// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Unix cryptographically secure pseudorandom number // generator. package rand import ( "crypto/aes" "io" "os" "sync" "time" ) // Easy implementation: read from /dev/urandom. // This is sufficient on Linux, OS X, and FreeBSD. func init() { Reader = &devReader{name: "/dev/urandom"} } // A devReader satisfies reads by reading the file named name. type devReader struct { name string f *os.File mu sync.Mutex } func (r *devReader) Read(b []byte) (n int, err os.Error) { r.mu.Lock() if r.f == nil { f, err := os.Open(r.name, os.O_RDONLY, 0) if f == nil { r.mu.Unlock() return 0, err } r.f = f } r.mu.Unlock() return r.f.Read(b) } // Alternate pseudo-random implementation for use on // systems without a reliable /dev/urandom. So far we // haven't needed it. // newReader returns a new pseudorandom generator that // seeds itself by reading from entropy. If entropy == nil, // the generator seeds itself by reading from the system's // random number generator, typically /dev/random. // The Read method on the returned reader always returns // the full amount asked for, or else it returns an error. // // The generator uses the X9.31 algorithm with AES-128, // reseeding after every 1 MB of generated data. func newReader(entropy io.Reader) io.Reader { if entropy == nil { entropy = &devReader{name: "/dev/random"} } return &reader{entropy: entropy} } type reader struct { mu sync.Mutex budget int // number of bytes that can be generated cipher *aes.Cipher entropy io.Reader time, seed, dst, key [aes.BlockSize]byte } func (r *reader) Read(b []byte) (n int, err os.Error) { r.mu.Lock() defer r.mu.Unlock() n = len(b) for len(b) > 0 { if r.budget == 0 { _, err := io.ReadFull(r.entropy, r.seed[0:]) if err != nil { return n - len(b), err } _, err = io.ReadFull(r.entropy, r.key[0:]) if err != nil { return n - len(b), err } r.cipher, err = aes.NewCipher(r.key[0:]) if err != nil { return n - len(b), err } r.budget = 1 << 20 // reseed after generating 1MB } r.budget -= aes.BlockSize // ANSI X9.31 (== X9.17) algorithm, but using AES in place of 3DES. // // single block: // t = encrypt(time) // dst = encrypt(t^seed) // seed = encrypt(t^dst) ns := time.Nanoseconds() r.time[0] = byte(ns >> 56) r.time[1] = byte(ns >> 48) r.time[2] = byte(ns >> 40) r.time[3] = byte(ns >> 32) r.time[4] = byte(ns >> 24) r.time[5] = byte(ns >> 16) r.time[6] = byte(ns >> 8) r.time[7] = byte(ns) r.cipher.Encrypt(r.time[0:], r.time[0:]) for i := 0; i < aes.BlockSize; i++ { r.dst[i] = r.time[i] ^ r.seed[i] } r.cipher.Encrypt(r.dst[0:], r.dst[0:]) for i := 0; i < aes.BlockSize; i++ { r.seed[i] = r.time[i] ^ r.dst[i] } r.cipher.Encrypt(r.seed[0:], r.seed[0:]) m := copy(b, r.dst[0:]) b = b[m:] } return n, nil }