// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements signed multi-precision integers. package big import ( "fmt" "rand" ) // An Int represents a signed multi-precision integer. // The zero value for an Int represents the value 0. type Int struct { neg bool // sign abs nat // absolute value of the integer } var intOne = &Int{false, natOne} // Sign returns: // // -1 if x < 0 // 0 if x == 0 // +1 if x > 0 // func (x *Int) Sign() int { if len(x.abs) == 0 { return 0 } if x.neg { return -1 } return 1 } // SetInt64 sets z to x and returns z. func (z *Int) SetInt64(x int64) *Int { neg := false if x < 0 { neg = true x = -x } z.abs = z.abs.setUint64(uint64(x)) z.neg = neg return z } // NewInt allocates and returns a new Int set to x. func NewInt(x int64) *Int { return new(Int).SetInt64(x) } // Set sets z to x and returns z. func (z *Int) Set(x *Int) *Int { z.abs = z.abs.set(x.abs) z.neg = x.neg return z } // Abs sets z to |x| (the absolute value of x) and returns z. func (z *Int) Abs(x *Int) *Int { z.abs = z.abs.set(x.abs) z.neg = false return z } // Neg sets z to -x and returns z. func (z *Int) Neg(x *Int) *Int { z.abs = z.abs.set(x.abs) z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign return z } // Add sets z to the sum x+y and returns z. func (z *Int) Add(x, y *Int) *Int { neg := x.neg if x.neg == y.neg { // x + y == x + y // (-x) + (-y) == -(x + y) z.abs = z.abs.add(x.abs, y.abs) } else { // x + (-y) == x - y == -(y - x) // (-x) + y == y - x == -(x - y) if x.abs.cmp(y.abs) >= 0 { z.abs = z.abs.sub(x.abs, y.abs) } else { neg = !neg z.abs = z.abs.sub(y.abs, x.abs) } } z.neg = len(z.abs) > 0 && neg // 0 has no sign return z } // Sub sets z to the difference x-y and returns z. func (z *Int) Sub(x, y *Int) *Int { neg := x.neg if x.neg != y.neg { // x - (-y) == x + y // (-x) - y == -(x + y) z.abs = z.abs.add(x.abs, y.abs) } else { // x - y == x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if x.abs.cmp(y.abs) >= 0 { z.abs = z.abs.sub(x.abs, y.abs) } else { neg = !neg z.abs = z.abs.sub(y.abs, x.abs) } } z.neg = len(z.abs) > 0 && neg // 0 has no sign return z } // Mul sets z to the product x*y and returns z. func (z *Int) Mul(x, y *Int) *Int { // x * y == x * y // x * (-y) == -(x * y) // (-x) * y == -(x * y) // (-x) * (-y) == x * y z.abs = z.abs.mul(x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign return z } // MulRange sets z to the product of all integers // in the range [a, b] inclusively and returns z. // If a > b (empty range), the result is 1. func (z *Int) MulRange(a, b int64) *Int { switch { case a > b: return z.SetInt64(1) // empty range case a <= 0 && b >= 0: return z.SetInt64(0) // range includes 0 } // a <= b && (b < 0 || a > 0) neg := false if a < 0 { neg = (b-a)&1 == 0 a, b = -b, -a } z.abs = z.abs.mulRange(uint64(a), uint64(b)) z.neg = neg return z } // Binomial sets z to the binomial coefficient of (n, k) and returns z. func (z *Int) Binomial(n, k int64) *Int { var a, b Int a.MulRange(n-k+1, n) b.MulRange(1, k) return z.Quo(&a, &b) } // Quo sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // See QuoRem for more details. func (z *Int) Quo(x, y *Int) *Int { z.abs, _ = z.abs.div(nil, x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign return z } // Rem sets z to the remainder x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // See QuoRem for more details. func (z *Int) Rem(x, y *Int) *Int { _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg // 0 has no sign return z } // QuoRem sets z to the quotient x/y and r to the remainder x%y // and returns the pair (z, r) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // QuoRem implements T-division and modulus (like Go): // // q = x/y with the result truncated to zero // r = x - y*q // // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) // func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign return z, r } // Div sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // See DivMod for more details. func (z *Int) Div(x, y *Int) *Int { y_neg := y.neg // z may be an alias for y var r Int z.QuoRem(x, y, &r) if r.neg { if y_neg { z.Add(z, intOne) } else { z.Sub(z, intOne) } } return z } // Mod sets z to the modulus x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // See DivMod for more details. func (z *Int) Mod(x, y *Int) *Int { y0 := y // save y if z == y || alias(z.abs, y.abs) { y0 = new(Int).Set(y) } var