookup_integer_type("uint8") || e == Type::lookup_integer_type("int"))) return true; } // An unsafe.Pointer type may be converted to any pointer type or to // uintptr, and vice-versa. if (lhs->is_unsafe_pointer_type() && (rhs->points_to() != NULL || (rhs->integer_type() != NULL && rhs->forwarded() == Type::lookup_integer_type("uintptr")))) return true; if (rhs->is_unsafe_pointer_type() && (lhs->points_to() != NULL || (lhs->integer_type() != NULL && lhs->forwarded() == Type::lookup_integer_type("uintptr")))) return true; // Give a better error message. if (reason != NULL) { if (reason->empty()) *reason = "invalid type conversion"; else { std::string s = "invalid type conversion ("; s += *reason; s += ')'; *reason = s; } } return false; } // Return whether this type has any hidden fields. This is only a // possibility for a few types. bool Type::has_hidden_fields(const Named_type* within, std::string* reason) const { switch (this->forwarded()->classification_) { case TYPE_NAMED: return this->named_type()->named_type_has_hidden_fields(reason); case TYPE_STRUCT: return this->struct_type()->struct_has_hidden_fields(within, reason); case TYPE_ARRAY: return this->array_type()->array_has_hidden_fields(within, reason); default: return false; } } // Return a hash code for the type to be used for method lookup. unsigned int Type::hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->classification_ != TYPE_FORWARD) ret += this->classification_; return ret + this->do_hash_for_method(gogo); } // Default implementation of do_hash_for_method. This is appropriate // for types with no subfields. unsigned int Type::do_hash_for_method(Gogo*) const { return 0; } // Return a hash code for a string, given a starting hash. unsigned int Type::hash_string(const std::string& s, unsigned int h) { const char* p = s.data(); size_t len = s.length(); for (; len > 0; --len) { h ^= *p++; h*= 16777619; } return h; } // Default check for the expression passed to make. Any type which // may be used with make implements its own version of this. bool Type::do_check_make_expression(Expression_list*, source_location) { gcc_unreachable(); } // Return whether an expression has an integer value. Report an error // if not. This is used when handling calls to the predeclared make // function. bool Type::check_int_value(Expression* e, const char* errmsg, source_location location) { if (e->type()->integer_type() != NULL) return true; // Check for a floating point constant with integer value. mpfr_t fval; mpfr_init(fval); Type* dummy; if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval)) { mpz_t ival; mpz_init(ival); bool ok = false; mpfr_clear_overflow(); mpfr_clear_erangeflag(); mpfr_get_z(ival, fval, GMP_RNDN); if (!mpfr_overflow_p() && !mpfr_erangeflag_p() && mpz_sgn(ival) >= 0) { Named_type* ntype = Type::lookup_integer_type("int"); Integer_type* inttype = ntype->integer_type(); mpz_t max; mpz_init_set_ui(max, 1); mpz_mul_2exp(max, max, inttype->bits() - 1); ok = mpz_cmp(ival, max) < 0; mpz_clear(max); } mpz_clear(ival); if (ok) { mpfr_clear(fval); return true; } } mpfr_clear(fval); error_at(location, "%s", errmsg); return false; } // A hash table mapping unnamed types to trees. Type::Type_trees Type::type_trees; // Return a tree representing this type. tree Type::get_tree(Gogo* gogo) { if (this->tree_ != NULL) return this->tree_; if (this->forward_declaration_type() != NULL || this->named_type() != NULL) return this->get_tree_without_hash(gogo); if (this->is_error_type()) return error_mark_node; // To avoid confusing GIMPLE, we need to translate all identical Go // types to the same GIMPLE type. We use a hash table to do that. // There is no need to use the hash table for named types, as named // types are only identical to themselves. std::pair val(this, NULL); std::pair ins = Type::type_trees.insert(val); if (!ins.second && ins.first->second != NULL_TREE) { if (gogo != NULL && gogo->named_types_are_converted()) this->tree_ = ins.first->second; return ins.first->second; } tree t = this->get_tree_without_hash(gogo); if (ins.first->second == NULL_TREE) ins.first->second = t; else { // We have already created a tree for this type. This can // happen when an unnamed type is defined using a named type // which in turns uses an identical unnamed type. Use the tree // we created earlier and ignore the one we just built. t = ins.first->second; if (gogo == NULL || !gogo->named_types_are_converted()) return t; this->tree_ = t; } return t; } // Return a tree for a type without looking in the hash table for // identical types. This is used for named types, since there is no // point to looking in the hash table for them. tree Type::get_tree_without_hash(Gogo* gogo) { if (this->tree_ == NULL_TREE) { tree t = this->do_get_tree(gogo); // For a recursive function or pointer type, we will temporarily // return ptr_type_node during the recursion. We don't want to // record that for a forwarding type, as it may confuse us // later. if (t == ptr_type_node && this->forward_declaration_type() != NULL) return t; if (gogo == NULL || !gogo->named_types_are_converted()) return t; this->tree_ = t; go_preserve_from_gc(t); } return this->tree_; } // Return a tree representing a zero initialization for this type. tree Type::get_init_tree(Gogo* gogo, bool is_clear) { tree type_tree = this->get_tree(gogo); if (type_tree == error_mark_node) return error_mark_node; return this->do_get_init_tree(gogo, type_tree, is_clear); } // Any type which supports the builtin make function must implement // this. tree Type::do_make_expression_tree(Translate_context*, Expression_list*, source_location) { gcc_unreachable(); } // Return a pointer to the type descriptor for this type. tree Type::type_descriptor_pointer(Gogo* gogo) { Type* t = this->forwarded(); if (t->type_descriptor_decl_ == NULL_TREE) { Expression* e = t->do_type_descriptor(gogo, NULL); gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_); gcc_assert(t->type_descriptor_decl_ != NULL_TREE && (t->type_descriptor_decl_ == error_mark_node || DECL_P(t->type_descriptor_decl_))); } if (t->type_descriptor_decl_ == error_mark_node) return error_mark_node; return build_fold_addr_expr(t->type_descriptor_decl_); } // Return a composite literal for a type descriptor. Expression* Type::type_descriptor(Gogo* gogo, Type* type) { return type->do_type_descriptor(gogo, NULL); } // Return a composite literal for a type descriptor with a name. Expression* Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name) { gcc_assert(name != NULL && type->named_type() != name); return type->do_type_descriptor(gogo, name); } // Make a builtin struct type from a list of fields. The fields are // pairs of a name and a type. Struct_type* Type::make_builtin_struct_type(int nfields, ...) { va_list ap; va_start(ap, nfields); source_location bloc = BUILTINS_LOCATION; Struct_field_list* sfl = new Struct_field_list(); for (int i = 0; i < nfields; i++) { const char* field_name = va_arg(ap, const char *); Type* type = va_arg(ap, Type*); sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc))); } va_end(ap); return Type::make_struct_type(sfl, bloc); } // A list of builtin named types. std::vector Type::named_builtin_types; // Make a builtin named type. Named_type* Type::make_builtin_named_type(const char* name, Type* type) { source_location bloc = BUILTINS_LOCATION; Named_object* no = Named_object::make_type(name, NULL, type, bloc); Named_type* ret = no->type_value(); Type::named_builtin_types.push_back(ret); return ret; } // Convert the named builtin types. void Type::convert_builtin_named_types(Gogo* gogo) { for (std::vector::const_iterator p = Type::named_builtin_types.begin(); p != Type::named_builtin_types.end(); ++p) { bool r = (*p)->verify(); gcc_assert(r); (*p)->convert(gogo); } } // Return the type of a type descriptor. We should really tie this to // runtime.Type rather than copying it. This must match commonType in // libgo/go/runtime/type.go. Type* Type::make_type_descriptor_type() { static Type* ret; if (ret == NULL) { source_location bloc = BUILTINS_LOCATION; Type* uint8_type = Type::lookup_integer_type("uint8"); Type* uint32_type = Type::lookup_integer_type("uint32"); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); // This is an unnamed version of unsafe.Pointer. Perhaps we // should use the named version instead, although that would // require us to create the unsafe package if it has not been // imported. It probably doesn't matter. Type* void_type = Type::make_void_type(); Type* unsafe_pointer_type = Type::make_pointer_type(void_type); // Forward declaration for the type descriptor type. Named_object* named_type_descriptor_type = Named_object::make_type_declaration("commonType", NULL, bloc); Type* ft = Type::make_forward_declaration(named_type_descriptor_type); Type* pointer_type_descriptor_type = Type::make_pointer_type(ft); // The type of a method on a concrete type. Struct_type* method_type = Type::make_builtin_struct_type(5, "name", pointer_string_type, "pkgPath", pointer_string_type, "mtyp", pointer_type_descriptor_type, "typ", pointer_type_descriptor_type, "tfn", unsafe_pointer_type); Named_type* named_method_type = Type::make_builtin_named_type("method", method_type); // Information for types with a name or methods. Type* slice_named_method_type = Type::make_array_type(named_method_type, NULL); Struct_type* uncommon_type = Type::make_builtin_struct_type(3, "name", pointer_string_type, "pkgPath", pointer_string_type, "methods", slice_named_method_type); Named_type* named_uncommon_type = Type::make_builtin_named_type("uncommonType", uncommon_type); Type* pointer_uncommon_type = Type::make_pointer_type(named_uncommon_type); // The type descriptor type. Typed_identifier_list* params = new Typed_identifier_list(); params->push_back(Typed_identifier("", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("", uintptr_type, bloc)); Typed_identifier_list* results = new Typed_identifier_list(); results->push_back(Typed_identifier("", uintptr_type, bloc)); Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc); params = new Typed_identifier_list(); params->push_back(Typed_identifier("", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("", unsafe_pointer_type, bloc)); params->push_back(Typed_identifier("", uintptr_type, bloc)); results = new Typed_identifier_list(); results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc)); Type* equalfn_type = Type::make_function_type(NULL, params, results, bloc); Struct_type* type_descriptor_type = Type::make_builtin_struct_type(9, "Kind", uint8_type, "align", uint8_type, "fieldAlign", uint8_type, "size", uintptr_type, "hash", uint32_type, "hashfn", hashfn_type, "equalfn", equalfn_type, "string", pointer_string_type, "", pointer_uncommon_type); Named_type* named = Type::make_builtin_named_type("commonType", type_descriptor_type); named_type_descriptor_type->set_type_value(named); ret = named; } return ret; } // Make the type of a pointer to a type descriptor as represented in // Go. Type* Type::make_type_descriptor_ptr_type() { static Type* ret; if (ret == NULL) ret = Type::make_pointer_type(Type::make_type_descriptor_type()); return ret; } // Return the names of runtime functions which compute a hash code for // this type and which compare whether two values of this type are // equal. void Type::type_functions(const char** hash_fn, const char** equal_fn) const { switch (this->base()->classification()) { case Type::TYPE_ERROR: case Type::TYPE_VOID: case Type::TYPE_NIL: // These types can not be hashed or compared. *hash_fn = "__go_type_hash_error"; *equal_fn = "__go_type_equal_error"; break; case Type::TYPE_BOOLEAN: case Type::TYPE_INTEGER: case Type::TYPE_FLOAT: case Type::TYPE_COMPLEX: case Type::TYPE_POINTER: case Type::TYPE_FUNCTION: case Type::TYPE_MAP: case Type::TYPE_CHANNEL: *hash_fn = "__go_type_hash_identity"; *equal_fn = "__go_type_equal_identity"; break; case Type::TYPE_STRING: *hash_fn = "__go_type_hash_string"; *equal_fn = "__go_type_equal_string"; break; case Type::TYPE_STRUCT: case Type::TYPE_ARRAY: // These types can not be hashed or compared. *hash_fn = "__go_type_hash_error"; *equal_fn = "__go_type_equal_error"; break; case Type::TYPE_INTERFACE: if (this->interface_type()->is_empty()) { *hash_fn = "__go_type_hash_empty_interface"; *equal_fn = "__go_type_equal_empty_interface"; } else { *hash_fn = "__go_type_hash_interface"; *equal_fn = "__go_type_equal_interface"; } break; case Type::TYPE_NAMED: case Type::TYPE_FORWARD: gcc_unreachable(); default: gcc_unreachable(); } } // Return a composite literal for the type descriptor for a plain type // of kind RUNTIME_TYPE_KIND named NAME. Expression* Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind, Named_type* name, const Methods* methods, bool only_value_methods) { source_location bloc = BUILTINS_LOCATION; Type* td_type = Type::make_type_descriptor_type(); const Struct_field_list* fields = td_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(9); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "Kind"); mpz_t iv; mpz_init_set_ui(iv, runtime_type_kind); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); ++p; gcc_assert(p->field_name() == "align"); Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT; vals->push_back(Expression::make_type_info(this, type_info)); ++p; gcc_assert(p->field_name() == "fieldAlign"); type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT; vals->push_back(Expression::make_type_info(this, type_info)); ++p; gcc_assert(p->field_name() == "size"); type_info = Expression::TYPE_INFO_SIZE; vals->push_back(Expression::make_type_info(this, type_info)); ++p; gcc_assert(p->field_name() == "hash"); mpz_set_ui(iv, this->hash_for_method(gogo)); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); const char* hash_fn; const char* equal_fn; this->type_functions(&hash_fn, &equal_fn); ++p; gcc_assert(p->field_name() == "hashfn"); Function_type* fntype = p->type()->function_type(); Named_object* no = Named_object::make_function_declaration(hash_fn, NULL, fntype, bloc); no->func_declaration_value()->set_asm_name(hash_fn); vals->push_back(Expression::make_func_reference(no, NULL, bloc)); ++p; gcc_assert(p->field_name() == "equalfn"); fntype = p->type()->function_type(); no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc); no->func_declaration_value()->set_asm_name(equal_fn); vals->push_back(Expression::make_func_reference(no, NULL, bloc)); ++p; gcc_assert(p->field_name() == "string"); Expression* s = Expression::make_string((name != NULL ? name->reflection(gogo) : this->reflection(gogo)), bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); ++p; gcc_assert(p->field_name() == "uncommonType"); if (name == NULL && methods == NULL) vals->push_back(Expression::make_nil(bloc)); else { if (methods == NULL) methods = name->methods(); vals->push_back(this->uncommon_type_constructor(gogo, p->type()->deref(), name, methods, only_value_methods)); } ++p; gcc_assert(p == fields->end()); mpz_clear(iv); return Expression::make_struct_composite_literal(td_type, vals, bloc); } // Return a composite literal for the uncommon type information for // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type // struct. If name is not NULL, it is the name of the type. If // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS // is true if only value methods should be included. At least one of // NAME and METHODS must not be NULL. Expression* Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type, Named_type* name, const Methods* methods, bool only_value_methods) const { source_location bloc = BUILTINS_LOCATION; const Struct_field_list* fields = uncommon_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "name"); ++p; gcc_assert(p->field_name() == "pkgPath"); if (name == NULL) { vals->push_back(Expression::make_nil(bloc)); vals->push_back(Expression::make_nil(bloc)); } else { Named_object* no = name->named_object(); std::string n = Gogo::unpack_hidden_name(no->name()); Expression* s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); if (name->is_builtin()) vals->push_back(Expression::make_nil(bloc)); else { const Package* package = no->package(); const std::string& unique_prefix(package == NULL ? gogo->unique_prefix() : package->unique_prefix()); const std::string& package_name(package == NULL ? gogo->package_name() : package->name()); n.assign(unique_prefix); n.append(1, '.'); n.append(package_name); if (name->in_function() != NULL) { n.append(1, '.'); n.append(Gogo::unpack_hidden_name(name->in_function()->name())); } s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } } ++p; gcc_assert(p->field_name() == "methods"); vals->push_back(this->methods_constructor(gogo, p->type(), methods, only_value_methods)); ++p; gcc_assert(p == fields->end()); Expression* r = Expression::make_struct_composite_literal(uncommon_type, vals, bloc); return Expression::make_unary(OPERATOR_AND, r, bloc); } // Sort methods by name. class Sort_methods { public: bool operator()(const std::pair& m1, const std::pair& m2) const { return m1.first < m2.first; } }; // Return a composite literal for the type method table for this type. // METHODS_TYPE is the type of the table, and is a slice type. // METHODS is the list of methods. If ONLY_VALUE_METHODS is true, // then only value methods are used. Expression* Type::methods_constructor(Gogo* gogo, Type* methods_type, const Methods* methods, bool only_value_methods) const { source_location bloc = BUILTINS_LOCATION; std::vector > smethods; if (methods != NULL) { smethods.reserve(methods->count()); for (Methods::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (p->second->is_ambiguous()) continue; if (only_value_methods && !p->second->is_value_method()) continue; smethods.push_back(std::make_pair(p->first, p->second)); } } if (smethods.empty()) return Expression::make_slice_composite_literal(methods_type, NULL, bloc); std::sort(smethods.begin(), smethods.end(), Sort_methods()); Type* method_type = methods_type->array_type()->element_type(); Expression_list* vals = new Expression_list(); vals->reserve(smethods.size()); for (std::vector >::const_iterator p = smethods.begin(); p != smethods.end(); ++p) vals->push_back(this->method_constructor(gogo, method_type, p->first, p->second)); return Expression::make_slice_composite_literal(methods_type, vals, bloc); } // Return a composite literal for a single method. METHOD_TYPE is the // type of the entry. METHOD_NAME is the name of the method and M is // the method information. Expression* Type::method_constructor(Gogo*, Type* method_type, const std::string& method_name, const Method* m) const { source_location bloc = BUILTINS_LOCATION; const Struct_field_list* fields = method_type->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(5); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "name"); const std::string n = Gogo::unpack_hidden_name(method_name); Expression* s = Expression::make_string(n, bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); ++p; gcc_assert(p->field_name() == "pkgPath"); if (!Gogo::is_hidden_name(method_name)) vals->push_back(Expression::make_nil(bloc)); else { s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc); vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } Named_object* no = (m->needs_stub_method() ? m->stub_object() : m->named_object()); Function_type* mtype; if (no->is_function()) mtype = no->func_value()->type(); else mtype = no->func_declaration_value()->type(); gcc_assert(mtype->is_method()); Type* nonmethod_type = mtype->copy_without_receiver(); ++p; gcc_assert(p->field_name() == "mtyp"); vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc)); ++p; gcc_assert(p->field_name() == "typ"); vals->push_back(Expression::make_type_descriptor(mtype, bloc)); ++p; gcc_assert(p->field_name() == "tfn"); vals->push_back(Expression::make_func_reference(no, NULL, bloc)); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(method_type, vals, bloc); } // Return a composite literal for the type descriptor of a plain type. // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not // NULL, it is the name to use as well as the list of methods. Expression* Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind, Named_type* name) { return this->type_descriptor_constructor(gogo, runtime_type_kind, name, NULL, true); } // Return the type reflection string for this type. std::string Type::reflection(Gogo* gogo) const { std::string ret; // The do_reflection virtual function should set RET to the // reflection string. this->do_reflection(gogo, &ret); return ret; } // Return a mangled name for the type. std::string Type::mangled_name(Gogo* gogo) const { std::string ret; // The do_mangled_name virtual function should set RET to the // mangled name. For a composite type it should append a code for // the composition and then call do_mangled_name on the components. this->do_mangled_name(gogo, &ret); return ret; } // Default function to export a type. void Type::do_export(Export*) const { gcc_unreachable(); } // Import a type. Type* Type::import_type(Import* imp) { if (imp->match_c_string("(")) return Function_type::do_import(imp); else if (imp->match_c_string("*")) return Pointer_type::do_import(imp); else if (imp->match_c_string("struct ")) return Struct_type::do_import(imp); else if (imp->match_c_string("[")) return Array_type::do_import(imp); else if (imp->match_c_string("map ")) return Map_type::do_import(imp); else if (imp->match_c_string("chan ")) return Channel_type::do_import(imp); else if (imp->match_c_string("interface")) return Interface_type::do_import(imp); else { error_at(imp->location(), "import error: expected type"); return Type::make_error_type(); } } // A type used to indicate a parsing error. This exists to simplify // later error detection. class Error_type : public Type { public: Error_type() : Type(TYPE_ERROR) { } protected: tree