// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This package implements translation between // unsigned integer values and byte sequences. package binary import ( "math" "io" "os" "reflect" ) // A ByteOrder specifies how to convert byte sequences into // 16-, 32-, or 64-bit unsigned integers. type ByteOrder interface { Uint16(b []byte) uint16 Uint32(b []byte) uint32 Uint64(b []byte) uint64 PutUint16([]byte, uint16) PutUint32([]byte, uint32) PutUint64([]byte, uint64) String() string } // This is byte instead of struct{} so that it can be compared, // allowing, e.g., order == binary.LittleEndian. type unused byte // LittleEndian is the little-endian implementation of ByteOrder. var LittleEndian littleEndian // BigEndian is the big-endian implementation of ByteOrder. var BigEndian bigEndian type littleEndian unused func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 } func (littleEndian) PutUint16(b []byte, v uint16) { b[0] = byte(v) b[1] = byte(v >> 8) } func (littleEndian) Uint32(b []byte) uint32 { return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 } func (littleEndian) PutUint32(b []byte, v uint32) { b[0] = byte(v) b[1] = byte(v >> 8) b[2] = byte(v >> 16) b[3] = byte(v >> 24) } func (littleEndian) Uint64(b []byte) uint64 { return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 } func (littleEndian) PutUint64(b []byte, v uint64) { b[0] = byte(v) b[1] = byte(v >> 8) b[2] = byte(v >> 16) b[3] = byte(v >> 24) b[4] = byte(v >> 32) b[5] = byte(v >> 40) b[6] = byte(v >> 48) b[7] = byte(v >> 56) } func (littleEndian) String() string { return "LittleEndian" } func (littleEndian) GoString() string { return "binary.LittleEndian" } type bigEndian unused func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 } func (bigEndian) PutUint16(b []byte, v uint16) { b[0] = byte(v >> 8) b[1] = byte(v) } func (bigEndian) Uint32(b []byte) uint32 { return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 } func (bigEndian) PutUint32(b []byte, v uint32) { b[0] = byte(v >> 24) b[1] = byte(v >> 16) b[2] = byte(v >> 8) b[3] = byte(v) } func (bigEndian) Uint64(b []byte) uint64 { return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 } func (bigEndian) PutUint64(b []byte, v uint64) { b[0] = byte(v >> 56) b[1] = byte(v >> 48) b[2] = byte(v >> 40) b[3] = byte(v >> 32) b[4] = byte(v >> 24) b[5] = byte(v >> 16) b[6] = byte(v >> 8) b[7] = byte(v) } func (bigEndian) String() string { return "BigEndian" } func (bigEndian) GoString() string { return "binary.BigEndian" } // Read reads structured binary data from r into data. // Data must be a pointer to a fixed-size value or a slice // of fixed-size values. // A fixed-size value is either a fixed-size arithmetic // type (int8, uint8, int16, float32, complex64, ...) // or an array or struct containing only fixed-size values. // Bytes read from r are decoded using the specified byte order // and written to successive fields of the data. func Read(r io.Reader, order ByteOrder, data interface{}) os.Error { var v reflect.Value switch d := reflect.NewValue(data).(type) { case *reflect.PtrValue: v = d.Elem() case *reflect.SliceValue: v = d default: return os.NewError("binary.Read: invalid type " + d.Type().String()) } size := TotalSize(v) if size < 0 { return os.NewError("binary.Read: invalid type " + v.Type().String()) } d := &decoder{order: order, buf: make([]byte, size)} if _, err := io.ReadFull(r, d.buf); err != nil { return err } d.value(v) return nil } // Write writes the binary representation of data into w. // Data must be a fixed-size value or a pointer to // a fixed-size value. // A fixed-size value is either a fixed-size arithmetic // type (int8, uint8, int16, float32, complex64, ...) // or an array or struct containing only fixed-size values. // Bytes written to w are encoded using the specified byte order // and read from successive fields of the data. func Write(w io.Writer, order ByteOrder, data interface{}) os.Error { v := reflect.Indirect(reflect.NewValue(data)) size := TotalSize(v) if size < 0 { return os.NewError("binary.Write: invalid type " + v.Type().String()) } buf := make([]byte, size) e := &encoder{order: order, buf: buf} e.value(v) _, err := w.Write(buf) return err } func TotalSize(v reflect.Value) int { if sv, ok := v.(*reflect.SliceValue); ok { elem := sizeof(v.Type().