q Int q.QuoRem(x, y, z) if z.neg { if y0.neg { z.Sub(z, y0) } else { z.Add(z, y0) } } return z } // DivMod sets z to the quotient x div y and m to the modulus x mod y // and returns the pair (z, m) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // DivMod implements Euclidean division and modulus (unlike Go): // // q = x div y such that // m = x - y*q with 0 <= m < |q| // // (See Raymond T. Boute, ``The Euclidean definition of the functions // div and mod''. ACM Transactions on Programming Languages and // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. // ACM press.) // func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { y0 := y // save y if z == y || alias(z.abs, y.abs) { y0 = new(Int).Set(y) } z.QuoRem(x, y, m) if m.neg { if y0.neg { z.Add(z, intOne) m.Sub(m, y0) } else { z.Sub(z, intOne) m.Add(m, y0) } } return z, m } // Cmp compares x and y and returns: // // -1 if x < y // 0 if x == y // +1 if x > y // func (x *Int) Cmp(y *Int) (r int) { // x cmp y == x cmp y // x cmp (-y) == x // (-x) cmp y == y // (-x) cmp (-y) == -(x cmp y) switch { case x.neg == y.neg: r = x.abs.cmp(y.abs) if x.neg { r = -r } case x.neg: r = -1 default: r = 1 } return } func (x *Int) String() string { s := "" if x.neg { s = "-" } return s + x.abs.string(10) } func fmtbase(ch int) int { switch ch { case 'b': return 2 case 'o': return 8 case 'd': return 10 case 'x': return 16 } return 10 } // Format is a support routine for fmt.Formatter. It accepts // the formats 'b' (binary), 'o' (octal), 'd' (decimal) and // 'x' (hexadecimal). // func (x *Int) Format(s fmt.State, ch int) { if x.neg { fmt.Fprint(s, "-") } fmt.Fprint(s, x.abs.string(fmtbase(ch))) } // Int64 returns the int64 representation of z. // If z cannot be represented in an int64, the result is undefined. func (x *Int) Int64() int64 { if len(x.abs) == 0 { return 0 } v := int64(x.abs[0]) if _W == 32 && len(x.abs) > 1 { v |= int64(x.abs[1]) << 32 } if x.neg { v = -v } return v } // SetString sets z to the value of s, interpreted in the given base, // and returns z and a boolean indicating success. If SetString fails, // the value of z is undefined. // // If the base argument is 0, the string prefix determines the actual // conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the // ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects // base 2. Otherwise the selected base is 10. // func (z *Int) SetString(s string, base int) (*Int, bool) { if len(s) == 0 || base < 0 || base == 1 || 16 < base { return z, false } neg := s[0] == '-' if neg || s[0] == '+' { s = s[1:] if len(s) == 0 { return z, false } } var scanned int z.abs, _, scanned = z.abs.scan(s, base) if scanned != len(s) { return z, false } z.neg = len(z.abs) > 0 && neg // 0 has no sign return z, true } // SetBytes interprets b as the bytes of a big-endian, unsigned integer and // sets z to that value. func (z *Int) SetBytes(b []byte) *Int { const s = _S z.abs = z.abs.make((len(b) + s - 1) / s) j := 0 for len(b) >= s { var w Word for i := s; i > 0; i-- { w <<= 8 w |= Word(b[len(b)-i]) } z.abs[j] = w j++ b = b[0 : len(b)-s] } if len(b) > 0 { var w Word for i := len(b); i > 0; i-- { w <<= 8 w |= Word(b[len(b)-i]) } z.abs[j] = w } z.abs = z.abs.norm() z.neg = false return z } // Bytes returns the absolute value of x as a big-endian byte array. func (z *Int) Bytes() []byte { const s = _S b := make([]byte, len(z.abs)*s) for i, w := range z.abs { wordBytes := b[(len(z.abs)-i-1)*s : (len(z.abs)-i)*s] for j := s - 1; j >= 0; j-- { wordBytes[j] = byte(w) w >>= 8 } } i := 0 for i < len(b) && b[i] == 0 { i++ } return b[i:] } // BitLen returns the length of the absolute value of z in bits. // The bit length of 0 is 0. func (z *Int) BitLen() int { return z.abs.bitLen() } // Exp sets z = x**y mod m. If m is nil, z = x**y. // See Knuth, volume 2, section 4.6.3. func (z *Int) Exp(x, y, m *Int) *Int { if y.neg || len(y.abs) == 0 { neg := x.neg z.SetInt64(1) z.neg = neg return z } var mWords nat if m != nil { mWords = m.abs } z.abs = z.abs.expNN(x.abs, y.abs, mWords) z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign return z } // GcdInt sets d to the greatest common divisor of a and b, which must be // positive numbers. // If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. // If either a or b is not positive, GcdInt sets d = x = y = 0. func GcdInt(d, x, y, a, b *Int) { if a.neg || b.neg { d.SetInt64(0) if