do_get_tree(Gogo*) { return error_mark_node; } tree do_get_init_tree(Gogo*, tree, bool) { return error_mark_node; } Expression* do_type_descriptor(Gogo*, Named_type*) { return Expression::make_error(BUILTINS_LOCATION); } void do_reflection(Gogo*, std::string*) const { gcc_assert(saw_errors()); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('E'); } }; Type* Type::make_error_type() { static Error_type singleton_error_type; return &singleton_error_type; } // The void type. class Void_type : public Type { public: Void_type() : Type(TYPE_VOID) { } protected: tree do_get_tree(Gogo*) { return void_type_node; } tree do_get_init_tree(Gogo*, tree, bool) { gcc_unreachable(); } Expression* do_type_descriptor(Gogo*, Named_type*) { gcc_unreachable(); } void do_reflection(Gogo*, std::string*) const { } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('v'); } }; Type* Type::make_void_type() { static Void_type singleton_void_type; return &singleton_void_type; } // The boolean type. class Boolean_type : public Type { public: Boolean_type() : Type(TYPE_BOOLEAN) { } protected: tree do_get_tree(Gogo*) { return boolean_type_node; } tree do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); } Expression* do_type_descriptor(Gogo*, Named_type* name); // We should not be asked for the reflection string of a basic type. void do_reflection(Gogo*, std::string* ret) const { ret->append("bool"); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('b'); } }; // Make the type descriptor. Expression* Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (name != NULL) return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name); else { Named_object* no = gogo->lookup_global("bool"); gcc_assert(no != NULL); return Type::type_descriptor(gogo, no->type_value()); } } Type* Type::make_boolean_type() { static Boolean_type boolean_type; return &boolean_type; } // The named type "bool". static Named_type* named_bool_type; // Get the named type "bool". Named_type* Type::lookup_bool_type() { return named_bool_type; } // Make the named type "bool". Named_type* Type::make_named_bool_type() { Type* bool_type = Type::make_boolean_type(); Named_object* named_object = Named_object::make_type("bool", NULL, bool_type, BUILTINS_LOCATION); Named_type* named_type = named_object->type_value(); named_bool_type = named_type; return named_type; } // Class Integer_type. Integer_type::Named_integer_types Integer_type::named_integer_types; // Create a new integer type. Non-abstract integer types always have // names. Named_type* Integer_type::create_integer_type(const char* name, bool is_unsigned, int bits, int runtime_type_kind) { Integer_type* integer_type = new Integer_type(false, is_unsigned, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, integer_type, BUILTINS_LOCATION); Named_type* named_type = named_object->type_value(); std::pair ins = Integer_type::named_integer_types.insert(std::make_pair(sname, named_type)); gcc_assert(ins.second); return named_type; } // Look up an existing integer type. Named_type* Integer_type::lookup_integer_type(const char* name) { Named_integer_types::const_iterator p = Integer_type::named_integer_types.find(name); gcc_assert(p != Integer_type::named_integer_types.end()); return p->second; } // Create a new abstract integer type. Integer_type* Integer_type::create_abstract_integer_type() { static Integer_type* abstract_type; if (abstract_type == NULL) abstract_type = new Integer_type(true, false, INT_TYPE_SIZE, RUNTIME_TYPE_KIND_INT); return abstract_type; } // Integer type compatibility. bool Integer_type::is_identical(const Integer_type* t) const { if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Integer_type::do_hash_for_method(Gogo*) const { return ((this->bits_ << 4) + ((this->is_unsigned_ ? 1 : 0) << 8) + ((this->is_abstract_ ? 1 : 0) << 9)); } // Get the tree for an Integer_type. tree Integer_type::do_get_tree(Gogo*) { if (this->is_abstract_) { gcc_assert(saw_errors()); return error_mark_node; } if (this->is_unsigned_) { if (this->bits_ == INT_TYPE_SIZE) return unsigned_type_node; else if (this->bits_ == CHAR_TYPE_SIZE) return unsigned_char_type_node; else if (this->bits_ == SHORT_TYPE_SIZE) return short_unsigned_type_node; else if (this->bits_ == LONG_TYPE_SIZE) return long_unsigned_type_node; else if (this->bits_ == LONG_LONG_TYPE_SIZE) return long_long_unsigned_type_node; else return make_unsigned_type(this->bits_); } else { if (this->bits_ == INT_TYPE_SIZE) return integer_type_node; else if (this->bits_ == CHAR_TYPE_SIZE) return signed_char_type_node; else if (this->bits_ == SHORT_TYPE_SIZE) return short_integer_type_node; else if (this->bits_ == LONG_TYPE_SIZE) return long_integer_type_node; else if (this->bits_ == LONG_LONG_TYPE_SIZE) return long_long_integer_type_node; else return make_signed_type(this->bits_); } } tree Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { return is_clear ? NULL : build_int_cst(type_tree, 0); } // The type descriptor for an integer type. Integer types are always // named. Expression* Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name) { gcc_assert(name != NULL); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Integer_type::do_reflection(Gogo*, std::string*) const { gcc_assert(saw_errors()); } // Mangled name. void Integer_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "i%s%s%de", this->is_abstract_ ? "a" : "", this->is_unsigned_ ? "u" : "", this->bits_); ret->append(buf); } // Make an integer type. Named_type* Type::make_integer_type(const char* name, bool is_unsigned, int bits, int runtime_type_kind) { return Integer_type::create_integer_type(name, is_unsigned, bits, runtime_type_kind); } // Make an abstract integer type. Integer_type* Type::make_abstract_integer_type() { return Integer_type::create_abstract_integer_type(); } // Look up an integer type. Named_type* Type::lookup_integer_type(const char* name) { return Integer_type::lookup_integer_type(name); } // Class Float_type. Float_type::Named_float_types Float_type::named_float_types; // Create a new float type. Non-abstract float types always have // names. Named_type* Float_type::create_float_type(const char* name, int bits, int runtime_type_kind) { Float_type* float_type = new Float_type(false, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, float_type, BUILTINS_LOCATION); Named_type* named_type = named_object->type_value(); std::pair ins = Float_type::named_float_types.insert(std::make_pair(sname, named_type)); gcc_assert(ins.second); return named_type; } // Look up an existing float type. Named_type* Float_type::lookup_float_type(const char* name) { Named_float_types::const_iterator p = Float_type::named_float_types.find(name); gcc_assert(p != Float_type::named_float_types.end()); return p->second; } // Create a new abstract float type. Float_type* Float_type::create_abstract_float_type() { static Float_type* abstract_type; if (abstract_type == NULL) abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64); return abstract_type; } // Whether this type is identical with T. bool Float_type::is_identical(const Float_type* t) const { if (this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Float_type::do_hash_for_method(Gogo*) const { return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); } // Get a tree without using a Gogo*. tree Float_type::type_tree() const { if (this->bits_ == FLOAT_TYPE_SIZE) return float_type_node; else if (this->bits_ == DOUBLE_TYPE_SIZE) return double_type_node; else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE) return long_double_type_node; else { tree ret = make_node(REAL_TYPE); TYPE_PRECISION(ret) = this->bits_; layout_type(ret); return ret; } } // Get a tree. tree Float_type::do_get_tree(Gogo*) { return this->type_tree(); } tree Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; REAL_VALUE_TYPE r; real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0); return build_real(type_tree, r); } // The type descriptor for a float type. Float types are always named. Expression* Float_type::do_type_descriptor(Gogo* gogo, Named_type* name) { gcc_assert(name != NULL); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Float_type::do_reflection(Gogo*, std::string*) const { gcc_assert(saw_errors()); } // Mangled name. void Float_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "f%s%de", this->is_abstract_ ? "a" : "", this->bits_); ret->append(buf); } // Make a floating point type. Named_type* Type::make_float_type(const char* name, int bits, int runtime_type_kind) { return Float_type::create_float_type(name, bits, runtime_type_kind); } // Make an abstract float type. Float_type* Type::make_abstract_float_type() { return Float_type::create_abstract_float_type(); } // Look up a float type. Named_type* Type::lookup_float_type(const char* name) { return Float_type::lookup_float_type(name); } // Class Complex_type. Complex_type::Named_complex_types Complex_type::named_complex_types; // Create a new complex type. Non-abstract complex types always have // names. Named_type* Complex_type::create_complex_type(const char* name, int bits, int runtime_type_kind) { Complex_type* complex_type = new Complex_type(false, bits, runtime_type_kind); std::string sname(name); Named_object* named_object = Named_object::make_type(sname, NULL, complex_type, BUILTINS_LOCATION); Named_type* named_type = named_object->type_value(); std::pair ins = Complex_type::named_complex_types.insert(std::make_pair(sname, named_type)); gcc_assert(ins.second); return named_type; } // Look up an existing complex type. Named_type* Complex_type::lookup_complex_type(const char* name) { Named_complex_types::const_iterator p = Complex_type::named_complex_types.find(name); gcc_assert(p != Complex_type::named_complex_types.end()); return p->second; } // Create a new abstract complex type. Complex_type* Complex_type::create_abstract_complex_type() { static Complex_type* abstract_type; if (abstract_type == NULL) abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128); return abstract_type; } // Whether this type is identical with T. bool Complex_type::is_identical(const Complex_type *t) const { if (this->bits_ != t->bits_) return false; return this->is_abstract_ == t->is_abstract_; } // Hash code. unsigned int Complex_type::do_hash_for_method(Gogo*) const { return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8); } // Get a tree without using a Gogo*. tree Complex_type::type_tree() const { if (this->bits_ == FLOAT_TYPE_SIZE * 2) return complex_float_type_node; else if (this->bits_ == DOUBLE_TYPE_SIZE * 2) return complex_double_type_node; else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2) return complex_long_double_type_node; else { tree ret = make_node(REAL_TYPE); TYPE_PRECISION(ret) = this->bits_ / 2; layout_type(ret); return build_complex_type(ret); } } // Get a tree. tree Complex_type::do_get_tree(Gogo*) { return this->type_tree(); } // Zero initializer. tree Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; REAL_VALUE_TYPE r; real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0); return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r), build_real(TREE_TYPE(type_tree), r)); } // The type descriptor for a complex type. Complex types are always // named. Expression* Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name) { gcc_assert(name != NULL); return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name); } // We should not be asked for the reflection string of a basic type. void Complex_type::do_reflection(Gogo*, std::string*) const { gcc_assert(saw_errors()); } // Mangled name. void Complex_type::do_mangled_name(Gogo*, std::string* ret) const { char buf[100]; snprintf(buf, sizeof buf, "c%s%de", this->is_abstract_ ? "a" : "", this->bits_); ret->append(buf); } // Make a complex type. Named_type* Type::make_complex_type(const char* name, int bits, int runtime_type_kind) { return Complex_type::create_complex_type(name, bits, runtime_type_kind); } // Make an abstract complex type. Complex_type* Type::make_abstract_complex_type() { return Complex_type::create_abstract_complex_type(); } // Look up a complex type. Named_type* Type::lookup_complex_type(const char* name) { return Complex_type::lookup_complex_type(name); } // Class String_type. // Return the tree for String_type. A string is a struct with two // fields: a pointer to the characters and a length. tree String_type::do_get_tree(Gogo*) { static tree struct_type; return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2, "__data", build_pointer_type(unsigned_char_type_node), "__length", integer_type_node); } // Return a tree for the length of STRING. tree String_type::length_tree(Gogo*, tree string) { tree string_type = TREE_TYPE(string); gcc_assert(TREE_CODE(string_type) == RECORD_TYPE); tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type)); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)), "__length") == 0); return fold_build3(COMPONENT_REF, integer_type_node, string, length_field, NULL_TREE); } // Return a tree for a pointer to the bytes of STRING. tree String_type::bytes_tree(Gogo*, tree string) { tree string_type = TREE_TYPE(string); gcc_assert(TREE_CODE(string_type) == RECORD_TYPE); tree bytes_field = TYPE_FIELDS(string_type); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)), "__data") == 0); return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string, bytes_field, NULL_TREE); } // We initialize a string to { NULL, 0 }. tree String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL_TREE; gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE); VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2); for (tree field = TYPE_FIELDS(type_tree); field != NULL_TREE; field = DECL_CHAIN(field)) { constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); elt->index = field; elt->value = fold_convert(TREE_TYPE(field), size_zero_node); } tree ret = build_constructor(type_tree, init); TREE_CONSTANT(ret) = 1; return ret; } // The type descriptor for the string type. Expression* String_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (name != NULL) return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name); else { Named_object* no = gogo->lookup_global("string"); gcc_assert(no != NULL); return Type::type_descriptor(gogo, no->type_value()); } } // We should not be asked for the reflection string of a basic type. void String_type::do_reflection(Gogo*, std::string* ret) const { ret->append("string"); } // Mangled name of a string type. void String_type::do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('z'); } // Make a string type. Type* Type::make_string_type() { static String_type string_type; return &string_type; } // The named type "string". static Named_type* named_string_type; // Get the named type "string". Named_type* Type::lookup_string_type() { return named_string_type; } // Make the named type string. Named_type* Type::make_named_string_type() { Type* string_type = Type::make_string_type(); Named_object* named_object = Named_object::make_type("string", NULL, string_type, BUILTINS_LOCATION); Named_type* named_type = named_object->type_value(); named_string_type = named_type; return named_type; } // The sink type. This is the type of the blank identifier _. Any // type may be assigned to it. class Sink_type : public Type { public: Sink_type() : Type(TYPE_SINK) { } protected: tree do_get_tree(Gogo*) { gcc_unreachable(); } tree do_get_init_tree(Gogo*, tree, bool) { gcc_unreachable(); } Expression* do_type_descriptor(Gogo*, Named_type*) { gcc_unreachable(); } void do_reflection(Gogo*, std::string*) const { gcc_unreachable(); } void do_mangled_name(Gogo*, std::string*) const { gcc_unreachable(); } }; // Make the sink type. Type* Type::make_sink_type() { static Sink_type sink_type; return &sink_type; } // Class Function_type. // Traversal. int Function_type::do_traverse(Traverse* traverse) { if (this->receiver_ != NULL && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->parameters_ != NULL && this->parameters_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->results_ != NULL && this->results_->traverse(traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Returns whether T is a valid redeclaration of this type. If this // returns false, and REASON is not NULL, *REASON may be set to a // brief explanation of why it returned false. bool Function_type::is_valid_redeclaration(const Function_type* t, std::string* reason) const { if (!this->is_identical(t, false, true, reason)) return false; // A redeclaration of a function is required to use the same names // for the receiver and parameters. if (this->receiver() != NULL && this->receiver()->name() != t->receiver()->name() && this->receiver()->name() != Import::import_marker && t->receiver()->name() != Import::import_marker) { if (reason != NULL) *reason = "receiver name changed"; return false; } const Typed_identifier_list* parms1 = this->parameters(); const Typed_identifier_list* parms2 = t->parameters(); if (parms1 != NULL) { Typed_identifier_list::const_iterator p1 = parms1->begin(); for (Typed_identifier_list::const_iterator p2 = parms2->begin(); p2 != parms2->end(); ++p2, ++p1) { if (p1->name() != p2->name() && p1->name() != Import::import_marker && p2->name() != Import::import_marker) { if (reason != NULL) *reason = "parameter name changed"; return false; } // This is called at parse time, so we may have unknown // types. Type* t1 = p1->type()->forwarded(); Type* t2 = p2->type()->forwarded(); if (t1 != t2 && t1->forward_declaration_type() != NULL && (t2->forward_declaration_type() == NULL || (t1->forward_declaration_type()->named_object() != t2->forward_declaration_type()->named_object()))) return false; } } const Typed_identifier_list* results1 = this->results(); const Typed_identifier_list* results2 = t->results(); if (results1 != NULL) { Typed_identifier_list::const_iterator res1 = results1->begin(); for (Typed_identifier_list::const_iterator res2 = results2->begin(); res2 != results2->end(); ++res2, ++res1) { if (res1->name() != res2->name() && res1->name() != Import::import_marker && res2->name() != Import::import_marker) { if (reason != NULL) *reason = "result name changed"; return false; } // This is called at parse time, so we may have unknown // types. Type* t1 = res1->type()->forwarded(); Type* t2 = res2->type()->forwarded(); if (t1 != t2 && t1->forward_declaration_type() != NULL && (t2->forward_declaration_type() == NULL || (t1->forward_declaration_type()->named_object() != t2->forward_declaration_type()->named_object()))) return false; } } return true; } // Check whether T is the same as this type. bool Function_type::is_identical(const Function_type* t, bool ignore_receiver, bool errors_are_identical, std::string* reason) const { if (!ignore_receiver) { const Typed_identifier* r1 = this->receiver(); const Typed_identifier* r2 = t->receiver(); if ((r1 != NULL) != (r2 != NULL)) { if (reason != NULL) *reason = _("different receiver types"); return false; } if (r1 != NULL) { if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical, reason)) { if (reason != NULL && !reason->empty()) *reason = "receiver: " + *reason; return false; } } } const Typed_identifier_list* parms1 = this->parameters(); const Typed_identifier_list* parms2 = t->parameters(); if ((parms1 != NULL) != (parms2 != NULL)) { if (reason != NULL) *reason = _("different number of parameters"); return false; } if (parms1 != NULL) { Typed_identifier_list::const_iterator p1 = parms1->begin(); for (Typed_identifier_list::const_iterator p2 = parms2->begin(); p2 != parms2->end(); ++p2, ++p1) { if (p1 == parms1->end()) { if (reason != NULL) *reason = _("different number of parameters"); return false; } if (!Type::are_identical(p1->type(), p2->type(), errors_are_identical, NULL)) { if (reason != NULL) *reason = _("different parameter types"); return false; } } if (p1 != parms1->end()) { if (reason != NULL) *reason = _("different number of parameters"); return false; } } if (this->is_varargs() != t->is_varargs()) { if (reason != NULL) *reason = _("different varargs"); return false; } const Typed_identifier_list* results1 = this->results(); const Typed_identifier_list* results2 = t->results(); if ((results1 != NULL) != (results2 != NULL)) { if (reason != NULL) *reason = _("different number of results"); return false; } if (results1 != NULL) { Typed_identifier_list::const_iterator res1 = results1->begin(); for (Typed_identifier_list::const_iterator res2 = results2->begin(); res2 != results2->end(); ++res2, ++res1) { if (res1 == results1->end()) { if (reason != NULL) *reason = _("different number of results"); return false; } if (!Type::are_identical(res1->type(), res2->type(), errors_are_identical, NULL)) { if (reason != NULL) *reason = _("different result types"); return false; } } if (res1 != results1->end()) { if (reason != NULL) *reason = _("different number of results"); return false; } } return true; } // Hash code. unsigned int Function_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; // We ignore the receiver type for hash codes, because we need to // get the same hash code for a method in an interface and a method // declared for a type. The former will not have a receiver. if (this->parameters_ != NULL) { int shift = 1; for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p, ++shift) ret += p->type()->hash_for_method(gogo) << shift; } if (this->results_ != NULL) { int shift = 2; for (Typed_identifier_list::const_iterator p = this->results_->begin(); p != this->results_->end(); ++p, ++shift) ret += p->type()->hash_for_method(gogo) << shift; } if (this->is_varargs_) ret += 1; ret <<= 4; return ret; } // Get the tree for a function type. tree Function_type::do_get_tree(Gogo* gogo) { tree args = NULL_TREE; tree* pp = &args; if (this->receiver_ != NULL) { Type* rtype = this->receiver_->type(); tree ptype = rtype->get_tree(gogo); if (ptype == error_mark_node) return