// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package base32 implements base32 encoding as specified by RFC 4648. package base32 import ( "io" "os" "strconv" ) /* * Encodings */ // An Encoding is a radix 32 encoding/decoding scheme, defined by a // 32-character alphabet. The most common is the "base32" encoding // introduced for SASL GSSAPI and standardized in RFC 4648. // The alternate "base32hex" encoding is used in DNSSEC. type Encoding struct { encode string decodeMap [256]byte } const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" // NewEncoding returns a new Encoding defined by the given alphabet, // which must be a 32-byte string. func NewEncoding(encoder string) *Encoding { e := new(Encoding) e.encode = encoder for i := 0; i < len(e.decodeMap); i++ { e.decodeMap[i] = 0xFF } for i := 0; i < len(encoder); i++ { e.decodeMap[encoder[i]] = byte(i) } return e } // StdEncoding is the standard base32 encoding, as defined in // RFC 4648. var StdEncoding = NewEncoding(encodeStd) // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. // It is typically used in DNS. var HexEncoding = NewEncoding(encodeHex) /* * Encoder */ // Encode encodes src using the encoding enc, writing // EncodedLen(len(src)) bytes to dst. // // The encoding pads the output to a multiple of 8 bytes, // so Encode is not appropriate for use on individual blocks // of a large data stream. Use NewEncoder() instead. func (enc *Encoding) Encode(dst, src []byte) { if len(src) == 0 { return } for len(src) > 0 { dst[0] = 0 dst[1] = 0 dst[2] = 0 dst[3] = 0 dst[4] = 0 dst[5] = 0 dst[6] = 0 dst[7] = 0 // Unpack 8x 5-bit source blocks into a 5 byte // destination quantum switch len(src) { default: dst[7] |= src[4] & 0x1F dst[6] |= src[4] >> 5 fallthrough case 4: dst[6] |= (src[3] << 3) & 0x1F dst[5] |= (src[3] >> 2) & 0x1F dst[4] |= src[3] >> 7 fallthrough case 3: dst[4] |= (src[2] << 1) & 0x1F dst[3] |= (src[2] >> 4) & 0x1F fallthrough case 2: dst[3] |= (src[1] << 4) & 0x1F dst[2] |= (src[1] >> 1) & 0x1F dst[1] |= (src[1] >> 6) & 0x1F fallthrough case 1: dst[1] |= (src[0] << 2) & 0x1F dst[0] |= src[0] >> 3 } // Encode 5-bit blocks using the base32 alphabet for j := 0; j < 8; j++ { dst[j] = enc.encode[dst[j]] } // Pad the final quantum if len(src) < 5 { dst[7] = '=' if len(src) < 4 { dst[6] = '=' dst[5] = '=' if len(src) < 3 { dst[4] = '=' if len(src) < 2 { dst[3] = '=' dst[2] = '=' } } } break } src = src[5:] dst = dst[8:] } } type encoder struct { err os.Error enc *Encoding w io.Writer buf [5]byte // buffered data waiting to be encoded nbuf int // number of bytes in buf out [1024]byte // output buffer } func (e *encoder) Write(p []byte) (n int, err os.Error) { if e.err != nil { return 0, e.err } // Leading fringe. if e.nbuf > 0 { var i int for i = 0; i < len(p) && e.nbuf < 5; i++ { e.buf[e.nbuf] = p[i] e.nbuf++ } n += i p = p[i:] if e.nbuf < 5 { return } e.enc.Encode(e.out[0:], e.buf[0:]) if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { return n, e.err } e.nbuf = 0 } // Large interior chunks. for len(p) >= 5 { nn := len(e.out) / 8 * 5 if nn > len(p) { nn = len(p) } nn -= nn % 5 if nn > 0 { e.enc.Encode(e.out[0:], p[0:nn]) if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { return n, e.err } } n += nn p = p[nn:] } // Trailing fringe. for i := 0; i < len(p); i++ { e.buf[i] = p[i] } e.nbuf = len(p) n += len(p) return } // Close flushes any pending output from the encoder. // It is an error to call Write after calling Close. func (e *encoder) Close() os.Error { // If there's anything left in the buffer, flush it out if e.err == nil && e.nbuf > 0 { e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) e.nbuf = 0 _, e.err = e.w.Write(e.out[0:8]) } return e.err } // NewEncoder returns a new base32 stream encoder. Data written to // the returned writer will be