x != nil { x.SetInt64(0) } if y != nil { y.SetInt64(0) } return } A := new(Int).Set(a) B := new(Int).Set(b) X := new(Int) Y := new(Int).SetInt64(1) lastX := new(Int).SetInt64(1) lastY := new(Int) q := new(Int) temp := new(Int) for len(B.abs) > 0 { r := new(Int) q, r = q.QuoRem(A, B, r) A, B = B, r temp.Set(X) X.Mul(X, q) X.neg = !X.neg X.Add(X, lastX) lastX.Set(temp) temp.Set(Y) Y.Mul(Y, q) Y.neg = !Y.neg Y.Add(Y, lastY) lastY.Set(temp) } if x != nil { *x = *lastX } if y != nil { *y = *lastY } *d = *A } // ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. // If it returns true, z is prime with probability 1 - 1/4^n. // If it returns false, z is not prime. func ProbablyPrime(z *Int, n int) bool { return !z.neg && z.abs.probablyPrime(n) } // Rand sets z to a pseudo-random number in [0, n) and returns z. func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { z.neg = false if n.neg == true || len(n.abs) == 0 { z.abs = nil return z } z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) return z } // ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where // p is a prime) and returns z. func (z *Int) ModInverse(g, p *Int) *Int { var d Int GcdInt(&d, z, nil, g, p) // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking // that modulo p results in g*x = 1, therefore x is the inverse element. if z.neg { z.Add(z, p) } return z } // Lsh sets z = x << n and returns z. func (z *Int) Lsh(x *Int, n uint) *Int { z.abs = z.abs.shl(x.abs, n) z.neg = x.neg return z } // Rsh sets z = x >> n and returns z. func (z *Int) Rsh(x *Int, n uint) *Int { if x.neg { // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 t = t.shr(t, n) z.abs = t.add(t, natOne) z.neg = true // z cannot be zero if x is negative return z } z.abs = z.abs.shr(x.abs, n) z.neg = false return z } // And sets z = x & y and returns z. func (z *Int) And(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) x1 := nat{}.sub(x.abs, natOne) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.add(z.abs.or(x1, y1), natOne) z.neg = true // z cannot be zero if x and y are negative return z } // x & y == x & y z.abs = z.abs.and(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // & is symmetric } // x & (-y) == x & ^(y-1) == x &^ (y-1) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.andNot(x.abs, y1) z.neg = false return z } // AndNot sets z = x &^ y and returns z. func (z *Int) AndNot(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) x1 := nat{}.sub(x.abs, natOne) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.andNot(y1, x1) z.neg = false return z } // x &^ y == x &^ y z.abs = z.abs.andNot(x.abs, y.abs) z.neg = false return z } if x.neg { // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) x1 := nat{}.sub(x.abs, natOne) z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) z.neg = true // z cannot be zero if x is negative and y is positive return z } // x &^ (-y) == x &^ ^(y-1) == x & (y-1) y1 := nat{}.add(y.abs, natOne) z.abs = z.abs.and(x.abs, y1) z.neg = false return z } // Or sets z = x | y and returns z. func (z *Int) Or(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) x1 := nat{}.sub(x.abs, natOne) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.add(z.abs.and(x1, y1), natOne) z.neg = true // z cannot be zero if x and y are negative return z } // x | y == x | y z.abs = z.abs.or(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // | is symmetric } // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) z.neg = true // z cannot be zero if one of x or y is negative return z } // Xor sets z = x ^ y and returns z. func (z *Int) Xor(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) x1 := nat{}.sub(x.abs, natOne) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.xor(x1, y1) z.neg = false return z } // x ^ y == x ^ y z.abs = z.abs.xor(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // ^ is symmetric } // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) y1 := nat{}.sub(y.abs, natOne) z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) z.neg = true // z cannot be zero if only one of x or y is negative return z } // Not sets z = ^x and returns z. func (z *Int) Not(x *Int) *Int { if x.neg { // ^(-x) == ^(^(x-1)) == x-1 z.abs = z.abs.sub(x.abs, natOne) z.neg = false return z } // ^x == -x-1 == -(x+1) z.abs = z.abs.add(x.abs, natOne) z.neg = true // z cannot be zero if x is positive return z }