error_mark_node; // We always pass the address of the receiver parameter, in // order to make interface calls work with unknown types. if (rtype->points_to() == NULL) ptype = build_pointer_type(ptype); *pp = tree_cons (NULL_TREE, ptype, NULL_TREE); pp = &TREE_CHAIN (*pp); } if (this->parameters_ != NULL) { for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p) { tree ptype = p->type()->get_tree(gogo); if (ptype == error_mark_node) return error_mark_node; *pp = tree_cons (NULL_TREE, ptype, NULL_TREE); pp = &TREE_CHAIN (*pp); } } // Varargs is handled entirely at the Go level. At the tree level, // functions are not varargs. *pp = void_list_node; tree result; if (this->results_ == NULL) result = void_type_node; else if (this->results_->size() == 1) result = this->results_->begin()->type()->get_tree(gogo); else { result = make_node(RECORD_TYPE); tree field_trees = NULL_TREE; tree* pp = &field_trees; for (Typed_identifier_list::const_iterator p = this->results_->begin(); p != this->results_->end(); ++p) { const std::string name = (p->name().empty() ? "UNNAMED" : Gogo::unpack_hidden_name(p->name())); tree name_tree = get_identifier_with_length(name.data(), name.length()); tree field_type_tree = p->type()->get_tree(gogo); if (field_type_tree == error_mark_node) return error_mark_node; tree field = build_decl(this->location_, FIELD_DECL, name_tree, field_type_tree); DECL_CONTEXT(field) = result; *pp = field; pp = &DECL_CHAIN(field); } TYPE_FIELDS(result) = field_trees; layout_type(result); } if (result == error_mark_node) return error_mark_node; tree fntype = build_function_type(result, args); if (fntype == error_mark_node) return fntype; return build_pointer_type(fntype); } // Functions are initialized to NULL. tree Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; return fold_convert(type_tree, null_pointer_node); } // The type of a function type descriptor. Type* Function_type::make_function_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* bool_type = Type::lookup_bool_type(); Type* slice_type = Type::make_array_type(ptdt, NULL); Struct_type* s = Type::make_builtin_struct_type(4, "", tdt, "dotdotdot", bool_type, "in", slice_type, "out", slice_type); ret = Type::make_builtin_named_type("FuncType", s); } return ret; } // The type descriptor for a function type. Expression* Function_type::do_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* ftdt = Function_type::make_function_type_descriptor_type(); const Struct_field_list* fields = ftdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(4); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_FUNC, name, NULL, true)); ++p; gcc_assert(p->field_name() == "dotdotdot"); vals->push_back(Expression::make_boolean(this->is_varargs(), bloc)); ++p; gcc_assert(p->field_name() == "in"); vals->push_back(this->type_descriptor_params(p->type(), this->receiver(), this->parameters())); ++p; gcc_assert(p->field_name() == "out"); vals->push_back(this->type_descriptor_params(p->type(), NULL, this->results())); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(ftdt, vals, bloc); } // Return a composite literal for the parameters or results of a type // descriptor. Expression* Function_type::type_descriptor_params(Type* params_type, const Typed_identifier* receiver, const Typed_identifier_list* params) { source_location bloc = BUILTINS_LOCATION; if (receiver == NULL && params == NULL) return Expression::make_slice_composite_literal(params_type, NULL, bloc); Expression_list* vals = new Expression_list(); vals->reserve((params == NULL ? 0 : params->size()) + (receiver != NULL ? 1 : 0)); if (receiver != NULL) { Type* rtype = receiver->type(); // The receiver is always passed as a pointer. FIXME: Is this // right? Should that fact affect the type descriptor? if (rtype->points_to() == NULL) rtype = Type::make_pointer_type(rtype); vals->push_back(Expression::make_type_descriptor(rtype, bloc)); } if (params != NULL) { for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) vals->push_back(Expression::make_type_descriptor(p->type(), bloc)); } return Expression::make_slice_composite_literal(params_type, vals, bloc); } // The reflection string. void Function_type::do_reflection(Gogo* gogo, std::string* ret) const { // FIXME: Turn this off until we straighten out the type of the // struct field used in a go statement which calls a method. // gcc_assert(this->receiver_ == NULL); ret->append("func"); if (this->receiver_ != NULL) { ret->push_back('('); this->append_reflection(this->receiver_->type(), gogo, ret); ret->push_back(')'); } ret->push_back('('); const Typed_identifier_list* params = this->parameters(); if (params != NULL) { bool is_varargs = this->is_varargs_; for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) { if (p != params->begin()) ret->append(", "); if (!is_varargs || p + 1 != params->end()) this->append_reflection(p->type(), gogo, ret); else { ret->append("..."); this->append_reflection(p->type()->array_type()->element_type(), gogo, ret); } } } ret->push_back(')'); const Typed_identifier_list* results = this->results(); if (results != NULL && !results->empty()) { if (results->size() == 1) ret->push_back(' '); else ret->append(" ("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (p != results->begin()) ret->append(", "); this->append_reflection(p->type(), gogo, ret); } if (results->size() > 1) ret->push_back(')'); } } // Mangled name. void Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('F'); if (this->receiver_ != NULL) { ret->push_back('m'); this->append_mangled_name(this->receiver_->type(), gogo, ret); } const Typed_identifier_list* params = this->parameters(); if (params != NULL) { ret->push_back('p'); for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) this->append_mangled_name(p->type(), gogo, ret); if (this->is_varargs_) ret->push_back('V'); ret->push_back('e'); } const Typed_identifier_list* results = this->results(); if (results != NULL) { ret->push_back('r'); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) this->append_mangled_name(p->type(), gogo, ret); ret->push_back('e'); } ret->push_back('e'); } // Export a function type. void Function_type::do_export(Export* exp) const { // We don't write out the receiver. The only function types which // should have a receiver are the ones associated with explicitly // defined methods. For those the receiver type is written out by // Function::export_func. exp->write_c_string("("); bool first = true; if (this->parameters_ != NULL) { bool is_varargs = this->is_varargs_; for (Typed_identifier_list::const_iterator p = this->parameters_->begin(); p != this->parameters_->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); if (!is_varargs || p + 1 != this->parameters_->end()) exp->write_type(p->type()); else { exp->write_c_string("..."); exp->write_type(p->type()->array_type()->element_type()); } } } exp->write_c_string(")"); const Typed_identifier_list* results = this->results_; if (results != NULL) { exp->write_c_string(" "); if (results->size() == 1) exp->write_type(results->begin()->type()); else { first = true; exp->write_c_string("("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); exp->write_type(p->type()); } exp->write_c_string(")"); } } } // Import a function type. Function_type* Function_type::do_import(Import* imp) { imp->require_c_string("("); Typed_identifier_list* parameters; bool is_varargs = false; if (imp->peek_char() == ')') parameters = NULL; else { parameters = new Typed_identifier_list(); while (true) { if (imp->match_c_string("...")) { imp->advance(3); is_varargs = true; } Type* ptype = imp->read_type(); if (is_varargs) ptype = Type::make_array_type(ptype, NULL); parameters->push_back(Typed_identifier(Import::import_marker, ptype, imp->location())); if (imp->peek_char() != ',') break; gcc_assert(!is_varargs); imp->require_c_string(", "); } } imp->require_c_string(")"); Typed_identifier_list* results; if (imp->peek_char() != ' ') results = NULL; else { imp->advance(1); results = new Typed_identifier_list; if (imp->peek_char() != '(') { Type* rtype = imp->read_type(); results->push_back(Typed_identifier(Import::import_marker, rtype, imp->location())); } else { imp->advance(1); while (true) { Type* rtype = imp->read_type(); results->push_back(Typed_identifier(Import::import_marker, rtype, imp->location())); if (imp->peek_char() != ',') break; imp->require_c_string(", "); } imp->require_c_string(")"); } } Function_type* ret = Type::make_function_type(NULL, parameters, results, imp->location()); if (is_varargs) ret->set_is_varargs(); return ret; } // Make a copy of a function type without a receiver. Function_type* Function_type::copy_without_receiver() const { gcc_assert(this->is_method()); Function_type *ret = Type::make_function_type(NULL, this->parameters_, this->results_, this->location_); if (this->is_varargs()) ret->set_is_varargs(); if (this->is_builtin()) ret->set_is_builtin(); return ret; } // Make a copy of a function type with a receiver. Function_type* Function_type::copy_with_receiver(Type* receiver_type) const { gcc_assert(!this->is_method()); Typed_identifier* receiver = new Typed_identifier("", receiver_type, this->location_); return Type::make_function_type(receiver, this->parameters_, this->results_, this->location_); } // Make a function type. Function_type* Type::make_function_type(Typed_identifier* receiver, Typed_identifier_list* parameters, Typed_identifier_list* results, source_location location) { return new Function_type(receiver, parameters, results, location); } // Class Pointer_type. // Traversal. int Pointer_type::do_traverse(Traverse* traverse) { return Type::traverse(this->to_type_, traverse); } // Hash code. unsigned int Pointer_type::do_hash_for_method(Gogo* gogo) const { return this->to_type_->hash_for_method(gogo) << 4; } // The tree for a pointer type. tree Pointer_type::do_get_tree(Gogo* gogo) { return build_pointer_type(this->to_type_->get_tree(gogo)); } // Initialize a pointer type. tree Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; return fold_convert(type_tree, null_pointer_node); } // The type of a pointer type descriptor. Type* Pointer_type::make_pointer_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "elem", ptdt); ret = Type::make_builtin_named_type("PtrType", s); } return ret; } // The type descriptor for a pointer type. Expression* Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (this->is_unsafe_pointer_type()) { gcc_assert(name != NULL); return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_UNSAFE_POINTER, name); } else { source_location bloc = BUILTINS_LOCATION; const Methods* methods; Type* deref = this->points_to(); if (deref->named_type() != NULL) methods = deref->named_type()->methods(); else if (deref->struct_type() != NULL) methods = deref->struct_type()->methods(); else methods = NULL; Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type(); const Struct_field_list* fields = ptr_tdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_PTR, name, methods, false)); ++p; gcc_assert(p->field_name() == "elem"); vals->push_back(Expression::make_type_descriptor(deref, bloc)); return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc); } } // Reflection string. void Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->push_back('*'); this->append_reflection(this->to_type_, gogo, ret); } // Mangled name. void Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('p'); this->append_mangled_name(this->to_type_, gogo, ret); } // Export. void Pointer_type::do_export(Export* exp) const { exp->write_c_string("*"); if (this->is_unsafe_pointer_type()) exp->write_c_string("any"); else exp->write_type(this->to_type_); } // Import. Pointer_type* Pointer_type::do_import(Import* imp) { imp->require_c_string("*"); if (imp->match_c_string("any")) { imp->advance(3); return Type::make_pointer_type(Type::make_void_type()); } Type* to = imp->read_type(); return Type::make_pointer_type(to); } // Make a pointer type. Pointer_type* Type::make_pointer_type(Type* to_type) { typedef Unordered_map(Type*, Pointer_type*) Hashtable; static Hashtable pointer_types; Hashtable::const_iterator p = pointer_types.find(to_type); if (p != pointer_types.end()) return p->second; Pointer_type* ret = new Pointer_type(to_type); pointer_types[to_type] = ret; return ret; } // The nil type. We use a special type for nil because it is not the // same as any other type. In C term nil has type void*, but there is // no such type in Go. class Nil_type : public Type { public: Nil_type() : Type(TYPE_NIL) { } protected: tree do_get_tree(Gogo*) { return ptr_type_node; } tree do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); } Expression* do_type_descriptor(Gogo*, Named_type*) { gcc_unreachable(); } void do_reflection(Gogo*, std::string*) const { gcc_unreachable(); } void do_mangled_name(Gogo*, std::string* ret) const { ret->push_back('n'); } }; // Make the nil type. Type* Type::make_nil_type() { static Nil_type singleton_nil_type; return &singleton_nil_type; } // The type of a function call which returns multiple values. This is // really a struct, but we don't want to confuse a function call which // returns a struct with a function call which returns multiple // values. class Call_multiple_result_type : public Type { public: Call_multiple_result_type(Call_expression* call) : Type(TYPE_CALL_MULTIPLE_RESULT), call_(call) { } protected: bool do_has_pointer() const { gcc_assert(saw_errors()); return false; } tree do_get_tree(Gogo*); tree do_get_init_tree(Gogo*, tree, bool) { gcc_assert(saw_errors()); return error_mark_node; } Expression* do_type_descriptor(Gogo*, Named_type*) { gcc_assert(saw_errors()); return Expression::make_error(UNKNOWN_LOCATION); } void do_reflection(Gogo*, std::string*) const { gcc_assert(saw_errors()); } void do_mangled_name(Gogo*, std::string*) const { gcc_assert(saw_errors()); } private: // The expression being called. Call_expression* call_; }; // Return the tree for a call result. tree Call_multiple_result_type::do_get_tree(Gogo* gogo) { Function_type* fntype = this->call_->get_function_type(); gcc_assert(fntype != NULL); const Typed_identifier_list* results = fntype->results(); gcc_assert(results != NULL && results->size() > 1); tree fntype_tree = fntype->get_tree(gogo); if (fntype_tree == error_mark_node) return error_mark_node; return TREE_TYPE(fntype_tree); } // Make a call result type. Type* Type::make_call_multiple_result_type(Call_expression* call) { return new Call_multiple_result_type(call); } // Class Struct_field. // Get the name of a field. const std::string& Struct_field::field_name() const { const std::string& name(this->typed_identifier_.name()); if (!name.empty()) return name; else { // This is called during parsing, before anything is lowered, so // we have to be pretty careful to avoid dereferencing an // unknown type name. Type* t = this->typed_identifier_.type(); Type* dt = t; if (t->classification() == Type::TYPE_POINTER) { // Very ugly. Pointer_type* ptype = static_cast(t); dt = ptype->points_to(); } if (dt->forward_declaration_type() != NULL) return dt->forward_declaration_type()->name(); else if (dt->named_type() != NULL) return dt->named_type()->name(); else if (t->is_error_type() || dt->is_error_type()) { static const std::string error_string = "*error*"; return error_string; } else { // Avoid crashing in the erroneous case where T is named but // DT is not. gcc_assert(t != dt); if (t->forward_declaration_type() != NULL) return t->forward_declaration_type()->name(); else if (t->named_type() != NULL) return t->named_type()->name(); else gcc_unreachable(); } } } // Class Struct_type. // Traversal. int Struct_type::do_traverse(Traverse* traverse) { Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::iterator p = fields->begin(); p != fields->end(); ++p) { if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } } return TRAVERSE_CONTINUE; } // Verify that the struct type is complete and valid. bool Struct_type::do_verify() { Struct_field_list* fields = this->fields_; if (fields == NULL) return true; bool ret = true; for (Struct_field_list::iterator p = fields->begin(); p != fields->end(); ++p) { Type* t = p->type(); if (t->is_undefined()) { error_at(p->location(), "struct field type is incomplete"); p->set_type(Type::make_error_type()); ret = false; } else if (p->is_anonymous()) { if (t->named_type() != NULL && t->points_to() != NULL) { error_at(p->location(), "embedded type may not be a pointer"); p->set_type(Type::make_error_type()); return false; } } } return ret; } // Whether this contains a pointer. bool Struct_type::do_has_pointer() const { const Struct_field_list* fields = this->fields(); if (fields == NULL) return false; for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->type()->has_pointer()) return true; } return false; } // Whether this type is identical to T. bool Struct_type::is_identical(const Struct_type* t, bool errors_are_identical) const { const Struct_field_list* fields1 = this->fields(); const Struct_field_list* fields2 = t->fields(); if (fields1 == NULL || fields2 == NULL) return fields1 == fields2; Struct_field_list::const_iterator pf2 = fields2->begin(); for (Struct_field_list::const_iterator pf1 = fields1->begin(); pf1 != fields1->end(); ++pf1, ++pf2) { if (pf2 == fields2->end()) return false; if (pf1->field_name() != pf2->field_name()) return false; if (pf1->is_anonymous() != pf2->is_anonymous() || !Type::are_identical(pf1->type(), pf2->type(), errors_are_identical, NULL)) return false; if (!pf1->has_tag()) { if (pf2->has_tag()) return false; } else { if (!pf2->has_tag()) return false; if (pf1->tag() != pf2->tag()) return false; } } if (pf2 != fields2->end()) return false; return true; } // Whether this struct type has any hidden fields. bool Struct_type::struct_has_hidden_fields(const Named_type* within, std::string* reason) const { const Struct_field_list* fields = this->fields(); if (fields == NULL) return false; const Package* within_package = (within == NULL ? NULL : within->named_object()->package()); for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (within_package != NULL && !pf->is_anonymous() && Gogo::is_hidden_name(pf->field_name())) { if (reason != NULL) { std::string within_name = within->named_object()->message_name(); std::string name = Gogo::message_name(pf->field_name()); size_t bufsize = 200 + within_name.length() + name.length(); char* buf = new char[bufsize]; snprintf(buf, bufsize, _("implicit assignment of %s%s%s hidden field %s%s%s"), open_quote, within_name.c_str(), close_quote, open_quote, name.c_str(), close_quote); reason->assign(buf); delete[] buf; } return true; } if (pf->type()->has_hidden_fields(within, reason)) return true; } return false; } // Hash code. unsigned int Struct_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->fields() != NULL) { for (Struct_field_list::const_iterator pf = this->fields()->begin(); pf != this->fields()->end(); ++pf) ret = (ret << 1) + pf->type()->hash_for_method(gogo); } return ret <<= 2; } // Find the local field NAME. const Struct_field* Struct_type::find_local_field(const std::string& name, unsigned int *pindex) const { const Struct_field_list* fields = this->fields_; if (fields == NULL) return NULL; unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (pf->field_name() == name) { if (pindex != NULL) *pindex = i; return &*pf; } } return NULL; } // Return an expression for field NAME in STRUCT_EXPR, or NULL. Field_reference_expression* Struct_type::field_reference(Expression* struct_expr, const std::string& name, source_location location) const { unsigned int depth; return this->field_reference_depth(struct_expr, name, location, NULL, &depth); } // Return an expression for a field, along with the depth at which it // was found. Field_reference_expression* Struct_type::field_reference_depth(Expression* struct_expr, const std::string& name, source_location location, Saw_named_type* saw, unsigned int* depth) const { const Struct_field_list* fields = this->fields_; if (fields == NULL) return NULL; // Look for a field with this name. unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (pf->field_name() == name) { *depth = 0; return Expression::make_field_reference(struct_expr, i, location); } } // Look for an anonymous field which contains a field with this // name. unsigned int found_depth = 0; Field_reference_expression* ret = NULL; i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (!pf->is_anonymous()) continue; Struct_type* st = pf->type()->deref()->struct_type(); if (st == NULL) continue; Saw_named_type* hold_saw = saw; Saw_named_type saw_here; Named_type* nt = pf->type()->named_type(); if (nt == NULL) nt = pf->type()->deref()->named_type(); if (nt != NULL) { Saw_named_type* q; for (q = saw; q != NULL; q = q->next) { if (q->nt == nt) { // If this is an error, it will be reported // elsewhere. break; } } if (q != NULL) continue; saw_here.next = saw; saw_here.nt = nt; saw = &saw_here; } // Look for a reference using a NULL struct expression. If we // find one, fill in the struct expression with a reference to // this field. unsigned int subdepth; Field_reference_expression* sub = st->field_reference_depth(NULL, name, location, saw, &subdepth); saw = hold_saw; if (sub == NULL) continue; if (ret == NULL || subdepth < found_depth) { if (ret != NULL) delete ret; ret = sub; found_depth = subdepth; Expression* here = Expression::make_field_reference(struct_expr, i, location); if (pf->type()->points_to() != NULL) here = Expression::make_unary(OPERATOR_MULT, here, location); while (sub->expr() != NULL) { sub = sub->expr()->deref()->field_reference_expression(); gcc_assert(sub != NULL); } sub->set_struct_expression(here); } else if (subdepth > found_depth) delete sub; else { // We do not handle ambiguity here--it should be handled by // Type::bind_field_or_method. delete sub; found_depth = 0; ret = NULL; } } if (ret != NULL) *depth = found_depth + 1; return ret; } // Return the total number of fields, including embedded fields. unsigned int Struct_type::total_field_count() const { if (this->fields_ == NULL) return 0; unsigned int ret = 0; for (Struct_field_list::const_iterator pf = this->fields_->begin(); pf != this->fields_->end(); ++pf) { if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL) ++ret; else ret += pf->type()->struct_type()->total_field_count(); } return ret; } // Return whether NAME is an unexported field, for better error reporting. bool Struct_type::is_unexported_local_field(Gogo* gogo, const std::string& name) const { const Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { const std::string& field_name(pf->field_name()); if (Gogo::is_hidden_name(field_name) && name == Gogo::unpack_hidden_name(field_name) && gogo->pack_hidden_name(name, false) != field_name) return true; } } return false; } // Finalize the methods of an unnamed struct. void Struct_type::finalize_methods(Gogo* gogo) { if (this->all_methods_ != NULL) return; Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); } // Return the method NAME, or NULL if there isn't one or if it is // ambiguous. Set *IS_AMBIGUOUS if the method exists but is // ambiguous. Method* Struct_type::method_function(const std::string& name, bool* is_ambiguous) const { return Type::method_function(this->all_methods_, name, is_ambiguous); } // Get the tree for a struct type. tree Struct_type::do_get_tree(Gogo* gogo) { tree type = make_node(RECORD_TYPE); return this->fill_in_tree(gogo, type); } // Fill in the fields for a struct type. tree Struct_type::fill_in_tree(Gogo* gogo, tree type) { tree field_trees = NULL_TREE; tree* pp = &field_trees; for (Struct_field_list::const_iterator p = this->fields_->begin(); p != this->fields_->end(); ++p) { std::string name = Gogo::unpack_hidden_name(p->field_name()); tree name_tree = get_identifier_with_length(name.data(), name.length()); tree field_type_tree = p->type()->get_tree(gogo); if (field_type_tree == error_mark_node) return error_mark_node; gcc_assert(TYPE_SIZE(field_type_tree) != NULL_TREE); tree field = build_decl(p->location(), FIELD_DECL, name_tree, field_type_tree); DECL_CONTEXT(field) = type; *pp = field; pp = &DECL_CHAIN(field); } TYPE_FIELDS(type) = field_trees; layout_type(type); return type; } // Initialize struct fields. tree Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear) { if (this->fields_ == NULL || this->fields_->empty()) { if (is_clear) return NULL; else { tree ret = build_constructor(type_tree, VEC_alloc(constructor_elt, gc, 0)); TREE_CONSTANT(ret) = 1; return ret; } } bool is_constant = true; bool any_fields_set = false; VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, this->fields_->size()); tree field = TYPE_FIELDS(type_tree); for (Struct_field_list::const_iterator p = this->fields_->begin(); p != this->fields_->end(); ++p, field = DECL_CHAIN(field)) { tree value = p->type()->get_init_tree(gogo, is_clear); if (value == error_mark_node) return error_mark_node; gcc_assert(field != NULL_TREE); if (value != NULL) { constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); elt->index = field; elt->value = value; any_fields_set = true; if (!TREE_CONSTANT(value)) is_constant = false; } } gcc_assert(field == NULL_TREE); if (!any_fields_set) { gcc_assert(is_clear); VEC_free(constructor_elt, gc, init); return NULL; } tree ret = build_constructor(type_tree, init); if (is_constant) TREE_CONSTANT(ret) = 1; return ret; } // The type of a struct type descriptor. Type* Struct_type::make_struct_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); Struct_type* sf = Type::make_builtin_struct_type(5, "name", pointer_string_type, "pkgPath", pointer_string_type, "typ", ptdt, "tag", pointer_string_type, "offset", uintptr_type); Type* nsf = Type::make_builtin_named_type("structField", sf); Type* slice_type = Type::make_array_type(nsf, NULL); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "fields", slice_type); ret = Type::make_builtin_named_type("StructType", s); } return ret; } // Build a type descriptor for a struct type. Expression* Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* stdt = Struct_type::make_struct_type_descriptor_type(); const Struct_field_list* fields = stdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); const Methods* methods = this->methods(); // A named struct should not have methods--the methods should attach // to the named type. gcc_assert(methods == NULL || name == NULL); Struct_field_list::const_iterator ps = fields->begin(); gcc_assert(ps->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_STRUCT, name, methods, true)); ++ps; gcc_assert(ps->field_name() == "fields"); Expression_list* elements = new Expression_list(); elements->reserve(this->fields_->size()); Type* element_type = ps->type()->array_type()->element_type(); for (Struct_field_list::const_iterator pf = this->fields_->begin(); pf != this->fields_->end(); ++pf) { const Struct_field_list* f = element_type->struct_type()->fields(); Expression_list* fvals = new Expression_list(); fvals->reserve(5); Struct_field_list::const_iterator q = f->begin(); gcc_assert(q->field_name() == "name"); if (pf->is_anonymous()) fvals->push_back(Expression::make_nil(bloc)); else { std::string n = Gogo::unpack_hidden_name(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; gcc_assert(q->field_name() == "pkgPath"); if (!Gogo::is_hidden_name(pf->field_name())) fvals->push_back(Expression::make_nil(bloc)); else { std::string n = Gogo::hidden_name_prefix(pf->field_name()); Expression* s = Expression::make_string(n, bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; gcc_assert(q->field_name() == "typ"); fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc)); ++q; gcc_assert(q->field_name() == "tag"); if (!pf->has_tag()) fvals->push_back(Expression::make_nil(bloc)); else { Expression* s = Expression::make_string(pf->tag(), bloc); fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc)); } ++q; gcc_assert(q->field_name() == "offset"); fvals->push_back(Expression::make_struct_field_offset(this, &*pf)); Expression* v = Expression::make_struct_composite_literal(element_type, fvals, bloc); elements->push_back(v); } vals->push_back(Expression::make_slice_composite_literal(ps->type(), elements, bloc)); return Expression::make_struct_composite_literal(stdt, vals, bloc); } // Reflection string. void Struct_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("struct { "); for (Struct_field_list::const_iterator p = this->fields_->begin(); p != this->fields_->end(); ++p) { if (p != this->fields_->begin()) ret->append("; "); if (p->is_anonymous()) ret->push_back('?'); else ret->append(Gogo::unpack_hidden_name(p->field_name())); ret->push_back(' '); this->append_reflection(p->type(), gogo, ret); if (p->has_tag()) { const std::string& tag(p->tag()); ret->append(" \""); for (std::string::const_iterator p = tag.begin(); p != tag.end(); ++p) { if (*p == '\0') ret->append("\\x00"); else if (*p == '\n') ret->append("\\n"); else if (*p == '\t') ret->append("\\t"); else if (*p == '"') ret->append("\\\""); else if (*p == '\\') ret->append("\\\\"); else ret->push_back(*p); } ret->push_back('"'); } } ret->append(" }"); } // Mangled name. void Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('S'); const Struct_field_list* fields = this->fields_; if (fields != NULL) { for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->is_anonymous()) ret->append("0_"); else { std::string n = Gogo::unpack_hidden_name(p->field_name()); char buf[20]; snprintf(buf, sizeof buf, "%u_", static_cast(n.length())); ret->append(buf); ret->append(n); } this->append_mangled_name(p->type(), gogo, ret); if (p->has_tag()) { const std::string& tag(p->tag()); std::string out; for (std::string::const_iterator p = tag.begin(); p != tag.end(); ++p) { if (ISALNUM(*p) || *p == '_') out.push_back(*p); else { char buf[20]; snprintf(buf, sizeof buf, ".%x.", static_cast(*p)); out.append(buf); } } char buf[20]; snprintf(buf, sizeof buf, "T%u_", static_cast(out.length())); ret->append(buf); ret->append(out); } } } ret->push_back('e'); } // Export. void Struct_type::do_export(Export* exp) const { exp->write_c_string("struct { "); const Struct_field_list* fields = this->fields_; gcc_assert(fields != NULL); for (Struct_field_list::const_iterator p = fields->begin(); p != fields->end(); ++p) { if (p->is_anonymous()) exp->write_string("? "); else { exp->write_string(p->field_name()); exp->write_c_string(" "); } exp->write_type(p->type()); if (p->has_tag()) { exp->write_c_string(" "); Expression* expr = Expression::make_string(p->tag(), BUILTINS_LOCATION); expr->export_expression(exp); delete expr; } exp->write_c_string("; "); } exp->write_c_string("}"); } // Import. Struct_type* Struct_type::do_import(Import* imp) { imp->require_c_string("struct { "); Struct_field_list* fields = new Struct_field_list; if (imp->peek_char() != '}') { while (true) { std::string name; if (imp->match_c_string("? ")) imp->advance(2); else { name = imp->read_identifier(); imp->require_c_string(" "); } Type* ftype = imp->read_type(); Struct_field sf(Typed_identifier(name, ftype, imp->location())); if (imp->peek_char() == ' ') { imp->advance(1); Expression* expr = Expression::import_expression(imp); String_expression* sexpr = expr->string_expression(); gcc_assert(sexpr != NULL); sf.set_tag(sexpr->val()); delete sexpr; } imp->require_c_string("; "); fields->push_back(sf); if (imp->peek_char() == '}') break; } } imp->require_c_string("}"); return Type::make_struct_type(fields, imp->location()); } // Make a struct type. Struct_type* Type::make_struct_type(Struct_field_list* fields, source_location location) { return new Struct_type(fields, location); } // Class Array_type. // Whether two array types are identical. bool Array_type::is_identical(const Array_type* t, bool errors_are_identical) const { if (!Type::are_identical(this->element_type(), t->element_type(), errors_are_identical, NULL)) return false; Expression* l1 = this->length(); Expression* l2 = t->length(); // Slices of the same element type are identical. if (l1 == NULL && l2 == NULL) return true; // Arrays of the same element type are identical if they have the // same length. if (l1 != NULL && l2 != NULL) { if (l1 == l2) return true; // Try to determine the lengths. If we can't, assume the arrays // are not identical. bool ret = false; mpz_t v1; mpz_init(v1); Type* type1; mpz_t v2; mpz_init(v2); Type* type2; if (l1->integer_constant_value(true, v1, &type1) && l2->integer_constant_value(true, v2, &type2)) ret = mpz_cmp(v1, v2) == 0; mpz_clear(v1); mpz_clear(v2); return ret; } // Otherwise the arrays are not identical. return false; } // Traversal. int Array_type::do_traverse(Traverse* traverse) { if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->length_ != NULL && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Check that the length is valid. bool Array_type::verify_length() { if (this->length_ == NULL) return true; Type_context context(Type::lookup_integer_type("int"), false); this->length_->determine_type(&context); if (!this->length_->is_constant()) { error_at(this->length_->location(), "array bound is not constant"); return false; } mpz_t val; mpz_init(val); Type* vt; if (!this->length_->integer_constant_value(true, val, &vt)) { mpfr_t fval; mpfr_init(fval); if (!this->length_->float_constant_value(fval, &vt)) { if (this->length_->type()->integer_type() != NULL || this->length_->type()->float_type() != NULL) error_at(this->length_->location(), "array bound is not constant"); else error_at(this->length_->location(), "array bound is not numeric"); mpfr_clear(fval); mpz_clear(val); return false; } if (!mpfr_integer_p(fval)) { error_at(this->length_->location(), "array bound truncated to integer"); mpfr_clear(fval); mpz_clear(val); return false; } mpz_init(val); mpfr_get_z(val, fval, GMP_RNDN); mpfr_clear(fval); } if (mpz_sgn(val) < 0) { error_at(this->length_->location(), "negative array bound"); mpz_clear(val); return false; } Type* int_type = Type::lookup_integer_type("int"); int tbits = int_type->integer_type()->bits(); int vbits = mpz_sizeinbase(val, 2); if (vbits + 1 > tbits) { error_at(this->length_->location(), "array bound overflows"); mpz_clear(val); return false; } mpz_clear(val); return true; } // Verify the type. bool Array_type::do_verify() { if (!this->verify_length()) { this->length_ = Expression::make_error(this->length_->location()); return false; } return true; } // Array type hash code. unsigned int Array_type::do_hash_for_method(Gogo* gogo) const { // There is no very convenient way to get a hash code for the // length. return this->element_type_->hash_for_method(gogo) + 1; } // See if the expression passed to make is suitable. The first // argument is required, and gives the length. An optional second // argument is permitted for the capacity. bool Array_type::do_check_make_expression(Expression_list* args, source_location location) { gcc_assert(this->length_ == NULL); if (args == NULL || args->empty()) { error_at(location, "length required when allocating a slice"); return false; } else if (args->size() > 2) { error_at(location, "too many expressions passed to make"); return false; } else { if (!Type::check_int_value(args->front(), _("bad length when making slice"), location)) return false; if (args->size() > 1) { if (!Type::check_int_value(args->back(), _("bad capacity when making slice"), location)) return false; } return true; } } // Get a tree for the length of a fixed array. The length may be // computed using a function call, so we must only evaluate it once. tree Array_type::get_length_tree(Gogo* gogo) { gcc_assert(this->length_ != NULL); if (this->length_tree_ == NULL_TREE) { mpz_t val; mpz_init(val); Type* t; if (this->length_->integer_constant_value(true, val, &t)) { if (t == NULL) t = Type::lookup_integer_type("int"); else if (t->is_abstract()) t = t->make_non_abstract_type(); tree tt = t->get_tree(gogo); this->length_tree_ = Expression::integer_constant_tree(val, tt); mpz_clear(val); } else { mpz_clear(val); // Make up a translation context for the array length // expression. FIXME: This won't work in general. Translate_context context(gogo, NULL, NULL, NULL_TREE); tree len = this->length_->get_tree(&context); if (len != error_mark_node) { len = convert_to_integer(integer_type_node, len); len = save_expr(len); } this->length_tree_ = len; } } return this->length_tree_; } // Get a tree for the type of this array. A fixed array is simply // represented as ARRAY_TYPE with the appropriate index--i.e., it is // just like an array in C. An open array is a struct with three // fields: a data pointer, the length, and the capacity. tree Array_type::do_get_tree(Gogo* gogo) { if (this->length_ == NULL) { tree struct_type = gogo->slice_type_tree(void_type_node); return this->fill_in_slice_tree(gogo, struct_type); } else { tree array_type = make_node(ARRAY_TYPE); return this->fill_in_array_tree(gogo, array_type); } } // Fill in the fields for an array type. This is used for named array // types. tree Array_type::fill_in_array_tree(Gogo* gogo, tree array_type) { gcc_assert(this->length_ != NULL); tree element_type_tree = this->element_type_->get_tree(gogo); tree length_tree = this->get_length_tree(gogo); if (element_type_tree == error_mark_node || length_tree == error_mark_node) return error_mark_node; gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE); length_tree = fold_convert(sizetype, length_tree); // build_index_type takes the maximum index, which is one less than // the length. tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype, length_tree, size_one_node)); TREE_TYPE(array_type) = element_type_tree; TYPE_DOMAIN(array_type) = index_type; TYPE_ADDR_SPACE(array_type) = TYPE_ADDR_SPACE(element_type_tree); layout_type(array_type); if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree) || TYPE_STRUCTURAL_EQUALITY_P(index_type)) SET_TYPE_STRUCTURAL_EQUALITY(array_type); else if (TYPE_CANONICAL(element_type_tree) != element_type_tree || TYPE_CANONICAL(index_type) != index_type) TYPE_CANONICAL(array_type) = build_array_type(TYPE_CANONICAL(element_type_tree), TYPE_CANONICAL(index_type)); return array_type; } // Fill in the fields for a slice type. This is used for named slice // types. tree Array_type::fill_in_slice_tree(Gogo* gogo, tree struct_type) { gcc_assert(this->length_ == NULL); tree element_type_tree = this->element_type_->get_tree(gogo); if (element_type_tree == error_mark_node) return error_mark_node; tree field = TYPE_FIELDS(struct_type); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0); gcc_assert(POINTER_TYPE_P(TREE_TYPE(field)) && TREE_TYPE(TREE_TYPE(field)) == void_type_node); TREE_TYPE(field) = build_pointer_type(element_type_tree); return struct_type; } // Return an initializer for an array type. tree Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear) { if (this->length_ == NULL) { // Open array. if (is_clear) return NULL; gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE); VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3); for (tree field = TYPE_FIELDS(type_tree); field != NULL_TREE; field = DECL_CHAIN(field)) { constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); elt->index = field; elt->value = fold_convert(TREE_TYPE(field), size_zero_node); } tree ret = build_constructor(type_tree, init); TREE_CONSTANT(ret) = 1; return ret; } else { // Fixed array. tree value = this->element_type_->get_init_tree(gogo, is_clear); if (value == NULL) return NULL; if (value == error_mark_node) return error_mark_node; tree length_tree = this->get_length_tree(gogo); if (length_tree == error_mark_node) return error_mark_node; length_tree = fold_convert(sizetype, length_tree); tree range = build2(RANGE_EXPR, sizetype, size_zero_node, fold_build2(MINUS_EXPR, sizetype, length_tree, size_one_node)); tree ret = build_constructor_single(type_tree, range, value); if (TREE_CONSTANT(value)) TREE_CONSTANT(ret) = 1; return ret; } } // Handle the builtin make function for a slice. tree Array_type::do_make_expression_tree(Translate_context* context, Expression_list* args, source_location location) { gcc_assert(this->length_ == NULL); Gogo* gogo = context->gogo(); tree type_tree = this->get_tree(gogo); if (type_tree == error_mark_node) return error_mark_node; tree values_field = TYPE_FIELDS(type_tree); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)), "__values") == 0); tree count_field = DECL_CHAIN(values_field); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)), "__count") == 0); tree element_type_tree = this->element_type_->get_tree(gogo); if (element_type_tree == error_mark_node) return error_mark_node; tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree); tree value = this->element_type_->get_init_tree(gogo, true); if (value == error_mark_node) return error_mark_node; // The first argument is the number of elements, the optional second // argument is the capacity. gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2); tree length_tree = args->front()->get_tree(context); if (length_tree == error_mark_node) return error_mark_node; if (!DECL_P(length_tree)) length_tree = save_expr(length_tree); if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree))) length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree); tree bad_index = Expression::check_bounds(length_tree, TREE_TYPE(count_field), NULL_TREE, location); length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree); tree capacity_tree; if (args->size() == 1) capacity_tree = length_tree; else { capacity_tree = args->back()->get_tree(context); if (capacity_tree == error_mark_node) return error_mark_node; if (!DECL_P(capacity_tree)) capacity_tree = save_expr(capacity_tree); if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree))) capacity_tree = convert_to_integer(TREE_TYPE(count_field), capacity_tree); bad_index = Expression::check_bounds(capacity_tree, TREE_TYPE(count_field), bad_index, location); tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree)) > TYPE_SIZE(TREE_TYPE(length_tree))) || ((TYPE_SIZE(TREE_TYPE(capacity_tree)) == TYPE_SIZE(TREE_TYPE(length_tree))) && TYPE_UNSIGNED(TREE_TYPE(capacity_tree)))) ? TREE_TYPE(capacity_tree) : TREE_TYPE(length_tree)); tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node, fold_convert_loc(location, chktype, capacity_tree), fold_convert_loc(location, chktype, length_tree)); if (bad_index == NULL_TREE) bad_index = chk; else bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node, bad_index, chk); capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field), capacity_tree); } tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype, element_size_tree, fold_convert_loc(location, sizetype, capacity_tree)); tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node, fold_build2_loc(location, GT_EXPR, boolean_type_node, fold_convert_loc(location, sizetype, capacity_tree), size_zero_node), fold_build2_loc(location, LT_EXPR, boolean_type_node, size_tree, element_size_tree)); if (bad_index == NULL_TREE) bad_index = chk; else bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node, bad_index, chk); tree space = context->gogo()->allocate_memory(this->element_type_, size_tree, location); if (value != NULL_TREE) space = save_expr(space); space = fold_convert(TREE_TYPE(values_field), space); if (bad_index != NULL_TREE && bad_index != boolean_false_node) { tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS, location); space = build2(COMPOUND_EXPR, TREE_TYPE(space), build3(COND_EXPR, void_type_node, bad_index, crash, NULL_TREE), space); } tree constructor = gogo->slice_constructor(type_tree, space, length_tree, capacity_tree); if (value == NULL_TREE) { // The array contents are zero initialized. return constructor; } // The elements must be initialized. tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field), capacity_tree, fold_convert_loc(location, TREE_TYPE(count_field), integer_one_node)); tree array_type = build_array_type(element_type_tree, build_index_type(max)); tree value_pointer = fold_convert_loc(location, build_pointer_type(array_type), space); tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max); tree space_init = build_constructor_single(array_type, range, value); return build2(COMPOUND_EXPR, TREE_TYPE(constructor), build2(MODIFY_EXPR, void_type_node, build_fold_indirect_ref(value_pointer), space_init), constructor); } // Return a tree for a pointer to the values in ARRAY. tree Array_type::value_pointer_tree(Gogo*, tree array) const { tree ret; if (this->length() != NULL) { // Fixed array. ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))), build_fold_addr_expr(array)); } else { // Open array. tree field = TYPE_FIELDS(TREE_TYPE(array)); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0); ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE); } if (TREE_CONSTANT(array)) TREE_CONSTANT(ret) = 1; return ret; } // Return a tree for the length of the array ARRAY which has this // type. tree Array_type::length_tree(Gogo* gogo, tree array) { if (this->length_ != NULL) { if (TREE_CODE(array) == SAVE_EXPR) return fold_convert(integer_type_node, this->get_length_tree(gogo)); else return omit_one_operand(integer_type_node, this->get_length_tree(gogo), array); } // This is an open array. We need to read the length field. tree type = TREE_TYPE(array); gcc_assert(TREE_CODE(type) == RECORD_TYPE); tree field = DECL_CHAIN(TYPE_FIELDS(type)); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0); tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE); if (TREE_CONSTANT(array)) TREE_CONSTANT(ret) = 1; return ret; } // Return a tree for the capacity of the array ARRAY which has this // type. tree Array_type::capacity_tree(Gogo* gogo, tree array) { if (this->length_ != NULL) return omit_one_operand(sizetype, this->get_length_tree(gogo), array); // This is an open array. We need to read the capacity field. tree type = TREE_TYPE(array); gcc_assert(TREE_CODE(type) == RECORD_TYPE); tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type))); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0); return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE); } // Export. void Array_type::do_export(Export* exp) const { exp->write_c_string("["); if (this->length_ != NULL) this->length_->export_expression(exp); exp->write_c_string("] "); exp->write_type(this->element_type_); } // Import. Array_type* Array_type::do_import(Import* imp) { imp->require_c_string("["); Expression* length; if (imp->peek_char() == ']') length = NULL; else length = Expression::import_expression(imp); imp->require_c_string("] "); Type* element_type = imp->read_type(); return Type::make_array_type(element_type, length); } // The type of an array type descriptor. Type* Array_type::make_array_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Struct_type* sf = Type::make_builtin_struct_type(3, "", tdt, "elem", ptdt, "len", uintptr_type); ret = Type::make_builtin_named_type("ArrayType", sf); } return ret; } // The type of an slice type descriptor. Type* Array_type::make_slice_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* sf = Type::make_builtin_struct_type(2, "", tdt, "elem", ptdt); ret = Type::make_builtin_named_type("SliceType", sf); } return ret; } // Build a type descriptor for an array/slice type. Expression* Array_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (this->length_ != NULL) return this->array_type_descriptor(gogo, name); else return this->slice_type_descriptor(gogo, name); } // Build a type descriptor for an array type. Expression* Array_type::array_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* atdt = Array_type::make_array_type_descriptor_type(); const Struct_field_list* fields = atdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_ARRAY, name, NULL, true)); ++p; gcc_assert(p->field_name() == "elem"); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; gcc_assert(p->field_name() == "len"); vals->push_back(Expression::make_cast(p->type(), this->length_, bloc)); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(atdt, vals, bloc); } // Build a type descriptor for a slice type. Expression* Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* stdt = Array_type::make_slice_type_descriptor_type(); const Struct_field_list* fields = stdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(2); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_SLICE, name, NULL, true)); ++p; gcc_assert(p->field_name() == "elem"); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(stdt, vals, bloc); } // Reflection string. void Array_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->push_back('['); if (this->length_ != NULL) { mpz_t val; mpz_init(val); Type* type; if (!this->length_->integer_constant_value(true, val, &type)) error_at(this->length_->location(), "array length must be integer constant expression"); else if (mpz_cmp_si(val, 0) < 0) error_at(this->length_->location(), "array length is negative"); else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0) error_at(this->length_->location(), "array length is too large"); else { char buf[50]; snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val)); ret->append(buf); } mpz_clear(val); } ret->push_back(']'); this->append_reflection(this->element_type_, gogo, ret); } // Mangled name. void Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('A'); this->append_mangled_name(this->element_type_, gogo, ret); if (this->length_ != NULL) { mpz_t val; mpz_init(val); Type* type; if (!this->length_->integer_constant_value(true, val, &type)) error_at(this->length_->location(), "array length must be integer constant expression"); else if (mpz_cmp_si(val, 0) < 0) error_at(this->length_->location(), "array length is negative"); else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0) error_at(this->length_->location(), "array size is too large"); else { char buf[50]; snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val)); ret->append(buf); } mpz_clear(val); } ret->push_back('e'); } // Make an array type. Array_type* Type::make_array_type(Type* element_type, Expression* length) { return new Array_type(element_type, length); } // Class Map_type. // Traversal. int Map_type::do_traverse(Traverse* traverse) { if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Check that the map type is OK. bool Map_type::do_verify() { if (this->key_type_->struct_type() != NULL || this->key_type_->array_type() != NULL) { error_at(this->location_, "invalid map key type"); return false; } return true; } // Whether two map types are identical. bool Map_type::is_identical(const Map_type* t, bool errors_are_identical) const { return (Type::are_identical(this->key_type(), t->key_type(), errors_are_identical, NULL) && Type::are_identical(this->val_type(), t->val_type(), errors_are_identical, NULL)); } // Hash code. unsigned int Map_type::do_hash_for_method(Gogo* gogo) const { return (this->key_type_->hash_for_method(gogo) + this->val_type_->hash_for_method(gogo) + 2); } // Check that a call to the builtin make function is valid. For a map // the optional argument is the number of spaces to preallocate for // values. bool Map_type::do_check_make_expression(Expression_list* args, source_location location) { if (args != NULL && !args->empty()) { if (!Type::check_int_value(args->front(), _("bad size when making map"), location)) return false; else if (args->size() > 1) { error_at(location, "too many arguments when making map"); return false; } } return true; } // Get a tree for a map type. A map type is represented as a pointer // to a struct. The struct is __go_map in libgo/map.h. tree Map_type::do_get_tree(Gogo* gogo) { static tree type_tree; if (type_tree == NULL_TREE) { tree struct_type = make_node(RECORD_TYPE); tree map_descriptor_type = gogo->map_descriptor_type(); tree const_map_descriptor_type = build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST); tree name = get_identifier("__descriptor"); tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, build_pointer_type(const_map_descriptor_type)); DECL_CONTEXT(field) = struct_type; TYPE_FIELDS(struct_type) = field; tree last_field = field; name = get_identifier("__element_count"); field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype); DECL_CONTEXT(field) = struct_type; DECL_CHAIN(last_field) = field; last_field = field; name = get_identifier("__bucket_count"); field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype); DECL_CONTEXT(field) = struct_type; DECL_CHAIN(last_field) = field; last_field = field; name = get_identifier("__buckets"); field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, build_pointer_type(ptr_type_node)); DECL_CONTEXT(field) = struct_type; DECL_CHAIN(last_field) = field; layout_type(struct_type); // Give the struct a name for better debugging info. name = get_identifier("__go_map"); tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name, struct_type); DECL_ARTIFICIAL(type_decl) = 1; TYPE_NAME(struct_type) = type_decl; go_preserve_from_gc(type_decl); rest_of_decl_compilation(type_decl, 1, 0); type_tree = build_pointer_type(struct_type); go_preserve_from_gc(type_tree); } return type_tree; } // Initialize a map. tree Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; return fold_convert(type_tree, null_pointer_node); } // Return an expression for a newly allocated map. tree Map_type::do_make_expression_tree(Translate_context* context, Expression_list* args, source_location location) { tree bad_index = NULL_TREE; tree expr_tree; if (args == NULL || args->empty()) expr_tree = size_zero_node; else { expr_tree = args->front()->get_tree(context); if (expr_tree == error_mark_node) return error_mark_node; if (!DECL_P(expr_tree)) expr_tree = save_expr(expr_tree); if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree))) expr_tree = convert_to_integer(sizetype, expr_tree); bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index, location); } tree map_type = this->get_tree(context->gogo()); static tree new_map_fndecl; tree ret = Gogo::call_builtin(&new_map_fndecl, location, "__go_new_map", 2, map_type, TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))), context->gogo()->map_descriptor(this), sizetype, expr_tree); if (ret == error_mark_node) return error_mark_node; // This can panic if the capacity is out of range. TREE_NOTHROW(new_map_fndecl) = 0; if (bad_index == NULL_TREE) return ret; else { tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS, location); return build2(COMPOUND_EXPR, TREE_TYPE(ret), build3(COND_EXPR, void_type_node, bad_index, crash, NULL_TREE), ret); } } // The type of a map type descriptor. Type* Map_type::make_map_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Struct_type* sf = Type::make_builtin_struct_type(3, "", tdt, "key", ptdt, "elem", ptdt); ret = Type::make_builtin_named_type("MapType", sf); } return ret; } // Build a type descriptor for a map type. Expression* Map_type::do_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* mtdt = Map_type::make_map_type_descriptor_type(); const Struct_field_list* fields = mtdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_MAP, name, NULL, true)); ++p; gcc_assert(p->field_name() == "key"); vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc)); ++p; gcc_assert(p->field_name() == "elem"); vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc)); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(mtdt, vals, bloc); } // Reflection string for a map. void Map_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("map["); this->append_reflection(this->key_type_, gogo, ret); ret->append("] "); this->append_reflection(this->val_type_, gogo, ret); } // Mangled name for a map. void Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('M'); this->append_mangled_name(this->key_type_, gogo, ret); ret->append("__"); this->append_mangled_name(this->val_type_, gogo, ret); } // Export a map type. void Map_type::do_export(Export* exp) const { exp->write_c_string("map ["); exp->write_type(this->key_type_); exp->write_c_string("] "); exp->write_type(this->val_type_); } // Import a map type. Map_type* Map_type::do_import(Import* imp) { imp->require_c_string("map ["); Type* key_type = imp->read_type(); imp->require_c_string("] "); Type* val_type = imp->read_type(); return Type::make_map_type(key_type, val_type, imp->location()); } // Make a map type. Map_type* Type::make_map_type(Type* key_type, Type* val_type, source_location location) { return new Map_type(key_type, val_type, location); } // Class Channel_type. // Hash code. unsigned int Channel_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->may_send_) ret += 1; if (this->may_receive_) ret += 2; if (this->element_type_ != NULL) ret += this->element_type_->hash_for_method(gogo) << 2; return ret << 3; } // Whether this type is the same as T. bool Channel_type::is_identical(const Channel_type* t, bool errors_are_identical) const { if (!Type::are_identical(this->element_type(), t->element_type(), errors_are_identical, NULL)) return false; return (this->may_send_ == t->may_send_ && this->may_receive_ == t->may_receive_); } // Check whether the parameters for a call to the builtin function // make are OK for a channel. A channel can take an optional single // parameter which is the buffer size. bool Channel_type::do_check_make_expression(Expression_list* args, source_location location) { if (args != NULL && !args->empty()) { if (!Type::check_int_value(args->front(), _("bad buffer size when making channel"), location)) return false; else if (args->size() > 1) { error_at(location, "too many arguments when making channel"); return false; } } return true; } // Return the tree for a channel type. A channel is a pointer to a // __go_channel struct. The __go_channel struct is defined in // libgo/runtime/channel.h. tree Channel_type::do_get_tree(Gogo*) { static tree type_tree; if (type_tree == NULL_TREE) { tree ret = make_node(RECORD_TYPE); TYPE_NAME(ret) = get_identifier("__go_channel"); TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE, ret); type_tree = build_pointer_type(ret); go_preserve_from_gc(type_tree); } return type_tree; } // Initialize a channel variable. tree Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; return fold_convert(type_tree, null_pointer_node); } // Handle the builtin function make for a channel. tree Channel_type::do_make_expression_tree(Translate_context* context, Expression_list* args, source_location location) { Gogo* gogo = context->gogo(); tree channel_type = this->get_tree(gogo); tree element_tree = this->element_type_->get_tree(gogo); tree element_size_tree = size_in_bytes(element_tree); tree bad_index = NULL_TREE; tree expr_tree; if (args == NULL || args->empty()) expr_tree = size_zero_node; else { expr_tree = args->front()->get_tree(context); if (expr_tree == error_mark_node) return error_mark_node; if (!DECL_P(expr_tree)) expr_tree = save_expr(expr_tree); if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree))) expr_tree = convert_to_integer(sizetype, expr_tree); bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index, location); } static tree new_channel_fndecl; tree ret = Gogo::call_builtin(&new_channel_fndecl, location, "__go_new_channel", 2, channel_type, sizetype, element_size_tree, sizetype, expr_tree); if (ret == error_mark_node) return error_mark_node; // This can panic if the capacity is out of range. TREE_NOTHROW(new_channel_fndecl) = 0; if (bad_index == NULL_TREE) return ret; else { tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS, location); return build2(COMPOUND_EXPR, TREE_TYPE(ret), build3(COND_EXPR, void_type_node, bad_index, crash, NULL_TREE), ret); } } // Build a type descriptor for a channel type. Type* Channel_type::make_chan_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* uintptr_type = Type::lookup_integer_type("uintptr"); Struct_type* sf = Type::make_builtin_struct_type(3, "", tdt, "elem", ptdt, "dir", uintptr_type); ret = Type::make_builtin_named_type("ChanType", sf); } return ret; } // Build a type descriptor for a map type. Expression* Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* ctdt = Channel_type::make_chan_type_descriptor_type(); const Struct_field_list* fields = ctdt->struct_type()->fields(); Expression_list* vals = new Expression_list(); vals->reserve(3); Struct_field_list::const_iterator p = fields->begin(); gcc_assert(p->field_name() == "commonType"); vals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_CHAN, name, NULL, true)); ++p; gcc_assert(p->field_name() == "elem"); vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc)); ++p; gcc_assert(p->field_name() == "dir"); // These bits must match the ones in libgo/runtime/go-type.h. int val = 0; if (this->may_receive_) val |= 1; if (this->may_send_) val |= 2; mpz_t iv; mpz_init_set_ui(iv, val); vals->push_back(Expression::make_integer(&iv, p->type(), bloc)); mpz_clear(iv); ++p; gcc_assert(p == fields->end()); return Expression::make_struct_composite_literal(ctdt, vals, bloc); } // Reflection string. void Channel_type::do_reflection(Gogo* gogo, std::string* ret) const { if (!this->may_send_) ret->append("<-"); ret->append("chan"); if (!this->may_receive_) ret->append("<-"); ret->push_back(' '); this->append_reflection(this->element_type_, gogo, ret); } // Mangled name. void Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('C'); this->append_mangled_name(this->element_type_, gogo, ret); if (this->may_send_) ret->push_back('s'); if (this->may_receive_) ret->push_back('r'); ret->push_back('e'); } // Export. void Channel_type::do_export(Export* exp) const { exp->write_c_string("chan "); if (this->may_send_ && !this->may_receive_) exp->write_c_string("-< "); else if (this->may_receive_ && !this->may_send_) exp->write_c_string("<- "); exp->write_type(this->element_type_); } // Import. Channel_type* Channel_type::do_import(Import* imp) { imp->require_c_string("chan "); bool may_send; bool may_receive; if (imp->match_c_string("-< ")) { imp->advance(3); may_send = true; may_receive = false; } else if (imp->match_c_string("<- ")) { imp->advance(3); may_receive = true; may_send = false; } else { may_send = true; may_receive = true; } Type* element_type = imp->read_type(); return Type::make_channel_type(may_send, may_receive, element_type); } // Make a new channel type. Channel_type* Type::make_channel_type(bool send, bool receive, Type* element_type) { return new Channel_type(send, receive, element_type); } // Class Interface_type. // Traversal. int Interface_type::do_traverse(Traverse* traverse) { if (this->methods_ == NULL) return TRAVERSE_CONTINUE; return this->methods_->traverse(traverse); } // Finalize the methods. This handles interface inheritance. void Interface_type::finalize_methods() { if (this->methods_ == NULL) return; std::vector seen; bool is_recursive = false; size_t from = 0; size_t to = 0; while (from < this->methods_->size()) { const Typed_identifier* p = &this->methods_->at(from); if (!p->name().empty()) { size_t i; for (i = 0; i < to; ++i) { if (this->methods_->at(i).name() == p->name()) { error_at(p->location(), "duplicate method %qs", Gogo::message_name(p->name()).c_str()); break; } } if (i == to) { if (from != to) this->methods_->set(to, *p); ++to; } ++from; continue; } Interface_type* it = p->type()->interface_type(); if (it == NULL) { error_at(p->location(), "interface contains embedded non-interface"); ++from; continue; } if (it == this) { if (!is_recursive) { error_at(p->location(), "invalid recursive interface"); is_recursive = true; } ++from; continue; } Named_type* nt = p->type()->named_type(); if (nt != NULL) { std::vector::const_iterator q; for (q = seen.begin(); q != seen.end(); ++q) { if (*q == nt) { error_at(p->location(), "inherited interface loop"); break; } } if (q != seen.end()) { ++from; continue; } seen.push_back(nt); } const Typed_identifier_list* methods = it->methods(); if (methods == NULL) { ++from; continue; } for (Typed_identifier_list::const_iterator q = methods->begin(); q != methods->end(); ++q) { if (q->name().empty()) { if (q->type()->forwarded() == p->type()->forwarded()) error_at(p->location(), "interface inheritance loop"); else { size_t i; for (i = from + 1; i < this->methods_->size(); ++i) { const Typed_identifier* r = &this->methods_->at(i); if (r->name().empty() && r->type()->forwarded() == q->type()->forwarded()) { error_at(p->location(), "inherited interface listed twice"); break; } } if (i == this->methods_->size()) this->methods_->push_back(Typed_identifier(q->name(), q->type(), p->location())); } } else if (this->find_method(q->name()) == NULL) this->methods_->push_back(Typed_identifier(q->name(), q->type(), p->location())); else { if (!is_recursive) error_at(p->location(), "inherited method %qs is ambiguous", Gogo::message_name(q->name()).c_str()); } } ++from; } if (to == 0) { delete this->methods_; this->methods_ = NULL; } else { this->methods_->resize(to); this->methods_->sort_by_name(); } } // Return the method NAME, or NULL. const Typed_identifier* Interface_type::find_method(const std::string& name) const { if (this->methods_ == NULL) return NULL; for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) if (p->name() == name) return &*p; return NULL; } // Return the method index. size_t Interface_type::method_index(const std::string& name) const { gcc_assert(this->methods_ != NULL); size_t ret = 0; for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p, ++ret) if (p->name() == name) return ret; gcc_unreachable(); } // Return whether NAME is an unexported method, for better error // reporting. bool Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const { if (this->methods_ == NULL) return