(*reflect.SliceType).Elem()) if elem < 0 { return -1 } return sv.Len() * elem } return sizeof(v.Type()) } func sizeof(v reflect.Type) int { switch t := v.(type) { case *reflect.ArrayType: n := sizeof(t.Elem()) if n < 0 { return -1 } return t.Len() * n case *reflect.StructType: sum := 0 for i, n := 0, t.NumField(); i < n; i++ { s := sizeof(t.Field(i).Type) if s < 0 { return -1 } sum += s } return sum case *reflect.UintType, *reflect.IntType, *reflect.FloatType, *reflect.ComplexType: switch t := t.Kind(); t { case reflect.Int, reflect.Uint, reflect.Uintptr: return -1 } return int(v.Size()) } return -1 } type decoder struct { order ByteOrder buf []byte } type encoder struct { order ByteOrder buf []byte } func (d *decoder) uint8() uint8 { x := d.buf[0] d.buf = d.buf[1:] return x } func (e *encoder) uint8(x uint8) { e.buf[0] = x e.buf = e.buf[1:] } func (d *decoder) uint16() uint16 { x := d.order.Uint16(d.buf[0:2]) d.buf = d.buf[2:] return x } func (e *encoder) uint16(x uint16) { e.order.PutUint16(e.buf[0:2], x) e.buf = e.buf[2:] } func (d *decoder) uint32() uint32 { x := d.order.Uint32(d.buf[0:4]) d.buf = d.buf[4:] return x } func (e *encoder) uint32(x uint32) { e.order.PutUint32(e.buf[0:4], x) e.buf = e.buf[4:] } func (d *decoder) uint64() uint64 { x := d.order.Uint64(d.buf[0:8]) d.buf = d.buf[8:] return x } func (e *encoder) uint64(x uint64) { e.order.PutUint64(e.buf[0:8], x) e.buf = e.buf[8:] } func (d *decoder) int8() int8 { return int8(d.uint8()) } func (e *encoder) int8(x int8) { e.uint8(uint8(x)) } func (d *decoder) int16() int16 { return int16(d.uint16()) } func (e *encoder) int16(x int16) { e.uint16(uint16(x)) } func (d *decoder) int32() int32 { return int32(d.uint32()) } func (e *encoder) int32(x int32) { e.uint32(uint32(x)) } func (d *decoder) int64() int64 { return int64(d.uint64()) } func (e *encoder) int64(x int64) { e.uint64(uint64(x)) } func (d *decoder) value(v reflect.Value) { switch v := v.(type) { case *reflect.ArrayValue: l := v.Len() for i := 0; i < l; i++ { d.value(v.Elem(i)) } case *reflect.StructValue: l := v.NumField() for i := 0; i < l; i++ { d.value(v.Field(i)) } case *reflect.SliceValue: l := v.Len() for i := 0; i < l; i++ { d.value(v.Elem(i)) } case *reflect.IntValue: switch v.Type().Kind() { case reflect.Int8: v.Set(int64(d.int8())) case reflect.Int16: v.Set(int64(d.int16())) case reflect.Int32: v.Set(int64(d.int32())) case reflect.Int64: v.Set(d.int64()) } case *reflect.UintValue: switch v.Type().Kind() { case reflect.Uint8: v.Set(uint64(d.uint8())) case reflect.Uint16: v.Set(uint64(d.uint16())) case reflect.Uint32: v.Set(uint64(d.uint32())) case reflect.Uint64: v.Set(d.uint64()) } case *reflect.FloatValue: switch v.Type().Kind() { case reflect.Float32: v.Set(float64(math.Float32frombits(d.uint32()))) case reflect.Float64: v.Set(math.Float64frombits(d.uint64())) } case *reflect.ComplexValue: switch v.Type().Kind() { case reflect.Complex64: v.Set(complex( float64(math.Float32frombits(d.uint32())), float64(math.Float32frombits(d.uint32())), )) case reflect.Complex128: v.Set(complex( math.Float64frombits(d.uint64()), math.Float64frombits(d.uint64()), )) } } } func (e *encoder) value(v reflect.Value) { switch v := v.(type) { case *reflect.ArrayValue: l := v.Len() for i := 0; i < l; i++ { e.value(v.Elem(i)) } case *reflect.StructValue: l := v.NumField() for i := 0; i < l; i++ { e.value(v.Field(i)) } case *reflect.SliceValue: l := v.Len() for i := 0; i < l; i++ { e.value(v.Elem(i)) } case *reflect.IntValue: switch v.Type().Kind() { case reflect.Int8: e.int8(int8(v.Get())) case reflect.Int16: e.int16(int16(v.Get())) case reflect.Int32: e.int32(int32(v.Get())) case reflect.Int64: e.int64(v.Get()) } case *reflect.UintValue: switch v.Type().Kind() { case reflect.Uint8: e.uint8(uint8(v.Get())) case reflect.Uint16: e.uint16(uint16(v.Get())) case reflect.Uint32: e.uint32(uint32(v.Get())) case reflect.Uint64: e.uint64(v.Get()) } case *reflect.FloatValue: switch v.Type().Kind() { case reflect.Float32: e.uint32(math.Float32bits(float32(v.Get()))) case reflect.Float64: e.uint64(math.Float64bits(v.Get())) } case *reflect.ComplexValue: switch v.Type().Kind() { case reflect.Complex64: x := v.Get() e.uint32(math.Float32bits(float32(real(x)))) e.uint32(math.Float32bits(float32(imag(x)))) case reflect.Complex128: x := v.Get() e.uint64(math.Float64bits(real(x))) e.uint64(math.Float64bits(imag(x))) } } }