#include #include #include #define fpsizeoff sizeof(float) #define fpsizeof sizeof(double) #define fpsizeofl sizeof(long double) /* Work around the fact that with the Intel double-extended precision, we've got a 10 byte type stuffed into some amount of padding. And the fact that -ffloat-store is going to stuff this value temporarily into some bit of stack frame that we've no control over and can't zero. */ #if LDBL_MANT_DIG == 64 # if defined(__i386__) || defined(__x86_64__) || defined (__ia64__) # undef fpsizeofl # define fpsizeofl 10 # endif #endif /* Work around the fact that the sign of the second double in the IBM double-double format is not strictly specified when it contains a zero. For instance, -0.0L can be represented with either (-0.0, +0.0) or (-0.0, -0.0). The former is what we'll get from the compiler when it builds constants; the later is what we'll get from the negation operator at runtime. */ /* ??? This hack only works for big-endian, which is fortunately true for all of AIX, Darwin, and Irix. */ #if LDBL_MANT_DIG == 106 # undef fpsizeofl # define fpsizeofl sizeof(double) #endif #define TEST(TYPE, EXT) \ TYPE c##EXT (TYPE x, TYPE y) \ { \ return __builtin_copysign##EXT (x, y); \ } \ \ struct D##EXT { TYPE x, y, z; }; \ \ static const struct D##EXT T##EXT[] = { \ { 1.0, 2.0, 1.0 }, \ { 1.0, -2.0, -1.0 }, \ { -1.0, -2.0, -1.0 }, \ { 0.0, -2.0, -0.0 }, \ { -0.0, -2.0, -0.0 }, \ { -0.0, 2.0, 0.0 }, \ { __builtin_inf##EXT (), -0.0, -__builtin_inf##EXT () }, \ { -__builtin_nan##EXT (""), __builtin_inf##EXT (), \ __builtin_nan##EXT ("") } \ }; \ \ void test##EXT (void) \ { \ int i, n = sizeof (T##EXT) / sizeof (T##EXT[0]); \ TYPE r; \ for (i = 0; i < n; ++i) \ { \ r = c##EXT (T##EXT[i].x, T##EXT[i].y); \ if (memcmp (&r, &T##EXT[i].z, fpsizeof##EXT) != 0) \ abort (); \ } \ } TEST(float, f) TEST(double, ) TEST(long double, l) int main() { testf(); test(); testl(); return 0; }