false; for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) { const std::string& method_name(p->name()); if (Gogo::is_hidden_name(method_name) && name == Gogo::unpack_hidden_name(method_name) && gogo->pack_hidden_name(name, false) != method_name) return true; } return false; } // Whether this type is identical with T. bool Interface_type::is_identical(const Interface_type* t, bool errors_are_identical) const { // We require the same methods with the same types. The methods // have already been sorted. if (this->methods() == NULL || t->methods() == NULL) return this->methods() == t->methods(); Typed_identifier_list::const_iterator p1 = this->methods()->begin(); for (Typed_identifier_list::const_iterator p2 = t->methods()->begin(); p2 != t->methods()->end(); ++p1, ++p2) { if (p1 == this->methods()->end()) return false; if (p1->name() != p2->name() || !Type::are_identical(p1->type(), p2->type(), errors_are_identical, NULL)) return false; } if (p1 != this->methods()->end()) return false; return true; } // Whether we can assign the interface type T to this type. The types // are known to not be identical. An interface assignment is only // permitted if T is known to implement all methods in THIS. // Otherwise a type guard is required. bool Interface_type::is_compatible_for_assign(const Interface_type* t, std::string* reason) const { if (this->methods() == NULL) return true; for (Typed_identifier_list::const_iterator p = this->methods()->begin(); p != this->methods()->end(); ++p) { const Typed_identifier* m = t->find_method(p->name()); if (m == NULL) { if (reason != NULL) { char buf[200]; snprintf(buf, sizeof buf, _("need explicit conversion; missing method %s%s%s"), open_quote, Gogo::message_name(p->name()).c_str(), close_quote); reason->assign(buf); } return false; } std::string subreason; if (!Type::are_identical(p->type(), m->type(), true, &subreason)) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length() + subreason.length(); char* buf = new char[len]; if (subreason.empty()) snprintf(buf, len, _("incompatible type for method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("incompatible type for method %s%s%s (%s)"), open_quote, n.c_str(), close_quote, subreason.c_str()); reason->assign(buf); delete[] buf; } return false; } } return true; } // Hash code. unsigned int Interface_type::do_hash_for_method(Gogo* gogo) const { unsigned int ret = 0; if (this->methods_ != NULL) { for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) { ret = Type::hash_string(p->name(), ret); ret += p->type()->hash_for_method(gogo); ret <<= 1; } } return ret; } // Return true if T implements the interface. If it does not, and // REASON is not NULL, set *REASON to a useful error message. bool Interface_type::implements_interface(const Type* t, std::string* reason) const { if (this->methods_ == NULL) return true; bool is_pointer = false; const Named_type* nt = t->named_type(); const Struct_type* st = t->struct_type(); // If we start with a named type, we don't dereference it to find // methods. if (nt == NULL) { const Type* pt = t->points_to(); if (pt != NULL) { // If T is a pointer to a named type, then we need to look at // the type to which it points. is_pointer = true; nt = pt->named_type(); st = pt->struct_type(); } } // If we have a named type, get the methods from it rather than from // any struct type. if (nt != NULL) st = NULL; // Only named and struct types have methods. if (nt == NULL && st == NULL) { if (reason != NULL) { if (t->points_to() != NULL && t->points_to()->interface_type() != NULL) reason->assign(_("pointer to interface type has no methods")); else reason->assign(_("type has no methods")); } return false; } if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods()) { if (reason != NULL) { if (t->points_to() != NULL && t->points_to()->interface_type() != NULL) reason->assign(_("pointer to interface type has no methods")); else reason->assign(_("type has no methods")); } return false; } for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) { bool is_ambiguous = false; Method* m = (nt != NULL ? nt->method_function(p->name(), &is_ambiguous) : st->method_function(p->name(), &is_ambiguous)); if (m == NULL) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = n.length() + 100; char* buf = new char[len]; if (is_ambiguous) snprintf(buf, len, _("ambiguous method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("missing method %s%s%s"), open_quote, n.c_str(), close_quote); reason->assign(buf); delete[] buf; } return false; } Function_type *p_fn_type = p->type()->function_type(); Function_type* m_fn_type = m->type()->function_type(); gcc_assert(p_fn_type != NULL && m_fn_type != NULL); std::string subreason; if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason)) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length() + subreason.length(); char* buf = new char[len]; if (subreason.empty()) snprintf(buf, len, _("incompatible type for method %s%s%s"), open_quote, n.c_str(), close_quote); else snprintf(buf, len, _("incompatible type for method %s%s%s (%s)"), open_quote, n.c_str(), close_quote, subreason.c_str()); reason->assign(buf); delete[] buf; } return false; } if (!is_pointer && !m->is_value_method()) { if (reason != NULL) { std::string n = Gogo::message_name(p->name()); size_t len = 100 + n.length(); char* buf = new char[len]; snprintf(buf, len, _("method %s%s%s requires a pointer"), open_quote, n.c_str(), close_quote); reason->assign(buf); delete[] buf; } return false; } } return true; } // Return a tree for an interface type. An interface is a pointer to // a struct. The struct has three fields. The first field is a // pointer to the type descriptor for the dynamic type of the object. // The second field is a pointer to a table of methods for the // interface to be used with the object. The third field is the value // of the object itself. tree Interface_type::do_get_tree(Gogo* gogo) { if (this->methods_ == NULL) return Interface_type::empty_type_tree(gogo); else { tree t = Interface_type::non_empty_type_tree(this->location_); return this->fill_in_tree(gogo, t); } } // Return a singleton struct for an empty interface type. We use the // same type for all empty interfaces. This lets us assign them to // each other directly without triggering GIMPLE type errors. tree Interface_type::empty_type_tree(Gogo* gogo) { static tree empty_interface; if (empty_interface != NULL_TREE) return empty_interface; tree dtype = Type::make_type_descriptor_type()->get_tree(gogo); dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST)); return Gogo::builtin_struct(&empty_interface, "__go_empty_interface", NULL_TREE, 2, "__type_descriptor", dtype, "__object", ptr_type_node); } // Return a new struct for a non-empty interface type. The correct // values are filled in by fill_in_tree. tree Interface_type::non_empty_type_tree(source_location location) { tree ret = make_node(RECORD_TYPE); tree field_trees = NULL_TREE; tree* pp = &field_trees; tree name_tree = get_identifier("__methods"); tree field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node); DECL_CONTEXT(field) = ret; *pp = field; pp = &DECL_CHAIN(field); name_tree = get_identifier("__object"); field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node); DECL_CONTEXT(field) = ret; *pp = field; TYPE_FIELDS(ret) = field_trees; layout_type(ret); return ret; } // Fill in the tree for an interface type. This is used for named // interface types. tree Interface_type::fill_in_tree(Gogo* gogo, tree type) { gcc_assert(this->methods_ != NULL); // Build the type of the table of methods. tree method_table = make_node(RECORD_TYPE); // The first field is a pointer to the type descriptor. tree name_tree = get_identifier("__type_descriptor"); tree dtype = Type::make_type_descriptor_type()->get_tree(gogo); dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST)); tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype); DECL_CONTEXT(field) = method_table; TYPE_FIELDS(method_table) = field; std::string last_name = ""; tree* pp = &DECL_CHAIN(field); for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) { std::string name = Gogo::unpack_hidden_name(p->name()); name_tree = get_identifier_with_length(name.data(), name.length()); tree field_type = p->type()->get_tree(gogo); if (field_type == error_mark_node) return error_mark_node; field = build_decl(this->location_, FIELD_DECL, name_tree, field_type); DECL_CONTEXT(field) = method_table; *pp = field; pp = &DECL_CHAIN(field); // Sanity check: the names should be sorted. gcc_assert(p->name() > last_name); last_name = p->name(); } layout_type(method_table); // Update the type of the __methods field from a generic pointer to // a pointer to the method table. field = TYPE_FIELDS(type); gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0); TREE_TYPE(field) = build_pointer_type(method_table); return type; } // Initialization value. tree Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear) { if (is_clear) return NULL; VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2); for (tree field = TYPE_FIELDS(type_tree); field != NULL_TREE; field = DECL_CHAIN(field)) { constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL); elt->index = field; elt->value = fold_convert(TREE_TYPE(field), null_pointer_node); } tree ret = build_constructor(type_tree, init); TREE_CONSTANT(ret) = 1; return ret; } // The type of an interface type descriptor. Type* Interface_type::make_interface_type_descriptor_type() { static Type* ret; if (ret == NULL) { Type* tdt = Type::make_type_descriptor_type(); Type* ptdt = Type::make_type_descriptor_ptr_type(); Type* string_type = Type::lookup_string_type(); Type* pointer_string_type = Type::make_pointer_type(string_type); Struct_type* sm = Type::make_builtin_struct_type(3, "name", pointer_string_type, "pkgPath", pointer_string_type, "typ", ptdt); Type* nsm = Type::make_builtin_named_type("imethod", sm); Type* slice_nsm = Type::make_array_type(nsm, NULL); Struct_type* s = Type::make_builtin_struct_type(2, "", tdt, "methods", slice_nsm); ret = Type::make_builtin_named_type("InterfaceType", s); } return ret; } // Build a type descriptor for an interface type. Expression* Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name) { source_location bloc = BUILTINS_LOCATION; Type* itdt = Interface_type::make_interface_type_descriptor_type(); const Struct_field_list* ifields = itdt->struct_type()->fields(); Expression_list* ivals = new Expression_list(); ivals->reserve(2); Struct_field_list::const_iterator pif = ifields->begin(); gcc_assert(pif->field_name() == "commonType"); ivals->push_back(this->type_descriptor_constructor(gogo, RUNTIME_TYPE_KIND_INTERFACE, name, NULL, true)); ++pif; gcc_assert(pif->field_name() == "methods"); Expression_list* methods = new Expression_list(); if (this->methods_ != NULL && !this->methods_->empty()) { Type* elemtype = pif->type()->array_type()->element_type(); methods->reserve(this->methods_->size()); for (Typed_identifier_list::const_iterator pm = this->methods_->begin(); pm != this->methods_->end(); ++pm) { const Struct_field_list* mfields = elemtype->struct_type()->fields(); Expression_list* mvals = new Expression_list(); mvals->reserve(3); Struct_field_list::const_iterator pmf = mfields->begin(); gcc_assert(pmf->field_name() == "name"); std::string s = Gogo::unpack_hidden_name(pm->name()); Expression* e = Expression::make_string(s, bloc); mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); ++pmf; gcc_assert(pmf->field_name() == "pkgPath"); if (!Gogo::is_hidden_name(pm->name())) mvals->push_back(Expression::make_nil(bloc)); else { s = Gogo::hidden_name_prefix(pm->name()); e = Expression::make_string(s, bloc); mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc)); } ++pmf; gcc_assert(pmf->field_name() == "typ"); mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc)); ++pmf; gcc_assert(pmf == mfields->end()); e = Expression::make_struct_composite_literal(elemtype, mvals, bloc); methods->push_back(e); } } ivals->push_back(Expression::make_slice_composite_literal(pif->type(), methods, bloc)); ++pif; gcc_assert(pif == ifields->end()); return Expression::make_struct_composite_literal(itdt, ivals, bloc); } // Reflection string. void Interface_type::do_reflection(Gogo* gogo, std::string* ret) const { ret->append("interface {"); if (this->methods_ != NULL) { for (Typed_identifier_list::const_iterator p = this->methods_->begin(); p != this->methods_->end(); ++p) { if (p != this->methods_->begin()) ret->append(";"); ret->push_back(' '); ret->append(Gogo::unpack_hidden_name(p->name())); std::string sub = p->type()->reflection(gogo); gcc_assert(sub.compare(0, 4, "func") == 0); sub = sub.substr(4); ret->append(sub); } } ret->append(" }"); } // Mangled name. void Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const { ret->push_back('I'); const Typed_identifier_list* methods = this->methods_; if (methods != NULL) { for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) { std::string n = Gogo::unpack_hidden_name(p->name()); char buf[20]; snprintf(buf, sizeof buf, "%u_", static_cast(n.length())); ret->append(buf); ret->append(n); this->append_mangled_name(p->type(), gogo, ret); } } ret->push_back('e'); } // Export. void Interface_type::do_export(Export* exp) const { exp->write_c_string("interface { "); const Typed_identifier_list* methods = this->methods_; if (methods != NULL) { for (Typed_identifier_list::const_iterator pm = methods->begin(); pm != methods->end(); ++pm) { exp->write_string(pm->name()); exp->write_c_string(" ("); const Function_type* fntype = pm->type()->function_type(); bool first = true; const Typed_identifier_list* parameters = fntype->parameters(); if (parameters != NULL) { bool is_varargs = fntype->is_varargs(); for (Typed_identifier_list::const_iterator pp = parameters->begin(); pp != parameters->end(); ++pp) { if (first) first = false; else exp->write_c_string(", "); if (!is_varargs || pp + 1 != parameters->end()) exp->write_type(pp->type()); else { exp->write_c_string("..."); Type *pptype = pp->type(); exp->write_type(pptype->array_type()->element_type()); } } } exp->write_c_string(")"); const Typed_identifier_list* results = fntype->results(); if (results != NULL) { exp->write_c_string(" "); if (results->size() == 1) exp->write_type(results->begin()->type()); else { first = true; exp->write_c_string("("); for (Typed_identifier_list::const_iterator p = results->begin(); p != results->end(); ++p) { if (first) first = false; else exp->write_c_string(", "); exp->write_type(p->type()); } exp->write_c_string(")"); } } exp->write_c_string("; "); } } exp->write_c_string("}"); } // Import an interface type. Interface_type* Interface_type::do_import(Import* imp) { imp->require_c_string("interface { "); Typed_identifier_list* methods = new Typed_identifier_list; while (imp->peek_char() != '}') { std::string name = imp->read_identifier(); imp->require_c_string(" ("); Typed_identifier_list* parameters; bool is_varargs = false; if (imp->peek_char() == ')') parameters = NULL; else { parameters = new Typed_identifier_list; while (true) { if (imp->match_c_string("...")) { imp->advance(3); is_varargs = true; } Type* ptype = imp->read_type(); if (is_varargs) ptype = Type::make_array_type(ptype, NULL); parameters->push_back(Typed_identifier(Import::import_marker, ptype, imp->location())); if (imp->peek_char() != ',') break; gcc_assert(!is_varargs); imp->require_c_string(", "); } } imp->require_c_string(")"); Typed_identifier_list* results; if (imp->peek_char() != ' ') results = NULL; else { results = new Typed_identifier_list; imp->advance(1); if (imp->peek_char() != '(') { Type* rtype = imp->read_type(); results->push_back(Typed_identifier(Import::import_marker, rtype, imp->location())); } else { imp->advance(1); while (true) { Type* rtype = imp->read_type(); results->push_back(Typed_identifier(Import::import_marker, rtype, imp->location())); if (imp->peek_char() != ',') break; imp->require_c_string(", "); } imp->require_c_string(")"); } } Function_type* fntype = Type::make_function_type(NULL, parameters, results, imp->location()); if (is_varargs) fntype->set_is_varargs(); methods->push_back(Typed_identifier(name, fntype, imp->location())); imp->require_c_string("; "); } imp->require_c_string("}"); if (methods->empty()) { delete methods; methods = NULL; } return Type::make_interface_type(methods, imp->location()); } // Make an interface type. Interface_type* Type::make_interface_type(Typed_identifier_list* methods, source_location location) { return new Interface_type(methods, location); } // Class Method. // Bind a method to an object. Expression* Method::bind_method(Expression* expr, source_location location) const { if (this->stub_ == NULL) { // When there is no stub object, the binding is determined by // the child class. return this->do_bind_method(expr, location); } Expression* func = Expression::make_func_reference(this->stub_, NULL, location); return Expression::make_bound_method(expr, func, location); } // Return the named object associated with a method. This may only be // called after methods are finalized. Named_object* Method::named_object() const { if (this->stub_ != NULL) return this->stub_; return this->do_named_object(); } // Class Named_method. // The type of the method. Function_type* Named_method::do_type() const { if (this->named_object_->is_function()) return this->named_object_->func_value()->type(); else if (this->named_object_->is_function_declaration()) return this->named_object_->func_declaration_value()->type(); else gcc_unreachable(); } // Return the location of the method receiver. source_location Named_method::do_receiver_location() const { return this->do_type()->receiver()->location(); } // Bind a method to an object. Expression* Named_method::do_bind_method(Expression* expr, source_location location) const { Expression* func = Expression::make_func_reference(this->named_object_, NULL, location); Bound_method_expression* bme = Expression::make_bound_method(expr, func, location); // If this is not a local method, and it does not use a stub, then // the real method expects a different type. We need to cast the // first argument. if (this->depth() > 0 && !this->needs_stub_method()) { Function_type* ftype = this->do_type(); gcc_assert(ftype->is_method()); Type* frtype = ftype->receiver()->type(); bme->set_first_argument_type(frtype); } return bme; } // Class Interface_method. // Bind a method to an object. Expression* Interface_method::do_bind_method(Expression* expr, source_location location) const { return Expression::make_interface_field_reference(expr, this->name_, location); } // Class Methods. // Insert a new method. Return true if it was inserted, false // otherwise. bool Methods::insert(const std::string& name, Method* m) { std::pair ins = this->methods_.insert(std::make_pair(name, m)); if (ins.second) return true; else { Method* old_method = ins.first->second; if (m->depth() < old_method->depth()) { delete old_method; ins.first->second = m; return true; } else { if (m->depth() == old_method->depth()) old_method->set_is_ambiguous(); return false; } } } // Return the number of unambiguous methods. size_t Methods::count() const { size_t ret = 0; for (Method_map::const_iterator p = this->methods_.begin(); p != this->methods_.end(); ++p) if (!p->second->is_ambiguous()) ++ret; return ret; } // Class Named_type. // Return the name of the type. const std::string& Named_type::name() const { return this->named_object_->name(); } // Return the name of the type to use in an error message. std::string Named_type::message_name() const { return this->named_object_->message_name(); } // Return the base type for this type. We have to be careful about // circular type definitions, which are invalid but may be seen here. Type* Named_type::named_base() { if (this->seen_ > 0) return this; ++this->seen_; Type* ret = this->type_->base(); --this->seen_; return ret; } const Type* Named_type::named_base() const { if (this->seen_ > 0) return this; ++this->seen_; const Type* ret = this->type_->base(); --this->seen_; return ret; } // Return whether this is an error type. We have to be careful about // circular type definitions, which are invalid but may be seen here. bool Named_type::is_named_error_type() const { if (this->seen_ > 0) return false; ++this->seen_; bool ret = this->type_->is_error_type(); --this->seen_; return ret; } // Add a method to this type. Named_object* Named_type::add_method(const std::string& name, Function* function) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); return this->local_methods_->add_function(name, NULL, function); } // Add a method declaration to this type. Named_object* Named_type::add_method_declaration(const std::string& name, Package* package, Function_type* type, source_location location) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); return this->local_methods_->add_function_declaration(name, package, type, location); } // Add an existing method to this type. void Named_type::add_existing_method(Named_object* no) { if (this->local_methods_ == NULL) this->local_methods_ = new Bindings(NULL); this->local_methods_->add_named_object(no); } // Look for a local method NAME, and returns its named object, or NULL // if not there. Named_object* Named_type::find_local_method(const std::string& name) const { if (this->local_methods_ == NULL) return NULL; return this->local_methods_->lookup(name); } // Return whether NAME is an unexported field or method, for better // error reporting. bool Named_type::is_unexported_local_method(Gogo* gogo, const std::string& name) const { Bindings* methods = this->local_methods_; if (methods != NULL) { for (Bindings::const_declarations_iterator p = methods->begin_declarations(); p != methods->end_declarations(); ++p) { if (Gogo::is_hidden_name(p->first) && name == Gogo::unpack_hidden_name(p->first) && gogo->pack_hidden_name(name, false) != p->first) return