encoded using enc and then written to w. // Base32 encodings operate in 5-byte blocks; when finished // writing, the caller must Close the returned encoder to flush any // partially written blocks. func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { return &encoder{enc: enc, w: w} } // EncodedLen returns the length in bytes of the base32 encoding // of an input buffer of length n. func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 } /* * Decoder */ type CorruptInputError int64 func (e CorruptInputError) String() string { return "illegal base32 data at input byte " + strconv.Itoa64(int64(e)) } // decode is like Decode but returns an additional 'end' value, which // indicates if end-of-message padding was encountered and thus any // additional data is an error. decode also assumes len(src)%8==0, // since it is meant for internal use. func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err os.Error) { for i := 0; i < len(src)/8 && !end; i++ { // Decode quantum using the base32 alphabet var dbuf [8]byte dlen := 8 // do the top bytes contain any data? dbufloop: for j := 0; j < 8; j++ { in := src[i*8+j] if in == '=' && j >= 2 && i == len(src)/8-1 { // We've reached the end and there's // padding, the rest should be padded for k := j; k < 8; k++ { if src[i*8+k] != '=' { return n, false, CorruptInputError(i*8 + j) } } dlen = j end = true break dbufloop } dbuf[j] = enc.decodeMap[in] if dbuf[j] == 0xFF { return n, false, CorruptInputError(i*8 + j) } } // Pack 8x 5-bit source blocks into 5 byte destination // quantum switch dlen { case 7, 8: dst[i*5+4] = dbuf[6]<<5 | dbuf[7] fallthrough case 6, 5: dst[i*5+3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 fallthrough case 4: dst[i*5+2] = dbuf[3]<<4 | dbuf[4]>>1 fallthrough case 3: dst[i*5+1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 fallthrough case 2: dst[i*5+0] = dbuf[0]<<3 | dbuf[1]>>2 } switch dlen { case 2: n += 1 case 3, 4: n += 2 case 5: n += 3 case 6, 7: n += 4 case 8: n += 5 } } return n, end, nil } // Decode decodes src using the encoding enc. It writes at most // DecodedLen(len(src)) bytes to dst and returns the number of bytes // written. If src contains invalid base32 data, it will return the // number of bytes successfully written and CorruptInputError. func (enc *Encoding) Decode(dst, src []byte) (n int, err os.Error) { if len(src)%8 != 0 { return 0, CorruptInputError(len(src) / 8 * 8) } n, _, err = enc.decode(dst, src) return } type decoder struct { err os.Error enc *Encoding r io.Reader end bool // saw end of message buf [1024]byte // leftover input nbuf int out []byte // leftover decoded output outbuf [1024 / 8 * 5]byte } func (d *decoder) Read(p []byte) (n int, err os.Error) { if d.err != nil { return 0, d.err } // Use leftover decoded output from last read. if len(d.out) > 0 { n = copy(p, d.out) d.out = d.out[n:] return n, nil } // Read a chunk. nn := len(p) / 5 * 8 if nn < 8 { nn = 8 } if nn > len(d.buf) { nn = len(d.buf) } nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf) d.nbuf += nn if d.nbuf < 8 { return 0, d.err } // Decode chunk into p, or d.out and then p if p is too small. nr := d.nbuf / 8 * 8 nw := d.nbuf / 8 * 5 if nw > len(p) { nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) d.out = d.outbuf[0:nw] n = copy(p, d.out) d.out = d.out[n:] } else { n, d.end, d.err = d.enc.decode(p, d.buf[0:nr]) } d.nbuf -= nr for i := 0; i < d.nbuf; i++ { d.buf[i] = d.buf[i+nr] } if d.err == nil { d.err = err } return n, d.err } // NewDecoder constructs a new base32 stream decoder. func NewDecoder(enc *Encoding, r io.Reader) io.Reader { return &decoder{enc: enc, r: r} } // DecodedLen returns the maximum length in bytes of the decoded data // corresponding to n bytes of base32-encoded data. func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 }