true; } } return false; } // Build the complete list of methods for this type, which means // recursively including all methods for anonymous fields. Create all // stub methods. void Named_type::finalize_methods(Gogo* gogo) { if (this->all_methods_ != NULL) return; if (this->local_methods_ != NULL && (this->points_to() != NULL || this->interface_type() != NULL)) { const Bindings* lm = this->local_methods_; for (Bindings::const_declarations_iterator p = lm->begin_declarations(); p != lm->end_declarations(); ++p) error_at(p->second->location(), "invalid pointer or interface receiver type"); delete this->local_methods_; this->local_methods_ = NULL; return; } Type::finalize_methods(gogo, this, this->location_, &this->all_methods_); } // Return the method NAME, or NULL if there isn't one or if it is // ambiguous. Set *IS_AMBIGUOUS if the method exists but is // ambiguous. Method* Named_type::method_function(const std::string& name, bool* is_ambiguous) const { return Type::method_function(this->all_methods_, name, is_ambiguous); } // Return a pointer to the interface method table for this type for // the interface INTERFACE. IS_POINTER is true if this is for a // pointer to THIS. tree Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface, bool is_pointer) { gcc_assert(!interface->is_empty()); Interface_method_tables** pimt = (is_pointer ? &this->interface_method_tables_ : &this->pointer_interface_method_tables_); if (*pimt == NULL) *pimt = new Interface_method_tables(5); std::pair val(interface, NULL_TREE); std::pair ins = (*pimt)->insert(val); if (ins.second) { // This is a new entry in the hash table. gcc_assert(ins.first->second == NULL_TREE); ins.first->second = gogo->interface_method_table_for_type(interface, this, is_pointer); } tree decl = ins.first->second; if (decl == error_mark_node) return error_mark_node; gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL); return build_fold_addr_expr(decl); } // Return whether a named type has any hidden fields. bool Named_type::named_type_has_hidden_fields(std::string* reason) const { if (this->seen_ > 0) return false; ++this->seen_; bool ret = this->type_->has_hidden_fields(this, reason); --this->seen_; return ret; } // Look for a use of a complete type within another type. This is // used to check that we don't try to use a type within itself. class Find_type_use : public Traverse { public: Find_type_use(Named_type* find_type) : Traverse(traverse_types), find_type_(find_type), found_(false) { } // Whether we found the type. bool found() const { return this->found_; } protected: int type(Type*); private: // The type we are looking for. Named_type* find_type_; // Whether we found the type. bool found_; }; // Check for FIND_TYPE in TYPE. int Find_type_use::type(Type* type) { if (type->named_type() != NULL && this->find_type_ == type->named_type()) { this->found_ = true; return TRAVERSE_EXIT; } // It's OK if we see a reference to the type in any type which is // essentially a pointer: a pointer, a slice, a function, a map, or // a channel. if (type->points_to() != NULL || type->is_open_array_type() || type->function_type() != NULL || type->map_type() != NULL || type->channel_type() != NULL) return TRAVERSE_SKIP_COMPONENTS; // For an interface, a reference to the type in a method type should // be ignored, but we have to consider direct inheritance. When // this is called, there may be cases of direct inheritance // represented as a method with no name. if (type->interface_type() != NULL) { const Typed_identifier_list* methods = type->interface_type()->methods(); if (methods != NULL) { for (Typed_identifier_list::const_iterator p = methods->begin(); p != methods->end(); ++p) { if (p->name().empty()) { if (Type::traverse(p->type(), this) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } } } return TRAVERSE_SKIP_COMPONENTS; } // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need // to convert TYPE to the backend representation before we convert // FIND_TYPE_. if (type->named_type() != NULL) { switch (type->base()->classification()) { case Type::TYPE_ERROR: case Type::TYPE_BOOLEAN: case Type::TYPE_INTEGER: case Type::TYPE_FLOAT: case Type::TYPE_COMPLEX: case Type::TYPE_STRING: case Type::TYPE_NIL: break; case Type::TYPE_ARRAY: case Type::TYPE_STRUCT: this->find_type_->add_dependency(type->named_type()); break; case Type::TYPE_VOID: case Type::TYPE_SINK: case Type::TYPE_FUNCTION: case Type::TYPE_POINTER: case Type::TYPE_CALL_MULTIPLE_RESULT: case Type::TYPE_MAP: case Type::TYPE_CHANNEL: case Type::TYPE_INTERFACE: case Type::TYPE_NAMED: case Type::TYPE_FORWARD: default: gcc_unreachable(); } } return TRAVERSE_CONTINUE; } // Verify that a named type does not refer to itself. bool Named_type::do_verify() { Find_type_use find(this); Type::traverse(this->type_, &find); if (find.found()) { error_at(this->location_, "invalid recursive type %qs", this->message_name().c_str()); this->is_error_ = true; return false; } // Check whether any of the local methods overloads an existing // struct field or interface method. We don't need to check the // list of methods against itself: that is handled by the Bindings // code. if (this->local_methods_ != NULL) { Struct_type* st = this->type_->struct_type(); Interface_type* it = this->type_->interface_type(); bool found_dup = false; if (st != NULL || it != NULL) { for (Bindings::const_declarations_iterator p = this->local_methods_->begin_declarations(); p != this->local_methods_->end_declarations(); ++p) { const std::string& name(p->first); if (st != NULL && st->find_local_field(name, NULL) != NULL) { error_at(p->second->location(), "method %qs redeclares struct field name", Gogo::message_name(name).c_str()); found_dup = true; } if (it != NULL && it->find_method(name) != NULL) { error_at(p->second->location(), "method %qs redeclares interface method name", Gogo::message_name(name).c_str()); found_dup = true; } } } if (found_dup) return false; } return true; } // Return whether this type is or contains a pointer. bool Named_type::do_has_pointer() const { if (this->seen_ > 0) return false; ++this->seen_; bool ret = this->type_->has_pointer(); --this->seen_; return ret; } // Return a hash code. This is used for method lookup. We simply // hash on the name itself. unsigned int Named_type::do_hash_for_method(Gogo* gogo) const { const std::string& name(this->named_object()->name()); unsigned int ret = Type::hash_string(name, 0); // GOGO will be NULL here when called from Type_hash_identical. // That is OK because that is only used for internal hash tables // where we are going to be comparing named types for equality. In // other cases, which are cases where the runtime is going to // compare hash codes to see if the types are the same, we need to // include the package prefix and name in the hash. if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin()) { const Package* package = this->named_object()->package(); if (package == NULL) { ret = Type::hash_string(gogo->unique_prefix(), ret); ret = Type::hash_string(gogo->package_name(), ret); } else { ret = Type::hash_string(package->unique_prefix(), ret); ret = Type::hash_string(package->name(), ret); } } return ret; } // Convert a named type to the backend representation. In order to // get dependencies right, we fill in a dummy structure for this type, // then convert all the dependencies, then complete this type. When // this function is complete, the size of the type is known. void Named_type::convert(Gogo* gogo) { if (this->is_error_ || this->is_converted_) return; this->create_placeholder(gogo); // Convert all the dependencies. If they refer indirectly back to // this type, they will pick up the intermediate tree we just // created. for (std::vector::const_iterator p = this->dependencies_.begin(); p != this->dependencies_.end(); ++p) (*p)->convert(gogo); // Complete this type. tree t = this->named_tree_; Type* base = this->type_->base(); switch (base->classification()) { case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: break; case TYPE_MAP: case TYPE_CHANNEL: break; case TYPE_FUNCTION: case TYPE_POINTER: // The size of these types is already correct. break; case TYPE_STRUCT: t = base->struct_type()->fill_in_tree(gogo, t); break; case TYPE_ARRAY: if (!base->is_open_array_type()) t = base->array_type()->fill_in_array_tree(gogo, t); break; case TYPE_INTERFACE: if (!base->interface_type()->is_empty()) t = base->interface_type()->fill_in_tree(gogo, t); break; case TYPE_ERROR: return; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: gcc_unreachable(); } this->named_tree_ = t; if (t == error_mark_node) this->is_error_ = true; else gcc_assert(TYPE_SIZE(t) != NULL_TREE); this->is_converted_ = true; } // Create the placeholder for a named type. This is the first step in // converting to the backend representation. void Named_type::create_placeholder(Gogo* gogo) { if (this->is_error_) this->named_tree_ = error_mark_node; if (this->named_tree_ != NULL_TREE) return; // Create the structure for this type. Note that because we call // base() here, we don't attempt to represent a named type defined // as another named type. Instead both named types will point to // different base representations. Type* base = this->type_->base(); tree t; switch (base->classification()) { case TYPE_ERROR: this->is_error_ = true; this->named_tree_ = error_mark_node; return; case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: // These are simple basic types, we can just create them // directly. t = Type::get_named_type_tree(gogo, base); if (t == error_mark_node) { this->is_error_ = true; this->named_tree_ = error_mark_node; return; } t = build_variant_type_copy(t); break; case TYPE_MAP: case TYPE_CHANNEL: // All maps and channels have the same type in GENERIC. t = Type::get_named_type_tree(gogo, base); if (t == error_mark_node) { this->is_error_ = true; this->named_tree_ = error_mark_node; return; } t = build_variant_type_copy(t); break; case TYPE_FUNCTION: case TYPE_POINTER: t = build_variant_type_copy(ptr_type_node); break; case TYPE_STRUCT: t = make_node(RECORD_TYPE); break; case TYPE_ARRAY: if (base->is_open_array_type()) t = gogo->slice_type_tree(void_type_node); else t = make_node(ARRAY_TYPE); break; case TYPE_INTERFACE: if (base->interface_type()->is_empty()) { t = Interface_type::empty_type_tree(gogo); t = build_variant_type_copy(t); } else { source_location loc = base->interface_type()->location(); t = Interface_type::non_empty_type_tree(loc); } break; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: gcc_unreachable(); } // Create the named type. tree id = this->named_object_->get_id(gogo); tree decl = build_decl(this->location_, TYPE_DECL, id, t); TYPE_NAME(t) = decl; this->named_tree_ = t; } // Get a tree for a named type. tree Named_type::do_get_tree(Gogo* gogo) { if (this->is_error_) return error_mark_node; tree t = this->named_tree_; // FIXME: GOGO can be NULL when called from go_type_for_size, which // is only used for basic types. if (gogo == NULL || !gogo->named_types_are_converted()) { // We have not completed converting named types. NAMED_TREE_ is // a placeholder and we shouldn't do anything further. if (t != NULL_TREE) return t; // We don't build dependencies for types whose sizes do not // change or are not relevant, so we may see them here while // converting types. this->create_placeholder(gogo); t = this->named_tree_; gcc_assert(t != NULL_TREE); return t; } // We are not converting types. This should only be called if the // type has already been converted. if (!this->is_converted_) { gcc_assert(saw_errors()); return error_mark_node; } gcc_assert(t != NULL_TREE && TYPE_SIZE(t) != NULL_TREE); // Complete the tree. Type* base = this->type_->base(); tree t1; switch (base->classification()) { case TYPE_ERROR: return error_mark_node; case TYPE_VOID: case TYPE_BOOLEAN: case TYPE_INTEGER: case TYPE_FLOAT: case TYPE_COMPLEX: case TYPE_STRING: case TYPE_NIL: case TYPE_MAP: case TYPE_CHANNEL: case TYPE_STRUCT: case TYPE_INTERFACE: return t; case TYPE_FUNCTION: // Don't build a circular data structure. GENERIC can't handle // it. if (this->seen_ > 0) { this->is_circular_ = true; return ptr_type_node; } ++this->seen_; t1 = Type::get_named_type_tree(gogo, base); --this->seen_; if (t1 == error_mark_node) return error_mark_node; if (this->is_circular_) t1 = ptr_type_node; gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE); gcc_assert(TREE_CODE(t1) == POINTER_TYPE); TREE_TYPE(t) = TREE_TYPE(t1); return t; case TYPE_POINTER: // Don't build a circular data structure. GENERIC can't handle // it. if (this->seen_ > 0) { this->is_circular_ = true; return ptr_type_node; } ++this->seen_; t1 = Type::get_named_type_tree(gogo, base); --this->seen_; if (t1 == error_mark_node) return error_mark_node; if (this->is_circular_) t1 = ptr_type_node; gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE); gcc_assert(TREE_CODE(t1) == POINTER_TYPE); TREE_TYPE(t) = TREE_TYPE(t1); return t; case TYPE_ARRAY: if (base->is_open_array_type()) { if (this->seen_ > 0) return t; else { ++this->seen_; t = base->array_type()->fill_in_slice_tree(gogo, t); --this->seen_; } } return t; default: case TYPE_SINK: case TYPE_CALL_MULTIPLE_RESULT: case TYPE_NAMED: case TYPE_FORWARD: gcc_unreachable(); } gcc_unreachable(); } // Build a type descriptor for a named type. Expression* Named_type::do_type_descriptor(Gogo* gogo, Named_type* name) { // If NAME is not NULL, then we don't really want the type // descriptor for this type; we want the descriptor for the // underlying type, giving it the name NAME. return this->named_type_descriptor(gogo, this->type_, name == NULL ? this : name); } // Add to the reflection string. This is used mostly for the name of // the type used in a type descriptor, not for actual reflection // strings. void Named_type::do_reflection(Gogo* gogo, std::string* ret) const { if (this->location() != BUILTINS_LOCATION) { const Package* package = this->named_object_->package(); if (package != NULL) ret->append(package->name()); else ret->append(gogo->package_name()); ret->push_back('.'); } if (this->in_function_ != NULL) { ret->append(Gogo::unpack_hidden_name(this->in_function_->name())); ret->push_back('$'); } ret->append(Gogo::unpack_hidden_name(this->named_object_->name())); } // Get the mangled name. void Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const { Named_object* no = this->named_object_; std::string name; if (this->location() == BUILTINS_LOCATION) gcc_assert(this->in_function_ == NULL); else { const std::string& unique_prefix(no->package() == NULL ? gogo->unique_prefix() : no->package()->unique_prefix()); const std::string& package_name(no->package() == NULL ? gogo->package_name() : no->package()->name()); name = unique_prefix; name.append(1, '.'); name.append(package_name); name.append(1, '.'); if (this->in_function_ != NULL) { name.append(Gogo::unpack_hidden_name(this->in_function_->name())); name.append(1, '$'); } } name.append(Gogo::unpack_hidden_name(no->name())); char buf[20]; snprintf(buf, sizeof buf, "N%u_", static_cast(name.length())); ret->append(buf); ret->append(name); } // Export the type. This is called to export a global type. void Named_type::export_named_type(Export* exp, const std::string&) const { // We don't need to write the name of the type here, because it will // be written by Export::write_type anyhow. exp->write_c_string("type "); exp->write_type(this); exp->write_c_string(";\n"); } // Import a named type. void Named_type::import_named_type(Import* imp, Named_type** ptype) { imp->require_c_string("type "); Type *type = imp->read_type(); *ptype = type->named_type(); gcc_assert(*ptype != NULL); imp->require_c_string(";\n"); } // Export the type when it is referenced by another type. In this // case Export::export_type will already have issued the name. void Named_type::do_export(Export* exp) const { exp->write_type(this->type_); // To save space, we only export the methods directly attached to // this type. Bindings* methods = this->local_methods_; if (methods == NULL) return; exp->write_c_string("\n"); for (Bindings::const_definitions_iterator p = methods->begin_definitions(); p != methods->end_definitions(); ++p) { exp->write_c_string(" "); (*p)->export_named_object(exp); } for (Bindings::const_declarations_iterator p = methods->begin_declarations(); p != methods->end_declarations(); ++p) { if (p->second->is_function_declaration()) { exp->write_c_string(" "); p->second->export_named_object(exp); } } } // Make a named type. Named_type* Type::make_named_type(Named_object* named_object, Type* type, source_location location) { return new Named_type(named_object, type, location); } // Finalize the methods for TYPE. It will be a named type or a struct // type. This sets *ALL_METHODS to the list of methods, and builds // all required stubs. void Type::finalize_methods(Gogo* gogo, const Type* type, source_location location, Methods** all_methods) { *all_methods = NULL; Types_seen types_seen; Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen, all_methods); Type::build_stub_methods(gogo, type, *all_methods, location); } // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to // build up the struct field indexes as we go. DEPTH is the depth of // the field within TYPE. IS_EMBEDDED_POINTER is true if we are // adding these methods for an anonymous field with pointer type. // NEEDS_STUB_METHOD is true if we need to use a stub method which // calls the real method. TYPES_SEEN is used to avoid infinite // recursion. void Type::add_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, Types_seen* types_seen, Methods** methods) { // Pointer types may not have methods. if (type->points_to() != NULL) return; const Named_type* nt = type->named_type(); if (nt != NULL) { std::pair ins = types_seen->insert(nt); if (!ins.second) return; } if (nt != NULL) Type::add_local_methods_for_type(nt, field_indexes, depth, is_embedded_pointer, needs_stub_method, methods); Type::add_embedded_methods_for_type(type, field_indexes, depth, is_embedded_pointer, needs_stub_method, types_seen, methods); // If we are called with depth > 0, then we are looking at an // anonymous field of a struct. If such a field has interface type, // then we need to add the interface methods. We don't want to add // them when depth == 0, because we will already handle them // following the usual rules for an interface type. if (depth > 0) Type::add_interface_methods_for_type(type, field_indexes, depth, methods); } // Add the local methods for the named type NT to *METHODS. The // parameters are as for add_methods_to_type. void Type::add_local_methods_for_type(const Named_type* nt, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, Methods** methods) { const Bindings* local_methods = nt->local_methods(); if (local_methods == NULL) return; if (*methods == NULL) *methods = new Methods(); for (Bindings::const_declarations_iterator p = local_methods->begin_declarations(); p != local_methods->end_declarations(); ++p) { Named_object* no = p->second; bool is_value_method = (is_embedded_pointer || !Type::method_expects_pointer(no)); Method* m = new Named_method(no, field_indexes, depth, is_value_method, (needs_stub_method || (depth > 0 && is_value_method))); if (!(*methods)->insert(no->name(), m)) delete m; } } // Add the embedded methods for TYPE to *METHODS. These are the // methods attached to anonymous fields. The parameters are as for // add_methods_to_type. void Type::add_embedded_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, bool is_embedded_pointer, bool needs_stub_method, Types_seen* types_seen, Methods** methods) { // Look for anonymous fields in TYPE. TYPE has fields if it is a // struct. const Struct_type* st = type->struct_type(); if (st == NULL) return; const Struct_field_list* fields = st->fields(); if (fields == NULL) return; unsigned int i = 0; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf, ++i) { if (!pf->is_anonymous()) continue; Type* ftype = pf->type(); bool is_pointer = false; if (ftype->points_to() != NULL) { ftype = ftype->points_to(); is_pointer = true; } Named_type* fnt = ftype->named_type(); if (fnt == NULL) { // This is an error, but it will be diagnosed elsewhere. continue; } Method::Field_indexes* sub_field_indexes = new Method::Field_indexes(); sub_field_indexes->next = field_indexes; sub_field_indexes->field_index = i; Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1, (is_embedded_pointer || is_pointer), (needs_stub_method || is_pointer || i > 0), types_seen, methods); } } // If TYPE is an interface type, then add its method to *METHODS. // This is for interface methods attached to an anonymous field. The // parameters are as for add_methods_for_type. void Type::add_interface_methods_for_type(const Type* type, const Method::Field_indexes* field_indexes, unsigned int depth, Methods** methods) { const Interface_type* it = type->interface_type(); if (it == NULL) return; const Typed_identifier_list* imethods = it->methods(); if (imethods == NULL) return; if (*methods == NULL) *methods = new Methods(); for (Typed_identifier_list::const_iterator pm = imethods->begin(); pm != imethods->end(); ++pm) { Function_type* fntype = pm->type()->function_type(); if (fntype == NULL) { // This is an error, but it should be reported elsewhere // when we look at the methods for IT. continue; } gcc_assert(!fntype->is_method()); fntype = fntype->copy_with_receiver(const_cast(type)); Method* m = new Interface_method(pm->name(), pm->location(), fntype, field_indexes, depth); if (!(*methods)->insert(pm->name(), m)) delete m; } } // Build stub methods for TYPE as needed. METHODS is the set of // methods for the type. A stub method may be needed when a type // inherits a method from an anonymous field. When we need the // address of the method, as in a type descriptor, we need to build a // little stub which does the required field dereferences and jumps to // the real method. LOCATION is the location of the type definition. void Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods, source_location location) { if (methods == NULL) return; for (Methods::const_iterator p = methods->begin(); p != methods->end(); ++p) { Method* m = p->second; if (m->is_ambiguous() || !m->needs_stub_method()) continue; const std::string& name(p->first); // Build a stub method. const Function_type* fntype = m->type(); static unsigned int counter; char buf[100]; snprintf(buf, sizeof buf, "$this%u", counter); ++counter; Type* receiver_type = const_cast(type); if (!m->is_value_method()) receiver_type = Type::make_pointer_type(receiver_type); source_location receiver_location = m->receiver_location(); Typed_identifier* receiver = new Typed_identifier(buf, receiver_type, receiver_location); const Typed_identifier_list* fnparams = fntype->parameters(); Typed_identifier_list* stub_params; if (fnparams == NULL || fnparams->empty()) stub_params = NULL; else { // We give each stub parameter a unique name. stub_params = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator pp = fnparams->begin(); pp != fnparams->end(); ++pp) { char pbuf[100]; snprintf(pbuf, sizeof pbuf, "$p%u", counter); stub_params->push_back(Typed_identifier(pbuf, pp->type(), pp->location())); ++counter; } } const Typed_identifier_list* fnresults = fntype->results(); Typed_identifier_list* stub_results; if (fnresults == NULL || fnresults->empty()) stub_results = NULL; else { // We create the result parameters without any names, since // we won't refer to them. stub_results = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator pr = fnresults->begin(); pr != fnresults->end(); ++pr) stub_results->push_back(Typed_identifier("", pr->type(), pr->location())); } Function_type* stub_type = Type::make_function_type(receiver, stub_params, stub_results, fntype->location()); if (fntype->is_varargs()) stub_type->set_is_varargs(); // We only create the function in the package which creates the // type. const Package* package; if (type->named_type() == NULL) package = NULL; else package = type->named_type()->named_object()->package(); Named_object* stub; if (package != NULL) stub = Named_object::make_function_declaration(name, package, stub_type, location); else { stub = gogo->start_function(name, stub_type, false, fntype->location()); Type::build_one_stub_method(gogo, m, buf, stub_params, fntype->is_varargs(), location); gogo->finish_function(fntype->location()); } m->set_stub_object(stub); } } // Build a stub method which adjusts the receiver as required to call // METHOD. RECEIVER_NAME is the name we used for the receiver. // PARAMS is the list of function parameters. void Type::build_one_stub_method(Gogo* gogo, Method* method, const char* receiver_name, const Typed_identifier_list* params, bool is_varargs, source_location location) { Named_object* receiver_object = gogo->lookup(receiver_name, NULL); gcc_assert(receiver_object != NULL); Expression* expr = Expression::make_var_reference(receiver_object, location); expr = Type::apply_field_indexes(expr, method->field_indexes(), location); if (expr->type()->points_to() == NULL) expr = Expression::make_unary(OPERATOR_AND, expr, location); Expression_list* arguments; if (params == NULL || params->empty()) arguments = NULL; else { arguments = new Expression_list(); for (Typed_identifier_list::const_iterator p = params->begin(); p != params->end(); ++p) { Named_object* param = gogo->lookup(p->name(), NULL); gcc_assert(param != NULL); Expression* param_ref = Expression::make_var_reference(param, location); arguments->push_back(param_ref); } } Expression* func = method->bind_method(expr, location); gcc_assert(func != NULL); Call_expression* call = Expression::make_call(func, arguments, is_varargs, location); size_t count = call->result_count(); if (count == 0) gogo->add_statement(Statement::make_statement(call)); else { Expression_list* retvals = new Expression_list(); if (count <= 1) retvals->push_back(call); else { for (size_t i = 0; i < count; ++i) retvals->push_back(Expression::make_call_result(call, i)); } const Function* function = gogo->current_function()->func_value(); const Typed_identifier_list* results = function->type()->results(); Statement* retstat = Statement::make_return_statement(results, retvals, location); gogo->add_statement(retstat); } } // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied // in reverse order. Expression* Type::apply_field_indexes(Expression* expr, const Method::Field_indexes* field_indexes, source_location location) { if (field_indexes == NULL) return expr; expr = Type::apply_field_indexes(expr, field_indexes->next, location); Struct_type* stype = expr->type()->deref()->struct_type(); gcc_assert(stype != NULL && field_indexes->field_index < stype->field_count()); if (expr->type()->struct_type() == NULL) { gcc_assert(expr->type()->points_to() != NULL); expr = Expression::make_unary(OPERATOR_MULT, expr, location); gcc_assert(expr->type()->struct_type() == stype); } return Expression::make_field_reference(expr, field_indexes->field_index, location); } // Return whether NO is a method for which the receiver is a pointer. bool Type::method_expects_pointer(const Named_object* no) { const Function_type *fntype; if (no->is_function()) fntype = no->func_value()->type(); else if (no->is_function_declaration()) fntype = no->func_declaration_value()->type(); else gcc_unreachable(); return fntype->receiver()->type()->points_to() != NULL; } // Given a set of methods for a type, METHODS, return the method NAME, // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS // is not NULL, then set *IS_AMBIGUOUS to true if the method exists // but is ambiguous (and return NULL). Method* Type::method_function(const Methods* methods, const std::string& name, bool* is_ambiguous) { if (is_ambiguous != NULL) *is_ambiguous = false; if (methods == NULL) return NULL; Methods::const_iterator p = methods->find(name); if (p == methods->end()) return NULL; Method* m = p->second; if (m->is_ambiguous()) { if (is_ambiguous != NULL) *is_ambiguous = true; return NULL; } return m; } // Look for field or method NAME for TYPE. Return an Expression for // the field or method bound to EXPR. If there is no such field or // method, give an appropriate error and return an error expression. Expression* Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr, const std::string& name, source_location location) { if (type->deref()->is_error_type()) return Expression::make_error(location); const Named_type* nt = type->deref()->named_type(); const Struct_type* st = type->deref()->struct_type(); const Interface_type* it = type->deref()->interface_type(); // If this is a pointer to a pointer, then it is possible that the // pointed-to type has methods. if (nt == NULL && st == NULL && it == NULL && type->points_to() != NULL && type->points_to()->points_to() != NULL) { expr = Expression::make_unary(OPERATOR_MULT, expr, location); type = type->points_to(); if (type->deref()->is_error_type()) return Expression::make_error(location); nt = type->points_to()->named_type(); st = type->points_to()->struct_type(); it = type->points_to()->interface_type(); } bool receiver_can_be_pointer = (expr->type()->points_to() != NULL || expr->is_addressable()); std::vector seen; bool is_method = false; bool found_pointer_method = false; std::string ambig1; std::string ambig2; if (Type::find_field_or_method(type, name, receiver_can_be_pointer, &seen, NULL, &is_method, &found_pointer_method, &ambig1, &ambig2)) { Expression* ret; if (!is_method) { gcc_assert(st != NULL); if (type->struct_type() == NULL) { gcc_assert(type->points_to() != NULL); expr = Expression::make_unary(OPERATOR_MULT, expr, location); gcc_assert(expr->type()->struct_type() == st); } ret = st->field_reference(expr, name, location); } else if (it != NULL && it->find_method(name) != NULL) ret = Expression::make_interface_field_reference(expr, name, location); else { Method* m; if (nt != NULL) m = nt->method_function(name, NULL); else if (st != NULL) m = st->method_function(name, NULL); else gcc_unreachable(); gcc_assert(m != NULL); if (!m->is_value_method() && expr->type()->points_to() == NULL) expr = Expression::make_unary(OPERATOR_AND, expr, location); ret = m->bind_method(expr, location); } gcc_assert(ret != NULL); return ret; } else { if (!ambig1.empty()) error_at(location, "%qs is ambiguous via %qs and %qs", Gogo::message_name(name).c_str(), Gogo::message_name(ambig1).c_str(), Gogo::message_name(ambig2).c_str()); else if (found_pointer_method) error_at(location, "method requires a pointer"); else if (nt == NULL && st == NULL && it == NULL) error_at(location, ("reference to field %qs in object which " "has no fields or methods"), Gogo::message_name(name).c_str()); else { bool is_unexported; if (!Gogo::is_hidden_name(name)) is_unexported = false; else { std::string unpacked = Gogo::unpack_hidden_name(name); seen.clear(); is_unexported = Type::is_unexported_field_or_method(gogo, type, unpacked, &seen); } if (is_unexported) error_at(location, "reference to unexported field or method %qs", Gogo::message_name(name).c_str()); else error_at(location, "reference to undefined field or method %qs", Gogo::message_name(name).c_str()); } return Expression::make_error(location); } } // Look in TYPE for a field or method named NAME, return true if one // is found. This looks through embedded anonymous fields and handles // ambiguity. If a method is found, sets *IS_METHOD to true; // otherwise, if a field is found, set it to false. If // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value // whose address can not be taken. SEEN is used to avoid infinite // recursion on invalid types. // When returning false, this sets *FOUND_POINTER_METHOD if we found a // method we couldn't use because it requires a pointer. LEVEL is // used for recursive calls, and can be NULL for a non-recursive call. // When this function returns false because it finds that the name is // ambiguous, it will store a path to the ambiguous names in *AMBIG1 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2 // will be unchanged. // This function just returns whether or not there is a field or // method, and whether it is a field or method. It doesn't build an // expression to refer to it. If it is a method, we then look in the // list of all methods for the type. If it is a field, the search has // to be done again, looking only for fields, and building up the // expression as we go. bool Type::find_field_or_method(const Type* type, const std::string& name, bool receiver_can_be_pointer, std::vector* seen, int* level, bool* is_method, bool* found_pointer_method, std::string* ambig1, std::string* ambig2) { // Named types can have locally defined methods. const Named_type* nt = type->named_type(); if (nt == NULL && type->points_to() != NULL) nt = type->points_to()->named_type(); if (nt != NULL) { Named_object* no = nt->find_local_method(name); if (no != NULL) { if (receiver_can_be_pointer || !Type::method_expects_pointer(no)) { *is_method = true; return true; } // Record that we have found a pointer method in order to // give a better error message if we don't find anything // else. *found_pointer_method = true; } for (std::vector::const_iterator p = seen->begin(); p != seen->end(); ++p) { if (*p == nt) { // We've already seen this type when searching for methods. return false; } } } // Interface types can have methods. const Interface_type* it = type->deref()->interface_type(); if (it != NULL && it->find_method(name) != NULL) { *is_method = true; return true; } // Struct types can have fields. They can also inherit fields and // methods from anonymous fields. const Struct_type* st = type->deref()->struct_type(); if (st == NULL) return false; const Struct_field_list* fields = st->fields(); if (fields == NULL) return false; if (nt != NULL) seen->push_back(nt); int found_level = 0; bool found_is_method = false; std::string found_ambig1; std::string found_ambig2; const Struct_field* found_parent = NULL; for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (pf->field_name() == name) { *is_method = false; if (nt != NULL) seen->pop_back(); return true; } if (!pf->is_anonymous()) continue; if (pf->type()->deref()->is_error_type() || pf->type()->deref()->is_undefined()) continue; Named_type* fnt = pf->type()->named_type(); if (fnt == NULL) fnt = pf->type()->deref()->named_type(); gcc_assert(fnt != NULL); int sublevel = level == NULL ? 1 : *level + 1; bool sub_is_method; std::string subambig1; std::string subambig2; bool subfound = Type::find_field_or_method(fnt, name, receiver_can_be_pointer, seen, &sublevel, &sub_is_method, found_pointer_method, &subambig1, &subambig2); if (!subfound) { if (!subambig1.empty()) { // The name was found via this field, but is ambiguous. // if the ambiguity is lower or at the same level as // anything else we have already found, then we want to // pass the ambiguity back to the caller. if (found_level == 0 || sublevel <= found_level) { found_ambig1 = pf->field_name() + '.' + subambig1; found_ambig2 = pf->field_name() + '.' + subambig2; found_level = sublevel; } } } else { // The name was found via this field. Use the level to see // if we want to use this one, or whether it introduces an // ambiguity. if (found_level == 0 || sublevel < found_level) { found_level = sublevel; found_is_method = sub_is_method; found_ambig1.clear(); found_ambig2.clear(); found_parent = &*pf; } else if (sublevel > found_level) ; else if (found_ambig1.empty()) { // We found an ambiguity. gcc_assert(found_parent != NULL); found_ambig1 = found_parent->field_name(); found_ambig2 = pf->field_name(); } else { // We found an ambiguity, but we already know of one. // Just report the earlier one. } } } // Here if we didn't find anything FOUND_LEVEL is 0. If we found // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty. if (nt != NULL) seen->pop_back(); if (found_level == 0) return false; else if (!found_ambig1.empty()) { gcc_assert(!found_ambig1.empty()); ambig1->assign(found_ambig1); ambig2->assign(found_ambig2); if (level != NULL) *level = found_level; return false; } else { if (level != NULL) *level = found_level; *is_method = found_is_method; return true; } } // Return whether NAME is an unexported field or method for TYPE. bool Type::is_unexported_field_or_method(Gogo* gogo, const Type* type, const std::string& name, std::vector* seen) { const Named_type* nt = type->named_type(); if (nt == NULL) nt = type->deref()->named_type(); if (nt != NULL) { if (nt->is_unexported_local_method(gogo, name)) return true; for (std::vector::const_iterator p = seen->begin(); p != seen->end(); ++p) { if (*p == nt) { // We've already seen this type. return false; } } } type = type->deref(); const Interface_type* it = type->interface_type(); if (it != NULL && it->is_unexported_method(gogo, name)) return true; const Struct_type* st = type->struct_type(); if (st != NULL && st->is_unexported_local_field(gogo, name)) return true; if (st == NULL) return false; const Struct_field_list* fields = st->fields(); if (fields == NULL) return false; if (nt != NULL) seen->push_back(nt); for (Struct_field_list::const_iterator pf = fields->begin(); pf != fields->end(); ++pf) { if (pf->is_anonymous() && !pf->type()->deref()->is_error_type() && !pf->type()->deref()->is_undefined()) { Named_type* subtype = pf->type()->named_type(); if (subtype == NULL) subtype = pf->type()->deref()->named_type(); if (subtype == NULL) { // This is an error, but it will be diagnosed elsewhere. continue; } if (Type::is_unexported_field_or_method(gogo, subtype, name, seen)) { if (nt != NULL) seen->pop_back(); return true; } } } if (nt != NULL) seen->pop_back(); return false; } // Class Forward_declaration. Forward_declaration_type::Forward_declaration_type(Named_object* named_object) : Type(TYPE_FORWARD), named_object_(named_object->resolve()), warned_(false) { gcc_assert(this->named_object_->is_unknown() || this->named_object_->is_type_declaration()); } // Return the named object. Named_object* Forward_declaration_type::named_object() { return this->named_object_->resolve(); } const Named_object* Forward_declaration_type::named_object() const { return this->named_object_->resolve(); } // Return the name of the forward declared type. const std::string& Forward_declaration_type::name() const { return this->named_object()->name(); } // Warn about a use of a type which has been declared but not defined. void Forward_declaration_type::warn() const { Named_object* no = this->named_object_->resolve(); if (no->is_unknown()) { // The name was not defined anywhere. if (!this->warned_) { error_at(this->named_object_->location(), "use of undefined type %qs", no->message_name().c_str()); this->warned_ = true; } } else if (no->is_type_declaration()) { // The name was seen as a type, but the type was never defined. if (no->type_declaration_value()->using_type()) { error_at(this->named_object_->location(), "use of undefined type %qs", no->message_name().c_str()); this->warned_ = true; } } else { // The name was defined, but not as a type. if (!this->warned_) { error_at(this->named_object_->location(), "expected type"); this->warned_ = true; } } } // Get the base type of a declaration. This gives an error if the // type has not yet been defined. Type* Forward_declaration_type::real_type() { if (this->is_defined()) return this->named_object()->type_value(); else { this->warn(); return Type::make_error_type(); } } const Type* Forward_declaration_type::real_type() const { if (this->is_defined()) return this->named_object()->type_value(); else { this->warn(); return Type::make_error_type(); } } // Return whether the base type is defined. bool Forward_declaration_type::is_defined() const { return this->named_object()->is_type(); } // Add a method. This is used when methods are defined before the // type. Named_object* Forward_declaration_type::add_method(const std::string& name, Function* function) { Named_object* no = this->named_object(); if (no->is_unknown()) no->declare_as_type(); return no->type_declaration_value()->add_method(name, function); } // Add a method declaration. This is used when methods are declared // before the type. Named_object* Forward_declaration_type::add_method_declaration(const std::string& name, Function_type* type, source_location location) { Named_object* no = this->named_object(); if (no->is_unknown()) no->declare_as_type(); Type_declaration* td = no->type_declaration_value(); return td->add_method_declaration(name, type, location); } // Traversal. int Forward_declaration_type::do_traverse(Traverse* traverse) { if (this->is_defined() && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; return TRAVERSE_CONTINUE; } // Get a tree for the type. tree Forward_declaration_type::do_get_tree(Gogo* gogo) { if (this->is_defined()) return Type::get_named_type_tree(gogo, this->real_type()); if (this->warned_) return error_mark_node; // We represent an undefined type as a struct with no fields. That // should work fine for the middle-end, since the same case can // arise in C. Named_object* no = this->named_object(); tree type_tree = make_node(RECORD_TYPE); tree id = no->get_id(gogo); tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree); TYPE_NAME(type_tree) = decl; layout_type(type_tree); return type_tree; } // Build a type descriptor for a forwarded type. Expression* Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name) { if (!this->is_defined()) return Expression::make_nil(BUILTINS_LOCATION); else { Type* t = this->real_type(); if (name != NULL) return this->named_type_descriptor(gogo, t, name); else return Expression::make_type_descriptor(t, BUILTINS_LOCATION); } } // The reflection string. void Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const { this->append_reflection(this->real_type(), gogo, ret); } // The mangled name. void Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const { if (this->is_defined()) this->append_mangled_name(this->real_type(), gogo, ret); else { const Named_object* no = this->named_object(); std::string name; if (no->package() == NULL) name = gogo->package_name(); else name = no->package()->name(); name += '.'; name += Gogo::unpack_hidden_name(no->name()); char buf[20]; snprintf(buf, sizeof buf, "N%u_", static_cast(name.length())); ret->append(buf); ret->append(name); } } // Export a forward declaration. This can happen when a defined type // refers to a type which is only declared (and is presumably defined // in some other file in the same package). void Forward_declaration_type::do_export(Export*) const { // If there is a base type, that should be exported instead of this. gcc_assert(!this->is_defined()); // We don't output anything. } // Make a forward declaration. Type* Type::make_forward_declaration(Named_object* named_object) { return new Forward_declaration_type(named_object); } // Class Typed_identifier_list. // Sort the entries by name. struct Typed_identifier_list_sort { public: bool operator()(const Typed_identifier& t1, const Typed_identifier& t2) const { return t1.name() < t2.name(); } }; void Typed_identifier_list::sort_by_name() { std::sort(this->entries_.begin(), this->entries_.end(), Typed_identifier_list_sort()); } // Traverse types. int Typed_identifier_list::traverse(Traverse* traverse) { for (Typed_identifier_list::const_iterator p = this->begin(); p != this->end(); ++p) { if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; } return TRAVERSE_CONTINUE; } // Copy the list. Typed_identifier_list* Typed_identifier_list::copy() const { Typed_identifier_list* ret = new Typed_identifier_list(); for (Typed_identifier_list::const_iterator p = this->begin(); p != this->end(); ++p) ret->push_back(Typed_identifier(p->name(), p->type(), p->location())); return ret; }